Jak vibrují atomy v molekulách

Rozměr: px
Začít zobrazení ze stránky:

Download "Jak vibrují atomy v molekulách"

Transkript

1 Jak vibrují atomy v molekulách Doc. RNDr. Miroslava Trchová, CSc. Ústav makromolekulární chemie Akademie věd ČR trchova@imc.cas.cz Vibrační spektroskopie se zabývá studiem pohybů jader v molekulách, tj. molekulárních vibrací, a to prostřednictvím interakce molekuly se zářením, která vede k vibračním přechodům molekuly. Teoretické základy vibrační spektroskopie lze nalézt např. v [1 3]. Molekulární vibrace Biatomická molekula Vibrací biatomické molekuly chápeme periodickou změnu mezijaderné vzdálenosti. Při klasickém popisu jde o oscilátor tvořený dvěma hmotnými body na pružině. Pro jeho frekvenci platí: 1 ν 2π k µ =, kde µ je redukovaná hmotnost a k je silová konstanta. mamb µ = m + m A B

2 Frekvence vibrace biatomické molekuly tedy závisí na síle poutající atomy, tj. na typu chemické vazby, a na druhu (hmotnosti) vibrujících atomů. Při vibraci dochází k vychýlení atomů z rovnovážné polohy. Potenciální energie v případě harmonického oscilátoru je kvadratickou funkcí této výchylky. Grafickým znázorněním této vzdálenosti je parabola s minimem v rovnovážném stavu systému. Obr. 1. Křivka potenciální energie Při kvantově-mechanickém popisu v aproximaci harmonického oscilátoru (obr. 1) je jeho energie kvantována a nabývá hodnot 1 E= hν n +, 2 kde ν je frekvence oscilátoru a n je vibrační kvantové číslo. Pro rozdíl energetických hladin harmonického oscilátoru platí E= hν. V aproximaci harmonického oscilátoru jsou možné pouze vibrační přechody, při nichž se vibrační kvantové číslo n mění o jedničku ( n = 1), tj. možné jsou pouze přechody mezi sousedními vibračními hladinami. Dodáme-li molekule potřebnou energii ve formě elektromagnetického záření s energií rovnou rozdílu energetických hladin, dojde k přechodu mezi nimi. Frekvence absorbovaného záření se tedy musí rovnat frekvenci vibrace molekuly. Absorpcí energie se zvýší amplituda vibrací, frekvence však zůstává nezměněna. Frekvence, které odpovídají přechodům mezi základním a prvním excitovaným stavem, se nazývají základní (fundamentální). Protože většina molekul je za normální teploty v tomto základním vibračním stavu, jsou tyto přechody nejpravděpodobnější. Důsledkem anharmonicity vibrací reálné molekuly je existence přechodů n = 2, 3,... Přechody s n = 2, 3,... se označují jako vyšší harmonické (overtony). Tyto frekvence jsou přibližně násobkem fundamentální frekvence (jsou poněkud menší, protože energetické hladiny se s růstem vibračního kvantového čísla zhušťují). Pravděpodobnost těchto přechodů je však daleko menší, a proto je menší také jejich intenzita.

3 Víceatomová molekula Pomocí mechanického modelu molekuly lze víceatomovou molekulu popsat jako soustavu hmotných bodů (atomů), vázaných silami chemických vazeb. Vibrace víceatomové molekuly je složitá forma kmitavého pohybu, kterou můžeme popsat jako součet jednoduchých harmonických pohybů, tzv. normálních vibrací. Při normální vibraci všechny atomy v molekule vibrují se stejnou frekvencí a ve stejné fázi (současně procházejí rovnovážnými polohami a současně dosahují maximálních výchylek), ale s různými amplitudami. Každá normální vibrace molekuly je charakterizována určitou frekvencí a dále směrem a velikostí výchylky jednotlivých atomů, přičemž těžiště soustavy atomů nevibruje. Počet normálních vibrací pro danou molekulu je dán počtem jejích vibračních stupňů volnosti. Protože molekula s N atomy pohybující se v prostoru má 3N stupňů volnosti a může konat pohyb translační a rotační, každý se třemi stupni volnosti, má tedy 3N-6 vibračních stupňů volnosti, tj. 3N-6 normálních vibrací. Výjimkou jsou lineární molekuly, které mají jen dva rotační stupně volnosti (při rotaci kolem osy procházející spojnicí atomů nedochází k přemisťování molekuly v prostoru), takže na vibrační pohyb zbývá 3N-5 stupňů volnosti. Pro popis molekuly je vhodné přejít od kartézské souřadné soustavy do souřadnic vnitřních, kterými mohou být např. meziatomové vzdálenosti (N-1), vazebné (N-2) a torzní (N-3) úhly. Vnitřní souřadnice molekuly představují základní údaje o struktuře molekuly a určí se experimentálně z RTG strukturní analýzy doplněné neutronovou difrakcí pro určení poloh atomů vodíku. Základní typy vibrací (vibračních kmitů) jsou valenční vibrace (periodická změna vazebné délky) a deformační vibrace (periodická změna vazebního úhlu). V případě molekuly vody (obr. 2) existují tři možné normální vibrace (3x3 6). Při prvních dvou se vychylují atomy přibližně ve směru vazby a dochází ke změně její délky, nazýváme ji proto vibrací valenční a označujeme symbolem ν. Může být buď symetrická, ν s, nebo antisymetrická, ν as. Pokud se při vibraci atomy vychylují přibližně kolmo na směr chemické vazby a dochází při ní ke změně valenčního úhlu, pak se tato vibrace nazývá deformační, δ. Deformační vibrace mají nižší energii, a proto leží ve spektru při nižších frekvencích než vibrace valenční. Obr. 2. Příklad molekuly vody H 2 O

