Ing. Josef Rusnok - Uranový průzkum, Hamr u České Lípy

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Ing. Josef Rusnok - Uranový průzkum, Hamr u České Lípy"

Transkript

1 STANOVENI" OPRAVY VÝSLEDKU GAMA KAROTÁŽE NA PORUŠENÍ RADIOAKTIVNÍ ROVNOVÁHY MEZI RA A RN Ing. Josef Rusnok - Uranový průzkum, Hamr u České Lípy Úvod Gama karotáž lze využít jako nepřímou metodu ke stanovení obsahu uranu. Jako u každé nepřímé metody je u GK nutné stanovit přepočtový koeficient, který nám umožňuje přechod od indikované veličiny k hledané veličině. Při jeho stanovení je třeba brát v úvahu všechny vlivy, které by mohly způsobit změny v přirozeném řetězci vazby indikovaná veličina - hledaná veličina. V případě GK se jedná o vazbu mezi hlavními zářiči U-řady gop b» gq Bi /RaB, RaC/ a obsahem uranu. Přepočtový koeficient lze stanovit přímo z rozpadové rovnice za předpokladu, že v U-řadě existuje rad. rovnováha. Obecně je však nutné počítat s eventualitou porušení rad. rovnováhy a přepočtový koeficient na vliv nerovnováhy opravit. Na základě analýzy některých vlastností elementů U-řady a to především poločasů rozpadu, migračních schopností, příspěvků záření jednotlivých prvků k celkové měřené expoziční rychlosti, vyplyne potřeba sledovat stav rad. rovnováhy mezi U a Ra a dále mezi Ra a Rn. Stav U-Ra je charakterizován koeficientem rad. rovnováhy K rr resp. opravou na rad. rovnováhu. Narušení rad. rovnováhy mezi U a Ra je způsobeno dlouhodobou migrací těchto prvků, nebo prvků ležících v U-řadě mezi nimi. Koeficient rad. rovnováhy je konstanta, jejíž hodnota se za normálních podmínek po dobu desítek až stovek let nemění. Na druhé straně je porušení rovnováhy mezi Ra a Rn záležitostí krátkodobou. Při jakémkoliv narušení přirozeného stavu v rudním tělese dochází během několika hodin až dnů k porušení rovnováhy mezi Ra a Rn a to díky velkým migračním schopnostem Rn. Tato skutečnost se projeví při měření GK časovou závislostí výsledků měření. Vliv těchto krátkodobých změn eliminujeme zavedením opravy na časovou závislost K/t/ - opravy na emanování, která je ve srovnání sk rr hodnotou silně závislou na čase. Teoretické základy ňující Při zastižení rudní polohy vrtem se silně změní podmínky ovlivňující uvolňování a pohyb Rn v okolí stvolu vrtu protínajícího rudní polohu. Jme-

2 novitě v podmínkách písčito-jílovitého vývoje hornin, je volný Rn zatlačován vrtným výplachem od stvolu vrtu, což vede k narušení rad. rovnováhy mezi Ra a Rn. Vzhledem k tomu, že 98, % veškeré energie záření gama prvků U-řady uvolněné na jeden rozpad produkují prvky nasledujicivřaděpora, je jakákoliv redistribuce Rn spjatá s redistribucí hlavních zářičů U-řady /,/. Při GK se tento fakt projeví závislostí naměřených expozičních rychlostí ve vrtu na čase, který uplynul od okamžiku provrtání rudní polohy do okamžiku měření. Abychom při měření GK dostávali výsledky odpovídající přirozenému stavu v uzavřené vrstvě, tj. stavu rad. rovnováhy mezi Ra a Rn, je při konečné interpretaci nutné zavádět opravu na časovou závislost tzv. "opravu na emanování". Časová závislost je spjatá s uvolňováním Rn z pevné fáze horniny do systému pórů a kapilár, tj. s procesem emanování a s jeho dalším pohybem v tomto prostředí ovlivněným vlastním procesem vrtání a proplachování. Pochopení závislosti obou z procesů - emanování a pohybu volného Rn ve vrstvě na fyz, parametrech hornin bude klíčem k řešení problému stanovení opravného koeficientu. Studiem závislosti emanačních schopností hornin na jejich fyz. parametrech se zabývali např. Ziemens a Flíigge //. Pracovali se zjednodušeným modelem horniny tvořeným systémem stmelených pevných částic kulového tvaru. Odvodili vztah pro poměrnou část E o atomů Rn, které s e dostanou z pevné fáze horniny do systému pórů a kapilár, díky procesu emanování. R. S ) } Ř C /V kde R - dosah odraženého atomu Rn v pevné fázi horniny Re - dosah odražených atomů Rn v prostředí vyplňujícím kapiláry S - celkový povrch částic horniny M - hmotnost částic horniny ^ r - hustota - střední vzdálenost mezi částicemi

