VÝUKOVÁ AKTIVITA. Výpočet výšky polární záře.

Rozměr: px
Začít zobrazení ze stránky:

Download "VÝUKOVÁ AKTIVITA. Výpočet výšky polární záře."

Transkript

1 VÝUKOVÁ AKTIVITA Výpočet výšky polární záře. Autoři: Mr. Juan Carlos Casado. Astrofotograf, tierrayestrellas.com, Barcelona, Španělsko. Dr. Miquel Serra-Ricart. Astronom, Instituto de Astrofísica de Canarias, Tenerife, Španělsko. Mr. Miguel Ángel Pio, Astronom, Instituto de Astrofísica de Canarias, Tenerife, Španělsko. Dr. Lorraine Hanlon. Astronomka, University College Dublin, Irsko. Dr. Luciano Nicastro. Astronom, Istituto Nazionale di Astrofisica, IASF Bologna, Itálie. 1. Cíle aktivity V této aktivitě se naučíme, jak z digitálních fotografií vypočítat, v jaké výšce se tvoří polární záře. Cíle, kterých chceme dosáhnout, jsou: 1. Implementace metodiky výpočtu fyzikálního paramatru (výška) z pozorovaných dat (digitální snímky) jako způsobu výuky aplikací, dokumentace a výzkumu. Aplikace znalostí trigonometrie a zákldní atomové fyziky. 2. Porozumění a aplikace základních statistických technik (výpočet chyby). 3. Porozumění a aplikace základních technik analýzy obrazových dat (úhlová škála, výška hvězd,...). 4. Týmová práce, těžící z individuálních příspěvků a demokratického rozhodování. 5. Příspěvek k vědeckému poznání polární záře a aktivity Slunce. 2. Vybavení Během aktivity budeme pracovat se snímky pořízenými v Grónsku v srpnu Fenomén Polární záře je jedním z nejúžasnějších přírodních úkazů, které lze na Zemi pozorovat. V této aktivitě uvidíme, jak vzniká a jak ji můžeme pozorovat. Také si ukážeme dvě metody výpočtu resp. odhady výšky, ve které se tvoří. 1

2 3.1. Co je to polární záře Polární záře nebo nebo také Aurora je jev v podobě lesku nebo záře na noční obloze viditelný v oblastech s vysokou zeměpisnou šířkou (Arktida nebo Antarktida), ale příležitostně viditelný v krátkých časových úsecích i na jiných částech Země. Obrázek 1. Severní polární záře, pohled z Tasiusaqovy farmy na jihu Grónska (J.C. Casado-starryearth.com). Na severní polokouli je známá jako Aurora Borealis (termín vymyslel francouzský filozof a vědec Pierre Gassendi v roce 1621) nebo populárně jako "Severní polární záře". Na jižní polokouli se vyskztuje Aurora Australis, jejíž aktivita kopíruje severní polární záři. Aurora Australis je viditelná zejména z Antarktidy, je ovšem možné ji pozorovat z jižních oblastí Austrálie a Jižní Ameriky. Polární záře není jev viditelný pouze na Zemi, na dalších planetách se silným magnetickým polem (Jupiter a Saturn) je možné sledovat podobné úkazy Jaký je původ polární záře 2

3 Slunce kontinuálně krom elektromagnetického záření (včetně viditelného světla) emituje částice s vysokou energií. Tento proud částic, známý jako sluneční vítr (horký plyn nebo plazma), sestává zejména z pozitivních iontů a elektronů. Existují vysoce energetické jevy jako jsou erupce nebo výronu koronální hmoty (CME z anglického Coronal Mass Ejection), který zvyšují intenzitu slunečního větru. Částice slunečního větru se pohybují rychlostí od 300 km/s (pomalý sluneční vítr) do 1,000 km/s (rychlý sluneční vítr), takže překonají vzdálenost Slunce-Země za dva až tři dny. V blízkosti Země je solární vítr magnetickým polem Země (magnetosférou) do vesmíru. Sluneční vítr tlačí na magnetosféru a deformuje ji, takže místo uniformního svazku magnetických siločar imaginárního magnetu orientovaného uvnitř Země ve směru sever-jih, vzniká podlouhlá struktura siločar ve tvaru komety orientovaná směrem ke Slunci (Obr. 2). Obrázek 2. Výtvarné ztvárnění Slunce emitujícího solární vítr a koronální výtrysky, které se šíří prostorem. Když dosáhnou Zemi, většina částic je odražena magnetickým polem Země, které pak vypadá jako ocas komety. Malá část částic je usměrněna do atmosféry kanály v okolí magnetických pólů - zelené čáry na obrázku. 3

4 Malá část slunečního větru sleduje magnetické pole Země a proniká do atmosféry. Částice usměrněné magnetosférou kolidují s neutrálními atomy a molekulami v horní atmosféře, typicky s atomy kyslíku (O) a molekulami dusíku (N2), které se nachází v neutrálním stavu a nejnižší energetické úrovni. Energetický příspěvek částic ze Slunce mění stav atomů a molekul na takzvaně excitovaný. Původně neutrální částice se vrací na svou energetickou úroveň emisí světla (Obr. 3). Toto světla pak pozorujeme ze Země a říkáme mu polární záře. K emisi světla polární záře typicky dochází ve výšce 100 až 400 km, protože v této výšce je atmosféra sice tenká, ale dostatečně hustá, aby došlo k dostatečnému počtu kolizí. Obrázek 3. Když elektron ze slunečního větru koliduje v horní atmosféře s atomem kyslíku (O) nebo s molekulou dusíku (N2), dojde k přenosu energie a přechodu do excitovaného stavu. Před přechodem do původního stavu dojde k emisi energie v podobně světla charakteristické vlnové délky (barvy), jak je naznačeno na obrázku Kde, kdy a jak pozorovat polární záři 4

5 K polární záři dochází v některých místech Země, takzvaných polárních oválech, které se nachází v okolí severního a jižního magnetického pólu (Obr. 4). Obrázek 4. Severní polární ovál. Můžete vidět oblasti častého výskytu polárních září a snižování šířky oválu na denní straně (spodní část obrázku). Barva označuje pravděpodobnost pozorování záře a červená čára je jižní hranice, odkud je možné záři pozorovat (viz model, Ref6 OVATION-NASA). 5

