dq T dq ds = definice entropie T Entropie Pi pohledu na Clausiv integrál pro vratné cykly :

Rozměr: px
Začít zobrazení ze stránky:

Download "dq T dq ds = definice entropie T Entropie Pi pohledu na Clausiv integrál pro vratné cykly :"

Transkript

1 Entropie Pi pohledu na Clausiv integrál pro vratné cykly : si díve i pozdji jist uvdomíme, že nulová hodnota integrálu njaké veliiny pi kruhovém termodynamickém procesu je základním znakem toho, že se jedná o stavovou veliinu. zpomeme na vnitní energii U, pro jejíž pírstek du platilo : du Je tedy možno definovat novou stavovou veliinu a zavedl ji práv Clausius roku 85 a nazval ji entropie S (z etiny udávat smr ) za znakem integrálu je tedy její pírstek : ds definice entropie Pozor!! Není tedy definována velikost entropie v njakém stavu plynu, ale její pírstek pi nepatrné, diferenciální vratné zmn stavu jako podíl vratn pijatého tepla a teploty plynu (kterou lze samozejm pi této nepatrné zmn stavu považovat vždy za konstantní). Podle našich dívjších poznatk o stavových veliinách mžeme dále konstatovat, že celková zmna entropie plynu pi njakém procesu (vratném) nezávisí na kivce procesu, ale pouze na poátením a koncovém stavu a je dána rozdílem entropií v tchto stavech : S ds ( p vr.) ds ( p vr.) S S Dále pak velmi malý pírstek entropie jako stavové veliiny musí být úplným diferenciálem (stavové funkce S ). Jak vidíte z definice entropie, tento úplný diferenciál je vlastn vytvoen z diferenciálu neúplného ( ) pouhým vynásobením faktorem /.

2 Jestliže budeme chtít vypoítat zmnu entropie pímo z definice, musíme pedevším vyjádit diferenciální dodané teplo, napíklad pomocí první termodynamické vty : du + da Další použití této rovnice je velmi snadné u ideálního plynu, nebo v pípad vratných zmn mžeme jednoduše dosadit známé vztahy : du ν C d da p d A dostaneme: ν C d + p d Za tlak ve druhém lenu lze dosadit ze stavové rovnice ideálního plynu, která také platí v pípad vratných proces : ν C d + ν R d Pak nekonen malá zmna entropie bude : ds ( ν C d + ν R d ) ν C d + ν R d A zmna entropie pi njakém vratném termodynamickém procesu ze stavu do stavu : S S S ds ν C d + ν R d Druhý integrál lze ihned provést : S C d ν + ν R ln Pokud molární tepelná kapacita nezávisí na teplot, lze vypoítat i první integrál : S ν ( C ln R ln + ) zmna entropie (pi vratných procesech ideál. plynu) Zmna entropie je tedy pímo úmrná množství plynu. ýsledek se ješt výrazn zjednoduší pi procesu izochorickém, pípadn izotermickém (jeden ze len bude nulový).

3 Stejn jako ostatní stavové veliiny, je entropie také vhodná k popisu stav termodynamických soustav. technické termodynamice se asto používá k výpotu vratn dodaného tepla, nebo z její definice plyne pro diferenciální dodané teplo : ds Celkové teplo dodané pi njakém vratném termodynamickém dji ze stavu samozejm integrálem z tohoto výrazu : do stavu je pak Q ds dodané teplo vyjádené pomocí entropie vr. vr. Jestliže stavy plynu a kivku termodynamického dje zakreslíme v -S diagramu - tzv. tepelný diagram, pak je toto teplo graficky znázornno plochou pod kivkou daného procesu (viz obr.) epelný diagram Nejjednodušším možným zpsobem úsekami rovnobžnými s osami je v tepelném diagramu znázornn vratný Carnotv kruhový cyklus, který se stává ze dvou dj izotermických a dvou dj adiabatických tj. izoentropických. Protože dodaná tepla nám ukazují plochy pod kivkami, vidíme jasn jejich nulovost u izoentropických dj znázornných svislými úsekami a je možno také dobe znázornit celkovou vykonanou práci, která je rovna soutu obou tepel (druhé teplo je záporné!!) dodaných pi izotermických djích (viz další obrázek vlevo) : (šrafy) (šrafy) (žlutá) (žlutá) 3

4 edlejší, pravý obrázek je pak možno považovat za grafickou ilustraci tvrzení o maximální úinnosti vratného Carnotova cyklu ze všech možných vratných kruhových cykl pracujících mezi stejnými teplotami a (které bylo matematicky dokázáno v poznámce ped zaátkem odstavce o entropii) : Je vidt, že postaí i jen ástená zmna Carnotova cyklu nahrazení adiabat jinými dji a jejich kivky pak už nebudou svislé, ale šikmé a tím se zvtší celkové dodané teplo pi stejné vykonané práci - tzn. sníží se úinnost cyklu. Pozn. : Obecn nižší úinnost nevratného cyklu oproti cyklu vratnému jsme již vysvtlili pomocí Clausiova integrálu, který nám také obecn objasnil nemožnost dokonalé pemny tepla na práci. Dále je možno veliinu entropie využít tak, že do. vty termodynamiky, napsané pro pírstek vnitní energie : du da pírstek vnitní energie (obecn) dosadíme v pípad vratných dj dosadit výše uvedený vztah pro dodané teplo (souasn se vztahem pro vykonanou prác): ds da p d A dostaneme rovnici, která se v uebnicích asto oznauje jako spojená formulace první a druhé vty termodynamiky : du ds p d Spojená formulace první a druhé vty termodynamiky ento vztah vlastn vyjaduje pírstek vnitní energie - jako diferenciálu funkce dvou promnných - entropie a objemu : U U ( S, ) Matematické vyjádení diferenciálu této funkce je ovšem obecn : du U S ds + U S d Porovnáním obou diferenciál dostaneme zajímavá vyjádení základních stavových veliin - a tyto vztahy dokazují význam entropie jako stavové veliiny a také dležitost vnitní energie jako jednoho z tzv. termodynamických potenciál (je jím i entropie, více viz další kapitoly) : 4

5 U S p U S ýznam nové stavové veliiny entropie je však ješt vtší pomocí entropie lze obecn zformulovat onu dodatenou podmínku, kterou (krom platnosti.vty) musí splovat termodynamický proces, a matematicky vyjádit nevratnost tepelných proces : íme, že v tepeln izolovaných soustavách probíhají adiabatické dje charakterizované nulovou tepelnou výmnou : Lehce vyešíme vratný adiabatický dj, jehož pijaté teplo pímo uruje pírstek entropie, který je zde ovšem nulový : ds Samozejm je i nulová celková zmna entropie pi vratném adiabatickém procesu ze stavu do stavu : S S S ds a tedy dostáváme : S S Pi vratném adiabatickém procesu zstává entropie konstantní, je to dj izoentropický : S konst. Nevratný adiabatický dj je ovšem ponkud složitjší problém. I v tomto pípad je samozejm pijaté teplo plynem nulové : Ale to nám o entropii nic neíká pírstek entropie lze stanovit pouze pomocí vratn pijatého tepla. Uríme nejprve zmnu entropie nevratného dje obecn, pro libovolný proces : Pedstavme si, že se z poáteního (libovolného) stavu dostaneme njakým nevratným procesem do koneného stavu a z tohoto stavu pejdeme zpt do stavu procesem vratným. 5