3 Rovnice / I/ ukazuje nejdůležitější fyz. parametry, ovlivňující emanační schopnosti hornin. Proces zatlačování volného Rn do vrstvy bude zřejmě nejvíc ovlivněn propustností horniny, dále fyz. vlastnostmi vyplachu a technologií vrtání. V dalším nebudeme vliv fyz. vlastností vyplachu a technologie vrtání uvažovat, nebot na daném ložisku se dá předpokládat dodržování stejné technologie vrtání a stejných parametrů vyplachu. Při stanovení opravy na emanování pro ložisko musíme vycházet z praktických požadavků postihnout časovou závislost GK v co nejjednodušší formě a v co nejširší oblasti. Původní snahou bylo charakterizovat ložisko jedinou opravnou funkcí K /t/ /či jedním efek. koeficientem emanování/. Ukázalo se, že z hlediska přesnosti to není zcela vyhovující. Další postup vycházel z vhodné volby geol. objektu, který bychom mohli charakterizovat jedinou opravou K/t/ s vyšší přesností. Musí to být takový objekt, aby v celém jeho objemu byly v rozumné míře zachovány konstantní ty fyz. parametry hornin, které ovlivňují proces emanování a zatlačování Rn. V podmínkách sedimentárních ložisek severočeské křídy bylo možné za takový objekt v prvním přiblížení považovat litostratigrafický, horizont o Metodika měření, zpracování a výsledky měření Metodika měření Emanační měření provádíme metodou otevření rudního intervalu /,5,/. V průběhu vrtání se provádí kontrolní záměry GK ke zjištění okamžiku provrtání rudní polohy. Po prvém návrtu nejsvrchnější rudní polohy se provádí první záměr emanačního měření /GK - KM/. Další záměry následují v pravidelných - hod. intervalech ještě v průběhu vrtání. Po dosažení konečné hloubky vrtu se provádí emanační měření v určených časových intervalech do celkové doby 7 hodin od provrtání nejspodnější rudní polohy. Mezi jednotlivými záměry je vrt intenzívně proplachován.

4 Metodika zpracování emanacnich měření Při emanacnich měřeních sleduieme změny ploch anomálií gama křivky v závislosti na čase měření. Cas měření je stanoven jako doba, která uplynula od okamžiku provrtání příslušné rudní polohy do okamžiku, kdy je prováděna GK. Sledované plochy jsou vyčleněny podle těchto zásad.. Vyčleněná plocha by měla pokud možno celá ležet v jednom litostratigrafickém horizontu. V takovém horizontu lze v prvním přiblížení předpokládat, že fyz. vlastnosti hornin ovlivňující proces emanování a redistribuce Rn budou stejné,. Dělící hranice by měla procházet minimy gama křivky. Tento požadavek vyplývá z metodiky zpracování GK na počítači.. Stanovení hranice je rovněž ovlivněno vlastním procesem vrtání. Sledovaná plocha anomálie musí příslušet jednomu návrtu. Pro každou sledovanou plochu anomálie ve vrtu sestrojíme křivku závislosti velikosti plochy anomálie na čase měření. Vhodnou křivku závislosti získáme tak, že naměřeným souborem proložíme metodou nejmenších čtverců polynom. stupně parabolického typu. S(t)= A o + A,t Ukázalo se, že tato aproximace nejlépe odpovídá charakteru naměřených závislostí /typický příklad viz obr. /. Získaný tvar křivky - pokles v první fázi, dosažení rovnováhy a opětovný pomalý nárůst, odpovídá zhruba následujícímu mechanizmu. Při provrtání rudní polohy je volný Rn vrtným výplachem zatlačován od stěn vrtu. V průběhu vrtání se na stěnách vrtu v oblasti propustných poloh začne vytvářet jílovitá kůrka, která tvoří bariéru pro pronikání výplachu do vrstvy. V rudní poloze dochází k opětnému ustavení rovnováhy mezi Ra a Rn, jednak vlastním procesem rozpadu Ra a jednak zpětnou difúzí Rn danou koncentračním spádem. Í i Efektivní koeficient emanování ^'charakterizující maximální možný pokles expozičních rychlostí naměřených ve vrtu stanovíme z následujícího vztahu úc = S() - S(t r ). [%] // S()