6 Čím intenzivnější je sluneční vítr a čím více energie mají částice emitované Slunce, tím větší jsou ovály. Pokud je aktivita střední nebo nízká, ovály jsou úzké a jejich hranice se přesunují k severu, v průběhu velkých slunečních bouří se zvětšují a přesunují více na jih. Obrázek 5. Vývoj severního magnetického pólu. Polární záře se tvoří v oválech okolu magnetických pólů Země (viz Obr. 4). Pokud je sluneční aktivita velmi vysoká, ovál pokryje severní část USA a Evropu. Pro danou úroveň sluneční aktivity je nejužší část oválu na denní straně zemského povrchu, zatímco nejširšíí část oválu je na noční straně Země, takže nejlepší čas pro pozorování je půlnoc lokálního času. Zóny, ve kterých možné pozorovat polární záři častěji, korespondují s kruhy situovanými v polárních oválech (Obr. 5). Na severní polokouli tato zóna pokrývá Aljašku, severní Kanadu, jižní Grónsko, Island, severní Skandinávii (Norsko, Švédsko, Finsko) a severní Sibiř. Zóna maximálního výskytu jižní polární záře je v Antarktidě. V těchto oválech přesahuje četnost výskytu polární záře 240 nocí během periody vysoké aktivity Slunce (diskrétní polární záře) a klesá směrem dovnitř i ven z oválu (difúzní polární záře). Naproti tomu obyvatelé jižní části USA, Mexika, jihu Evropy a okolních oblastí mohou vidět polární záři (difúzní typ) jednou za život. Podle odhadu je například v Ekvádoru možné vidět polární záři jednou za 200 let. 6

7 V jižních částech Evropy můžeme tento jev pozorovat velmi zřídka; pravděpodobnost je jedna polární záře ve Francii, v jižním Španělsku a Itálii pravděpodobnost klesá na 0,2. V souvislosti s posledním maximem aktivity Slunce byla polární záře vidět v oblasti Středomoří a Španělska 6. dubna 2000 (Obr. 6). A nesmíme také zapomenout na polární záři, která byla k vidění v 25. ledna 1938 v Andalusii, během španělské občanské války. Obrázek 6. Severní polární záře (difůzní typ) viditelná jako intenzivní červené světlo se strukturou, sever Figueres (Girona), 6. dubna, Fotografie: Pere Horst. Aktivita naší hvězdy se cyklicky mění. Během špiček period se zvyšuje intenzita slunečního větru a pozorování polární záře se stává jednodušším. Hlavním ukazatelem sluneční aktivity je počet skvrn na povrchu Slunce. Skvrny jsou chladnější oblasti na povrchu Slunce, takže se jeví jako tmavé fleky. Dlouhodobým pozorováním bylo zjištěno, že počet skvrn stoupá zhruba každých 11 let. Poslední maximum nastalo v roce 2000 a s ohledem na poslední pozorování se očekává, že další nastane na konci roku Vzhledem k nízkému jasu záře je pozorování možné jen v noci. Slabé polární záře mají jas srovnatelný s jasem Mléčné dráhy, nejjasnější jsou jasem srovnatelné s Měsícem v úplňku. Protože záře jsou viditelní pouze v cirkumpolárních oblastech, neměly by být viditelné v létě, vzhledem k fenoménu 7

8 půlnočního slunce. Záře mohou být pozorovány pouze od srpna do května, měsících blízkých rovnodennosti, kdy je mají magnetické póly Země nejvýhodnější polohu a vznikají geomagnetické bouře, umožňující lepší vstup vysoce energetických částic ze Slunce do atmosféry v okolí pólů. Polární záře mají různé tvary, struktury a barvy, které se mohou rychle měnit v čase. Běhe jedné noci může polární záře začít jako jednoduchý oblouk na horizontu, zpravidla ve směru východ-západ. Okolo půlnoci oblouk zvyšuje jas. Začnou se tvořit vlny a zákoutí podél oblouku a vznikají vertikální struktury podobné tenkým světelným záclonám. V jednom okamžiku pak může být celá obloha zaplněna pásy, spirálami a paprsky světla, které se třesou a rychle pohybují od horizontu k horizontu. Aktivita může trvat od pár minut do několika hodin, typická délka je mezi 15 a 20 minutami. Se svítáním se aktivita snižuje a na obloze září už jen malé oblasti. Při normálních světelných podmínkách vidí lidské oko barvy od fialové (vlnová délka elektromagnetického záření okolo 390 nm) do červené (asi 700 nm). Když je polární záře slabé, nemá zjevně žádné barvy, protože při nízké úrovni světla naše oči (resp. světlocitlivé buňky sítnice zvané tyčinky) vidí pouze jakýsi jas bez barvy. Jak se se zvyšuje jas, zapojují se do vidění buňky citlivé na barvu (čípky) a můžeme vidět zelené tóny, na které je naše vidění nejcitlivější (vlnová délka 555 nm). S pomocí digitální kamery pak můžeme kromě červených tónů vidět i široké spektrum dalších barev (modrá, purpurová, žlutá,...). Někteří pozorovatelé tvrdí, že slyšeli zvuky přicházející ze záře, jak praská a syčí. Ačkoliv záře vzniká ve výškách okolo 100 km, vypadá to, že magnetické pole, které je s ní spojeno, vytváří elektrostatický náboj, který rozžhavuje větve stromů; provedená měření jsou ovšem neprůkazná Metodika 4.1. Metoda 1 - odhad výšky polární záře pomocí barev. Barvy, které vidíme v polární záři, závisí na složení horní části atmosféry. Jak můžeme vidět výše, excitovaný atom nebo molekula se vrací na původní energetickou hladinu emisí fotonu specifické energie. Ve výškách stovek kilometrů se kromě normálního vzduchu (složeného zejména z molekul kyslíku a dusíku) nachází i jednotlivé atomy kyslíku. Hlavní komponenty atmosféry, dusík a kyslík, produkují širokou škálu barev polární záře. Také další další plyny jako vodík a helium mohou barevně zářit. Kyslík 1 Více v článku 8

9 Energetická emise z atomů kyslíku, které jsou excitovány dopadajícími elektrony, má některé zvláštnosti, které stojí za vysvětlení. Obvykle se excitovaný atom nebo molekula vrací do normálního stavu okamžitě a k emisi fotonu dochází v řádu mikrosekund. Atom kyslíku si dává načas. Asi po ¾ vteřiny se vrací do normálního stavu emisí zeleného fotonu. Emise červeného fotonu trvá téměř 2 minuty! Pokud během toho času do atomu narazí jiná částice, ztratí kolizí energii a k emisi světla nedojde. Kolize jsou častější v hustější dolní části amosféry. Proto kyslík září červeně pouze ve výškách nad 200 km, kde jsou srážky mezi částicemi vzácné. Ve výšce pod 100 km není možné ani emise zeleného světa - ve spodním okraji polární záře je emise uhašena kolizemi a jediné co zbyde je směs modré a červené (růžové) z emise molekulárního dusíku. Obrázek 7. V grafu, který znázorňuje emisní spektrum atomického kyslíku, jsou označeny hlavní emisní čáry, korespondující se zelenou barvou, typickou pro polární záři. Kyslík je tedy odpovědný za dvě hlavní barvy polární záře, zelené emise provázející energetický přechod (557.7 nm) a červenou barvu způsobenou méně častým přehodem (630 nm, viz Obr. 7). Dusík Dusík, který může při kolizi ionizovat (modré světlo), při přechodu z excitovaného stavu září červeně (Obr. 8). 9