4 Každou normální vibrační souřadnici lze vyjádřit jako lineární kombinaci vnitřních souřadnic. Je-li více koeficientů transformace nenulových, jde o spřažené normální vibrace. Podmínkou spřažení je blízkost hmotností atomů a blízkost hodnot silových konstant vazeb. Navíc se mohou spřahovat pouze pohyby atomů stejných symetrických vlastností. Příkladem molekuly, u níž předpokládáme malé spřažení vibrací, může být kyanovodík H C N, který splňuje podmínku rozdílnosti hmotností atomů i silových konstant. Jak vypadá reálná situace, bude ukázáno dále. Pokud normální vibrační souřadnice splývá s jedinou vnitřní souřadnicí, hovoříme o charakteristické vibraci. Z uvedeného je zřejmé, že určitá část molekul, které se hmotnostmi atomů či silami vazeb odlišují od zbytku molekuly, se bude vyznačovat charakteristickými frekvencemi vibrací. Na základě toho je možné tyto skupiny v molekulách dobře diagnostikovat. Příkladem může být skupina NH 2 vázaná na benzenový kruh v molekule anilinu. Zatímco vibrace benzenového kruhu jsou silně spřažené, NH 2 skupina v této molekule poskytuje charakteristické vibrace, např: symetrickou valenční vibraci ν s (NH 2 ) s vlnočtem 3360 cm -1 a antisymetrickou valenční vibraci ν s (NH 2 ) s vlnočtem 3440 cm -1. Aktivita vibrace Vibrační energie vazby, případně celé molekuly, se podle zákonů elektrodynamiky a kvantové mechaniky může zvýšit absorpcí elektromagnetického záření jen tehdy, mění-li se při vibraci její dipólový moment (vektor, jehož velikost závisí na distribuci kladných a záporných nábojů v molekule). Tyto vibrace se označují jako aktivní v infračerveném spektru. Nedochází-li k jeho změně (např. u homonukleárních biatomických molekul, jako je O 2, N 2, Cl 2, které dipólový moment nemají a ani se v důsledku symetrie molekuly při vibraci nemění), molekula neabsorbuje infračervené záření. Celkový dipólový moment molekuly a jeho změny při vibraci souvisí se symetrií molekuly. Např. lineární molekula CO 2 nemá celkový dipólový moment, protože lokální dipólové momenty obou vazeb C=O jsou navzájem kompenzované. Při symetrické vibraci dochází k současnému prodlužování obou vazeb v opačném směru, takže výsledný dipólový moment je opět nulový, symetrická valenční vibrace je tedy v absorpčním infračerveném spektru neaktivní. Při antisymetrické vibraci se současně jedna vazba zkracuje a druhá

5 prodlužuje, takže dipólové momenty vazeb se již nekompenzují, ale sčítají. Během vibrace tedy dochází ke změně celkového momentu, antisymetrická vibrace je ve spektru aktivní. Obecně lze říci, že infračervené spektrum nese informaci zejména o polárních vazbách v molekule, tj. o funkčních skupinách s heteroatomy. Vibrace vazeb nepolárních nebo jen slabě polárních (C C, C H apod.) neposkytují ve spektru žádné nebo jen slabé absorpční pásy. Tento důsledek aktivity vibrací má zásadní význam pro využití infračervené spektroskopie v kvalitativní analýze. Vibrační spektroskopie Úkolem vibrační spektroskopie je stanovit vlastní hodnoty energie pro co největší počet vibračních modů. Jejich znalost nám umožňuje stanovit některé detaily struktury molekuly. Tyto hodnoty se zjišťují interakcí s elektromagnetickým polem. V principu můžeme odlišit dvě metody: metodu infračervené absorpční spektroskopie a metodu Ramanova rozptylu. Infračervená vibrační spektroskopie Infračervená spektroskopie je analytická technika určená především pro identifikaci a strukturní charakterizaci organických sloučenin a také pro stanovení anorganických látek. Tato technika měří pohlcení infračerveného záření o různé vlnové délce analyzovaným materiálem. Infračerveným zářením je elektromagnetické záření v rozsahu vlnových délek 0, mm, což odpovídá rozsahu vlnočtů cm -1. Celá oblast bývá rozdělena na blízkou ( cm -1 ), střední ( cm -1 ) a vzdálenou infračervenou oblast ( cm -1 ), přičemž nejpoužívanější je střední oblast. Principem metody je absorpce infračerveného záření při jeho průchodu vzorkem, během níž dochází ke změnám rotačně-vibračních energetických stavů molekuly v závislosti na změnách dipólového momentu molekuly. Analytickým výstupem je infračervené spektrum, které je grafickým zobrazením funkční závislosti energie, většinou vyjádřené v procentech transmitance (T) nebo jednotkách absorbance (A) na vlnové délce dopadajícího záření. Transmitance (propustnost) je definována jako poměr intenzity záření, které prošlo vzorkem (I), k intenzitě záření vycházejícího ze zdroje (I o ). Absorbance je definována jako dekadický logaritmus 1/T. Závislost energie na vlnové délce je logaritmická, proto se používá vlnočet, který je definován jako převrácená hodnota vlnové délky, a tedy uvedená závislost energie na vlnočtu bude funkcí lineární.

6 Ramanova spektroskopie Ramanova spektroskopie je založena na neelastickém rozptylu ultrafialového (o vlnové délce přibližně nm, tj cm -1 ), viditelného (o vlnové délce přibližně nm, tj cm -1 ) nebo též blízkého IČ záření molekulou, přičemž rozdíl mezi energií dopadajícího a rozptýleného fotonu odpovídá vždy některému z vibračních energetických přechodů v molekule: ( ν ν ) E = h 0, r kde h ν 0 je energie dopadajícího fotonu a hν r je energie rozptýleného fotonu. Tento jev byl experimentálně zjištěn indickým vědcem Ramanem, ale předpovězen byl (klasicky) rakouským vědcem A. Smekalem, který vycházel ze změn polarizovatelnosti molekuly při vibračním přechodu (jeho práce byla však bohužel zapomenuta). Rozptyl na křemenu první popsali vědci Landsberg a Mandelstam. Kvantový popis přechodu na vibrační hladinu je poněkud komplikovaný, a proto jej neuvádím. Nám postačí Smekalova představa, podle které je intenzita rozptylu úměrná změně polarizovatelnosti molekuly při přechodu. V kvantovém přístupu potom hovoříme o maticovém elementu Ramanova tenzoru mezi příslušnými stavy. Každé ramanovsky aktivní normální vibraci molekuly přísluší pás ve spektru Ramanova rozptylu (přesněji řečeno dva pásy, jeden ve Stokesově a druhý v anti-stokesově oblasti, běžně se měří Ramanova spektra pouze ve Stokesově oblasti). Ramanovo spektrum představuje závislost intenzity Ramanova rozptylu (osa y) na vlnočtu Ramanova posunu (osa x). Infračervená a Ramanova spektroskopie jsou v důsledku rozdílného fyzikálního principu, na němž se zakládají, z části, nebo úplně komplementární. Úplná komplementarita nastává u molekul se středem symetrie: normální vibrace symetrické vzhledem ke středu symetrie (g) jsou aktivní pouze v Ramanově rozptylu, zatímco vibrace antisymetrické vzhledem ke středu symetrie (u) jsou aktivní pouze v infračervené absorpci. Interpretace vibračních spekter Interpretace vibračních spekter řeší dva neoddělitelné problémy: Přiřazení absorpčních a rozptylových pásů jednotlivým normálním vibracím molekuly. Charakterizace normálních vibrací určením symetrie a spřažených vnitřních souřadnic.