5 S/O/ je velikost plochy v čase tso S/t / * min. S/t/ r /viz obr. / Oprava příslušná času t měření od provrtání rudní polohy S() K(t) = S(t) kde S/O/ a S/t/ jsou hodnoty funkce //. Výsledky měření Na jednom z ložisek severočeské křídy bylo provedeno emanační měření na 8 vrtech rozložených rovnoměrně v ploše ložiska a oylo sledováno celkem ploch anomálií gama křivky. Výsledky jsou shrnuty v tabulkách č., a a na obr. a. Nejprve byly vypočteny efektivní koeficienty emanování pro každou sledovanou anomálii, dále pak průměrné hodnoty pro vrt a nakonec pro celé ložisko /tab. /. V této fázi práce jsme se snažili prozkoumat možnost charakterizovat ložisko jedním průměrným koeficentem emanování /a tedy i jednou funkcí oprav K/t/ - obr. /. Nejdříve byly počítány prosté aritmetické průměry. Dále ve snaze'vyloučit maximálně možný vliv nepřesnosti měření jsme počítali průměrné koeficienty emanování s uvážením váhy na přesnost měření. Váha byla zavedena u každé plochy anomálie jako podíl S(t) kde \ je odhad podmíněné směrodatné odchylky závisle proměnné S/t/ získaný při prokládání polynomem. stupně S/t /- min. S/t/ r Rozptyl střední hodnoty, charakterizovaný střední kvadratickou odchylkou a koeficientem variace, se výpočtem váženého průměru nezmenšil, naopak v průměru zvýšil. Z toho se dá usuzovat, že rozptyl získaných koeficientů je dán značnou nehomogenitoufyz. vlastností hornin ovlivňující uvolňování a redistribuci Rn v rámci celého ložiska a chyby měření tento rozptyl ve velké míře neovlivňují. Efektivní koeficient emanování /či oprava K/t/ pro celé ložisko, stanovený jako průměr všech naměřených hodnot je charakteristikou značně nepřesnou.

6 Na základě některých teoretických poznatků o procesu emanování a pohybu Rn /,/ jsme přistoupili k výpočtu efektivních koeficientů emanování a časových oprav pro jednotlivé litostratigrafické horizonty. Výsledky jsou shrnuty v tab. funkce časových oprav K /t/ je na obr. /vážené průměry/. Je vidět, že při členění do jednotlivých horizontů a při zavedení váhy na přesnost měření se projeví trend snižování rozptylu jednotlivých hodnot. Až na výjimku /zvětralé podloží/ se koeficient variace jf vážených průměrů pohybuje od do 7 %. Zvýšené rozptyly efektivních koeficientů emanování u některých horizontů jsou odrazem příliš hrubého dělení, popř. malého počtu měření. Získání přesnějších výsledků by vyžadovalo provést řadu dalších emanacnich měření ke zvýšeni statistiky a rovněž najít kritéria pro plošné dělení v rámci litostratigrafického horizontu v oblasti ložiska. Touto cestou bychom dosáhli vymezení užších geologických objektů, u nichž by byl aákladní předpoklad o konstantních fyz, vlastnostech ovlivňujících proces emanování a redistribuce Rn lépe splněn. Na druhé straně by se tím značně zkomplikovala situace se zaváděním opravy při výpočtu zásob ložiska. Samozřejmě by bylo možné provádět mnohem podrobnější studium daného procesu. Srovnávat výsledky emanacnich měření s laboratorními výsledky analýz jádra. Ověřit míru platnosti vztahu /I/ mezi fyz. vlastnostmi hornin a jejich emanačními schopnostmi. Provést výběr geol. objektů na základě znalostí změn fyz. parametrů v ploše ložiska atd. To ale zcela vybočuje z rámce této práce. Vypracovaná metodika pro výpočet zásob předpokládá zavedení opravy na emanování ve formě konstanty. Podle rozboru širokého souboru měření GK na ložisku jsme zjistili, že čas měření se pohybuje v intervalu od - hodin po provrtání rudní polohy. S přihlédnutím k charakteru opravných funkcí v uvedeném intervalu není požadavek zavedení opravy jako konstanty nereálný. Zjevně to přináší nepřesnosti, které jsou však přinejmenším srovnatelné s rozptylem získaných hodnot popř. s chybou opakovaného měření GK /dosahuje -5 %/. Konstantní opravné koeficienty jsou počítány ze vztahu //. K = K() + K() + K(5) + K() a jsou uvedeny v tab. č.

7 5. vrtu č.anosn. ef, koef. eman. cl'% prostý prům. S!í%\ vaz. prům. ložisko celkům prostý váž.prum. a a 7.,,9, 5.,8 -. J*- %.8 ±, tf* 9 %.8 ±.7 ^=5%,7 ±, T 5 % a ,,5 9. 8,, 5,,7 7, ±, ^-5% 5,8 ±, A_ PC (If Q "" DO Jt a,.9 5,8 8.,.. 9,7 ± 7.8 tf m 8 % 8., ± 5. t m 8 %, *, 7*" % 8.. ±. /* % '" se JH es.. en +' g 7 a 5 9,, U.,9 ±5,8 /- 8 %, ±5. / 87 % 8 7,5,,5,. ±. /*»%, ± 5. ^"9% Tab. : Efektivní koeficienty emanováni pro jednotlivé anomálie, vrty a ložisko celkem

