i=1 λ ix i,λ i T,x i M}.Množinuvektorů

Rozměr: px
Začít zobrazení ze stránky:

Download "i=1 λ ix i,λ i T,x i M}.Množinuvektorů"

Transkript

1 Velké prostory Anička Doležalová Abstrakt. Budeme si hrát s vektorovými prostory, které mají nekonečnou dimenzi. Cílemjesijetrochuosahatazískatzákladníintuici.Ktomunámposloužíhlavně prostory posloupností. Prerekvizity Pokud byste rádi přišli na přednášku, ale nemáte potřebné znalosti z vektorových a metrických prostorů, odchyťte si mě v průběhu sousu a probereme to. Porozumění pojmůmzdeuvedenýmjenezbytné 1 propochopenípřednášky. Úmluva. Píšeme-li x mávlastnost x 0,mámetímnamysli,žetato nerovnost platí pro všechna x z příslušné množiny X. Definice. Vektorovým prostorem nad tělesem T (zkráceně v. p. nad T) nazveme neprázdnoumnožinu V spolusoperacemi+:v V V a :T V V,pokud splňujenásledujícíaxiomy(kde x,y, V,λ,ϑ T): (1) x+y= y+x,(x+y)+z= x+(y+z), (2) existuje x 0 takové,že x 0 +x=x(typickyznačíme0), (3) prokaždé xexistujeopačnýprvek y: x+y=0(značíme x), (4) λ (ϑ x))=(λϑ) x,1 x=x, (5) (λ+ϑ) x=λ x+ϑ x, λ (x+y)=λ x+λ y. Znak pro násobení často vynecháváme. V přednášce budeme uvažovat pouze v. p. nad R. Lineárním obalem vektorů z množiny M rozumíme množinu všech(konečných!) lineárníchkombinacítěchtoprvků,tj. { n i=1 λ ix i,λ i T,x i M}.Množinuvektorů nazveme lineárně nezávislou, pokud se žádný z nich nedá vyjádřit jako lineární kombinace ostatních. Příklad. R n,kde njepřirozenéčíslo.operaceseprovádějíposložkách,nanich sechovajíjakostandardnísoučetasoučin.nulovývektorjevektor(0,...,0). 1 Alenikolivpostačující. 11

2 VELKÉ PROSTORY Příklad. Prostorvšechmatic2 2nad R.Sčítáníinásobeníseprovádějípo složkách. Nulový vektor je nulová matice(všechny složky jsou nula). Příklad. Prostor všech funkcí R R s operacemi prováděnými bodově. Definice. Dvojici(X, ) nazveme normovaný vektorový prostor, pokud X je vektorovýprostorazobrazení :X Rsplňuje (1) x 0, x =0 x=0, (2) λx = λ x (λ R), (3) x+y x + y. Zobrazení nazvemenorma. Příklad. X= Rs x = x jenormovanýv.p. Příklad. Propřirozenéčíslo nuvažujme X= R n (tj. x Xjetvaru(x 1,...,x n ), kde x i R)s x 1 = x x n, x 2 = x x n 2 nebo x = max{ x 1,..., x n }.Vkaždémztěchtopřípadůsejednáonormovanýv.p.Tyto prostory pro nás budou důležité, neboť z nich budeme v přednášce vycházet. Příslušné normy se nazývají postupně součtová, eukleidovská a supremová. Příklad. Prostor všech spojitých funkcí[0, 1] R se supremovou normou definovanoujako f = max x [0,1] f(x) tvořínormovanýv.p. Poznámka. Spojitá funkce na uzavřeném intervalu nabývá maxima, norma je tedy dobře definovaná. Definice. Mějmedvanormovanév.p. X, Y (nad R).Zobrazení L : X Y nazveme lineární, pokud splňuje (1) L(x+ x)=l(x)+l( x), (2) L(λx)=λL(x). Příklad. Vynásobení konstantou je lineární zobrazení. Přičtení nenulové konstanty ne. Definice. Dvojici(X, ρ) nazveme metrický prostor, pokud X je neprázdná množinaaρjezobrazení X X Rsplňující (1) ρ(x,y) 0, ρ(x,y)=0 x=y, (2) ρ(x,y)=ρ(y,x), (3) ρ(x,z) ρ(x,y)+ρ(y,z). Zobrazení ρsenazývámetrika.okolímbodu x 0 Xopoloměru εnazvememnožinu U(x 0,ε)={x X: ρ(x 0,x) < ε}.množinunazvemeotevřenou,pokudprokaždý jejíbodležívmnožiněinějakéjehookolí. Příklad. Každýnormovanýv.p.,kdeza ρ(x,y)vezmeme x y.tétometrice říkáme metrika indukovaná normou. Například tedy R se vzdáleností x y. Dále se nám bude hodit(alespoň) intuitivní představa limity posloupnosti v metrickém prostoru. Pro úplnost tedy uveďme její formální definici: 12