7 Při rozboru vibračního problému musíme analyzovat všechny normální vibrační mody. Užívá se tzv. koncepce charakteristických vlnočtů funkčních skupin, která umožňuje přiřadit některé význačné pásy ve spektru. Tato metoda si ovšem žádá velkou zkušenost experimentátora. Absorpční pásy mající vrcholy v intervalu cm -1, jsou vhodné pro identifikaci funkčních skupin (např. OH, C=O, N H, CH 3 aj.). Pásy v oblasti cm -1 se nazývají oblastmi otisku palce (fingerprint region). Pomocí vyhledávacích programů a digitalizovaných knihoven infračervených spekter je možno identifikovat neznámou analyzovanou látku. V současné době se objevují programy, které umožňují simulovat infračervené spektrum organických molekul. Ukázka z výukového programu v systému FAMULUS je uvedena na obr. 3. Obr. 3. Ukázka z výukového programu FAMULUS Užití vibrační spektroskopie Pomocí vibrační spektroskopie lze studovat mnoho chemických a fyzikálních vlastností vzorků. Uveďme zde alespoň některé: změny struktury molekul, izomerizace, polymerace, vzájemné interakce molekul, chemické reakce, fázové přechody, rozpouštědlový efekt, adsorpce molekul na povrch. Speciální aplikace má infračervená spektroskopie při studiu polymerů. Jde především o identifikaci polymerního materiálu, a to jak kvalitativní, tak i kvantitativní určení jeho

8 chemického složení (stanovení koncových skupin, větvení řetězců, konfigurace a konformace atd.). Infračervená spektroskopie slouží dále k určení koncentrace nečistot, antioxidantů, aditiv a emulgátorů, změkčovadel, plnidel a zbytkových monomerů v polymerním materiálu. Vzhledem k pomalosti procesů lze dále sledovat takové procesy, jako je vulkanizace, polymerace nebo degradace. V neposlední řadě lze studovat vliv vnějších podmínek na polymery (teploty a tlaku, záření, deformace, vliv stárnutí nebo vlhkosti okolního prostředí). Princip metody Fourierovské spektroskopie Metoda FTIR spektroskopie je podrobně popsána např. v [3]. Srdcem FT spektrometru je Michelsonův interferonmetr, jehož schéma je uvedeno na obr. 4. Záření ze zdroje přichází na polopropustný dělič paprsků (beamsplitter), který jednu polovinu paprsků propustí k pohyblivému zrcadlu, druhá se odráží směrem Obr. 4. Schéma Michelsonova interferometru k pevnému zrcadlu. Paprsky se od obou vzájemně kolmých zrcadel zpětně odrážejí a na děliči paprsků se podle polohy pohyblivého zrcadla buď sčítají, nebo odčítají. Je-li optická dráha paprsků v obou ramenech přístroje stejná, dojde pro všechny vlnové délky ke konstruktivní interferenci. Toho se užívá k určení této polohy. Při různé optické dráze v obou ramenech dojde pro vlny s různými vlnovými délkami k interferenci buď konstruktivní, nebo destruktivní. Na výstupu interferometru měříme celkovou intenzitu prošlého záření, tzv. interferogram. Tato hodnota je funkcí rozdílu optických drah v obou ramenech. Fourierovou transformací (kterou zde nebudeme rozebírat) výsledné intenzity získáme závislost intenzity záření na jeho frekvenci (vlnové délce), tj. infračervené spektrum. Pro určení rozdílu optických drah v obou ramenech slouží laser s úzkou spektrální šířkou vyzařování. Jeho paprsek též prochází interferometrem a je snímán fotodiodou. Infračervený signál měříme vždy v okamžiku, kdy je signál od laserového záření nulový. Dvě měřené polohy d zrcadla jsou tedy vzdáleny o vlnovou délku laseru. Rozlišovací schopnost spektrometru je naopak dána celkovým posunem L pohyblivého zrcadla. Podrobnou teorii Fourierovy transformace včetně procesu apodizace lze nalézt v příslušné přednášce nebo

9 doporučené literatuře [3]. Připomeňme jen, že na konstrukci Michelsonova interferometru (přesněji na možnostech posunu pohyblivého zrcadla) závisí: rozlišovací schopnost spektrometru R pro daný vlnočet ν, která je určena celkovým posunem pohyblivého zrcadla L během měření R = L ν spektrální obor spektrometru, který je vymezen jemností odečtů poloh pohyblivého zrcadla d, horní hranice oboru vlnočtů je ν = 1/(2d) Proti disperzním spektrometrům má FT spektrometr některé výhody. Výhoda světelnosti (Jacquinotova). FT spektrometrem prochází celý svazek o vysoké intenzitě. Naopak u disperzního přístroje s růstem rozlišovací schopnosti velmi rychle klesá procházející světelný tok. Multiplexová výhoda (Felgettova). Celé spektrum je měřeno během jedné periody pohybu zrcadla, což vede ke značné úspoře času a zvýšení poměru signálu k šumu. Výhoda jednoduché kalibrace (Connesové). Pro výpočet spektra stačí znát přesně rozdíl optických drah v obou ramenech. Experimentální zařízení Jako příklad FTIR spektrometru popíšeme přístroj NICOLET IMPACT 400, pořízený v roce 1994 Katedrou makromolekulární fyziky MFF UK. Jeho schéma je uvedeno na obr. 5. Spektrální rozsah je cm -1 s maximálním rozlišením 1 cm -1. Obr. 5. Schéma spektrometru NICOLET IMPACT 400 Zdrojem infračerveného záření je globar Ever-Glo TM. Spektrometr je opatřený pyroelektrickým detektorem DTGS (deuterovaný triglycinsulfát) a interferometrická část spektrometru je hermeticky uzavřená bez profukování suchým vzduchem. Díky bohatému příslušenství tento přístroj umožňuje používat všechny transmisní i reflexní metody popsané v následujícím

10 odstavci. K tomu stačí pouze umístit vhodný nástavec do vzorkového prostoru. Tento prostor je profukován suchým vzduchem za použití speciálního filtrovacího zařízení. Optická lavice, sběr dat a jejich zpracování je řízeno mikropočítačem vybaveným softwarem Omnic (pracujícím pod operačním systémem Windows). Po získání dat je prováděna rychlá Fourierovská transformace. Dále je možno spektrum zobrazit v jednotkách absorbance či transmitance, u metody DRIFTS i v Kubelkových-Munkových jednotkách (viz. následující kapitola). Automaticky se provádí ATR korekce a v neposlední řadě je možnost porovnání s příslušnou knihovnou IČ absorpčních spekter pomocí programu SEARCH. Metody měření infračervených spekter látek Transmisní techniky Kapalné vzorky Kapalné vzorky měříme v kyvetě o určité tloušťce s okénky z KBr nebo NaCl. Pokud je kapalný vzorek nerozpustný v tradičně používaných rozpouštědlech propustných v infračervené (CHCl 3, CCl 4, CS 2 ), může být ve velmi malém množství měřen transmisně ve formě kapilární vrstvy mezi dvěma KBr (NaCl) okénky. Pevné vzorky Vzorky rozpustné v tradičně používaných rozpouštědlech (CHCl 3, CCl 4 ) jsou měřeny v běžných kyvetách určených pro kapalné vzorky. Je možno též připravit tenký film vzorku jeho rozpuštěním v určitém rozpouštědle, které necháme odpařit. Někteří autoři používají tuto techniku i pro měření látek rozpustných ve vodě. Jako okénko používají např. ZnSe, Si nebo AgCl. Pevné vzorky bývají mlety v malém vibračním mlýnku s KBr. Výsledný homogenní prášek se potom slisuje do tenké tablety, která se dále analyzuje. Další variantou je tzv. nujolová technika, ve které je práškový vzorek homogenizován s malým množstvím parafinového oleje a výsledná suspenze je potom měřena mezi dvěma KBr nebo NaCl okénky ve formě tenké vrstvy. Vzhledem k tomu, že parafinový olej silně absorbuje v oblasti valenčních a deformačních vibrací C H vazeb, je měření v Nujolu doplňováno měřením v oleji Fluorolube, který je polymerem (CF 2 CFCl)-. Nevýhodou této techniky je obtížné dosažení stejnoměrné tloušťky vrstvy, a technika tudíž není vhodná pro kvantitativní analýzu.