6 Kruhový dj, který oba procesy dohromady vytváejí, je ovšem celkov nevratný, Clausiv integrál je proto záporný : < Napišme levou stranu jako souet integrál pes ob ásti uzaveného cyklu : ( nevr.) + ( vr.) < Druhý integrál je po vratné cest - jeho hodnota je proto rovna celkovému pírstku entropie, tj. rozdílu entropií v koncovém a poátením stavu : ( vr.) ( vr.) ds S S Po jeho dosazení a pevedení na druhou stranu rovnice dostáváme obecný vztah pro libovolný nevratný dj mezi dvma (rovnovážnými) stavy plynu (ze stavu do stavu ) : S S S > zmna entropie pi nevratném dji ( nevr.) Rozdíl obou stran nerovnice, tj. rozdíl pírstku entropie a integrálu z podílu nevratn pijatého tepla a teploty, je možno považovat za jakousi míru nevratnosti termodynamického dje (pro vratný proces by tento rozdíl byl ovšem nulový). Uvážíme-li nyní speciální pípad nevratného dje v tepeln izolované soustav - tj. nevratný adiabatický dj, kdy je tepelná výmna nulová : Pak bude integrál na pravé stran nulový a pro zmnu entropie dostáváme : 6

7 S > Nevratný adiabatický dj již tedy není izoentropický, ale probíhá za neustálého rstu entropie. Pro (diferenciáln) malou nevratnou adiabatickou zmnu lze tedy analogicky psát : ds > Jestliže si uvdomíme, že v izolovaných soustavách jsou probíhající nevratné pirozené tepelné procesy samozejm adiabatické, pak jsme vlastn objevili matematické kritérium, které dobe charakterizuje možný smr tchto proces (smr penosu tepla z látek teplejších na látky chladnjší, smr rozpínání plynu, ). Opané (zptné) smry pirozených proces možné nejsou a jejich neexistence je zejm spojena s nemožností poklesu entropie v izolované termodynamické soustav. Rst entropie (v izolované soustav) je proto možno považovat za ono hledané další kritérium realizace termodynamického procesu, které v maximální obecnosti (už bez zjevné souvislosti s tepelnými stroji) dopluje zákon zachování energie (.vta). Princip rstu entropie (v izolované soustav) je nejobecnjší matematickou formulací.vty termodynamiky. Uvážíme-li ješt, že pi vratných adiabatických procesech se entropie nemní (pírstek entropie je nulový), pak libovolné procesy v izolované soustav jsou charakterizovány vztahem : ds princip rstu entropie v izolované soustav, matematický tvar.vty termodynamiky izolované soustav mohou tedy probíhat pouze takové procesy, pi nichž entropie soustavy vzrstá nebo zstává nezmnna. Druhá možnost (konstantní entropie) se vztahuje k vratným procesm, které jak víme souvisejí s rovnovážnými stavy termodynamické soustavy. Pipomeme si také další znalosti o nevratných pirozených procesech v izolované soustav že tyto procesy pivádjí soustavu práv do rovnovážného stavu. Entropie izolované soustavy tedy vzrstá za souasného pibližování k rovnovážnému stavu a pi jeho dosažení se už dále nemní, což znamená, že dosáhla svého maxima. Dostali jsme se tak k dalšímu dležitému poznatku : termodynamické rovnováze je entropie izolované soustavy maximální. Poznámka: Mohlo by se zdát, že obecná platnost tchto formulací je znan omezena podmínkou izolace soustavy. Pi fyzikálních analýzách svta kolem nás i v technických aplikacích však ale tém vždy (aniž si to teba i uvdomujeme) používáme izolované (uzavené, osamocené) soustavy tím, že zanedbáváme vliv nkterých okolních tles (protože nedokážeme sledovat psobení nekoneného potu vnjších objekt). A pokud studovaná termodynamická soustava ješt není izolovaná, vždy ji mžeme zahrnout jako podmnožinu do njaké vtší soustavy skuten izolované (nap. pracovní plynová nápl tepelného stroje samozejm není uzavená, ale spolu s ohívaem, chladiem a píjemcem práce vytvoí rozumnou izolovanou soustavu). 7

8 Entropie a pravdpodobnost Princip rstu entropie je matematickým vyjádením.vty termodynamiky, neposkytuje však bližší vysvtlení, pro vlastn tento zákon platí. eprve Boltzmann na základ kinetické teorie objasnil.vtu termodynamiky a ukázal, že je vlastn statistickým zákonem - to znamená, že platí jen pro soubory s velmi mnoha prvky, na které lze aplikovat matematickou statistiku - na rozdíl od.vty termodynamiky, která je obecným, univerzálním zákonem. Podle kinetické teorie je termodynamická soustava (plyn) skuten souborem obrovského potu nepatrných ástic molekul (neuspoádan se pohybujících rznými smry i rychlostmi). akzvané stavové veliiny (teplota, tlak, vnitní energie, ) ovšem nepopisují vlastnosti (stavy) jednotlivých mikroskopických ástic (tj. jejich polohy a rychlosti), ale popisují stav soustavy jako celku tzv. makrostav soustavy. yto - makroskopické - stavové veliiny jsou pak (nkdy) jednoznan spojeny se statistickými stedními hodnotami dané soustavy ástic (jak jsme vidli v minulých kapitolách, pomocí stední kvadratické rychlosti je možno stanovit vnitní energii soustavy, tlak i teplotu,, ovšem jen ve stavu termodynamické rovnováhy). jakémkoliv makrostavu soustavy má ovšem každá ástice njaký svj stav je možno íci mikrostav (polohu a rychlost) - a soubor mikrostav všech ástic (polohy a rychlosti všech ástic) vytváí mikrostav soustavy. Když bychom tedy chtli znázornit mikrostav soustavy, museli bychom nakreslit polohy všech ástic soustavy (a ješt ke každé ástici pipojit její rychlost). Pozn. : Pi teoretickém popisu stav hmotných ástic se namísto rychlosti používá veliina hybnost (tím se do výpot zahrne i hmotnost ástice) stav jedné ástice pak bude uren její polohou a hybností tedy dvma vektory : r ( x, y, z ) a p ( px, py, pz ) nebo jinak eeno šesti skalárními veliinami souadnicemi tchto vektor. Proto se zavádí formální šestirozmrný fázový prostor s kartézskými osami x, y, z, p x, p y, p z, nebo v tomto prostoru je pak stav jedné ástice znázornn také pouze jedním bodem : ( x, y, z, px, py, pz ) Mikrostav soustavy N ástic je tedy ve fázovém prostoru znázornn soustavou také N bod. Rzné makrostavy soustavy kterým odpovídají nap. rzné energie soustavy jsou pak spojeny s rzným rozložením (rozdlením) tchto bod ve fázovém prostoru, které lze popsat jejich hustotou (koncentrací) tzv. rozdlovací funkcí f : f dn dφ kde dn je poet bod obraz stav ástic v elementu fázového prostoru (kartézský element, obecn by mohl být i jiný) : dφ dx dy dz dp dp dp x y z Stav termodynamické rovnováhy pak popisuje Boltzmannova rozdlovací funkce : f konst e energieástice k pípad ideálního plynu pak lze vhodnou volbou elementu fázového prostoru a integrací podle prostorových souadnic dojít až ke známé Maxwellov rozdlovací funkci, kterou jsme použili v kapitole nitní energie a teplota podle kinetické teorie : 8