3 ANIČKA DOLEŽALOVÁ Definice. Mějmevmetrickémprostoru(X,ρ)posloupnostjehoprvků(x n ) 1.Řekneme,žetatoposloupnostkonvergujekbodu x X(bodxjejejílimitou),pokudpro každé ε >0existujeindex n 0 takový,ževšechnyprvkyposloupnosti(x n ) n 0 užleží v U(x,ε).Řekneme,žeposloupnostjecauchyovská,pokudprokaždé ε >0existuje index n 0 takový,žeprovšechnyindexy m,nvětšínež n 0 užplatí ρ(x m,x n ) < ε. Tvrzení. Každá konvergentní posloupnost je cauchyovská. Opačná implikace neplatí. Důkaz. Náznak: Pokudužjsouvšechnyčleny(x n ) n 0 v U(x,ε),pakpročlenytétoposloupnosti platí ρ(x m,x n ) <2ε. Naopak budeme-li uvažovat jako metrický prostor Q s absolutní hodnotou, pak (z hustoty racionálních čísel v reálných) umíme najít cauchyovskou posloupnost, kteránemálimitu(v Q). Přednáška! Definice. Mějme normovaný v. p., na kterém uvažujeme metriku indukovanou normou. Pokud platí, že každá cauchyovská posloupnost je konvergentní(tedy má v daném prostoru limitu), nazveme tento prostor Banachův. Poznámka. Obecně metrický prostor, ve kterém platí, že každá cauchyovská posloupnost je konvergentní, nazveme úplný. Budeme brát jako fakt, že reálná čísla s absolutní hodnotou jsou Banachův prostor. Příklad. Prostor R n slibovolnouzvýšeuvedenýchtřínoremjebanachův. Příklad. Prostor R n slibovolnou p-normoujebanachův,kde x p =( x 1 p + + x n p ) 1/p,p [1, ). (Pro p= sejednáosupremovounormu.) Příklad. Prostor všech spojitých funkcí[0, 1] R se supremovou normou je Banachův. Poznámka. Pojem supremovánorma sezdábýtnadužívaný,vjistémsmyslu sealejednáostáletutéžnormu vezmese(vabsolutníhodnotě)největšíhodnota z nějaké množiny. V případě konečného vektoru je to jeho největší složka, v případě funkce největší funkční hodnota. Definice. Označme X= R N (tedyprostornekonečných spočetných posloupnostísesložkamizr).jednáseovektorovýprostor.pro p [1, )definujeme ( ) 1/p l p = x X: x p= x n p <. 13 n N

4 VELKÉ PROSTORY Podobně definujeme prostor omezených posloupností l = {x X: x =sup x n < } n N a prostor posloupností konvergujících k nule c 0 = {x X:(x n ) 1 konvergujek0} sesupremovounormou(tj.toutéžjakovl ). Posloupnosti, které mají n-tou složku rovnou jedné a všechny ostatní nulové, značíme e n. Poznámka. Všechny tyto prostory jsou Banachovy. Úloha1. Zkustesipředstavit c 0 a l p.:) Úloha2. Jakseintuitivněliší c 0, l p (p [1, ))al? Úloha3. Jakvypadá U(0,ε)vc 0, l 1, l 2, l? Úloha4. Najděteconejvětšímnožinulineárněnezávislýchvektorůvl p. Úloha5. Jakvypadálineárníobalmnožiny {e n,n N}vtěchtoprostorech? Úloha6. Dokažte,že l 1 jeseparabilní 2 (obecnětoplatípro p [1, )). Úloha7. Najdětenějakélineárnízobrazení l p l p, l p l 1, l 1 R. Věta.(Riesz,neformálně) Nechť p (1, ).Každélineárnízobrazení l p Rse dájednoznačněztotožnitsprvkem l q,kde 1 p + 1 q =1.Totoztotožněníjeprostéa na. Poznámka. Obecně množina všech lineárních zobrazení z jednoho Banachova prostoru do druhého tvoří také Banachův prostor. Prostoru lineárních zobrazení z Banachovaprostoru Xdo Rseříkáduálníprostoraznačíse X.Příslušnánormaje odvozená z norem obou prostorů. Úloha 8. Najdětelineárnízobrazení l 1 R,kterénenídobředefinovanéjako l 2 R. Definice. Naprostoru l 2 definujemeskalárnísoučinjako x,y = n Nx n y n. Kolmost a ortogonální doplněk definujeme analogicky jako v konečném případě (např.ur 2 ),tedydvaprvkyjsounasebekolmé,pokudjejejichskalárnísoučin nula, ortogonální doplněk množiny M jsou všechny prvky, které jsou kolmé na každý prvek M. 2 Tj.najdětespočetnouhustoupodmnožinu. 14