11 Reflexní techniky Spekulární reflexe (SR) Spekulární (zrcadlová) odrazová technika je založená na měření změny intenzity záření odraženého od lesklé podložky, na které je umístěn nebo nanesen vzorek (obr. 6). Spekulární reflexe je ta část odraženého záření, která splňuje Snellův zákon, tzn. úhel odrazu se vzhledem k makroskopické rovině vzorku rovná úhlu dopadu. Intenzita odraženého paprsku od povrchu je závislá na úhlu dopadu záření, na optických (index lomu) a absorpčních vlastnostech vzorku a na povrchu analyzovaného materiálu. Obecně platí, že se zvyšujícím se úhlem dopadajícího záření (bráno od normály k povrchu) se zvyšují intenzity pásů. Reflexníabsorpční dráha paprsku je dvojnásobná oproti transmisní dráze, která je dána tloušťkou vzorku. Obr. 6. Schéma odrazu na vzorku na reflexním podkladu Difúzní reflexe (DRIFTS) Pro vzorky s nerovným a nepravidelným povrchem nebo práškové látky je výhodné použití difúzní reflexe, která je známa jako Diffuse Deflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Oproti spekulární reflexi je měřena difúzně rozptýlená složka záření (obr. 7). Jestliže není analyzovaná látka rozpustná v běžně používaných rozpouštědlech a není z ní možno připravit tenkou Obr. 7. folii nebo práškový vzorek, je k dispozici zajímavá DRIFTS Spekulární a difúzní složka technika, která spočívá v adjustaci vzorku na papírový odraženého záření kotouček obsahující na povrchu práškový karbid křemíku. Vzorek je jednoduše nabroušen na brusnou vrstvu a výsledná vrstva se měří pomocí DRIFTS techniky. Infračervené spektrum SiC je možno digitálně odečíst. Technika difúzní reflexe spočívá ve fokusaci infračerveného paprsku na pevný vzorek a difúzně rozptýlené záření je převedeno vhodným optickým zařízením na detektor

12 spektroskopu. Difúzně reflexní spektra jsou vyjádřena v lineárních jednotkách Kubelka- Munk, které odpovídají jednotkám absorbance ve spektru měřeném KBr technikou. Zeslabená úplná reflexe (ATR) Pro měření vzorků, které silně absorbují infračervené záření (vodné roztoky, emulze) je výhodná technika zeslabené totální reflektance (ATR Attenuated Total Reflectance). Jedná se o účinnou rychlou metodu, která vyžaduje minimální přípravu vzorku pro analýzu. ATR analýza vzorků FTIR spektrometrií je rychlá, může být automatizována a eliminuje použití toxických rozpouštědel. Technika je založena na principu násobného úplného odrazu záření na fázovém rozhraní měřeného vzorku a měřícího krystalu z materiálu o vysokém indexu lomu (obr. 8). Krystal je většinou planární, ve tvaru lichoběžníkového hranolu. Svazek paprsků je přiveden do krystalu soustavou zrcadel tak, aby úhel dopadu na fázové rozhraní vyhověl podmínce totálního odrazu. Obr. 8. Odrazy v ATR krystalu a proniknutí záření do vzorku Měřený vzorek je v dokonalém kontaktu s ATR krystalem a záření proniká částečně do analyzovaného materiálu. Pokud měřený vzorek absorbuje záření o určité frekvenci, pak tato složka bude v totálně odraženém světle zeslabena. Takto získané spektrum se do značné míry podobá spektru změřenému v transmisním režimu. Penetrační hloubka do povrchu vzor-ku je řádově v jednotkách mikron, tzn. že charakterizujeme pouze velmi tenké povrchové vrstvy, avšak vzhledem k násobnému odrazu na fázovém rozhraní získáme velmi kvalitní spektrum, ekvivalentní transmisnímu spektru měřenému při tloušťce vzorku řádově desítek mikronů. Používají se krystaly např. ze ZnSe, AgCl, Si, Ge, safíru, KRS-5 (směs halogenidů thalných). Dnes se jako standardní měřící technika používá převážně lichoběžníkového ZnSe krystalu v horizontálním uspořádání. ATR spektrum vzorku je ovlivněno vlnovou délkou infračerveného záření, poměrem indexů lomu měřeného vzorku a ATR krystalu, efektivní dráhou záření, úhlem dopadu záření na fázové rozhraní a kontaktem mezi měřeným vzorkem a ATR krystalem.

13 LITERATURA [1] Horák, M., Papoušek, D.: Infračervená spektra a struktura molekul, Academia, Praha [2] Němcová, I., Čermáková, L., Rychlovský, P.: Spektrometrické analytické metody I., Karolinum, Praha [3] Klíč, A., Volka, K., Dubcová, M.: Fourierova transformace (Příklady z infračervené spektroskopie), VŠCHT, Praha [4] Trchová, M.: Metodická příručka pro uživatele FTIR spektrometru, Spektroskopická společnost Jana Marka Marci, Praha 2000.

SPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová

SPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová SPEKTROMETRIE aneb co jsem se dozvěděla autor: Zdeňka Baxová FTIR spektrometrie analytická metoda identifikace látek (organických i anorganických) všech skupenství měříme pohlcení IČ záření (o různé vlnové

Více

Infračervená spektroskopie

Infračervená spektroskopie Infračervená spektroskopie 1 Teoretické základy Podstatou infračervené spektroskopie je interakce infračerveného záření se studovanou hmotou, kdy v případě pohlcení fotonu studovanou hmotou mluvíme o absorpční

Více

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ;   (c) David MILDE, SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické

Více

IDENTIFIKACE NEZNÁMÉ ORGANICKÉ LÁTKY POMOCÍ INFRAČERVENÉ SPEKTROMETRIE

IDENTIFIKACE NEZNÁMÉ ORGANICKÉ LÁTKY POMOCÍ INFRAČERVENÉ SPEKTROMETRIE Úvod Infračervená spektrometrie (IR) je analytická technika určená především k identifikaci a strukturní charakterizaci organických sloučenin a anorganických látek. Tato nedestruktivní analytická technika