10 Obrázek 8. Viditelné spektrum molekulárního dusíku s emisními čárami. Výšku polární záře můžeme tedy přibližně určit jejích podle barev: 1. Nad 200 km, se ukazuje červený odstín atomického kyslíku (Obr. 9a). 2. Mezi km vidíme zelené tóny, které jsou charakteristické (nejhojnější polární záře, Obr 9a, b, c) pro emisi atomického kyslíku. 3. Okolo 120 km jsou modro-fialové barvy molekulárního dusíku (Obr. 9c). 4. V případě vysoké aktivity (sluneční bouře) se objevují růžové pásy ve výškách km produkované molekulárním dusíkem (spodní okraj záře, Obr. 9b). 10

11 Obrázek 9. Barva polární záře je indikátorem výšky, ve které vzniká (vice informací v textu). Všechny obrázky pořídil M.C. Sosa Diaz v rámci expedice Shelios 2000 (více na shelios.com/sh2000, práva na obrázky tierrayestrellas.com) Metoda 2 - Výpočet výšky polární záře pomocí paralaxy Výšku, ve které polární záře vzniká, můžeme vypočítat z fotografií, které byly pořízeny ze dvou míst, vzdálených několik kilometrů. Na různých místech vidíme stejnou polární záři s jiným hvězdným pozadím. Pokud známe přesnou vzdálenost mezi místy pozorování (třeba pomocí GPS), můžeme určit úhel mezi pozorováním a vypočítat výšku, ve které se polární záře vytváří. Pomocí této metody odhadl norský fyzik Carl Störmer s použitím 40,000 fotografií z let 1909 až 1944 výškový limit polární záře mezi 70 a km, s průměrnou výškou okolo 100 km. Označme dvě místa pozorování v různých nadmořských výškách jako O 1 a O 2. Známou vzdálenost míst označme d a předpokládejme, že d je přímá čára (několik kilometrů vzhledem k obvodu Země). Pozorování stejné polární záře A na různém hvězdném pozadí vytváří úhel α, který můžeme změřit (paralaxa) (Obr. 10). 11

12 Obrázek 10. Výpočet výšky, ve které se vytváří polární záře, metodou paralaxy. J.C. Casado. Podle podobnosti trojúhelníků úhel α tvořený vrcholy trojúhelníka O 1 AO 2 odpovídá úhlu α. Chceme najít výšku polární záře h, která je kolmá na povrch Země (úsečka O 1 O 2 ). Úhly β 1 a β 2 jsou známy, neboť odpovídají výšce polární záře na horizontu (která se shoduje s výškou hvězd na které je 12

13 promítána, takže pokud známe výšku hvězd, známe i výšku polární záře) z pohledů pozorovatelů O 1 a O 2. V trojúhelníku O 1 AO 2 podle sinové věty platí: h 1 sin γ = d sin α' [1] Řešením získáme h 1 [1]: h 1 = d sin γ sin α' [2] Nyní s použitím trojúhelníky O 1 AP získáme h: sin β 1 = h h 1 [3] Takže nakonec získáme výšku polární záře h (nehrazením h 1 rovnicí [2] a znalostí, že sin(γ) = sin(180º- β 2 ) = sin(β 2 ): h = d sin β 1 sin β 2 sin α ' [4] a dále víme, že α ' = β 2 - β 1, takže rovnici můžeme použít následovně: 1) Určení výšky polární záře nad horizontem pro jednotlivé pozorovatele (t.j. O1 β 1 ), z úhlového rozdílu snímků a pixelového rozdílu projekce polární záře na hvězdné pozadí. 2) Následně provést výpočet výšky h nad horizontem, když víme, že α ' = β 2 - β 1, a pokud známe i d, můžeme dosadit do rovnice [4]. Pro předchozí výpočty použijeme hvězdná pole, která jsou na použitých fotografiích společně s polární září. Je nezbytné znát přesnou polohu pozorovatelů, jejich nadmořskou výšku a přesný čas pozorování. Pak budeme moci určit výšky β 1 β 2 pomocí specializovaného programu (např. volně šiřitelného programu Stellarium, dostupného na na adrese stellarium.org). 5. Reference 13

14 ref1 - Snímky Slunce (fotosféry) na internetu. 1. Z vesmíru (SOHO satelit): 2. Ze sítě pozemních dalekohledů (GONG): 3. Z robotického solárního dalekohledu (TAD, Teide Observatory, IAC), součásti projektu GLORIA: (Solar Experiment) ref2 - Obrázky velkého nebeského představení: ref3 - Centrum analýzy vlivu Slunce - SIDC, Královská observatoř v Belgii: ref4 - Centrum předpovědí počasí ve vesmíru - SWPC, USA: ref5 - Předpověď polárních září (OVATION model): 14

Polární záře 24. - 29. srpna 2013 (00:30-1:30 UT), Grónsko (Dánsko)

Polární záře 24. - 29. srpna 2013 (00:30-1:30 UT), Grónsko (Dánsko) Fenomén Polární záře 24. - 29. srpna 2013 (00:30-1:30 UT), Grónsko (Dánsko) Rok 2013: Maximum sluneční aktivity. Podle posledních předpovědí začne 24. perioda maxima sluneční aktivity před koncem srpna

Více

VÝUKOVÁ AKTIVITA Výpočet sluneční aktivity. Wolfovo číslo.

VÝUKOVÁ AKTIVITA Výpočet sluneční aktivity. Wolfovo číslo. VÝUKOVÁ AKTIVITA Výpočet sluneční aktivity. Wolfovo číslo. Autoři: Dr. Miquel Serra-Ricart. Astronom, Institute of Astrophysics of Canary Islands. Mr. Juan Carlos Casado. Astrofotograf. www.tierrayestrellas.com,

Více

Vzdálenosti ve sluneční soustavě: paralaxy a Keplerovy zákony

Vzdálenosti ve sluneční soustavě: paralaxy a Keplerovy zákony Vzdálenosti ve sluneční soustavě: paralaxy a Keplerovy zákony Astronomové při sledování oblohy zaznamenávají především úhly a pozorují něco, co se nazývá nebeská sféra. Nicméně, hvězdy nejsou od Země vždy

Více

VY_32_INOVACE_08.Fy.9. Slunce

VY_32_INOVACE_08.Fy.9. Slunce VY_32_INOVACE_08.Fy.9. Slunce SLUNCE Slunce je sice obyčejná hvězda, podobná těm, které vidíme na noční obloze, ale pro nás je velmi důležitá. Bez ní by naše Země byla tmavá a studená a žádný život by