5 ANIČKA DOLEŽALOVÁ Úloha9. Jakvypadáortogonálnídoplněkposloupnosti e 1? Úloha10. Najdětedvarůznépodprostoryl 2,jejichžortogonálnídoplněkjestejný. Další směry, kterými se můžeme ubírat, jsou Banachovy algebry(můžeme násobit vektorymezisebou!),duályaslabétopologie(prosilnějšínátury,kteréznají alespoňzákladytopologie)nebosvět L p prostorů(kdežijílebesgueovskyintegrovatelné funkce). Literatura a zdroje [1] O. Kalenda: Úvod do funkcionální analýzy, Funkcionální analýza 1, MFF. 15

Projekty - Úvod do funkcionální analýzy

Projekty - Úvod do funkcionální analýzy Projekty - Úvod do funkcionální analýzy Projekt č. 1. Nechť a, b R, a < b. Dokažte, že prostor C( a, b ) = f : R R: f je spojitá na D(f) = a, b s metrikou je úplný. ρ(f, g) = max f(x) g(x) x a,b Projekt

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti: Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé

Více

Přednáška 6, 6. listopadu 2013

Přednáška 6, 6. listopadu 2013 Přednáška 6, 6. listopadu 2013 Kapitola 2. Posloupnosti a řady funkcí. V dalším jsou f, f n : M R, n = 1, 2,..., reálné funkce jedné reálné proměnné definované na (neprázdné) množině M R. Co to znamená,

Více

10 Funkce více proměnných

10 Funkce více proměnných M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y

Více

17. Posloupnosti a řady funkcí

17. Posloupnosti a řady funkcí 17. Posloupnosti a řady funkcí Aplikovaná matematika III, NMAF073 M. Rokyta, KMA MFF UK ZS 2011/12 17.1 Stejnoměrná konvergence posloupnosti funkcí Definice Necht M je množina, f, f n : M R m, m, n N.

Více

K oddílu I.1 základní pojmy, normy, normované prostory

K oddílu I.1 základní pojmy, normy, normované prostory ÚVOD DO FUNKCIONÁLNÍ ANALÝZY PŘÍKLADY PRO POROZUMĚNÍ LÁTCE ZS 2015/2016 PŘÍKLADY KE KAPITOLE I K oddílu I1 základní pojmy, normy, normované prostory Příklad 1 Necht X je reálný vektorový prostor a : X

Více

Necht L je lineární prostor nad R. Operaci : L L R nazýváme

Necht L je lineární prostor nad R. Operaci : L L R nazýváme Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

Texty k přednáškám z MMAN3: 3. Metrické prostory

Texty k přednáškám z MMAN3: 3. Metrické prostory Texty k přednáškám z MMAN3: 3. Metrické prostory 3. července 2012 1 Metrika na množině, metrický prostor Pojem vzdálenosti dvou reálných (komplexních) čísel, nebo bodů v rovině či prostoru je známý ze

Více

Úvod základy teorie zobrazení

Úvod základy teorie zobrazení Úvod základy teorie zobrazení V přednášce se budeme zabývat diferenciálním a integrálním počtem funkcí více proměnných. Přednáška navazuje na přednášku atematická analýza 1 z prvního semestru. Proto se

Více

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení.