Více

Infračervená spektrometrie

Infračervená spektrometrie Podstata infračervené absorpce jednofotonový přechod mezi dvěma vibračními (vibračně-rotačními) rotačními) stavy molekuly, jejichž energie jsou E 1 a E 2, vyvolaný interakcí s fotonem dopadajícího záření

Více

INSTRUMENTÁLNÍ METODY

INSTRUMENTÁLNÍ METODY INSTRUMENTÁLNÍ METODY ACH/IM David MILDE, 2014 Dělení instrumentálních metod Spektrální metody (MILDE) Separační metody (JIROVSKÝ) Elektroanalytické metody (JIROVSKÝ) Ostatní: imunochemické, radioanalytické,

Více

VIBRAČNÍ SPEKTROMETRIE

VIBRAČNÍ SPEKTROMETRIE VIBRAČNÍ SPEKTROMETRIE (c) -2012 INFRAČERVENÁ SPEKTROMETRIE 1 INFRAČERVENÉ ZÁŘENÍ Infračervené (IR) záření: vlnočty 13000 10 cm -1, což odpovídá 0,78 1000 µm. DĚLENÍ: blízká IR oblast 13000 5000 cm -1

Více

VIBRAČNÍ SPEKTROMETRIE

VIBRAČNÍ SPEKTROMETRIE VIBRAČNÍ SPEKTROMETRIE (c) -2012 RAMANOVA SPEKTROMETRIE 1 PRINCIP METODY Měří se rozptýlené záření, které vzniká interakcí monochromatického záření z viditelné oblasti s molekulami vzorku za současné změny

Více

Metody charakterizace nanomaterálů I

Metody charakterizace nanomaterálů I Vybrané metody spektráln lní analýzy Metody charakterizace nanomaterálů I RNDr. Věra Vodičková, PhD. Molekulová spektroskopie atomy a molekuly mohou měnit svůj energetický stav přijetím nebo vyzářením

Více

Vybrané spektroskopické metody

Vybrané spektroskopické metody Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky

Více

Využití UV/VIS a IR spektrometrie v analýze potravin

Využití UV/VIS a IR spektrometrie v analýze potravin Využití UV/VIS a IR spektrometrie v analýze potravin Chemické laboratorní metody v analýze potravin MVDr. Zuzana Procházková, Ph.D. MVDr. Michaela Králová, Ph.D. Spektrometrie: základy Interakce záření

Více

INFRAČERVENÁ A RAMANOVA SPEKTROMETRIE

INFRAČERVENÁ A RAMANOVA SPEKTROMETRIE INFRAČERVENÁ A RAMANOVA SPEKTROMETRIE (c) -2008 INFRAČERVENÁ SPEKTROMETRIE 1 INFRAČERVENÉ ZÁŘENÍ Infračervené (IR) záření: vlnočty 13000 10 cm -1, což odpovídá λ 0,78 1000 µm. DĚLENÍ: blízká IR oblast

Více

Spektrometrické metody. Reflexní a fotoakustická spektroskopie

Spektrometrické metody. Reflexní a fotoakustická spektroskopie Spektrometrické metody Reflexní a fotoakustická spektroskopie odraz elektromagnetického záření - souvislost absorpce a reflexe Kubelka-Munk funkce fotoakustická spektroskopie Měření odrazivosti elmg záření

Více

13. Spektroskopie základní pojmy

13. Spektroskopie základní pojmy základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Úvod do spektrálních metod pro analýzu léčiv

Úvod do spektrálních metod pro analýzu léčiv Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz

Více

Pokročilé cvičení z fyzikální chemie KFC/POK2 Vibrační spektroskopie

Pokročilé cvičení z fyzikální chemie KFC/POK2 Vibrační spektroskopie Pokročilé cvičení z fyzikální chemie KFC/POK2 Vibrační spektroskopie Vibrace molekul mohou být měřeny buď pomocí absorpce infračerveného záření, nebo pomocí neelastického rozptylu záření, tzn. Ramanova

Více

INFRAČERVENÁ A RAMANOVA SPEKTROMETRIE

INFRAČERVENÁ A RAMANOVA SPEKTROMETRIE INFRAČERVENÁ A RAMANOVA SPEKTROMETRIE (c) -2008 INFRAČERVENÁ SPEKTROMETRIE 1 INFRAČERVENÉ ZÁŘENÍ Infračervené (IR) záření: vlnočty 13000 10 cm -1, což odpovídá 0,78 1000 µm. DĚLENÍ: blízká IR oblast 13000

Více

Základy NIR spektrometrie a její praktické využití

Základy NIR spektrometrie a její praktické využití Nicolet CZ s.r.o. The world leader in serving science Základy NIR spektrometrie a její praktické využití NIR praktická metoda molekulové spektroskopie, nahrazující pracnější, časově náročnější a dražší

Více

Vybrané metody spektráln. lní analýzy. Metody charakterizace nanomaterálů I

Vybrané metody spektráln. lní analýzy. Metody charakterizace nanomaterálů I Vybrané metody spektráln lní analýzy Metody charakterizace nanomaterálů I Spektroskopické metody: atomové vs molekulové atomy a molekuly mohou měnit svůj energetický stav přijetím nebo vyzářením pouze

Více

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Molekulová spektroskopie 1. Chemická vazba, UV/VIS Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická

Více

Emise vyvolaná působením fotonů nebo částic

Emise vyvolaná působením fotonů nebo částic Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová

Více

INFRAČERVENÁ SPEKTROMETRIE KVALITATTIVNÍ A KVANTITATIVNÍ STANOVENÍ

INFRAČERVENÁ SPEKTROMETRIE KVALITATTIVNÍ A KVANTITATIVNÍ STANOVENÍ INFRAČERVENÁ SPEKTROMETRIE KVALITATTIVNÍ A KVANTITATIVNÍ STANOVENÍ Úvod: Infračervená spektrometrie (IR) je analytická technika molekulové vibrační spektrometrie, která se zabývá studiem pohybů atomů v

Více

IČ spektroskopie. IR Spectroscopy FTIR moderní technika viz dále

IČ spektroskopie. IR Spectroscopy FTIR moderní technika viz dále IR spektroskopie IČ spektroskopie IR Spectroscopy FTIR moderní technika viz dále Použití: identifikace a strukturní charakterizace organických sloučenin a také stanovení anorganických látek k identifikaci

Více

Optické spektroskopie 1 LS 2014/15

Optické spektroskopie 1 LS 2014/15 Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)

Více

IR a UV VIS spektroskopie

IR a UV VIS spektroskopie IR a UV VIS spektroskopie IČ spektroskopie IR Spectroscopy FTIR moderní technika viz dále Použití: identifikace a strukturní charakterizace organických sloučenin a také stanovení anorganických látek k