Více

Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem

Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem Podle mateiálu ESO přeložil Rostislav Halaš Úkol: Změřit vzdálenost Země Slunce (tzv. astronomickou jednotku AU) pozorováním přechodu

Více

Stručný úvod do spektroskopie

Stručný úvod do spektroskopie Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,

Více

Základní jednotky v astronomii

Základní jednotky v astronomii v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve

Více

Atmosféra, znečištění vzduchu, hašení

Atmosféra, znečištění vzduchu, hašení Atmosféra, znečištění vzduchu, hašení Zemská atmosféra je vrstva plynů obklopující planetu Zemi, udržovaná na místě zemskou gravitací. Obsahuje přibližně 78 % dusíku a 21 % kyslíku, se stopovým množstvím

Více

Pozorování Slunce s vysokým rozlišením. Michal Sobotka Astronomický ústav AV ČR, Ondřejov

Pozorování Slunce s vysokým rozlišením. Michal Sobotka Astronomický ústav AV ČR, Ondřejov Pozorování Slunce s vysokým rozlišením Michal Sobotka Astronomický ústav AV ČR, Ondřejov Úvod Na Slunci se důležité děje odehrávají na malých prostorových škálách (desítky až stovky km). Granule mají typickou

Více

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km.

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km. 9. Astrofyzika 9.1 Uvažujme hvězdu, která je ve vzdálenosti 4 parseky od sluneční soustavy. Určete: a) jaká je vzdálenost této hvězdy vyjádřená v kilometrech, b) dobu, za kterou dospěje světlo z této hvězdy

Více

ZÁŘENÍ V ASTROFYZICE

ZÁŘENÍ V ASTROFYZICE ZÁŘENÍ V ASTROFYZICE Plazmový vesmír Uvádí se, že 99 % veškeré hmoty ve vesmíru je v plazmovém skupenství (hvězdy, mlhoviny, ) I na Zemi se vyskytuje plazma, např. v podobě blesků, polárních září Ve sluneční

Více

POZOROVÁNÍ SLUNCE VE SPEKTRÁLNÍCH ČARÁCH. Libor Lenža Hvězdárna Valašské Meziříčí, p. o.

POZOROVÁNÍ SLUNCE VE SPEKTRÁLNÍCH ČARÁCH. Libor Lenža Hvězdárna Valašské Meziříčí, p. o. POZOROVÁNÍ SLUNCE VE SPEKTRÁLNÍCH ČARÁCH Libor Lenža Hvězdárna Valašské Meziříčí, p. o. Obsah 1. Co jsou to spektrální čáry? 2. Historie a současnost (přístroje, družice aj.) 3. Význam pro sluneční fyziku

Více

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země strana 2 Co je DPZ Dálkový průzkum je umění rozdělit svět na množství malých barevných čtverečků, se kterými si lze hrát na počítači a odhalovat jejich neuvěřitelný

Více

Přírodovědný klub při ZŠ a MŠ Na Nábřeží Havířov

Přírodovědný klub při ZŠ a MŠ Na Nábřeží Havířov Přírodovědný klub při ZŠ a MŠ Na Nábřeží Havířov Mini projekt k tématu Cesta od středu Sluneční soustavy až na její okraj Říjen listopad 2014 Foto č. 1: Zkusili jsme vyfotografovat Měsíc digitálním fotoaparátem

Více

OPTIKA VLASTNOSTI SVĚTLA ODRAZ SVĚTLA OPAKOVÁNÍ - 1

OPTIKA VLASTNOSTI SVĚTLA ODRAZ SVĚTLA OPAKOVÁNÍ - 1 OPTIKA VLASTNOSTI SVĚTLA ODRAZ SVĚTLA OPAKOVÁNÍ - 1 a) Vysvětli, co je zdroj světla? b) Co je přirozený zdroj světla a co umělý? c) Proč vidíme tělesa, která nevydávají světlo? d) Proč je lepší místnost

Více

5.3.5 Ohyb světla na překážkách

5.3.5 Ohyb světla na překážkách 5.3.5 Ohyb světla na překážkách Předpoklady: 3xxx Světlo i zvuk jsou vlnění, ale přesto jsou mezi nimi obrovské rozdíly. Slyšíme i to, co se děje za rohem x Co se děje za rohem nevidíme. Proč? Vlnění se

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu. Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.

Více

NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV: VY_32_INOVACE_200_Planetárium AUTOR: Ing. Gavlas Miroslav ROČNÍK,

NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV: VY_32_INOVACE_200_Planetárium AUTOR: Ing. Gavlas Miroslav ROČNÍK, NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV: VY_32_INOVACE_200_Planetárium AUTOR: Ing. Gavlas Miroslav ROČNÍK, DATUM: 9., 25.11. 2011 VZDĚL. OBOR, TÉMA: Fyzika, Planetárium

Více

materiál č. šablony/č. sady/č. materiálu: Autor:

materiál č. šablony/č. sady/č. materiálu: Autor: Masarykova základní škola Klatovy, tř. Národních mučedníků 185, 339 01 Klatovy; 376312154, fax 376326089 E-mail: skola@maszskt.investtel.cz; internet: www.maszskt.investtel.cz Kód přílohy vzdělávací VY_32_INOVACE_Z678HO_13_02_07

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 21. 1. 2013 Pořadové číslo 11 1 Merkur, Venuše Předmět: Ročník: Jméno autora:

Více

Pozorování dalekohledy. Umožňují pozorovat vzdálenější a méně jasné objekty (až stonásobně více než pouhým okem). Dají se použít jakékoli dalekohledy

Pozorování dalekohledy. Umožňují pozorovat vzdálenější a méně jasné objekty (až stonásobně více než pouhým okem). Dají se použít jakékoli dalekohledy Vesmírná komunikace Pozorování Za nejběžnější vesmírnou komunikaci lze označit pozorování vesmíru pouhým okem (možno vidět okolo 7000 objektů- hvězdy, planety ).Je to i nejstarší a nejběžnější prostředek.

Více

Astronomický rok 2015

Astronomický rok 2015 Astronomický rok 2015 V následujícím článku jsou vybrány nejzajímavější nebeské úkazy a události vztahující se k astronomii, které nám nabídne nadcházející rok. Dnes si projdeme první pololetí 2015. Ze

Více

1. Jak probíhá FOTOSYNTÉZA? Do šipek doplň látky, které rostlina při fotosyntéze přijímá a které uvolňuje.

1. Jak probíhá FOTOSYNTÉZA? Do šipek doplň látky, které rostlina při fotosyntéze přijímá a které uvolňuje. 1. Jak probíhá FOTOSYNTÉZA? Do šipek doplň látky, které rostlina při fotosyntéze přijímá a které uvolňuje. I. 2. Doplň: HOUBY Nepatří mezi ani tvoří samostatnou skupinu živých. Živiny čerpají z. Houby

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 6. 2. 2013 Pořadové číslo 12 1 Země, Mars Předmět: Ročník: Jméno autora: Fyzika

Více

Všechny galaxie vysílají určité množství elektromagnetického záření. Některé vyzařují velké množství záření a nazývají se aktivní.