8 horizont č. v rtu č. anom ef. koef. eman. prostý prům. Vili. prům. zvětralé podloží 5..7 *. t* %, -. sladkov. cenoman,5,7, 8,9 -, A % 7, i,8 spodní 5 8,, 5,8,, 5, 8, í, /= 75 %, * 5.7 r = 55 % střední ,,9, 8, 8,9 5, 5.,9 i,8 /=78%. *,7 f = % svrchní 7,5 9,, i,8 / - 5 %, *, celkem 7, í 5, f-9% 8,7 i,7 rozpadavé pískovce 5.7,, 8.,,,7 i, 9,8 ±, / 8 % Tab. č. : Efektivní koeftc. eman. pro litostratigraíické horizonty

9 Dané řešení je kompromisem mezi snahou získat co nejpřesnější hodnoty "oprav, koeficientů a požadavkem jednoduchého zavedení opravy do výpočtu zásob. zvětralé podloží sladkovod. ceno man spodní střední svrchní celkem rozpad pískov..,,,,,9, Tab. č. : Hodnoty opravných koeficientů pro litostratigrafické horizonty LITERATURA / I/ Bondarev V.M., Gubanov V.G., Korovin P.K., Ovčinikov A.K., Chajkovič I.M.: "Gama oprobovanije uranových rud v estěstvennom zaleganii" Izdatělstvo "NEDRA" Moskva 9 // J. Rusnok: "Časový faktor při gama karotáži". Závěrečná postgraduální práce PF-UK, katedra užité geofyziky, Praha 977 // Flúgge S., Zimens K.: Die Bestimmung von Korn grossen und von Diffusions konstanten aus dem Emaniervermósen. Z. Phys. Chem, 99 // Chajkovič I.M.: "Voprosy razvedočnoj radiometrii" Leningrad 958 /5/ Chajkovič I.M.,ChalfinL.A.: "Voprosy rudnoj geofiziki" Moskva 9 // A.S. Sergjukova, JU.T. Kapitanov: "Izotopy radona i produkty ich raspada v prirode". Atomizdat, Moskva 975 Seznam grafických příloh: Obr. č. : Závislost velikosti plochy anomálie na Čase měření GK Obr. č. : Funkce oprav K /t/ pro celé ložisko Obr. č. : Opravné funkce K /t/ pro jednotlivé litostratigrafické horizonty /vážené průměry/

10 S(t) konstanta(v libovolných jednotkách) 9T 8+ vrt č. plocha + Č. 5A Č. 7xkonst. = 5 ) i! + S(tr). X + + tr l lt.. l..,,l l... Mll I ' I l l l l l ll ' I " M '! 5 5 ) t(hod)

11 i J H M A U A i Q. Q Q. O O O O O O_ Obr.

12 Kit),".5.,. podloží ^^ "^ + sladkovodní cenoman A celkem o rozpadave pískovce,, o co,',,9,8,7 ^ ^ ^ A - *^_ A A,.5,-,,-, A? t (hod)

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Gama spektroskopie. Vojtěch Motyčka Centrum výzkumu Řež s.r.o.

Gama spektroskopie. Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Gama spektroskopie Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Teoretický úvod ke spektroskopii Produkce a transport neutronů v různých materiálech, které se v daných zařízeních vyskytují (urychlovačem

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Dynamika Vojtěch Beneš žák měří vybrané veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, určí v konkrétních situacích síly působící na

Více

Proudový model. Transportní model(neovlivněný stav)

Proudový model. Transportní model(neovlivněný stav) Základy technologií a odpadového hospodářství - Počítačovásimulace podzemního proudění a transportu rozpuštěných látek část 2 Jan Šembera, Jaroslav Nosek Technickáuniverzita v Liberci / Technische Universität

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jakub Michálek stud. skup. 15 dne: 20. března 2009 Odevzdal dne: Možný

Více

Kde se vzala v Asii ropa?

Kde se vzala v Asii ropa? I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Pracovní list č. 24 Kde se vzala v Asii ropa? Pro

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf.

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf. Experimentáln lní měření průtok toků ve VK EMO XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký Systém měření průtoku EMO Měření ve ventilačním komíně

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Rainer Scharf, Félix M. Izrailev, 1990 rešerše: Pavla Cimrová, 28. 2. 2012 1 Náhodné matice Náhodné matice v současnosti nacházejí

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

Stav a vývoj kvality ovzduší v Praze-Satalicích v letech 2004 2013

Stav a vývoj kvality ovzduší v Praze-Satalicích v letech 2004 2013 Stav a vývoj kvality ovzduší v Praze-Satalicích v letech 2004 2013 a) Zhodnocení stavu a vývoje kvality ovzduší v Praze-Satalicích v letech 2004-2013 zejména vzhledem k zprovoznění Vysočanské radiály.

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE

SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor CZ.1.07/1.5.00/34.0797 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT 2M3 Slovní

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou.