Více

Základy NIR spektrometrie a její praktické využití

Základy NIR spektrometrie a její praktické využití Nicolet CZ s.r.o. The world leader in serving science Základy NIR spektrometrie a její praktické využití NIR praktická metoda molekulové spektroskopie, nahrazující pracnější, časově náročnější a dražší

Více

Fyzika II. Marek Procházka Vlnová optika II

Fyzika II. Marek Procházka Vlnová optika II Fyzika II Marek Procházka Vlnová optika II Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení složek vlnění s různou

Více

10A1_IR spektroskopie

10A1_IR spektroskopie C6200-Biochemické metody 10A1_IR spektroskopie Petr Zbořil IR spektroskopie Excitace vibračních a rotačních přechodů Valenční vibrace n Deformační vibrace d IR spektroskopie N atomů = 3N stupňů volnosti

Více

Projekt FRVŠ č: 389/2007

Projekt FRVŠ č: 389/2007 Závěrečné oponentní řízení 7.2.2007 Projekt FRVŠ č: 389/2007 Název: Řešitel: Spoluřešitelé: Pracoviště: TO: Laboratoř infračervené spektrometrie Doc. Ing. Milan Honner, Ph.D. Ing. Petra Vacíková, Ing.

Více

Infračervená a Ramanova spektrometrie

Infračervená a Ramanova spektrometrie Infračervená a Ramanova spektrometrie Infračervené záření Záření v oblasti vlnočtů 12500 10 cm -1 které se dále dělí na 3 podskupiny: - blízká IČ oblast: 12500 5000 cm -1 (Near Infrared, NIR) -střední

Více

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají

Více

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +

Více

STANOVENÍ ETHANOLU V ALKOHOLICKÉM NÁPOJI POMOCÍ NIR SPEKTROMETRIE

STANOVENÍ ETHANOLU V ALKOHOLICKÉM NÁPOJI POMOCÍ NIR SPEKTROMETRIE STANOVENÍ ETHANOLU V ALKOHOLICKÉM NÁPOJI POMOCÍ NIR SPEKTROMETRIE Úvod Infračervená spektrometrie v blízké oblasti (Near-Infrared Spectrometry NIR spectrometry) je metoda molekulové spektrometrie, která

Více

SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE)

SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE) SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE) Elektromagnetické vlnění SVĚTLO Charakterizace záření Vlnová délka - (λ) : jednotky: m (obvykle nm) λ Souvisí s povahou fotonu Charakterizace záření

Více

Nicolet CZ s.r.o. Porovnání infračervené a Ramanovy spektroskopie. Typické aplikace těchto technik. The world leader in serving science

Nicolet CZ s.r.o. Porovnání infračervené a Ramanovy spektroskopie. Typické aplikace těchto technik. The world leader in serving science Nicolet CZ s.r.o. Porovnání infračervené a Ramanovy spektroskopie. The world leader in serving science Typické aplikace těchto technik. Základní princip Infračervená a Ramanova spektroskopie nedestruktivní

Více

INFRAČERVENÁ SPEKTROMETRIE A BIOSLOŽKY PALIV

INFRAČERVENÁ SPEKTROMETRIE A BIOSLOŽKY PALIV VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE Fakulta technologie ochrany prostředí Ústav technologie ropy a alternativních paliv INFRAČERVENÁ SPEKTROMETRIE A BIOSLOŽKY PALIV Laboratorní cvičení ÚVOD V několika

Více

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1.

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1. S použitím modelu volného elektronu (=částice v krabici) spočtěte vlnovou délku a vlnočet nejdlouhovlnějšího elektronového přechodu u molekuly dekapentaenu a oktatetraenu. Diskutujte polohu absorpčního

Více

IDENTIFIKACE LÉČIVA V TABLETÁCH POMOCÍ RAMANOVY SPEKTROMETRIE

IDENTIFIKACE LÉČIVA V TABLETÁCH POMOCÍ RAMANOVY SPEKTROMETRIE IDENTIFIKACE LÉČIVA V TABLETÁCH POMOCÍ RAMANOVY SPEKTROMETRIE Úvod Ramanova spektrometrie je metodou vibrační molekulové spektrometrie. Za zakladatele této metody je považován indický fyzik Čandrašékhara

Více

Úvod do strukturní analýzy farmaceutických látek

Úvod do strukturní analýzy farmaceutických látek Úvod do strukturní analýzy farmaceutických látek Garant předmětu: Vyučující: doc. Ing. Bohumil Dolenský, Ph.D. prof. RNDr. Pavel Matějka, Ph.D., A136, linka 3687, matejkap@vscht.cz doc. Ing. Bohumil Dolenský,

Více

Fyzika IV Dynamika jader v molekulách

Fyzika IV Dynamika jader v molekulách Dynamika jader v molekulách vibrace rotace Dynamika jader v molekulách rotační energetické hladiny (dvouatomová molekula) moment setrvačnosti kolem osy procházející těžištěm osa těžiště m2 m1 r2 r1 R moment

Více

- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence

- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence ROZPTYLOVÉ a EMISNÍ metody - Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl - fluorescence - fosforescence Ramanova spektroskopie Každá čára Ramanova spektra je svými vlastnostmi závislá

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009.

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. XXVI Název: Vláknová optika Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009 Odevzdal dne: Možný počet bodů

Více

Infračervená spektrometrie

Infračervená spektrometrie Infračervená spektrometrie Obsah kapitoly Teorie Instrumentace Pracovní techniky IR spektrometrie MIR Identifikace látek Kvantitativní analýza Aplikace v analýze potravin NIR Vlastnosti metody Aplikace

Více

Stručný úvod do spektroskopie

Stručný úvod do spektroskopie Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

Refraktometrie, interferometrie, polarimetrie, nefelometrie, turbidimetrie

Refraktometrie, interferometrie, polarimetrie, nefelometrie, turbidimetrie Refraktometrie, interferometrie, polarimetrie, nefelometrie, turbidimetrie Refraktometrie Metoda založená na měření indexu lomu Při dopadu paprsku světla na fázové rozhraní mohou nastat dva jevy: Reflexe

Více

SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE

SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE Obecné základy nedestruktivní metoda strukturní analýzy zabývá se rezonancí atomových jader nutná podmínka pro měření spekter: nenulový spin atomového jádra

Více

Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm

Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.