Všechny galaxie vysílají určité množství elektromagnetického záření. Některé vyzařují velké množství záření a nazývají se aktivní. VESMÍR Model velkého třesku předpovídá, že vesmír vznikl explozí před asi 15 miliardami let. To, co dnes pozorujeme, bylo na začátku koncentrováno ve velmi malém objemu, naplněném hmotou o vysoké hustotě

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má

Více

anotace výstupu: Prezentace slouží k výkladu a zapojení žáků prostřednictvím animací. Žáci doplňují chybějící pojmy.

anotace výstupu: Prezentace slouží k výkladu a zapojení žáků prostřednictvím animací. Žáci doplňují chybějící pojmy. Základní škola a mateřská škola, Tupesy, příspěvková organizace 687 07, Tupesy 112 Tematická oblast: Život na Zemi Téma: Polární pás Předmět: Přírodověda Ročník: 5. Autor: Mgr. Alena Hrušková Datum: 16.12.2013

Více

FYZIKA Světelné vlnění

FYZIKA Světelné vlnění Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. FYZIKA Světelné

Více

Podnebí a počasí všichni tyto pojmy známe

Podnebí a počasí všichni tyto pojmy známe Podnebí a počasí všichni tyto pojmy známe Obsah: Podnebí Podnebné pásy Podnebí v České republice Počasí Předpověď počasí Co meteorologové sledují a používají Meteorologické přístroje Meteorologická stanice

Více

Kosmické záření a astročásticová fyzika

Kosmické záření a astročásticová fyzika Kosmické záření a astročásticová fyzika Jan Řídký Fyzikální ústav AV ČR Obsah Kosmické záření a současná fyzika. Historie pozorování kosmického záření. Současné znalosti o kosmickém záření. Jak jej pozorujeme?

Více

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova 1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota

Více

Astronomie. Astronomie má nejužší vztah s fyzikou.

Astronomie. Astronomie má nejužší vztah s fyzikou. Astronomie Je věda, která se zabývá jevy za hranicemi zemské atmosféry. Zvláště tedy výzkumem vesmírných těles, jejich soustav, různých dějů ve vesmíru i vesmírem jako celkem. Astronom, česky hvězdář,

Více

Přírodopis 9. Naše Země ve vesmíru. Mgr. Jan Souček. 2. hodina

Přírodopis 9. Naše Země ve vesmíru. Mgr. Jan Souček. 2. hodina Přírodopis 9 2. hodina Naše Země ve vesmíru Mgr. Jan Souček VESMÍR je soubor všech fyzikálně na sebe působících objektů, který je současná astronomie a kosmologie schopna obsáhnout experimentálně observační

Více

Eta Carinae. Eta Carinae. Mlhovina koňské hlavy. Vypracoval student Petr Hofmann 8.3.2004 z GChD jako seminární práci z astron. semináře.

Eta Carinae. Eta Carinae. Mlhovina koňské hlavy. Vypracoval student Petr Hofmann 8.3.2004 z GChD jako seminární práci z astron. semináře. Eta Carinae Vzdálenost od Země: 9000 ly V centru je stejnojmenná hvězda 150-krát větší a 4-milionkrát jasnější než Slunce. Do poloviny 19. století byla druhou nejjasnější hvězdou na obloze. Roku 1841 uvolnila

Více

VY_32_INOVACE_06_III./20._SOUHVĚZDÍ

VY_32_INOVACE_06_III./20._SOUHVĚZDÍ VY_32_INOVACE_06_III./20._SOUHVĚZDÍ Severní obloha Jižní obloha Souhvězdí kolem severního pólu Jarní souhvězdí Letní souhvězdí Podzimní souhvězdí Zimní souhvězdí zápis Souhvězdí Severní hvězdná obloha

Více

VY_12_INOVACE_115 HVĚZDY

VY_12_INOVACE_115 HVĚZDY VY_12_INOVACE_115 HVĚZDY Pro žáky 6. ročníku Člověk a příroda Zeměpis - Vesmír Září 2012 Mgr. Regina Kokešová Slouží k probírání nového učiva formou - prezentace - práce s textem - doplnění úkolů. Rozvíjí

Více

Gymnázium Dr. J. Pekaře Mladá Boleslav. Zeměpis I. ročník PLANETY SLUNEČNÍ SOUSTAVY. Jméno a příjmení: Martin Kovařík. David Šubrt. Třída: 5.

Gymnázium Dr. J. Pekaře Mladá Boleslav. Zeměpis I. ročník PLANETY SLUNEČNÍ SOUSTAVY. Jméno a příjmení: Martin Kovařík. David Šubrt. Třída: 5. Gymnázium Dr. J. Pekaře Mladá Boleslav Zeměpis I. ročník PLANETY SLUNEČNÍ SOUSTAVY Jméno a příjmení: Martin Kovařík David Šubrt Třída: 5.O Datum: 3. 10. 2015 i Planety sluneční soustavy 1. Planety obecně

Více

Trochu astronomie. v hodinách fyziky. Jan Dirlbeck Gymnázium Cheb

Trochu astronomie. v hodinách fyziky. Jan Dirlbeck Gymnázium Cheb Trochu astronomie v hodinách fyziky Jan Dirlbeck Gymnázium Cheb Podívejte se dnes večer na oblohu, uvidíte Mars v přiblížení k Zemi. Bude stejně velký jako Měsíc v úplňku. Konec světa. Planety se srovnají

Více

Astronomie, sluneční soustava

Astronomie, sluneční soustava Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

Pracovní list č. 3 téma: Povětrnostní a klimatičtí činitelé část 2

Pracovní list č. 3 téma: Povětrnostní a klimatičtí činitelé část 2 Pracovní list č. 3 téma: Povětrnostní a klimatičtí činitelé část 2 Obsah tématu: 1) Vzdušný obal země 2) Složení vzduchu 3) Tlak vzduchu 4) Vítr 5) Voda 1) VZDUŠNÝ OBAL ZEMĚ Vzdušný obal Země.. je směs

Více

Výukový materiál zpracovaný v rámci projektu

Výukový materiál zpracovaný v rámci projektu Výukový materiál zpracovaný v rámci projektu Pořadové číslo projektu: cz.1.07/1.4.00/21.1936 č. šablony: III/2 č.sady: 6 Ověřeno ve výuce: 13.1.2012 Třída: 3 Datum:28.12. 2011 1 Sluneční soustava Vzdělávací