9 f dn dv m π k 3 mv ( v) 4π N e k v Každý mikrostav soustavy tj. rozložení ástic v prostoru (ve smyslu poznámky pesn vzato ve fázovém prostoru) tedy jist náleží k njakému makrostavu soustavy. Pedstavme si nyní, že pozmníme konkrétní mikrostav tím zpsobem, že vzájemn zamníme libovolné dv ástice. Zmní se tím makrostav soustavy tj. její energie, tlak, atd.? Urit ne! šechny ástice (molekuly daného plynu) jsou pece stejné, takže nezáleží na tom, která konkrétní ástice je na daném míst (a má danou rychlost), ale je dležité, zda tam njaká molekula vbec je. Jeden makrostav soustavy tedy mže být realizován více rznými mikrostavy. Abychom stejn jako Boltzmann objevili onen zásadní statistický zákon, musíme prozkoumat mikro- a makrostavy termodynamické soustavy pi njakém nevratném procesu, kdy dochází k rstu entropie soustavy. Kvli nesmírnému potu ástic (molekul) nemáme ovšem naprosto žádnou šanci znázornit mikrostavy i jen napíklad jednoho gramu skutené látky (plynu), jedinou možností je tedy pracovat se soustavou o malém potu ástic a pak se pokusit o teoretické zobecnní. Podíváme se tedy tímto zpsobem, co se dje s termodynamickou soustavou (plynem) pi jednom z pírodních nevratných proces pi expanzi plynu do vakua. Nejprve podrobn popíšeme tento proces : Nech máme tzv. izolovanou soustavu - pevnou, uzavenou a tepeln izolovanou nádobu, která je rozdlená pepážkou na dv (stejné) ásti (viz obr.) : poátení stav - ped expanzí konený stav - po expanzi poátením stavu je levá ást naplnna plynem o tlaku p, který je podle stavové rovnice uren potem ástic plynu (koncentrací), pravá ást je prázdná (nulový tlak, vakuum). Pak odstraníme pepážku a plyn bude proudit z levé ásti nádoby do ásti pravé - tlak tedy bude v levé ásti klesat a v pravé ásti bude stoupat takto se realizuje expanze plynu - nerovnovážný termodynamický proces Po urité dob se ovšem tlaky vlevo o vpravo vyrovnají, proudní plynu ustane a vznikne konený stav termodynamické rovnováhy. charakterizovaný konstantním tlakem (v pípad stejných ástí nádoby to bude poloviní tlak p/ ), ento proces je zaruen nevratný plyn se nikdy sám nevrátí zpt do levé ásti nádoby! (nelze pedpokládat žádný vnjší zásah je to pece izolovaná soustava ). Nyní se pokusíme urit mikro- a makrostavy, jestliže by plyn byl tvoen soustavou malého potu napíklad 4 (ty) ástic (molekul) oznaíme je a, b, c, d. 9

10 poátením (makro)stavu jsou všechny ástice vlevo, vpravo není žádná, tomu odpovídá jediný mikrostav :. makrostav (4 ástice vlevo, vpravo) poet mikrostav : w a, b, c, d Po otevení pepážky mohou molekuly pecházet vpravo - vzniká další makrostav :. makrostav (3 ástice vlevo, vpravo) poet mikrostav : w 4 b, c, d a a, c, d b a, b, d c a, b, c d Stejný poet molekul vlevo i vpravo pak odpovídá konenému rovnovážnému stavu : 3. makrostav ( ástice vlevo, vpravo) poet mikrostav : w 6 a, b c, d a, c b, d a, d b, c b, c a, d b, d a, c c, d a, b Neuspoádaný pohyb molekul však nelze zastavit, mže proto vzniknou další stav, kdy se plyn vlastn ásten pesouvá do pravé ásti : 4. makrostav ( ástice vlevo, 3 vpravo) poet mikrostav : w 4 a b c d b, c, d a, c, d a, b, d a, b, c A v principu se všechny molekuly mohou pemístit do pravé ásti soustavy : 5. makrostav ( ástice vlevo, 4 vpravo) poet mikrostav : w a, b, c, d

11 Neuspoádaný pohyb ovšem stále pokrauje a tak se opakovan realizují výše uvedené stavy, plyn se tedy mže pemístit také do levé ásti nádoby tím se ovšem dostává zpt do poáteního stavu, jinak eeno samovoln probhne zptný proces ten, o kterém jsme tvrdili, že je z dvod nevratnosti expanze absolutn vylouený!!! Objevili jsme tedy vratnou expanzi plynu!! A stejn vratný mže zejm být i pechod tepla z tlesa teplejšího na tleso chladnjší teplo bude pecházet i obrácen, z tlesa chladného na tleso teplé - a další pirozené, tzv. nevratné procesy Ano, je tomu tak.. ale jen u naší tymolekulové soustavy. Uvažme : ím se vlastn ídí chování jednotlivých ástic soustavy : Podle kinetické teorie je pohyb ástic neuspoádaný, to znamená, že velikost rychlost, její smr, dráhu jednotlivých ástic tj. jejich pesuny v nádob - nemžeme nijak ovlivnit, proto je vytvoení njakého uspoádání ástic mikrostavu zcela náhodný proces (jev) a každý mikrostav proto vzniká (nastane) se stejnou pravdpodobností a trvá také stejnou dobu - to je základní princip statistické mechaniky : šechny mikrostavy termodynamické soustavy mají stejnou pravdpodobnost. Mikrostavy jsou tedy stejn pravdpodobné, ale makrostavy sestávají z rzného potu mikrostav - proto (matematické) pravdpodobnosti jejich výskytu jsou rzné. Mžeme je lehce vypoítat jako pomr potu píznivých jev mikrostav daného stavu a potu všech možných jev všech mikrostav soustavy. našem píkladu soustavy 4 ástic je celkový poet mikrostav 4. Potom pravdpodobnost. a 5. makrostavu (kdy je všechen plyn v jedné ásti nádoby) je : P P5 4 4,7 % Pravdpodobnost nerovnovážného. a 4. makrostavu iní : P P ,7 % A pravdpodobnost 3. makrostavu, kdy je plyn rovnomrn rozložen v celé nádob (tj. rovnovážný stav) : 6 P 3 4 5, % Pozn. : Pi výpotu každé pravdpodobnosti se vždy opakuje stejný celkový poet ástic, proto se ve fyzice asto používá veliina termodynamická pravdpodobnost w, rovná pímo potu mikrostav daného stavu. Mžeme konstatovat, že v naší soustav s malým potem ástic má rovnovážný stav nejvyšší pravdpodobnost ( P 3 ) a nerovnovážný stavu odpovídající zptnému návratu plynu do levé ásti nádoby má pak pravdpodobnost 6 x menší ( P 5 ) tj. nejnižší ze všech možných stav. ato pravdpodobnost je ale stejn dosti vysoká (pes 4 %), takže zptný návrat tymolekulového plynu do poáteního stavu je zcela reálný. Podívejme se ovšem dále, jak se bude mnit chování termodynamické soustavy, když budeme poet jejích ástic zvtšovat :

12 Protože pi celkovém potu ástic N a potu ástic v levé ásti n a v pravé ásti n je poet mikrostav roven potu kombinací n - té tídy z N prvk (bez zetele k uspoádání ve skupin), nebo také n - té tídy z N prvk : n N C n N N! n! ( N n )! N! n! n! ( N N! n )! n! n N Potom mžeme lehce urit poty mikrostav a pravdpodobnosti stav pro libovolný vyšší poet ástic. Jestliže zvolíme napíklad N, pak poet mikrostav plynu, který by se navrátil zpt do levé ásti je stále roven jedné :! C N N!! Ale poet mikrostav rovnovážného stavu bude podstatn vyšší : C N n 5! 5! 5!, 9 A jak vidíme, je skuten vyšší, ale neoekávan vyšší! Zatímco pi tyásticovém plynu byla pravdpodobnost návratu plynu do levé ásti jen 6-krát menší než pravdpodobnost vytvoení rovnovážného stavu, nyní jde o nepedstavitelný pomr ádu 9 (a to je ješt celkový poet ástic smšn malý oproti skuteným potm ástic hmoty ádu Avogadrova ísla). edy : Plyn se tedy pi expanzi nikdy nevrátí zpt do levé ásti nádoby ne proto, že by tento proces nebyl teoretiky možný ale protože je zanedbateln málo pravdpodobný. Pozn. : Porovnejte s pravdpodobností výhry Sportce, kdy je poet možných kombinací pouze : ! 6! 43!,4 7 Dále uvažme, že z obecného kombinaního vzorce pímo vyplývá, že pro rovnovážný stav plynu má poet mikrostav soustavy tedy i pravdpodobnost makrostavu - vždy nejvyšší možnou hodnotu. Mžeme tedy obecn konstatovat : Stav termodynamické rovnováhy uzavené soustavy je tedy charakterizován nejen maximální entropií, ale i nejvyšší možnou pravdpodobností. Entropie je zejm rostoucí funkcí pravdpodobnosti stavu soustavy (Boltzmannv princip). Rakouský fyzik Ludwig Boltzmann také první uril r. 877 tvar této funkce : S k ln w ( + konst.) vztah entropie a pravdpodobnosti