Více

Příklady biochemických metod turbidimetrie, nefelometrie. Miroslav Průcha

Příklady biochemických metod turbidimetrie, nefelometrie. Miroslav Průcha Příklady biochemických metod turbidimetrie, nefelometrie Miroslav Průcha Příklady optických technik Atomová absorpční spektrofotometrie Absorpční spektrofotometrie Absorpční spektrofotometrie kinetická

Více

Absorpční fotometrie

Absorpční fotometrie Absorpční fotometrie - v ultrafialové (UV) a viditelné (VIS) oblasti přechody mezi elektronovými stavy +... - v infračervené (IČ) oblasti přechody mezi vibračními stavy +... - v mikrovlnné oblasti přechody

Více

FTIR absorpční spektrometrie KBr transmisní a ATR metody

FTIR absorpční spektrometrie KBr transmisní a ATR metody FTIR absorpční spektrometrie KBr transmisní a ATR metody Teorie: Infračervená spektroskopie je nedestruktivní analytická technika určená především pro identifikaci a strukturní charakterizaci organických

Více

ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika

ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika ODRAZ A LOM SVĚTLA Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika Odraz světla Vychází z Huygensova principu Zákon odrazu: Úhel odrazu vlnění je roven úhlu dopadu. Obvykle provádíme konstrukci pomocí

Více

Identifikace barviv pomocí Ramanovy spektrometrie

Identifikace barviv pomocí Ramanovy spektrometrie Identifikace barviv pomocí Ramanovy spektrometrie V kriminalistických laboratořích se provádí technická expertíza písemností, která se mimo jiné zabývá zkoumáním použitých psacích prostředků: tiskových

Více

Infračervená spektroskopie (Infrared spectroscopy)

Infračervená spektroskopie (Infrared spectroscopy) INFRAERVENÁ ˇ A RAMANOVA SPEKTROSKOPIE Teorie Instrumentace Pracovní techniky IR spektroskopie MIR identifikace látek MIR rozbor spekter MIR kvantitativní analýza Ramanova spektroskopie: teorie, odlišnosti

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL Inovace a rozvoj studia nanomateriálů na TUL nano.tul.cz Tyto materiály byly vytvořeny v rámci projektu ESF OP VK: Inovace a rozvoj studia nanomateriálů na Technické univerzitě v Liberci Experimentální

Více

INFRAČERVENÁ SPEKTROSKOPIE

INFRAČERVENÁ SPEKTROSKOPIE INFRAČERVENÁ SPEKTROSKOPIE 1. TRANSMISNÍ TECHNIKY Infračervená spektra látek měříme ve stavu plynném, kapalném (resp. v roztocích) nebo v pevném. K měření používáme většinou kyvet, zhotovených z vhodného

Více

3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).

3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické). PŘEDMĚTY KE STÁTNÍM ZÁVĚREČNÝM ZKOUŠKÁM V BAKALÁŘSKÉM STUDIU SP: CHEMIE A TECHNOLOGIE MATERIÁLŮ SO: MATERIÁLOVÉ INŽENÝRSTVÍ POVINNÝ PŘEDMĚT: NAUKA O MATERIÁLECH Ing. Alena Macháčková, CSc. 1. Souvislost

Více

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA CHEMICKÁ ÚSTAV CHEMIE MATERIÁLŮ FACULTY OF CHEMISTRY INSTITUTE OF MATERIALS SCIENCE

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA CHEMICKÁ ÚSTAV CHEMIE MATERIÁLŮ FACULTY OF CHEMISTRY INSTITUTE OF MATERIALS SCIENCE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA CHEMICKÁ ÚSTAV CHEMIE MATERIÁLŮ FACULTY OF CHEMISTRY INSTITUTE OF MATERIALS SCIENCE TVORBA DATABÁZE FT - IR SPEKTER HETEROGENNÍCH SYSTÉMŮ

Více

Krystalografie a strukturní analýza

Krystalografie a strukturní analýza Krystalografie a strukturní analýza O čem to dneska bude (a nebo také nebude): trocha historie aneb jak to všechno začalo... jak a čím pozorovat strukturu látek difrakce - tak trochu jiný mikroskop rozptyl

Více

MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis

MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis Ivana Krestýnová, Josef Zicha Abstrakt: Absolutní vlhkost je hmotnost

Více

8. Detekce a identifikace aktivních složek a pomocných látek infračervená spektrometrie

8. Detekce a identifikace aktivních složek a pomocných látek infračervená spektrometrie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 8. Detekce a identifikace aktivních složek a pomocných látek infračervená spektrometrie Vadym Prokopec Vadym.Prokopec@vscht.cz 8. Detekce

Více

Viková, M. : ZÁŘENÍ II. Martina Viková. LCAM DTM FT TU Liberec, (hranol, mřížka) štěrbina. Přednášky z : Textilní fyzika

Viková, M. : ZÁŘENÍ II. Martina Viková. LCAM DTM FT TU Liberec, (hranol, mřížka) štěrbina. Přednášky z : Textilní fyzika Záření II Martina Viková LCAM DTM FT TU Liberec, martina.vikova@vslib.cz kolimátor dalekohled štěrbina (hranol, mřížka) SPEKTRA LÁTEK L I Zářící zdroje vysílají záření závislé na jejich chemickém složení

Více

Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3

Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Balmerova série F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Grepl.F@seznam.cz Abstrakt: Metodou dělených svazků jsme určili lámavý

Více

Spektrální charakteristiky

Spektrální charakteristiky Spektrální charakteristiky Cíl cvičení: Měření spektrálních charakteristik filtrů a zdrojů osvětlení 1 Teoretický úvod Interakcí elektromagnetického vlnění s libovolnou látkou vzniká optický jev, který

Více

Světlo jako elektromagnetické záření

Světlo jako elektromagnetické záření Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti

Více

INTERPRETACE INFRAČERVENÝCH SPEKTER

INTERPRETACE INFRAČERVENÝCH SPEKTER INTERPRETACE INFRAČERVENÝCH SPEKTER Obecné základy nedestruktivní metoda strukturní analýzy měření přechodů mezi vibračními hladinami změna dipólového momentu během vibrace v=3 v=2 v=1 v=0 fundamentální

Více

Spektroskopie v UV-VIS oblasti. UV-VIS spektroskopie. Roztok KMnO 4. pracuje nejčastěji v oblasti 200-800 nm

Spektroskopie v UV-VIS oblasti. UV-VIS spektroskopie. Roztok KMnO 4. pracuje nejčastěji v oblasti 200-800 nm Spektroskopie v UV-VIS oblasti UV-VIS spektroskopie pracuje nejčastěji v oblasti 2-8 nm lze měřit i < 2 nm či > 8 nm UV VIS IR Ultra Violet VISible Infra Red Roztok KMnO 4 roztok KMnO 4 je červenofialový

Více

Fluorescence (luminiscence)

Fluorescence (luminiscence) Fluorescence (luminiscence) Patří mezi luminiscenční metody fotoluminiscence. Luminiscence efekt, kdy excitované molekuly či atomy vyzařují světlo při přechodu z excitovaného do základního stavu. Podle

Více

Základy Mössbauerovy spektroskopie. Libor Machala

Základy Mössbauerovy spektroskopie. Libor Machala Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických

Více

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm.