Více

Astrofyzika. 1. Sluneční soustava. Slunce. Sluneční atmosféra. Slunce 17.6.2013. Slunce planety planetky komety, meteoroidy prach, plyny

Astrofyzika. 1. Sluneční soustava. Slunce. Sluneční atmosféra. Slunce 17.6.2013. Slunce planety planetky komety, meteoroidy prach, plyny 1. Sluneční soustava Astrofyzika aneb fyzika hvězd a vesmíru planety planetky komety, meteoroidy prach, plyny je dominantním tělesem ve Sluneční soustavě koule o poloměru 1392000 km, s průměrnou hustotou

Více

Orientace. Světové strany. Orientace pomocí buzoly

Orientace. Světové strany. Orientace pomocí buzoly Orientace Orientováni potřebujeme být obvykle v neznámém prostředí. Zvládnutí základní orientace je předpokladem k použití turistických map a plánů měst. Schopnost určit světové strany nám usnadní přesuny

Více

Voda jako životní prostředí - světlo

Voda jako životní prostředí - světlo Hydrobiologie pro terrestrické biology Téma 6: Voda jako životní prostředí - světlo Sluneční světlo ve vodě Sluneční záření dopadající na hladinu vody je 1) cestou hlavního přísunu tepla do vody 2) zdrojem

Více

MĚŘENÍ PLANCKOVY KONSTANTY

MĚŘENÍ PLANCKOVY KONSTANTY Úloha č. 14a MĚŘENÍ PLANCKOVY KONSTANTY ÚKOL MĚŘENÍ: 1. Změřte napětí U min, při kterém se právě rozsvítí červená, žlutá, zelená a modrá LED. Napětí na LED regulujte potenciometrem. 2. Nakreslete graf

Více

PLANETY SLUNEČNÍ SOUSTAVY

PLANETY SLUNEČNÍ SOUSTAVY PLANETY SLUNEČNÍ SOUSTAVY Sluneční soustava je planetárn rní systém m hvězdy známé pod názvem n Slunce, ve kterém m se nachází naše e domovská planeta Země. Tvoří ji: Slunce 8 planet, 5 trpasličích planet,

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

FYZIKA II. Petr Praus 10. Přednáška Magnetické pole v látce

FYZIKA II. Petr Praus 10. Přednáška Magnetické pole v látce FYZIKA II Petr Praus 10. Přednáška Magnetické pole v látce Osnova přednášky Magnetické pole v látkovém prostředí, Ampérovy proudové smyčky, veličiny B, M, H materiálové vztahy, susceptibilita a permeabilita

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

Ukázkové řešení úloh ústředního kola kategorie GH A) Příklady

Ukázkové řešení úloh ústředního kola kategorie GH A) Příklady Ukázkové řešení úloh ústředního kola kategorie GH A) Příklady 1. Rychlosti vesmírných těles, např. planet, komet, ale i družic, se obvykle udávají v kilometrech za sekundu. V únoru jsme mohli v novinách

Více

ZMĚNY METEOROLOGICKÝCH VELIČIN NA STANICI VIKÝŘOVICE BĚHEM ZATMĚNÍ SLUNCE V BŘEZNU 2015

ZMĚNY METEOROLOGICKÝCH VELIČIN NA STANICI VIKÝŘOVICE BĚHEM ZATMĚNÍ SLUNCE V BŘEZNU 2015 ZMĚNY METEOROLOGICKÝCH VELIČIN NA STANICI VIKÝŘOVICE BĚHEM ZATMĚNÍ SLUNCE V BŘEZNU 2015 Mgr. Nezval Ondřej 20.3.2015 1. ÚVOD Zatmění Slunce je astronomický jev, který nastane, když Měsíc vstoupí mezi Zemi

Více

Astronomická pozorování

Astronomická pozorování KLASICKÁ ASTRONOMIE Astronomická pozorování Základní úloha při pozorování nějakého děje, zejména pohybu těles je stanovení jeho polohy (rychlosti) v daném okamžiku Astronomie a poziční astronomie Souřadnicové

Více

2) Povětrnostní činitelé studují se v ovzduší atmosféře (je to..) Meteorologie je to věda... Počasí. Meteorologické prvky. Zjišťují se měřením.

2) Povětrnostní činitelé studují se v ovzduší atmosféře (je to..) Meteorologie je to věda... Počasí. Meteorologické prvky. Zjišťují se měřením. Pracovní list č. 2 téma: Povětrnostní a klimatičtí činitelé část. 1 Obsah tématu: Obsah tématu: 1) Vlivy působící na rostlinu 2) Povětrnostní činitelé a pojmy související s povětrnostními činiteli 3) Světlo

Více

Kosmické počasí, předpovědi aktivity. Michal Švanda Sluneční fyzika LS 2014/2015

Kosmické počasí, předpovědi aktivity. Michal Švanda Sluneční fyzika LS 2014/2015 Kosmické počasí, předpovědi aktivity Michal Švanda Sluneční fyzika LS 2014/2015 Kosmické počasí Perspektivní obor Hodně peněz Aplikovaná sluneční fyzika Sledování stavu IMF v okolí Země Geomagnetické bouře

Více

Atmosféra - složení a důležité děje

Atmosféra - složení a důležité děje Atmosféra - složení a důležité děje Atmosféra tvoří plynný obal Země a je rozdělena na vertikální vrstvy s odlišnými vlastnostmi tři základní kriteria dělení atmosféry podle: intenzity větru průběhu teploty

Více

Od středu Sluneční soustavy až na její okraj

Od středu Sluneční soustavy až na její okraj Od středu Sluneční soustavy až na její okraj Miniprojekt SLUNEČNÍ SOUSTAVA Gymnázium Pierra de Coubertina, Tábor Náměstí Františka Křižíka 860 390 01 Tábor Obsah: 1. Úvod 2. Cíl miniprojektu 3. Planetární

Více

PLANETA ZEMĚ A JEJÍ POHYBY. Maturitní otázka č. 1

PLANETA ZEMĚ A JEJÍ POHYBY. Maturitní otázka č. 1 PLANETA ZEMĚ A JEJÍ POHYBY Maturitní otázka č. 1 TVAR ZEMĚ Geoid = skutečný tvar Země Nelze vyjádřit matematicky Rotační elipsoid rovníkový poloměr = 6 378 km vzdálenost od středu Země k pólu = 6 358 km

Více

5.3.1 Disperze světla, barvy

5.3.1 Disperze světla, barvy 5.3.1 Disperze světla, barvy Předpoklady: 5103 Svítíme paprskem bílého světla ze žárovky na skleněný hranol. Světlo se láme podle zákona lomu na zdi vznikne osvětlená stopa Stopa vznikla, ale není bílá,