13 ( tomto vztahu je použita tzv. termodynamická pravdpodobnost w - poet mikrostav daného stavu soustavy, k je Boltzmannova konstanta). Uvažme ješt, že nerovnovážný stav uzavené soustavy (nap. když je plyn shromáždn jen v jedné ásti prostoru) znamená také vtší uspoádanost ( poádek ) soustavy. Pechod soustavy k rovnovážnému stavu je pak spojem se ztrátou této uspoádanosti (v soustav vznikne nepoádek ). ento pechod k rovnováze je nevratný poádek v izolované soustav se sám od sebe neobnoví - museli bychom zrušit izolaci soustavy a umožnit vnjším silám, aby svou prací obnovily uspoádanost, tedy snížily entropii (napíklad pomocí njakého pístu stlaí plyn do jedné ásti objemu soustavy). Pozn. : Jestliže tedy fyzik íká svému kolegovi, že práv jde snižovat entropii, nemyslí tím nic neslušného, pouze dospl k zásadnímu rozhodnutí, že je nezbytné uklidit pracovní stl, knihovnu, nebo adresáe poítae. Shrme tedy naše poznatky o statistickém (pravdpodobnostním) smyslu druhé vty termodynamiky : Smr nevratných proces je odvodnn vývojem termodynamické soustavy od mén pravdpodobných stav ke stavm pravdpodobnjším (od uspoádanjších stav ke stavm mén uspoádaným). Zptný (opaný) smr tchto proces není principiáln nemožný, je však zanedbateln málo pravdpodobný. Pozn. : Z kombinaního vztahu pro mikrostavy je také vidt, že jejich poty jsou ješt dosti vysoké v uritém (relativn malém) okolí rovnovážného stavu. o je dvodem uritých fluktuací (asov promnných zmn) stavových veliin (nap. tlaku) v okolí rovnovážného stavu soustavy. yto zmny jsou za normálního stavu nemitelné a mají význam pouze v soustavách s malým potem ástic. (Nap. v kosmickém prostoru, nebo ve vakuové komoe pi dolní hranici ultravakua, kdy cm 3 plynu obsahuje jen asi ástic - molekul) konec kapitoly K. Rusák, verze 4/6 rev. 4/7 3

1. Exponenciální rst. 1.1. Spojitý pípad. Rstový zákon je vyjáden diferenciální rovnicí

1. Exponenciální rst. 1.1. Spojitý pípad. Rstový zákon je vyjáden diferenciální rovnicí V tomto lánku na dvou modelech rstu - exponenciálním a logistickém - ukážeme nkteré rozdíly mezi chováním spojitých a diskrétních systém. Exponenciální model lze považovat za základní rstový model v neomezeném

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

Atom a molekula - maturitní otázka z chemie

Atom a molekula - maturitní otázka z chemie Atom a molekula - maturitní otázka z chemie by jx.mail@centrum.cz - Pond?lí, Únor 09, 2015 http://biologie-chemie.cz/atom-a-molekula-maturitni-otazka-z-chemie/ Otázka: Atom a molekula P?edm?t: Chemie P?idal(a):

Více

Prbh funkce Jaroslav Reichl, 2006

Prbh funkce Jaroslav Reichl, 2006 rbh funkce Jaroslav Reichl, 6 Vyšetování prbhu funkce V tomto tetu je vzorov vyešeno nkolik úloh na vyšetení prbhu funkce. i ešení úlohy jsou využity základní vlastnosti diferenciálního potu.. ešený píklad

Více

Elektroenergetika 1. Termodynamika

Elektroenergetika 1. Termodynamika Elektroenergetika 1 Termodynamika Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

1 KOMBINATORIKA, KLASICKÁ PRAVDPODOBNOST

1 KOMBINATORIKA, KLASICKÁ PRAVDPODOBNOST 1 KOMBINATORIKA, KLASICKÁ PRAVDPODOBNOST Kombinatorické pravidlo o souinu Poet všech uspoádaných k-tic, jejichž první len lze vybrat n 1 zpsoby, druhý len po výbru prvního lenu n 2 zpsoby atd. až k-tý

Více

2. M ení t ecích ztrát na vodní trati

2. M ení t ecích ztrát na vodní trati 2. M ení t ecích ztrát na vodní trati 2. M ení t ecích ztrát na vodní trati 2.1. Úvod P i proud ní skute ných tekutin vznikají následkem viskozity t ecí odpory, tj. síly, které p sobí proti pohybu ástic

Více

Cykly Intermezzo. FOR cyklus

Cykly Intermezzo. FOR cyklus Cykly Intermezzo Rozhodl jsem se zaadit do série nkolika lánk o základech programování v Delphi/Pascalu malou vsuvku, která nám pomže pochopit principy a zásady pi používání tzv. cykl. Mnoho ástí i jednoduchých

Více

NEWTONOVY POHYBOVÉ ZÁKONY

NEWTONOVY POHYBOVÉ ZÁKONY NEWTONOVY POHYBOVÉ ZÁKONY Metodika Mgr. Michal Schovánek kvten 2010 Newtonovy pohybové zákony patí mezi nejobtížnjší kapitoly stedoškolské mechaniky. Popisované situace jsou sice jednoduše demonstrovatelné,

Více

KUSOVNÍK Zásady vyplování

KUSOVNÍK Zásady vyplování KUSOVNÍK Zásady vyplování Kusovník je základním dokumentem ve výrob nábytku a je souástí výkresové dokumentace. Každý výrobek má svj kusovník. Je prvotním dokladem ke zpracování THN, objednávek, ceny,

Více

CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter.

CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter. CHEMICKÁ ENERGETIKA Energetickou stránkou soustav a změnami v těchto soustavách se zabývá fyzikální disciplína termodynamika. Z široké oblasti obecné termodynamiky se chemická termodynamika zajímá o chemické

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

Proud ní tekutiny v rotující soustav, aneb prozradí nám vír ve výlevce, na které polokouli se nacházíme?