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Literatura: Kapitola 2 a)-c) a kapitola 4 a)-c) ze skript Karel Rektorys: Matematika 43, ČVUT,

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

2. přednáška 8. října 2007

2. přednáška 8. října 2007 2. přednáška 8. října 2007 Konvergence v metrických prostorech. Posloupnost bodů (a n ) M v metrickém prostoru (M, d) konverguje (je konvergentní), když v M existuje takový bod a, že lim n d(a n, a) =

Více

p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že

p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že KAPITOLA 1: Reálná čísla [MA1-18:P1.1] 1.1. Číselné množiny Přirozená čísla... N = {1,, 3,...} nula... 0, N 0 = {0, 1,, 3,...} = N {0} Celá čísla... Z = {0, 1, 1,,, 3,...} Racionální čísla... { p } Q =

Více

Obsah. 1 Lineární prostory 2

Obsah. 1 Lineární prostory 2 Obsah 1 Lineární prostory 2 2 Úplné prostory 2 2.1 Metrické prostory.................................... 2 2.2 Banachovy prostory................................... 3 2.3 Lineární funkcionály..................................

Více

Lineární algebra : Lineární prostor

Lineární algebra : Lineární prostor Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární

Více

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

Základní pojmy teorie množin Vektorové prostory

Základní pojmy teorie množin Vektorové prostory Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy

Více

Matematická analýza 1

Matematická analýza 1 Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod

Více

Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť.

Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť. Přednáška 3, 19. října 2015 Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť X i = M i I je jeho pokrytí otevřenými

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy.

Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. 6 Skalární součin Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. Příklad: Určete odchylku přímek p, q : p : x =1+3t,

Více

Lineární algebra : Báze a dimenze

Lineární algebra : Báze a dimenze Lineární algebra : Báze a dimenze (5. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 9. dubna 2014, 13:33 1 2 5.1 Báze lineárního prostoru Definice 1. O množině vektorů M z LP V řekneme,

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Home. Obsah. Strana 1 MATEMATIKA. Fullscreen PRO LETECKÉ. Tisk OBORY II. Konec

Home. Obsah. Strana 1 MATEMATIKA. Fullscreen PRO LETECKÉ. Tisk OBORY II. Konec Kurzy celoživotního vzdělávání Fakulta dopravní ČVUT MATEMATIKA Strana 1 PRO LETECKÉ OBORY II PŘEHLED LÁTKY 1 Metrické a normované prostory 2 Posloupnosti v metrických prostorech 3 Reálné funkce více reálných

Více

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení

Více

PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti

PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

3. přednáška 15. října 2007

3. přednáška 15. října 2007 3. přednáška 15. října 2007 Kompaktnost a uzavřené a omezené množiny. Kompaktní množiny jsou vždy uzavřené a omezené, a v euklidovských prostorech to platí i naopak. Obecně to ale naopak neplatí. Tvrzení

Více

Metrické prostory a kompaktnost

Metrické prostory a kompaktnost Metrické prostory a kompaktnost David Hruška Abstrakt. Příspěvek shrnuje vybrané základní poznatky o metrických prostorech. Jeho závěrečná část je věnována kompaktnosti a jejím aplikacím. V reálném světě,

Více

Aplikovaná matematika I, NMAF071

Aplikovaná matematika I, NMAF071 M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 1 Aplikovaná matematika I, NMAF071 M. Rokyta, KMA MFF UK ZS 2013/14 Sylabus = obsah (plán) přednášky [a orientační

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

FREDHOLMOVA ALTERNATIVA

FREDHOLMOVA ALTERNATIVA FREDHOLMOVA ALTERNATIVA Pavel Jirásek 1 Abstrakt. V tomto článku se snažíme shrnout dosavadní výsledky týkající se Fredholmovy alternativy (FA). Postupně zmíníme FA na prostorech konečné dimenze, FA pro

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

1 Množiny, výroky a číselné obory

1 Množiny, výroky a číselné obory 1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou

Více

Lineární algebra : Skalární součin a ortogonalita

Lineární algebra : Skalární součin a ortogonalita Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 30. dubna 2014, 09:00 1 2 15.1 Prehilhertovy prostory Definice 1. Buď V LP nad

Více

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní

Více

Lineární algebra : Skalární součin a ortogonalita

Lineární algebra : Skalární součin a ortogonalita Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál

Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Jan Slovák Masarykova univerzita Fakulta informatiky 16. 9. 2008 Obsah přednášky 1 Literatura 2 Funkce a