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 1 Pracovní úkoly 1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 2. Sestrojte graf této závislosti. 2 Teoretický úvod 2.1 Povrchové napětí

Více

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou JÁDRO ATOMU A RADIOAKTIVITA VY_32_INOVACE_03_3_03_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Atomové jádro je vnitřní

Více

Rešerše a analýza dat v oblasti kvartérních a křídových HGR. Tomáš Hroch, Michal Rajchl a kol.

Rešerše a analýza dat v oblasti kvartérních a křídových HGR. Tomáš Hroch, Michal Rajchl a kol. Rešerše a analýza dat v oblasti kvartérních a křídových HGR Tomáš Hroch, Michal Rajchl a kol. Cíle 1. vytvoření funkční vrtné databáze potřebné pro další aktivity projektu 2. vymezení hranic geologických

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

OBECNÉ METODY VYROVNÁNÍ

OBECNÉ METODY VYROVNÁNÍ OBECNÉ METODY VYROVNÁNÍ HYNČICOVÁ TEREZA, H2IGE1 2014 ÚVOD Z DŮVODU VYLOUČENÍ HRUBÝCH CHYB A ZVÝŠENÍ PŘESNOSTI NIKDY NEMĚŘÍME DANOU VELIČINU POUZE JEDNOU VÝSLEDKEM OPAKOVANÉHO MĚŘENÍ NĚKTERÉ VELIČINY JE

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Kapitola 7 TESTOVÁNÍ LAKTÁTOVÉHO PRAHU. Definice laktátového prahu

Kapitola 7 TESTOVÁNÍ LAKTÁTOVÉHO PRAHU. Definice laktátového prahu Kapitola 7 TESTOVÁNÍ LAKTÁTOVÉHO PRAHU Definice laktátového prahu Laktátový práh je definován jako maximální setrvalý stav. Je to bod, od kterého se bude s rostoucí intenzitou laktát nepřetržitě zvyšovat.

Více

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC Kateřina Pojkarová 1 Anotace:Článek se věnuje železniční přepravě mezi kraji v České republice, se zaměřením na

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 19. 12. 2012 Pořadové číslo 09 1 RADIOAKTIVITA Předmět: Ročník: Jméno autora:

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183

otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183 Regresní analýza 1. Byla zjištěna výška otců a výška jejich nejstarších synů [v cm]. otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183 c) Odhadněte

Více

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření KAP. 3 RADIOAKTIVITA A JADERNÉ REAKCE sklo barvené uranem RADIOAKTIVITA =SCHOPNOST NĚKTERÝCH ATOMOVÝCH JADER VYSÍLAT ZÁŘENÍ přírodní nuklidy STABILNÍ NKLIDY RADIONKLIDY = projevují se PŘIROZENO RADIOAKTIVITO

Více

K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR

K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR Vlastimil Kratochvíl * Příspěvek obsahuje popis vlastností některých postupů, využitelných pro transformaci souřadnic mezi geodetickými systémy

Více

DEGRADACE MATERIÁLOVÝCH VLASTNOSTÍ OCELI 15 128 A PŘÍČINY VZNIKU TRHLIN VYSOKOTLAKÝCH PAROVODŮ

DEGRADACE MATERIÁLOVÝCH VLASTNOSTÍ OCELI 15 128 A PŘÍČINY VZNIKU TRHLIN VYSOKOTLAKÝCH PAROVODŮ DEGRADACE MATERIÁLOVÝCH VLASTNOSTÍ OCELI 15 128 A PŘÍČINY VZNIKU TRHLIN VYSOKOTLAKÝCH PAROVODŮ Josef ČMAKAL, Jiří KUDRMAN, Ondřej BIELAK * ), Richard Regazzo ** ) UJP PRAHA a.s., * ) BiSAFE s.r.o., **

Více

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207 6..8 Vlnová funkce ředpoklady: 06007 edagogická poznámka: Tato hodina není příliš středoškolská. Zařadil jsem ji kvůli tomu, aby žáci měli alespoň přibližnou představu o tom, jak se v kvantové fyzice pracuje.

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Vojtěch Přikryl Ročník 1 Předmět IFY Kroužek 35 ID 143762 Spolupracoval Měřeno dne Odevzdáno dne Daniel Radoš 7.3.2012 21.3.2012 Příprava

Více

Numerické řešení variačních úloh v Excelu

Numerické řešení variačních úloh v Excelu Numerické řešení variačních úloh v Excelu Miroslav Hanzelka, Lenka Stará, Dominik Tělupil Gymnázium Česká Lípa, Gymnázium Jírovcova 8, Gymnázium Brno MirdaHanzelka@seznam.cz, lenka.stara1@seznam.cz, dtelupil@gmail.com