Proud ní tekutiny v rotující soustav, aneb prozradí nám vír ve výlevce, na které polokouli se nacházíme? Veletrh nápad uitel fyziky 10 Proudní tekutiny v rotující soustav, aneb prozradí nám vír ve výlevce, na které polokouli se nacházíme? PAVEL KONENÝ Katedra obecné fyziky pírodovdecké fakulty Masarykovy

Více

Zpracování teorie 2010/11 2011/12

Zpracování teorie 2010/11 2011/12 Zpracování teorie 2010/11 2011/12 Cykly Děje Proudění (turbíny) počet v: roce 2010/11 a roce 2011/12 Chladící zařízení (nakreslete cyklus a nakreslete schéma)... zde 13 + 2 (15) Izochorický děj páry (nakreslit

Více

KINEMATICKÁ GEOMETRIE V ROVIN

KINEMATICKÁ GEOMETRIE V ROVIN KINEMATICKÁ GEOMETRIE V ROVIN Kivka je jednoparametrická množina bod X(t), jejíž souadnice jsou dány funkcemi: x = x(t), y = y(t), t I R. Tena kivky je urena bodem dotyku X a teným vektorem o souadnicích

Více

FYZIKÁLNÍ CHEMIE chemická termodynamika

FYZIKÁLNÍ CHEMIE chemická termodynamika FYZIKÁLNÍ CHEMIE chemická termodynamika ermodynamika jako vědní disciplína Základní zákony termodynamiky Práce, teplo a energie Vnitřní energie a entalpie Chemická termodynamika Definice termodynamiky

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

DOPRAVNÍ INŽENÝRSTVÍ

DOPRAVNÍ INŽENÝRSTVÍ VYSOKÉ UENÍ TECHNICKÉ V BRN FAKULTA STAVEBNÍ ING. MARTIN SMLÝ DOPRAVNÍ INŽENÝRSTVÍ MODUL 4 ÍZENÉ ÚROVOVÉ KIŽOVATKY ÁST 1 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Dopravní inženýrství

Více

Pednáška mikro 07 : Teorie chování spotebitele 2

Pednáška mikro 07 : Teorie chování spotebitele 2 Pednáška mikro 07 : Teorie chování spotebitele 2 1. ngelova kivka x poptávka po statku, M- dchod x luxusní komodita ( w >1) standardní komodita (0< w 1) podadná komodita ( w < 0) 2. Dchodový a substituní

Více

Efektivní hodnota proudu a nap tí

Efektivní hodnota proudu a nap tí Peter Žilavý: Efektivní hodnota proudu a naptí Efektivní hodnota proudu a naptí Peter Žilavý Katedra didaktiky fyziky MFF K Praha Abstrakt Píspvek experimentáln objasuje pojem efektivní hodnota stídavého

Více

1. MODELY A MODELOVÁNÍ. as ke studiu: 30 minut. Cíl: Po prostudování této kapitoly budete umt: Výklad. 1.1. Model

1. MODELY A MODELOVÁNÍ. as ke studiu: 30 minut. Cíl: Po prostudování této kapitoly budete umt: Výklad. 1.1. Model 1. MODELY A MODELOVÁNÍ as ke studiu: 30 minut Cíl: Po prostudování této kapitoly budete umt: charakterizovat model jako nástroj pro zobrazení skutenosti popsat proces modelování provést klasifikaci základních

Více

VI. VÝNOSY, NÁKLADY, ANALÝZA VÝVOJE HOSPODÁSKÉHO VÝSLEDKU

VI. VÝNOSY, NÁKLADY, ANALÝZA VÝVOJE HOSPODÁSKÉHO VÝSLEDKU VI. VÝOSY, ÁKLADY, AALÝZA VÝVOJE HOSPODÁSKÉHO VÝSLEDKU VÝOSY Jedná se o veškeré penžní ástky, které podnik získal ze svých inností za urité období bez ohledu na to, zda došlo v tomto období k k jejich

Více

Základní pojmy klasického sudoku hlavolamu. Techniky odkrývání bunk. Technika Naked Single. Technika Hidden Single

Základní pojmy klasického sudoku hlavolamu. Techniky odkrývání bunk. Technika Naked Single. Technika Hidden Single Základní pojmy klasického sudoku hlavolamu Sudoku hlavolam (puzzle) obsahuje celkem 81 bunk (cells), devt vodorovných ádk (rows), devt svislých sloupc (columns) a devt skupin po 3 3 bukách nazývaných bloky

Více

Správa obsahu ízené dokumentace v aplikaci SPM Vema

Správa obsahu ízené dokumentace v aplikaci SPM Vema Správa obsahu ízené dokumentace v aplikaci SPM Vema Jaroslav Šmarda, smarda@vema.cz Vema, a. s., www.vema.cz Abstrakt Spolenost Vema patí mezi pední dodavatele informaních systém v eské a Slovenské republice.

Více

GYMNÁZIUM CHEB. SEMINÁRNÍ PRÁCE Grafy funkcí sbírka ešených úloh. Radek HÁJEK, 8.A Radka JIROUŠKOVÁ, 8.A Cheb, 2006 Petr NEJTEK, 8.

GYMNÁZIUM CHEB. SEMINÁRNÍ PRÁCE Grafy funkcí sbírka ešených úloh. Radek HÁJEK, 8.A Radka JIROUŠKOVÁ, 8.A Cheb, 2006 Petr NEJTEK, 8. GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE Grafy funkcí sbírka ešených úloh Radek HÁJEK, 8.A Radka JIROUŠKOVÁ, 8.A Cheb, 006 Petr NEJTEK, 8.A Prohlášení Prohlašujeme, že jsme seminární práci na téma: Grafy funkcí

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

2.1 Pokyny k otev eným úlohám. 2.2 Pokyny k uzav eným úlohám. Testový sešit neotvírejte, po kejte na pokyn!

2.1 Pokyny k otev eným úlohám. 2.2 Pokyny k uzav eným úlohám. Testový sešit neotvírejte, po kejte na pokyn! MATEMATIKA základní úrove obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bod Hranice úspšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. asový limit pro ešení

Více

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova 1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota

Více

Zbytky zákaznického materiálu

Zbytky zákaznického materiálu Autoi: V Plzni 31.08.2010 Obsah ZBYTKOVÝ MATERIÁL... 3 1.1 Materiálová žádanka na peskladnní zbytk... 3 1.2 Skenování zbytk... 7 1.3 Vývozy zbytk ze skladu/makulatura... 7 2 1 Zbytkový materiál V souvislosti

Více

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ Výhody: medium (vzduch) se nachází všude kolem nás možnost využití centrální výroby stlačeného vzduchu v závodě kompresor nemusí pracovat nepřetržitě (stlačený

Více

Instalace multiimportu

Instalace multiimportu Instalace multiimportu 1. Rozbalit archiv multiimportu (nap. pomocí programu Winrar) na disk C:\ Cesta ve výsledném tvaru bude: C:\MultiImport 2. Pejdte do složky Install a spuste soubor Install.bat Poznámka:

Více

V mnoha pípadech, kdy známe rozdlení náhodné veliiny X, potebujeme urit rozdlení náhodné veliiny Y, která je funkcí X, tzn. Y = h(x).

V mnoha pípadech, kdy známe rozdlení náhodné veliiny X, potebujeme urit rozdlení náhodné veliiny Y, která je funkcí X, tzn. Y = h(x). 3. FUNKCE NÁHODNÉ VELIINY as ke studu: 40 mnut Cíl: Po prostudování této kaptol budete umt transformovat náhodnou velnu na náhodnou velnu Y, je l mez tmto náhodným velnam vzájemn jednoznaný vztah VÝKLAD

Více

T0 Teplo a jeho měření

T0 Teplo a jeho měření Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná

Více

27. asové, kmitotové a kódové dlení (TDM, FDM, CDM). Funkce a poslání úzkopásmových a širokopásmových sítí.

27. asové, kmitotové a kódové dlení (TDM, FDM, CDM). Funkce a poslání úzkopásmových a širokopásmových sítí. Petr Martínek martip2@fel.cvut.cz, ICQ: 303-942-073 27. asové, kmitotové a kódové dlení (TDM, FDM, CDM). Funkce a poslání úzkopásmových a širokopásmových sítí. Multiplexování (sdružování) - jedná se o

Více

Píkazy pro kreslení.