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. 1. Podstata světla Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. Vznik elektromagnetických vln (záření): 1. při pohybu elektricky nabitých částic s nenulovým zrychlením

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

OPVK CZ.1.07/2.2.00/

OPVK CZ.1.07/2.2.00/ 18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti

Více

Difrakce elektronů v krystalech, zobrazení atomů

Difrakce elektronů v krystalech, zobrazení atomů Difrakce elektronů v krystalech, zobrazení atomů T. Sýkora 1, M. Lanč 2, J. Krist 3 1 Gymnázium Českolipská, Českolipská 373, 190 00 Praha 9, tomas.sykora@email.cz 2 Gymnázium Otokara Březiny a SOŠ Telč,

Více

Učební texty z fyziky 2. A OPTIKA. Obor zabývající se poznatky o a zákonitostmi světelných jevů. V posledních letech rozvoj optiky vynález a využití

Učební texty z fyziky 2. A OPTIKA. Obor zabývající se poznatky o a zákonitostmi světelných jevů. V posledních letech rozvoj optiky vynález a využití OPTIKA Obor zabývající se poznatky o a zákonitostmi světelných jevů Světlo je vlnění V posledních letech rozvoj optiky vynález a využití Podstata světla Světlo je elektromagnetické vlnění Zdrojem světla

Více

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou

Více

Fourierovské metody v teorii difrakce a ve strukturní analýze

Fourierovské metody v teorii difrakce a ve strukturní analýze Osnova přednášky na 31 kolokviu Krystalografické společnosti Výpočetní metody v rtg a neutronové strukturní analýze Nové Hrady, 16 20 6 2003 Fourierovské metody v teorii difrakce a ve strukturní analýze

Více

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části

Více

Metody nelineární optiky v Ramanově spektroskopii

Metody nelineární optiky v Ramanově spektroskopii Metody nelineární optiky v Ramanově spektroskopii Využití optických nelinearit umožňuje přejít od tradičního studia rozptylu světla na fluktuacích, teplotních elementárních excitacích, ke studiu rozptylu

Více

Nukleární Overhauserův efekt (NOE)

Nukleární Overhauserův efekt (NOE) Nukleární Overhauserův efekt (NOE) NOE je důsledek dipolární interakce mezi dvěma jádry. Vzniká přímou interakcí volně přes prostor, tudíž není ovlivněn chemickými vazbami jako nepřímá spin-spinová interakce.

Více

Teorie chemické vazby a molekulární geometrie Molekulární geometrie VSEPR

Teorie chemické vazby a molekulární geometrie Molekulární geometrie VSEPR Geometrie molekul Lewisovy vzorce poskytují informaci o tom které atomy jsou spojeny vazbou a o jakou vazbu se jedná (topologie molekuly). Geometrické uspořádání molekuly je charakterizováno: Délkou vazeb

Více

Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký. Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený

Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký. Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený Jan Olbrecht Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený Jaký typ lomu nastane při průchodu světla z opticky

Více

Luminiscence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence. chemicky (chemiluminiscence)

Luminiscence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence. chemicky (chemiluminiscence) Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)

Více

INTERAKCE IONTŮ S POVRCHY II.

INTERAKCE IONTŮ S POVRCHY II. Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených

Více

FYZIKA II. Marek Procházka 1. Přednáška

FYZIKA II. Marek Procházka 1. Přednáška FYZIKA II Marek Procházka 1. Přednáška Historie Dělení optiky Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení

Více

Spektroskopické metody. převážně ve viditelné, ultrafialové a blízké infračervené oblasti

Spektroskopické metody. převážně ve viditelné, ultrafialové a blízké infračervené oblasti Spektroskopické metody převážně ve viditelné, ultrafialové a blízké infračervené oblasti Elektromagnetické záření Elektromagnetické záření je postupné vlnění elektromagnetického pole složeného z kombinace

Více

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá

Více

Základní parametry absorpčního spektra, vliv přístrojové funkce (spektrální šířky štěrbiny), vliv polohy kyvety a vlastní fluorescence vzorku

Základní parametry absorpčního spektra, vliv přístrojové funkce (spektrální šířky štěrbiny), vliv polohy kyvety a vlastní fluorescence vzorku Základní parametry absorpčního spektra, vliv přístrojové funkce (spektrální šířky štěrbiny), vliv polohy kyvety a vlastní fluorescence vzorku A. ZADÁNÍ 1. Naučte se ovládat spektrofotometr Unicam UV55

Více

Měření absorbce záření gama

Měření absorbce záření gama Měření absorbce záření gama Úkol : 1. Změřte záření gama přirozeného pozadí. 2. Změřte záření gama vyzářené gamazářičem. 3. Změřte záření gama vyzářené gamazářičem přes absorbátor. 4. Naměřené závislosti

Více

Charakteristiky optického záření

Charakteristiky optického záření Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární

Více

Laboratorní úloha č. 7 Difrakce na mikro-objektech

Laboratorní úloha č. 7 Difrakce na mikro-objektech Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového

Více

CZ.1.07/2.2.00/ AČ (RCPTM) Spektroskopie 1 / 24

CZ.1.07/2.2.00/ AČ (RCPTM) Spektroskopie 1 / 24 MĚŘENÍ SPEKTRA SVĚTLA Antonín Černoch Regionální centrum pokročilých technologií a materiálů CZ.1.07/2.2.00/15.0147 AČ (RCPTM) Spektroskopie 1 / 24 Úvod Obsah 1 Úvod 2 Zobrazovací spektrometry Disperzní

Více

FOTOAKUSTIKA. Vítězslav Otruba

FOTOAKUSTIKA. Vítězslav Otruba FOTOAKUSTIKA Vítězslav Otruba 2010 prof. Otruba 2 The spectrophone 1881 A.G. Bell návrh a Spektrofonu (spectrophone) pro účely posouzení absorpčního spektra subjektů v těch částech, které jsou neviditelné.

Více

Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce

Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce Metody využívající rentgenové záření Rentgenografie, RTG prášková difrakce 1 Rentgenovo záření 2 Rentgenovo záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá se v lékařství a krystalografii.

Více

Zdroje optického záření

Zdroje optického záření Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon

Více

Měření šířky zakázaného pásu polovodičů

Měření šířky zakázaného pásu polovodičů Měření šířky zakázaného pásu polovodičů Úkol : 1. Určete šířku zakázaného pásu ze spektrální citlivosti fotorezistoru pro šterbinu 1,5 mm. Na monochromátoru nastavujte vlnovou délku od 200 nm po 50 nm

Více

Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence)

Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence) Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)

Více

Mobilní Ramanův spektrometr Ahura First Defender

Mobilní Ramanův spektrometr Ahura First Defender ČVUT v Praze, Kloknerův ústav, Šolínova 7, Praha 6 Mobilní Ramanův spektrometr Ahura First Defender Příručka Ing. Daniel Dobiáš, Ph.D. Doc. Ing. Tomáš Klečka, CSc. Praha 2009 Anotace Příručka obsahuje

Více

Ramanova spektroskopie

Ramanova spektroskopie Ramanova spektroskopie Připomentuní elmag. záření Princip Neelastický rozptyl monochromatického záření Ramanův rozptyl je jev vznikající při interakci mezi fotony dopadajícího světla s atomy, kdy se předává

Více