Více

Zadavatel: KRONEN LABE spol. s r. o. Tylova 410/24, 400 04 Trmice

Zadavatel: KRONEN LABE spol. s r. o. Tylova 410/24, 400 04 Trmice ÚSTAV TECHNIK Y A ŘÍZENÍ V ÝROBY Ústav techniky a řízení výroby Univerzity J. E. Purkyně v Ústí nad Labem Na Okraji 11 Tel.: +42 475 285 511 96 Ústí nad Labem Fax: +42 475 285 566 Internet: www.utrv.ujep.cz

Více

ROVNOMĚRNĚ ZRYCHLENÝ POHYB

ROVNOMĚRNĚ ZRYCHLENÝ POHYB ROVNOMĚRNĚ ZRYCHLENÝ POHYB Pomůcky: LabQuest, sonda čidlo polohy (sonar), nakloněná rovina, vozík, který se může po nakloněné rovině pohybovat Postup: Nakloněnou rovinu umístíme tak, aby svírala s vodorovnou

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda oddělených elementů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Matematika stavebního spoření

Matematika stavebního spoření Matematika stavebního spoření Výpočet salda ve stacionárním stavu a SKLV Petr Kielar Stavební spořitelny se od klasických bank odlišují tím, že úvěry ze stavebního spoření poskytují zásadně z primárních

Více

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

Operační program Praha Adaptabilita 17.1 Podpora rozvoje znalostní ekonomiky

Operační program Praha Adaptabilita 17.1 Podpora rozvoje znalostní ekonomiky Operační program Praha Adaptabilita 17.1 Podpora rozvoje znalostní ekonomiky Program dalšího vzdělávání pro zaměstnance ČGS ohrožené na trhu práce Číslo úkolu ČGS: 661030 RNDr. Jan Čurda člen Týmu pro

Více

Použití splinů pro popis tvarové křivky kmene

Použití splinů pro popis tvarové křivky kmene NAZV QI102A079: Výzkum biomasy listnatých dřevin Česká zemědělská univerzita v Praze Fakulta lesnická a dřevařská 9. února 2011 Cíl práce Cíl projektu: Vytvořit a ověřit metodiku pro sestavení lokálního

Více

VYUŽITÍ SYSTÉMU EXPERT PRO ZPRACOVÁNÍ A INTERPRETACI HYDROGEOLOGICKÝCH DAT. RNDr.František Pastuszek VODNÍ ZDROJE, a.s.

VYUŽITÍ SYSTÉMU EXPERT PRO ZPRACOVÁNÍ A INTERPRETACI HYDROGEOLOGICKÝCH DAT. RNDr.František Pastuszek VODNÍ ZDROJE, a.s. VYUŽITÍ SYSTÉMU EXPERT PRO ZPRACOVÁNÍ A INTERPRETACI HYDROGEOLOGICKÝCH DAT RNDr.František Pastuszek VODNÍ ZDROJE, a.s. EXPERT je soustavou kalkulátorů, které zjednodušují práci při zpracovávání hydrogeologických

Více

Nová metodika stanovení radonového indexu pozemku

Nová metodika stanovení radonového indexu pozemku Abstrakt Hodnocení radonového rizika základových půd je nedílnou součástí Radonového programu České republiky. Předložená práce shrnuje výsledky výzkumného projektu zaměřeného na detailní studium podmínek

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Ing. Radovan Nečas Mgr. Miroslav Hroza

Ing. Radovan Nečas Mgr. Miroslav Hroza Výzkumný ústav stavebních hmot, a.s. Hněvkovského, č.p. 30, or. 65, 617 00 BRNO zapsaná v OR u krajského soudu v Brně, oddíl B, vložka 3470 Aktivační energie rozkladu vápenců a její souvislost s ostatními

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

VII. VLIVY NA HORNINOVÉ PROSTŘEDÍ

VII. VLIVY NA HORNINOVÉ PROSTŘEDÍ VII. VLIVY NA HORNINOVÉ PROSTŘEDÍ Horninové prostředí jako jedna ze základních složek životního prostředí ovlivňuje svojí stavbou a vlastnostmi využití řešeného území prostřednictvím těchto faktorů: zdroje

Více

Ukazatele celkové nezaměstnanosti v kraji

Ukazatele celkové nezaměstnanosti v kraji Ukazatele celkové v kraji - V dubnu 2014 činil podíl na počtu obyvatel Zlínského kraje 7,7 % a celkový počet 1 evidovaných na úřadech práce dosahoval 30 643. - Podíl na obyvatelstvu v ČR činil v dubnu

Více

5 Zásady odvodňování stavebních jam

5 Zásady odvodňování stavebních jam 5 Zásady odvodňování stavebních jam 5.1 Pohyb vody v základové půdě Podzemní voda je voda vyskytující se pod povrchem terénu. Jejím zdrojem jsou jednak srážky, jednak průsak z vodotečí, nádrží, jezer a