Píkazy pro kreslení. Píkazy pro kreslení. Tento text je psán pro AUTOCAD 2006, eskou modifikaci. V jiných verzích se proto vyskytnou odchylky. Jsou to píkazy, které umožují nakreslit jednotlivé entity v AUTOCADu. Z menu je

Více

2 ELEMENTÁRNÍ POET PRAVDPODOBNOSTI. as ke studiu kapitoly: 70 minut. Cíl: Po prostudování této kapitoly budete umt

2 ELEMENTÁRNÍ POET PRAVDPODOBNOSTI. as ke studiu kapitoly: 70 minut. Cíl: Po prostudování této kapitoly budete umt 2 ELEMENTÁRNÍ OET RAVDODOBNOSTI as ke studiu kapitoly: 70 minut Cíl: o prostudování této kapitoly budete umt charakterizovat teorii pravdpodobnosti a matematickou statistiku vysvtlit základní pojmy teorie

Více

Související ustanovení ObZ: 66, 290, 1116 až 1157, 1158 a násl., 1223 až 1235, 1694, 1868 odst. 1, 2719, 2721, 2746, 2994, 3055, 3062, 3063,

Související ustanovení ObZ: 66, 290, 1116 až 1157, 1158 a násl., 1223 až 1235, 1694, 1868 odst. 1, 2719, 2721, 2746, 2994, 3055, 3062, 3063, Pídatné spoluvlastnictví Obecná ustanovení 1223 (1) Vc náležící spolen nkolika vlastníkm samostatných vcí urených k takovému užívání, že tyto vci vytváejí místn i úelem vymezený celek, a která slouží spolenému

Více

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů

Více

Vysoká škola báská Technická univerzita Ostrava Institut geoinformatiky. Analýza dojíždní z dotazníkového šetení v MSK. Semestrální projekt

Vysoká škola báská Technická univerzita Ostrava Institut geoinformatiky. Analýza dojíždní z dotazníkového šetení v MSK. Semestrální projekt Vysoká škola báská Technická univerzita Ostrava Institut geoinformatiky Analýza dojíždní z dotazníkového šetení v MSK Semestrální projekt 18.1.2007 GN 262 Barbora Hejlková 1 OBSAH OBSAH...2 ZADÁNÍ...3

Více

Teplota a její měření

Teplota a její měření Teplota a její měření Teplota a její měření Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_03_01 Teplota, Celsiova a Kelvinova teplotní stupnice, převodní vztahy, příklady. Tepelná výměna, měrná

Více

IV. CVIENÍ ZE STATISTIKY

IV. CVIENÍ ZE STATISTIKY IV. CVIENÍ ZE STATISTIKY Vážení studenti, úkolem dnešního cviení je nauit se analyzovat data kvantitativní povahy. K tomuto budeme opt používat program Excel 2007 MS Office. 1. Jak mžeme analyzovat kvantitativní

Více

RADY A TIPY K PEDCHÁZENÍ VZNIKU KONDENZÁTU

RADY A TIPY K PEDCHÁZENÍ VZNIKU KONDENZÁTU RADY A TIPY K PEDCHÁZENÍ VZNIKU KONDENZÁTU RADY A TIPY K PEDCHÁZENÍ VZNIKU KONDENZÁTU... 1 1 Jak se vyvarovat kondenzaci vlhkosti na zasklení... 3 2 Co to je kondenzace?... 3 3 Pro nejastji dochází ke

Více

5. Dsledky zákona zachování energie

5. Dsledky zákona zachování energie 5. Dsledky zákona zachování energie 5. Pohyb lyž po sjezdovce 5.. Zadání úlohy Lyža sjíždí ze svahu po sjezdovce o svislé výšce h = 8 m. Na zaátku sjezdu je jeho rychlost nulová. Jaká je jeho rychlost

Více

Paretv-Zipfv zákon, omezenost zdroj a globalizace

Paretv-Zipfv zákon, omezenost zdroj a globalizace Pareto-Zipf2 1/6 Paretv-Zipfv zákon, omezenost zdroj a globalizace Jií Neas, FIS VŠE Praha Pi rzných píležitostech se setkáváme se soubory rzn velkých objekt: obce ve vybraném stát mají rzný poet obyvatel,

Více

POZEMNÍ KOMUNIKACE I.

POZEMNÍ KOMUNIKACE I. VYSOKÉ UENÍ TECHNICKÉ V BRN FAKULTA STAVEBNÍ PETR HOLCNER POZEMNÍ KOMUNIKACE I. MODUL BM0-M0 SMROVÉ EŠENÍ POZEMNÍCH KOMUNIKACÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Pozemní

Více

Ing. Jaroslav Halva. UDS Fakturace

Ing. Jaroslav Halva. UDS Fakturace UDS Fakturace Modul fakturace výrazn posiluje funknost informaního systému UDS a umožuje bilancování jednotlivých zakázek s ohledem na hodnotu skutených náklad. Navíc optimalizuje vlastní proces fakturace

Více

5 Základy termodynamiky

5 Základy termodynamiky 5 Základy termodynamiky Teplo, teplota, tepelná kapacita, metody jejich měření. Termodynamická soustava a její rovnováha. Hlavní věty termodynamiky. Ideální plyn. Stavová rovnice, Carnotův cyklus. Reálné

Více

Obr. 1: Elektromagnetická vlna

Obr. 1: Elektromagnetická vlna svtla Svtlo Z teorie elektromagnetického pole již víte, že svtlo patí mezi elektromagnetická vlnní, a jako takové tedy má dv složky: elektrickou složku, kterou pedstavuje vektor intenzity elektrického

Více

Pedání smny. Popis systémového protokolování. Autor: Ing. Jaroslav Halva V Plzni 24.01.2012. Strana 1/6

Pedání smny. Popis systémového protokolování. Autor: Ing. Jaroslav Halva V Plzni 24.01.2012. Strana 1/6 Autor: Ing. Jaroslav Halva V Plzni 24.01.2012 Strana 1/6 Obsah 1 OBSAH... 2 2 NKOLIK SLOV NA ÚVOD... 3 3 MODEL... 3 4 DEFINICE... 3 5 DENNÍ VÝKAZ... 4 6 ZÁVR... 6 Strana 2/6 1 Nkolik slov na úvod Zamení

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

9. Kombinatorika, pravd podobnost a statistika

9. Kombinatorika, pravd podobnost a statistika 9. Kombinatorika, pravdpodobnost a statistika VÝCHOZÍ TEXT K ÚLOZE 1 V kódu je na prvním míst jedno z písmen A, B, C nebo D. Na dalších dvou pozicích je libovolné dvojciferné íslo od 11 do 45. (Existují

Více

asté otázky a odpov di k zákonu. 406/2000 Sb.

asté otázky a odpov di k zákonu. 406/2000 Sb. MPO Energetická úinnost asté otázky a odpovdi k zákonu. 406/2000 Sb. Stránka. 1 z 6 Ministerstvo prmyslu a obchodu asté otázky a odpovdi k zákonu. 406/2000 Sb. Publikováno: 23.2.2009 Autor: odbor 05200

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

Podpora výroby energie v zaízeních na energetické využití odpad

Podpora výroby energie v zaízeních na energetické využití odpad Podpora výroby energie v zaízeních na energetické využití odpad Tomáš Ferdan, Martin Pavlas Vysoké uení technické v Brn, Fakulta strojního inženýrství, Ústav procesního a ekologického inženýrství, Technická

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

ENÍ TECHNICKÉ V PRAZE

ENÍ TECHNICKÉ V PRAZE ESKÉ VYSOKÉ UENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická BAKALÁSKÁ PRÁCE 006 ESKÉ VYSOKÉ UENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Katedra mení Využití Rogowskiho cívky pi mení proudu a analýza

Více

Prezentaní program PowerPoint

Prezentaní program PowerPoint Prezentaní program PowerPoint PowerPoint 1 SIPVZ-modul-P0 OBSAH OBSAH...2 ZÁKLADNÍ POJMY...3 K EMU JE PREZENTACE... 3 PRACOVNÍ PROSTEDÍ POWERPOINTU... 4 OPERACE S PREZENTACÍ...5 VYTVOENÍ NOVÉ PREZENTACE...