Více

Lineární algebra : Lineární (ne)závislost

Lineární algebra : Lineární (ne)závislost Lineární algebra : Lineární (ne)závislost (4. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních technologií

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

7. Lineární vektorové prostory

7. Lineární vektorové prostory 7. Lineární vektorové prostory Tomáš Salač MÚ UK, MFF UK LS 2017/18 Tomáš Salač ( MÚ UK, MFF UK ) 7. Lineární vektorové prostory LS 2017/18 1 / 62 7.1 Definice a příklady Definice 7.1 Množina G s binární

Více

)(x 2 + 3x + 4),

)(x 2 + 3x + 4), 3 IREDUCIBILNÍ ROZKLADY POLYNOMŮ V T [X] 3 Ireducibilní rozklady polynomů v T [x] - rozklady polynomů na ireducibilní (dále nerozložitelné) prvky v oboru integrity polynomů jedné neurčité x nad tělesem

Více

Matematická analýza pro informatiky I.

Matematická analýza pro informatiky I. Matematická analýza pro informatiky I. 1. přednáška Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 14. února 2011 Jan Tomeček, tomecek@inf.upol.cz

Více

1 Posloupnosti a řady.

1 Posloupnosti a řady. 1 Posloupnosti a řady. 1.1 Posloupnosti reálných čísel. Definice 1.1: Posloupností reálných čísel nazýváme zobrazení f množiny N všech přirozených čísel do množiny R všech reálných čísel. Pokud nemůže

Více

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo 0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový

Více

7 Konvexní množiny. min c T x. při splnění tzv. podmínek přípustnosti, tj. x = vyhovuje podmínkám: A x = b a x i 0 pro každé i n.

7 Konvexní množiny. min c T x. při splnění tzv. podmínek přípustnosti, tj. x = vyhovuje podmínkám: A x = b a x i 0 pro každé i n. 7 Konvexní množiny Motivace. Lineární programování (LP) řeší problém nalezení minima (resp. maxima) lineárního funkcionálu na jisté konvexní množině. Z bohaté škály úloh z této oblasti jmenujme alespoň

Více

Matematika 5 FSV UK, ZS Miroslav Zelený

Matematika 5 FSV UK, ZS Miroslav Zelený Matematika 5 FSV UK, ZS 2018-19 Miroslav Zelený 1. Stabilita řešení soustav diferenciálních rovnic 2. Úvod do variačního počtu 3. Globální extrémy 4. Teorie optimálního řízení 5. Různé 1. Stabilita řešení

Více

Úvod do funkcionální analýzy

Úvod do funkcionální analýzy Úvod do funkcionální analýzy Ladislav Lukšan Ústav informatiky AV ČR, Pod vodárenskou věží 2, 182 07 Praha 8 Technická universita v Liberci, Hálkova 6, 461 17 Liberec Tento text byl použit jako podklad

Více

Matematika 2 pro PEF PaE

Matematika 2 pro PEF PaE Vektorové prostory 1 / 17 Matematika 2 pro PEF PaE 8. Vektorové prostory Přemysl Jedlička Katedra matematiky, TF ČZU Vektorové prostory Vektorové prostory a podprostory 2 / 17 vektorového prostoru Množina

Více

V: Pro nulový prvek o lineárního prostoru L platí vlastnosti:

V: Pro nulový prvek o lineárního prostoru L platí vlastnosti: Zpracoval: hypspave@fel.cvut.cz. Základní vlastnosti abstraktních lineárních prostorů. Lineární závislost, nezávislost, báze, souřadnice vzhledem k bázi, matice lineárního zobrazení vzhledem k bázím.skalární

Více

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2 6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 63 1 2 3 4 5 6 7 8 9 10 11 2 / 63 Aritmetický vektor Definition 1 Aritmetický vektor x je uspořádaná

Více

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R... Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -

Více

8 Matice a determinanty

8 Matice a determinanty M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou

Více

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové

Více

K oddílu VI.1 obecné slabé topologie Příklad 1. Necht X = C([0, 1]) s topologií bodové konvergence na [0, 1]. Popište všechny

K oddílu VI.1 obecné slabé topologie Příklad 1. Necht X = C([0, 1]) s topologií bodové konvergence na [0, 1]. Popište všechny FUNKCIONÁLNÍ ANALÝZA 1 PŘÍKLADY PRO POROZUMĚNÍ LÁTCE ZS 2016/2017 PŘÍKLADY KE KAPITOLE VI K oddílu VI.1 obecné slabé topologie Příklad 1. Necht X = C([0, 1]) s topologií bodové konvergence na [0, 1]. Popište