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

Měření délky, určení objemu tělesa a jeho hustoty

Měření délky, určení objemu tělesa a jeho hustoty Úloha č. 1a Měření délky, určení objemu tělesa a jeho hustoty Úkoly měření: 1. Seznámení se s měřicími přístroji posuvné měřítko, mikrometr, laboratorní váhy. 2. Opakovaně (10x) změřte rozměry dvou zadaných

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

2.5.12 Přímá úměrnost III

2.5.12 Přímá úměrnost III .5.1 Přímá úměrnost III Předpoklady: 00511 Př. 1: Narýsuj milimetrový papír grafy přímých úměrností. a) y = x b) y = x. U každé přímé úměrnosti si můžeme spočítat několik bodů (ve skutečnosti stačí jeden

Více

Doprava ve městech. Případová studie stárnutí a ubývání populace měst v evropském regionu. Christiane Just

Doprava ve městech. Případová studie stárnutí a ubývání populace měst v evropském regionu. Christiane Just Doprava ve městech Případová studie stárnutí a ubývání populace měst v evropském regionu Christiane Just Faktory ovlivňující cestovní zvyklosti a dopravu ve městech jsou předmětem řady studií a často se

Více

PATENTOVÝ SPIS CO « O?oo 05. ézěk ČESKÁ REPUBLIKA

PATENTOVÝ SPIS CO « O?oo 05. ézěk ČESKÁ REPUBLIKA PATENTOVÝ SPIS ČESKÁ REPUBLIKA (19) (21) Číslo pfihláiky: 1325-94 (22) PMhláSeno: 31. 05. 94 (40) Zveřejněno: 14. 06. 95 (47) Uděleno: 27. 04. 95 (24) Oznámeno uděleni ve Věstníku: 14. 06. 95 ézěk (11)

Více

Vysoká škola báňská Technická univerzita Ostrava Ekonomická fakulta Katedra regionální a environmentální ekonomiky

Vysoká škola báňská Technická univerzita Ostrava Ekonomická fakulta Katedra regionální a environmentální ekonomiky Vysoká škola báňská Technická univerzita Ostrava Ekonomická fakulta Katedra regionální a environmentální ekonomiky Úvodem V roce 2006 vyhlásilo MMR výzkumný program WD - Výzkum pro potřeby řešení regionálních

Více

212 a. 5. Vyzáří-li radioaktivní nuklid aktinia částici α, přemění se na atom: a) radia b) thoria c) francia d) protaktinia e) zůstane aktinium

212 a. 5. Vyzáří-li radioaktivní nuklid aktinia částici α, přemění se na atom: a) radia b) thoria c) francia d) protaktinia e) zůstane aktinium Pracovní list - Jaderné reakce 1. Vydává-li radionuklid záření alfa: a) protonové číslo se zmenšuje o 4 a nukleonové číslo se nemění b) nukleonové číslo se změní o 4 a protonové se nemění c) protonové

Více

2007 15 167 5,7% 6,8% 2008 12 439 4,6% 5,2% 2009 21 785 7,8% 7,9% 2010 25 763 9,5% 9,2% 2011 22 629 8,3% 8,6% 2012 21 574 7,9% 8,4%

2007 15 167 5,7% 6,8% 2008 12 439 4,6% 5,2% 2009 21 785 7,8% 7,9% 2010 25 763 9,5% 9,2% 2011 22 629 8,3% 8,6% 2012 21 574 7,9% 8,4% Ukazatele celkové v kraji - V dubnu 2014 činil podíl na počtu obyvatel Pardubického kraje 6,9 % a celkový počet 1 evidovaných na úřadech práce dosahoval 23 825. - Podíl na obyvatelstvu v ČR činil v dubnu

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Matematická vsuvka I. trojčlenka. http://www.matematika.cz/

Matematická vsuvka I. trojčlenka. http://www.matematika.cz/ Matematická vsuvka I. trojčlenka http://www.matematika.cz/ Trojčlenka přímá úměra Pokud platí, že čím více tím více, jedná se o přímou úměru. Čím více kopáčů bude kopat, tím více toho vykopají. Čím déle

Více

Přírodopis 9. Naše Země ve vesmíru. Mgr. Jan Souček. 2. hodina

Přírodopis 9. Naše Země ve vesmíru. Mgr. Jan Souček. 2. hodina Přírodopis 9 2. hodina Naše Země ve vesmíru Mgr. Jan Souček VESMÍR je soubor všech fyzikálně na sebe působících objektů, který je současná astronomie a kosmologie schopna obsáhnout experimentálně observační

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

Benchmarking Říčany. projekt Systémová podpora rozvoje meziobecní spolupráce v ČR v rámci území správních obvodů obcí s rozšířenou působností

Benchmarking Říčany. projekt Systémová podpora rozvoje meziobecní spolupráce v ČR v rámci území správních obvodů obcí s rozšířenou působností Benchmarking Říčany projekt Systémová podpora rozvoje meziobecní spolupráce v ČR v rámci území správních obvodů obcí s rozšířenou působností 1 1 SO ORP Říčany charakteristika území Správní obvod obce s

Více

Vliv změn využití pozemků na povodně a sucha. Sestavili: L.Kašpárek a A.Vizina VÚV T.G.Masaryka, v.v.i.