Více

Tabulkový procesor Excel

Tabulkový procesor Excel Tabulkový procesor Excel Excel 1 SIPVZ-modul-P0 OBSAH OBSAH...2 ZÁKLADNÍ POJMY...4 K EMU JE EXCEL... 4 UKÁZKA TABULKOVÉHO DOKUMENTU... 5 PRACOVNÍ PLOCHA... 6 OPERACE SE SOUBOREM...7 OTEVENÍ EXISTUJÍCÍHO

Více

Teorie mezinárodního obchodu

Teorie mezinárodního obchodu Teorie mezinárodního obchodu Absolutní výhody V následujících p íkladech p edpokládejte, že sv t funguje podle klasické teorie absolutních výhod. P íklad 1 Poet hodin práce potebných k výrob 1 auta Poet

Více

POTRUBNÍ SYSTÉMY PROGRAMU INVENTOR PROFESSIONAL V REALIZACI ISTÍRNY ODPADNÍCH VOD

POTRUBNÍ SYSTÉMY PROGRAMU INVENTOR PROFESSIONAL V REALIZACI ISTÍRNY ODPADNÍCH VOD Projekt: POTRUBNÍ SYSTÉMY PROGRAMU INVENTOR PROFESSIONAL V REALIZACI ISTÍRNY ODPADNÍCH VOD Objednatel: Computer Agency o.p.s Zhotovitel: Jií Trnka Spoluešitel: Michal Klimeš - 1 - - 2 - OBSAH 1. ÚVOD..4

Více

eská zem d lská univerzita v Praze, Technická fakulta

eská zem d lská univerzita v Praze, Technická fakulta 4. Jaderná fyzika Stavba atomu Atomy byly dlouho považovány za nedlitelné. Postupem asu se zjistilo, že mají jádro složené z proton a z neutron a elektronový obal tvoený elektrony. Jaderná fyzika se zabývá

Více

FINANCOVÁNÍ DLOUHODOBÝMI INSTRUMENTY

FINANCOVÁNÍ DLOUHODOBÝMI INSTRUMENTY FINANCOVÁNÍ DLOUHODOBÝMI INSTRUMENTY Zpsob financování spolenosti hraje dležitou roli v rozhodovacím procesu. V této souvislosti hovoíme o kapitálové struktue firmy. Kapitálová struktura je složení dlouhodobých

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

Dokumentaní píruka k aplikaci. Visor: Focení vzork. VisorCam. Verze 1.0

Dokumentaní píruka k aplikaci. Visor: Focení vzork. VisorCam. Verze 1.0 Dokumentaní píruka k aplikaci Visor: Focení vzork VisorCam Verze 1.0 ervenec 2009 Modul Focení vzork slouží k nafocení vzork 1. Prostednictvím této aplikace je provádna veškerá práce s fotoaparátem pístroje

Více

Píprava teplé vody. Zabezpeovací zaízení tepelných (otopných) soustav

Píprava teplé vody. Zabezpeovací zaízení tepelných (otopných) soustav Pednáška 7 Píprava teplé vody Zabezpeovací zaízení tepelných (otopných) soustav Ohev Píprava teplé vody pímý (ohev s pemnou energie v zaízení ohívae) nepímý (ohev s pedáváním tepla z teplonosné látky)

Více

Prostedky automatického ízení

Prostedky automatického ízení VŠB-TU Ostrava / Prostedky automatického ízení Úloha. Dvoupolohová regulace teploty Meno dne:.. Vypracoval: Petr Osadník Spolupracoval: Petr Ševík Zadání. Zapojte laboratorní úlohu dle schématu.. Zjistte

Více

Pídavný modul rozvaha lze vyvolat z hlavní nabídky po stisku tlaítka Výkazy / pídavné moduly.

Pídavný modul rozvaha lze vyvolat z hlavní nabídky po stisku tlaítka Výkazy / pídavné moduly. Výkaz rozvaha Pídavný modul rozvaha lze vyvolat z hlavní nabídky po stisku tlaítka Výkazy / pídavné moduly. Po spuštní modulu se zobrazí základní okno výkazu: V tabulce se zobrazují sloupce výkazu. Ve

Více

Obsah...1 1. Úvod...2 Slovníek pojm...2 2. Popis instalace...3 Nároky na hardware a software...3 Instalace a spouštní...3 Vstupní soubory...3 3.

Obsah...1 1. Úvod...2 Slovníek pojm...2 2. Popis instalace...3 Nároky na hardware a software...3 Instalace a spouštní...3 Vstupní soubory...3 3. Obsah...1 1. Úvod...2 Slovníek pojm...2 2. Popis instalace...3 Nároky na hardware a software...3 Instalace a spouštní...3 Vstupní soubory...3 3. Popis prostedí...4 3.1 Hlavní okno...4 3.1.1 Adresáový strom...4

Více

III. CVIENÍ ZE STATISTIKY

III. CVIENÍ ZE STATISTIKY III. CVIENÍ ZE STATISTIKY Vážení studenti, úkolem dnešního cviení je nauit se analyzovat data pomocí chí-kvadrát testu, korelaní a regresní analýzy. K tomuto budeme používat program Excel 2007 MS Office,

Více

OCR (optical character recognition) - rozpoznávání textu v obraze

OCR (optical character recognition) - rozpoznávání textu v obraze OCR (optical character recognition) - rozpoznávání textu v obraze Martin Koníek, I46 programová dokumentace 1. Úvod Tento projekt vznikl na MFF UK a jeho cílem bylo vytvoit algoritmus schopný rozpoznávat

Více

Vysoká škola ekonomická v Praze. Fakulta managementu v Jindichov Hradci. Bakaláská práce. Iva Klípová - 1 -

Vysoká škola ekonomická v Praze. Fakulta managementu v Jindichov Hradci. Bakaláská práce. Iva Klípová - 1 - Vysoká škola ekonomická v Praze Fakulta managementu v Jindichov Hradci Bakaláská práce Iva Klípová 2007-1 - Vysoká škola ekonomická v Praze Fakulta managementu v Jindichov Hradci Katedra spoleenských vd

Více

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní

Více

IMPORT DAT Z TABULEK MICROSOFT EXCEL

IMPORT DAT Z TABULEK MICROSOFT EXCEL IMPORT DAT Z TABULEK MICROSOFT EXCEL V PRODUKTECH YAMACO SOFTWARE PÍRUKA A NÁVODY PRO ÚELY: - IMPORTU DAT DO PÍSLUŠNÉ EVIDENCE YAMACO SOFTWARE 2005 1. ÚVODEM Všechny produkty spolenosti YAMACO Software

Více

FYZIKÁLNÍ CHEMIE I: 2. ČÁST

FYZIKÁLNÍ CHEMIE I: 2. ČÁST Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta FYZIKÁLNÍ CHEMIE I: 2. ČÁST KCH/P401 Ivo Nezbeda Ústí nad Labem 2013 1 Obor: Klíčová slova: Anotace: Toxikologie a analýza škodlivin, Chemie