Více

ZÁKLADNÍ FOTOMETRICKÉ VELIČINY

ZÁKLADNÍ FOTOMETRICKÉ VELIČINY ZÁKLADNÍ FOTOMETRICKÉ VELIČINY Ing. Petr Žák VÝVOJ ČLOVĚKA vývoj člověka přizpůsobení okolnímu prostředí (adaptace) příjem informací o okolním prostředí smyslové orgány rozhraní pro příjem informací SMYSLOVÉ

Více

Nabídka vybraných pořadů

Nabídka vybraných pořadů Hvězdárna Valašské Meziříčí, p. o. Vsetínská 78 757 01 Valašské Meziříčí Nabídka vybraných pořadů Pro 1. stupeň základních škol Pro zvídavé školáčky jsme připravili řadu naučných programů a besed zaměřených

Více

Rychlost světla a její souvislost s prostředím

Rychlost světla a její souvislost s prostředím Rychlost světla a její souvislost s prostředím Jak byla změřena rychlost světla? První, kdo přišel s myšlenkou konečné rychlosti světla, byl Francis Bacon. Ve své práci Novum Organum Scientiarum tvrdil,

Více

VÝUKOVÁ AKTIVITA. Měření změn atmosféry během zatmění Slunce 2013

VÝUKOVÁ AKTIVITA. Měření změn atmosféry během zatmění Slunce 2013 VÝUKOVÁ AKTIVITA. Měření změn atmosféry během zatmění Slunce 2013 Autoři: Miguel Ángel Pío Jiménez. astronom, Institute of Astrophysics of Canary Islands. Miquel Serra-Ricart. astronom, Institute of Astrophysics

Více

Dokumentace projektu. Fotoluminiscence. Autorky: Kateřina Limburská, Tereza Fleková Vedoucí projektu: Zdeněk Polák. 21. 7. 29. 7.

Dokumentace projektu. Fotoluminiscence. Autorky: Kateřina Limburská, Tereza Fleková Vedoucí projektu: Zdeněk Polák. 21. 7. 29. 7. Dokumentace projektu Fotoluminiscence Autorky: Kateřina Limburská, Tereza Fleková Vedoucí projektu: Zdeněk Polák 21. 7. 29. 7. 2014 Plasnice Úvod Lidé jsou fascinování světlem už od pravěku. Tehdy bylo

Více

Česká zrcadla pod Andami. Martin Vlček

Česká zrcadla pod Andami. Martin Vlček Česká zrcadla pod Andami Martin Vlček Osnova kosmické záření co je kosmické záření historie objevu kosmického záření jak kosmické záření pozorujeme různé projekty pozorující kosmické záření projekt Pierre

Více

Identifikace práce. Žák jméno příjmení věk. Bydliště ulice, č.p. město PSČ. Škola ulice, č.p. město PSČ

Identifikace práce. Žák jméno příjmení věk. Bydliště ulice, č.p. město PSČ. Škola ulice, č.p. město PSČ vyplňuje žák Identifikace práce Žák jméno příjmení věk Bydliště ulice, č.p. město PSČ vyplňuje škola Učitel jméno příjmení podpis Škola ulice, č.p. město PSČ jiný kontakt (např. e-mail) A. Přehledový test

Více

Digitální učební materiál

Digitální učební materiál Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/3.080 Zkvalitnění výuky prostřednictvím ICT III/ Inovace a zkvalitnění výuky prostřednictvím

Více

Část A strana A 1. (14 b) (26 b) (60 b) (100 b)

Část A strana A 1. (14 b) (26 b) (60 b) (100 b) Část A strana A 1 Bodové hodnocení vyplňuje komise! část A B C Celkem body (14 b) (26 b) (60 b) (100 b) Pokyny k testovým otázkám: U následujících otázek zakroužkuj vždy právě jednu správnou odpověď. Zmýlíš-li

Více

KIS a jejich bezpečnost I Šíření rádiových vln

KIS a jejich bezpečnost I Šíření rádiových vln KIS a jejich bezpečnost I Šíření rádiových vln Podstata jednotlivých druhů spojení, výhody a nevýhody jejich použití doc. Ing. Marie Richterová, Ph.D. Katedra komunikačních a informačních systémů Černá

Více

Šablona č. 01. 09 ZEMĚPIS. Výstupní test ze zeměpisu

Šablona č. 01. 09 ZEMĚPIS. Výstupní test ze zeměpisu Šablona č. 01. 09 ZEMĚPIS Výstupní test ze zeměpisu Anotace: Výstupní test je vhodný pro závěrečné zhodnocení celoroční práce v zeměpise. Autor: Ing. Ivana Přikrylová Očekávaný výstup: Žáci píší formou

Více

Přírodní zdroje. K přírodním zdrojům patří například:

Přírodní zdroje. K přírodním zdrojům patří například: 1. SVĚTELNÉ ZDROJE. ŠÍŘENÍ SVĚTLA Přes den vidíme předměty ve svém okolí, v noci je nevidíme, je tma. V za temněné učebně předměty nevidíme. Když rozsvítíme svíčku nebo žárovku, vidíme nejen svítící těleso,

Více

VY_32_INOVACE_06_III./17._PLANETY SLUNEČNÍ SOUSTAVY

VY_32_INOVACE_06_III./17._PLANETY SLUNEČNÍ SOUSTAVY VY_32_INOVACE_06_III./17._PLANETY SLUNEČNÍ SOUSTAVY Planety Terestrické planety Velké planety Planety sluneční soustavy a jejich rozdělení do skupin Podle fyzikálních vlastností se planety sluneční soustavy

Více

SVĚTLO A TMA ROZKLAD A MÍCHÁNÍ BAREV

SVĚTLO A TMA ROZKLAD A MÍCHÁNÍ BAREV SVĚTLO A TMA ROZKLAD A MÍCHÁNÍ BAREV Světlo vypadá jako bezbarvé, ale ve skutečnosti je směsí červené, žluté, zelené, modré, indigové modři a fialové barvy. Jednoduchými pokusy můžeme světlo rozkládat

Více

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15 Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření

Více

Optika OPTIKA. June 04, 2012. VY_32_INOVACE_113.notebook

Optika OPTIKA. June 04, 2012. VY_32_INOVACE_113.notebook Optika Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

7.Vesmír a Slunce Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

7.Vesmír a Slunce Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Planeta Země 7.Vesmír a Slunce Planeta Země Vesmír a Slunce Autor: Mgr. Irena Doležalová Datum (období) tvorby: únor 2012 červen 2013 Ročník: šestý Vzdělávací oblast: zeměpis Anotace: Žáci se seznámí se