Vliv změn využití pozemků na povodně a sucha. Sestavili: L.Kašpárek a A.Vizina VÚV T.G.Masaryka, v.v.i. Vliv změn využití pozemků na povodně a sucha Sestavili: L.Kašpárek a A.Vizina VÚV T.G.Masaryka, v.v.i. Jak se měnily rozlohy využití pozemků Příklad pro povodí Labe v Děčíně Data byla převzata ze zdroje:

Více

Srovnání metod pro posuzování kouřových plynů z hlediska kvantitativního

Srovnání metod pro posuzování kouřových plynů z hlediska kvantitativního Srovnání metod pro posuzování kouřových plynů z hlediska kvantitativního Ing. Jiří Pokorný, Ph.D. Hasičský záchranný sbor Moravskoslezského kraje územní odbor Opava Těšínská 39, 746 01 Opava e-mail: jiripokorny@mujmail.cz

Více

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr.

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. . cvičení Klopení nosníků Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. Ilustrace klopení Obr. Ohýbaný prut a tvar jeho ztráty

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Jednoduchý elektrický obvod

Jednoduchý elektrický obvod 21 25. 05. 22 01. 06. 23 22. 06. 24 04. 06. 25 28. 02. 26 02. 03. 27 13. 03. 28 16. 03. VI. A Jednoduchý elektrický obvod Jednoduchý elektrický obvod Prezentace zaměřená na jednoduchý elektrický obvod

Více

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech.

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech. 3 Grafické zpracování dat Grafické znázorňování je velmi účinný způsob, jak prezentovat statistické údaje. Grafy nejsou tak přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých

Více

0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí

0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí Program Sorpce1.m psaný v prostředí Matlabu slouží k vyhlazování naměřených sorpčních křivek a výpočtu difuzních koeficientů. Kromě standardního Matlabu vyžaduje ještě Matlab Signal Processing Toolbox

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

5. Kvadratická funkce

5. Kvadratická funkce @063 5. Kvadratická funkce Kvadratickou funkci také znáte ze základní školy, i když jen v té nejjednodušší podobě. Definice: Kvadratická funkce je dána předpisem f: y = ax 2 + bx + c, kde a, b, c R, a

Více

BIUS 2 BIUS 3. Bohemius k.s.

BIUS 2 BIUS 3. Bohemius k.s. Máš chybu na pojistném? Jak ale zjistit vyměřovací základ, když zaokrouhlujeme na Kč nahoru, nebo třeba na stokoruny? Jak zjistit výši původní chyby? Bohemius k.s. BIUS 2 BIUS 3 www.bohemius.cz O PRODUKTU

Více

Státní úřad pro jadernou bezpečnost. radiační ochrana. Doporučení Stanovení radonového indexu pozemku přímým měřením SÚJB

Státní úřad pro jadernou bezpečnost. radiační ochrana. Doporučení Stanovení radonového indexu pozemku přímým měřením SÚJB Státní úřad pro jadernou bezpečnost radiační ochrana Doporučení Stanovení radonového indexu pozemku přímým měřením SÚJB červen 2012 Předmluva Státní úřad pro jadernou bezpečnost trvale věnuje velkou pozornost

Více

Výsledky základní statistické charakteristiky

Výsledky základní statistické charakteristiky Výsledky základní statistické charakteristiky (viz - Vyhláška č. 343/2002 Sb. o průběhu přijímacího řízení na vysokých školách a Vyhláška 276/2004 Sb. kterou se mění vyhláška č. 343/2002 Sb., o postupu

Více

Katedra textilních materiálů ENÍ TEXTILIÍ PŘEDNÁŠKA 5

Katedra textilních materiálů ENÍ TEXTILIÍ PŘEDNÁŠKA 5 PŘEDNÁŠKA 5 π n * ρvk * d 4 n [ ] 6 d + s *0 v m [ mg] [ m] Metody stanovení jemnosti (délkové hmotnosti) vláken: Mikroskopická metoda s výpočtem jemnosti z průměru (tloušťky) vlákna u vláken kruhového

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Prezentace vysvětluje pojem tepelné ztráty a základním způsobem popisuje řešení

Prezentace vysvětluje pojem tepelné ztráty a základním způsobem popisuje řešení Označení materiálu: Název materiálu: Tematická oblast: Anotace: Očekávaný výstup: zvládne Klíčová slova: Metodika: Obor: Ročník: 1. Autor: VY_32_INOVACE_ZMAJA_VYTAPENI_09 Tepelné ztráty Vytápění 1. ročník

Více