Více

Legislativa pro obnovitelné zdroje energie pednáška pro mezinárodní konferenci

Legislativa pro obnovitelné zdroje energie pednáška pro mezinárodní konferenci Legislativa pro obnovitelné zdroje energie pednáška pro mezinárodní konferenci Praktická využitelnost obnovitelných zdroj energie,konané v Dín 15.ervna 2005 Osnova pednášky : 1. Legislativní rámec a správní

Více

VYTVÁENÍ VÝBROVÝCH DOTAZ

VYTVÁENÍ VÝBROVÝCH DOTAZ VYTVÁENÍ VÝBROVÝCH DOTAZ V PRODUKTECH YAMACO SOFTWARE PÍRUKA A NÁVODY PRO ÚELY: - VYTVÁENÍ VÝBROVÝCH SESTAV YAMACO SOFTWARE 2003-2004 1. ÚVODEM Standardní souástí všech produkt Yamaco Software jsou prostedky

Více

Základní pojmy a jednotky

Základní pojmy a jednotky Základní pojmy a jednotky Tlak: p = F S [N. m 2 ] [kg. m. s 2. m 2 ] [kg. m 1. s 2 ] [Pa] (1) Hydrostatický tlak: p = h. ρ. g [m. kg. m 3. m. s 2 ] [kg. m 1. s 2 ] [Pa] (2) Převody jednotek tlaku: Bar

Více

ÚSTAV AUTOMATIZACE A MICÍ TECHNIKY Fakulta elektrotechniky a komunikaních technologií Vysoké uení technické v Brn

ÚSTAV AUTOMATIZACE A MICÍ TECHNIKY Fakulta elektrotechniky a komunikaních technologií Vysoké uení technické v Brn 1 Obsah: 1. ÚVOD...4 1.1 Obecné použití...4 1.2 Konkrétní použití...5 2. ZPRACOVÁNÍ OBRAZU...7 2.1 Snímání obrazu...8 2.2 Další zpracování...9 2.3 Omezující vlivy...11 2.3.1 Odlesk zdroje svtla na lesklých

Více

METODY OCEOVÁNÍ PODNIKU DEFINICE PODNIKU. Obchodní zákoník 5:

METODY OCEOVÁNÍ PODNIKU DEFINICE PODNIKU. Obchodní zákoník 5: METODY OCEOVÁNÍ PODNIKU DEFINICE PODNIKU Obchodní zákoník 5: soubor hmotných, jakož i osobních a nehmotných složek podnikání. K podniku náleží vci, práva a jiné majetkové hodnoty, které patí podnikateli

Více

Úvodník. Globalizace: výzva a ešení

Úvodník. Globalizace: výzva a ešení OECD Employment Outlook 2005 Edition Summary in Czech Výhled zamstnanosti v zemích OECD vydání 2005 Pehled v eském jazyce Úvodník Globalizace: výzva a ešení John P. Martin editel zamstnanosti, práce a

Více

Marta Jeklová. SUPERVIZE kontrola, nebo pomoc?

Marta Jeklová. SUPERVIZE kontrola, nebo pomoc? Vytvoení programu celoživotního interdisciplinárního uení v ochran dtí Projekt je spolufinancován Evropským sociálním fondem, státním rozpotem R a rozpotem hlavního msta Prahy 1 Marta Jeklová Vyšší odborná

Více

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013 Učební osnova předmětu Fyzikální chemie Studijní obor: Aplikovaná chemie Zaměření: Forma vzdělávání: Celkový počet vyučovacích hodin za studium: Analytická chemie Chemická technologie Ochrana životního

Více

Autocad ( zdroj www.designtech.cz )

Autocad ( zdroj www.designtech.cz ) Autocad ( zdroj www.designtech.cz ) AutoCAD patí k tradiním CAD aplikacím, které využívá celá ada technických i netechnických obor. V dnešním lánku se podíváme na bleskovku, jak lze zaít velmi tychle v

Více

Soudní znalectví ve specializaci silniních nehod

Soudní znalectví ve specializaci silniních nehod KA1 Analýza dopravních nehod a konflikt Úvod do soudního znalectví Doc. Ing. Aleš V É M O L A, Ph.D. Ústav soudního inženýrství Vysokého uení technického v Brn www.usi.cz e-mail: ales.vemola@usi.vutbr.cz

Více

Krevní. Tlak. Vzduchu Slovníek. Úvodní strana. Práce. Myšlenková mapa. Odkazy. Pozadí. Obrázky. Pokus. Vtip. Midla tlaku Mt.Everest.

Krevní. Tlak. Vzduchu Slovníek. Úvodní strana. Práce. Myšlenková mapa. Odkazy. Pozadí. Obrázky. Pokus. Vtip. Midla tlaku Mt.Everest. Krevní Vzduchu Slovníek Tlak Myšlenková mapa Úvodní strana Odkazy Práce Obrázky Pozadí Vtip Pokus Papiák Midla tlaku Mt.Everest Barometr Barograf metr Aneroid Co to je? To je pístroj, který mí tlak vzduchu.

Více

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Více

DISKRÉTNÍ FOURIEROVA TRANSFORMACE P I NELINEÁRNÍ ULTRAZVUKOVÉ SPEKTROSKOPII

DISKRÉTNÍ FOURIEROVA TRANSFORMACE P I NELINEÁRNÍ ULTRAZVUKOVÉ SPEKTROSKOPII DISKRÉTNÍ FOURIEROVA TRANSFORMACE PI NELINEÁRNÍ ULTRAZVUKOVÉ SPEKTROSKOPII Luboš PAZDERA *, Jaroslav SMUTNÝ **, Marta KOENSKÁ *, Libor TOPOLÁ *, Jan MARTÍNEK *, Miroslav LUÁK *, Ivo KUSÁK * Vysoké uení

Více

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů Kapitoly z fyzikální chemie KFC/KFCH I. Základní pojmy FCH a kinetická teorie plynů RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Zkouška a doporučená literatura Ústní kolokvium Doporučená literatura

Více

HYDROIZOLACE SPODNÍ STAVBY

HYDROIZOLACE SPODNÍ STAVBY HYDROIZOLACE SPODNÍ STAVBY OBSAH Úvod do problematiky hydroizolací spodní stavby 2 stránka Rozdlení hydroizolací spodní stavby a popis technických podmínek zpracování asfaltových hydroizolaních pás 2 Hydroizolace

Více

Datový typ POLE. Jednorozmrné pole - vektor

Datový typ POLE. Jednorozmrné pole - vektor Datový typ POLE Vodítkem pro tento kurz Delphi zabývající se pedevším konzolovými aplikacemi a základy programování pro mne byl semestr na vysoké škole. Studenti nyní pipravují semestrální práce pedevším

Více

Matematický úvod do unitární teorie pole. 1) Základy topologie

Matematický úvod do unitární teorie pole. 1) Základy topologie 275 Matematický úvod do unitární teorie pole 1) Základy topologie Vlastnosti prostoru mžeme rozdlit na kvantitativní - metrické (související s mením vzdáleností, úhl, ploch) - a na kvalitativní - topologické.

Více

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013 Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno

Více

Programovací jazyky, syntaxe, sémantika, zpsoby popisu

Programovací jazyky, syntaxe, sémantika, zpsoby popisu Sémantika programovacích jazyk: Syntaxe a sémantika Syntaxe a sémantika Programovací jazyky, syntaxe, sémantika, zpsoby popisu Ti hlavní charakteristiky jazyka (sémiotika) jsou: - syntax, sémantika a pragmatika

Více

Magnetokalorický jev MCE

Magnetokalorický jev MCE Magnetokalorický jev a jeho aplikační potenciál P. Svoboda Katedra fyziky kondenzovaných látek Magnetokalorický jev MCE MCE: znám déle než 120 let renesance zájmu během posledních 35 let PROČ? Připomínka

Více