Více

Lehký topný olej. 0 t CO 2 /MWh výhřevnosti paliva. 1,17 t CO 2 /MWh elektřiny

Lehký topný olej. 0 t CO 2 /MWh výhřevnosti paliva. 1,17 t CO 2 /MWh elektřiny Druh paliva Hnědé uhlí Černé uhlí Těžký topný olej Lehký topný olej Zemní plyn Biomasa Elektřina Emisní faktor 0,36 t CO 2 /MWh výhřevnosti paliva 0,33 t CO 2 /MWh výhřevnosti paliva 0,27 t CO 2 /MWh výhřevnosti

Více

Dosah γ záření ve vzduchu

Dosah γ záření ve vzduchu Dosah γ záření ve vzduchu Intenzita bodového zdroje γ záření se mění podobně jako intenzita bodového zdroje světla. Ve dvojnásobné vzdálenosti, paprsek pokrývá dvakrát větší oblast povrchu, což znamená,

Více

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají

Více

Vzdálenosti ve vesmíru

Vzdálenosti ve vesmíru Vzdálenosti ve vesmíru Proč je dobré, abychom je znali? Protože nám udávají : Výchozí bod pro astrofyziku: Vzdálenosti jakéhokoli objektu ve vesmíru je rozhodující parametr k pochopení mechanizmu tvorby

Více

VY_32_INOVACE_FY.20 VESMÍR II.

VY_32_INOVACE_FY.20 VESMÍR II. VY_32_INOVACE_FY.20 VESMÍR II. Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Galaxie Mléčná dráha je galaxie, v níž se nachází

Více

Laboratorní práce č. 3: Měření vlnové délky světla

Laboratorní práce č. 3: Měření vlnové délky světla Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 3: Měření vlnové délky světla G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Gymnázium G Hranice Test

Více

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Číslo projektu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0743 Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Chemie ATOM 1. ročník Datum tvorby 11.10.2013 Anotace a) určeno pro

Více

Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA)

Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA) Optoelektronika elektro-optické převodníky - LED, laserové diody, LCD Elektro-optické převodníky žárovka - nejzákladnější EO převodník nevhodné pro optiku široké spektrum vlnových délek vhodnost pro EO

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Vojtěch Přikryl Ročník 1 Předmět IFY Kroužek 35 ID 143762 Spolupracoval Měřeno dne Odevzdáno dne Daniel Radoš 7.3.2012 21.3.2012 Příprava

Více

HOVORKOVÁ M., LINC O.: OPTICKÉ ÚKAZY V ATMOSFÉŘE

HOVORKOVÁ M., LINC O.: OPTICKÉ ÚKAZY V ATMOSFÉŘE OPTICKÉ ÚKAZY V ATMOSFÉŘE M. Hovorková, O. Linc 4. D, Gymnázium Na Vítězné pláni 1126, Praha 4, šk. rok 2005/2006 Abstrakt: Článek se zabývá vysvětlením několika světelných jevů, viditelných na obloze.

Více

Vnitřní energie. Teplo. Tepelná výměna.

Vnitřní energie. Teplo. Tepelná výměna. Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie

Více

Lasery. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013

Lasery. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013 Lasery Biofyzikální ústav LF MU Elektromagnetické spektrum http://cs.wikipedia.org/wiki/soubor:elmgspektrum.png http://cs.wikipedia.org/wiki/ Soubor:Spectre.svg Bezkontaktní termografie 2 Součásti laseru

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: Lasery - druhy

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: Lasery - druhy Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Lasery - druhy Laser je tvořen aktivním prostředím, rezonátorem a zdrojem energie. Zdrojem energie, který může

Více

R E G I O N ÁL N Í Z E M ĚP I S

R E G I O N ÁL N Í Z E M ĚP I S R E G I O N ÁL N Í Z E M ĚP I S VÝUKOVÁSLEPÁMAPA POLÁRNÍOBLASTI -ARKTIDA Mgr. Iva Svobodová Polární oblasti obecná charakteristika rozsáhlá území obklopující oba zemské póly přesněji vymezené polárním

Více

VESMÍR Hvězdy. Životní cyklus hvězdy

VESMÍR Hvězdy. Životní cyklus hvězdy VESMÍR Hvězdy Pracovní list HEUREKA! aneb podpora badatelských aktivit žáků ZŠ v přírodovědných předmětech ASTRONOMIE Úloha 1. Ze života hvězdy. Úloha 1a. Očísluj jednotlivé fáze vývoje hvězdy. Následně

Více

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to

Více

ročníku očekávaný výstup Člověk a příroda 2. stupeň Z rozumět základní geografické, topografické a kartografické terminologii ročník 8.

ročníku očekávaný výstup Člověk a příroda 2. stupeň Z rozumět základní geografické, topografické a kartografické terminologii ročník 8. č. 1 název Opakování učiva ze 7. ročníku anotace očekávaný výstup druh učebního materiálu Pracovní list druh interaktivity Aktivita ročník 8. V pracovních listech si žáci opakují základní vědomosti z geografické,

Více

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA OPTIKA ZÁKLADNÍ POJMY Optika a její dělení Světlo jako elektromagnetické vlnění Šíření světla Odraz a lom světla Disperze (rozklad) světla OPTIKA

Více

Gymnázium Dr. J. Pekaře Mladá Boleslav

Gymnázium Dr. J. Pekaře Mladá Boleslav Gymnázium Dr. J. Pekaře Mladá Boleslav Zeměpis I. ročník ČERNÉ DÍRY referát Jméno a příjmení: Oskar Šumovský Josef Šváb Třída: 5.0 Datum: 28. 9. 2015 Černé díry 1. Obecné informace a) Základní popis Černé

Více

Práce na počítači. Bc. Veronika Tomsová

Práce na počítači. Bc. Veronika Tomsová Práce na počítači Bc. Veronika Tomsová Barvy Barvy v počítačové grafice I. nejčastější reprezentace barev: 1-bitová informace rozlišující černou a bílou barvu 0... bílá, 1... černá 8-bitové číslo určující

Více

Martin Svoboda, IV. B

Martin Svoboda, IV. B Martin Svoboda, IV. B Obecné vymezení Regiony v blízkosti zeměpisného pólu Místa za polárním kruhem (vymezen rovnoběžkami 66 33 severní a jižní zeměpisné šířky) Severní polární oblast = Arktida Jižní polární

Více

Soutěžní úlohy části A a B (12. 6. 2012)

Soutěžní úlohy části A a B (12. 6. 2012) Soutěžní úlohy části A a B (1. 6. 01) Pokyny k úlohám: Řešení úlohy musí obsahovat rozbor problému (náčrtek dané situace), základní vztahy (vzorce) použité v řešení a přesný postup (stačí heslovitě). Nestačí

Více

Zdroje optického záření

Zdroje optického záření Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon

Více