Více

1 Základní pojmy 2. 2 Měření vzdálenosti, metrický prostor 2. 3 Okolí v metrickém prostoru 3. 4 Zobecněná koule 3

1 Základní pojmy 2. 2 Měření vzdálenosti, metrický prostor 2. 3 Okolí v metrickém prostoru 3. 4 Zobecněná koule 3 I. Metrické prostory Obsah 1 Základní pojmy 2 2 Měření vzdálenosti, metrický prostor 2 3 Okolí v metrickém prostoru 3 4 Zobecněná koule 3 5 Některé význačné body a množiny metrického prostoru 4 1 Základní

Více

Lineární prostory. - vektorové veličiny(síla, rychlost, zrychlení,...), skládání, násobení reálným číslem

Lineární prostory. - vektorové veličiny(síla, rychlost, zrychlení,...), skládání, násobení reálným číslem Lineární prostory - vektorové veličiny(síla, rychlost, zrychlení,...), skládání, násobení reálným číslem - volné vektory a operace s nimi(sčítání, násobení reálným číslem) -ve 2 nebove 3 vázanévektorysespolečnýmpočátkem

Více

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y

Více

Přednáška 6, 7. listopadu 2014

Přednáška 6, 7. listopadu 2014 Přednáška 6, 7. listopadu 204 Část 3: nekonečné řady Základní definice. Nekonečná řada, krátce řada, je posloupnost reálných čísel (a n ) R uvedená v zápisu a n = a + a 2 + a 3 +..., spolu s metodou přiřazující

Více

18 Fourierovy řady Úvod, základní pojmy

18 Fourierovy řady Úvod, základní pojmy M. Rokyta, MFF UK: Aplikovaná matematika III kap. 18: Fourierovy řady 7 18 Fourierovy řady 18.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"

Více

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m

Více

ÚVOD DO FUNKCIONÁLNÍ ANALÝZY. Jiří Bouchala

ÚVOD DO FUNKCIONÁLNÍ ANALÝZY. Jiří Bouchala ÚVOD DO FUNKCIONÁLNÍ ANALÝZY Jiří Bouchala Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.7/2.2./7.332), na kterém se společně podílela Vysoká škola báňská

Více

Uzavřené a otevřené množiny

Uzavřené a otevřené množiny Teorie: Uzavřené a otevřené množiny 2. cvičení DEFINICE Nechť M R n. Bod x M nazveme vnitřním bodem množiny M, pokud existuje r > 0 tak, že B(x, r) M. Množinu všech vnitřních bodů značíme Int M. Dále,

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

1 Topologie roviny a prostoru

1 Topologie roviny a prostoru 1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se

Více

Operace s maticemi. 19. února 2018

Operace s maticemi. 19. února 2018 Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice

Více

6. ANALYTICKÁ GEOMETRIE

6. ANALYTICKÁ GEOMETRIE Vektorová algebra 6. ANALYTICKÁ GEOMETRIE Pravoúhlé souřadnice bodu v prostoru Poloha bodu v prostoru je vzhledem ke třem osám k sobě kolmým určena třemi souřadnicemi, které tvoří uspořádanou trojici reálných

Více

Báze a dimenze vektorových prostorů

Báze a dimenze vektorových prostorů Báze a dimenze vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ). Nechť u 1, u 2,..., u n je konečná posloupnost vektorů z V. Existují-li prvky s 1, s 2,..., s n T, z nichž alespoň

Více

Interpolace, ortogonální polynomy, Gaussova kvadratura

Interpolace, ortogonální polynomy, Gaussova kvadratura Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť

Více

Limita posloupnosti a funkce

Limita posloupnosti a funkce Limita posloupnosti a funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Limita posloupnosti a funkce MA I (M1101) 1 / 90 Obsah 1 Posloupnosti reálných čísel Úvod Limita posloupnosti

Více

1. Posloupnosti čísel

1. Posloupnosti čísel 1. Posloupnosti čísel 1.1. Posloupnosti a operace s nimi Definice 1.1 Posloupnost reálných čísel ( = reálná posloupnost ) je zobrazení, jehož definičním oborem je množina N a oborem hodnot je nějaká podmnožina

Více

7 Ortogonální a ortonormální vektory

7 Ortogonální a ortonormální vektory 7 Ortogonální a ortonormální vektory Ze vztahu (5) pro výpočet odchylky dvou vektorů vyplývá, že nenulové vektory u, v jsou na sebe kolmé právě tehdy, když u v =0. Tato skutečnost nám poslouží k zavedení

Více

1. přednáška 1. října Kapitola 1. Metrické prostory.

1. přednáška 1. října Kapitola 1. Metrické prostory. 1. přednáška 1. října 2007 Kapitola 1. Metrické prostory. Definice MP, izometrie. Metrický prostor je struktura formalizující jev vzdálenosti. Je to dvojice (M, d) složená z množiny M a funkce dvou proměnných

Více

15 Maticový a vektorový počet II

15 Maticový a vektorový počet II M. Rokyta, MFF UK: Aplikovaná matematika III kap. 15: Maticový a vektorový počet II 1 15 Maticový a vektorový počet II 15.1 Úvod Opakování z 1. ročníku (z kapitoly 8) Označení. Množinu všech reálných resp.

Více

Úvod do lineární algebry

Úvod do lineární algebry Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé

Více

Doporučené příklady k Teorii množin, LS 2018/2019

Doporučené příklady k Teorii množin, LS 2018/2019 Doporučené příklady k Teorii množin, LS 2018/2019 1. přednáška, 21. 2. 2019 1. Napište množina x je prázdná (přesněji množina x nemá žádné prvky ) formulí základního jazyka teorie množin. 2. Dokažte ((x

Více

EUKLIDOVSKÉ PROSTORY

EUKLIDOVSKÉ PROSTORY EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,

Více

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou Typy příkladů pro I. část písemky ke zkoušce z MA II I. Diferenciální rovnice. 1. Určete obecné řešení rovnice y = y sin x.. Určete řešení rovnice y = y x splňující počáteční podmínku y(1) = 0. 3. Rovnici

Více

1 Lineární prostory a podprostory

1 Lineární prostory a podprostory Lineární prostory a podprostory Přečtěte si: Učebnice AKLA, kapitola první, podkapitoly. až.4 včetně. Cvičení. Které z následujících množin jsou lineárními prostory s přirozenými definicemi operací?. C

Více

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,

Více

Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X

Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X Náhodný vektor Náhodný vektor zatím jsme sledovali jednu náhodnou veličinu, její rozdělení a charakteristiky často potřebujeme vyšetřovat vzájemný vztah několika náhodných veličin musíme sledovat jejich

Více

DRN: Kořeny funkce numericky

DRN: Kořeny funkce numericky DRN: Kořeny funkce numericky Kořenem funkce f rozumíme libovolné číslo r splňující f(r) = 0. Fakt. Nechť f je funkce na intervalu a, b. Jestliže f(a) f(b) < 0 (tj. f(a) a f(b) mají opačná znaménka) a f

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 1. přednáška 22.9.2016 Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 19 Organizační pokyny přednášející:

Více

Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková

Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na přednáškách, kde k ní přidávám slovní komentář. Některé důležité části látky píšu pouze na tabuli a nejsou zde obsaženy.

Více

To je samozřejmě základní pojem konvergence, ale v mnoha případech je příliš obecný a nestačí na dokazování některých užitečných tvrzení.

To je samozřejmě základní pojem konvergence, ale v mnoha případech je příliš obecný a nestačí na dokazování některých užitečných tvrzení. STEJNOMĚRNÁ KONVERGENCE Zatím nebylo v těchto textech věnováno příliš pozornosti konvergenci funkcí, at jako limita posloupnosti nebo součet řady. Jinak byla posloupnosti funkcí nebo řady brána jako. To

Více

Komplexní analýza. Holomorfní funkce. Martin Bohata. Katedra matematiky FEL ČVUT v Praze

Komplexní analýza. Holomorfní funkce. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Komplexní analýza Holomorfní funkce Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Holomorfní funkce 1 / 8 Derivace Definice Necht f je komplexní

Více

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

Matematická analýza pro informatiky I. Limita posloupnosti (I)

Matematická analýza pro informatiky I. Limita posloupnosti (I) Matematická analýza pro informatiky I. 3. přednáška Limita posloupnosti (I) Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 25. února 2011 tomecek@inf.upol.cz

Více