[ ] Parametrické systémy lineárních funkcí I. Předpoklady: 2110

Rozměr: px
Začít zobrazení ze stránky:

Download "[ ] Parametrické systémy lineárních funkcí I. Předpoklady: 2110"

Transkript

1 ..6 Parametrické sstém lineárních funkcí I Předpoklad: 0 Pedagogická poznámka: Tato hodina vznikla až v Třeboni kvůli problémům, které studenti měli s následující hodinou. Ukázalo se, že problém, kterých jsem si všiml už ve Strakonicích, mají asi trochu hlubší důvod než jsem si zprvu mslel. Jde o první seznámení s parametr, stejně jako u později u rovnic se snažím o to, ab studenti pochopili, že jde o metodu, jak popsat více věcí najednou. Pedagogická poznámka: Nutnou podmínkou pro kreslení parametrických sstémů lineárních funkcí je schopnost rchle kreslit graf konkrétních lineárních funkcí. Proto začátek hodin obsahuje opakování a diskusi o nejrchlejších metodách. Př. : Nakresli co nejrchleji graf funkce = +. = + koeficient b = funkce prochází bodem [ 0; ] koeficient a =, funkce je klesající, kdž se změní o, změní se o dalším bodem je například bod ; [ ] Dodatek: Graf můžeme samozřejmě nakreslit také pomocí dvou bodů získaných dosazením: = 0 0 0; = + = + = bod [ ] = + = + = bod [ ; 3] = 3 Př. : Nakresli co nejrchlejším postupem graf funkce =. 3

2 = 3 koeficient koeficient b = funkce prochází bodem [ 0; ] a =, funkce je rostoucí, kdž se změní o 3 3, změní se o dalším bodem je například bod [ 3; ] Dodatek: Graf můžeme samozřejmě nakreslit také pomocí dvou bodů získaných dosazením: = 0 = = 0 = bod [ 0; ] 3 3 = 3 = = 3 = bod [ 3; ] 3 3 Pedagogická poznámka: Studenti se často ptají, jestli je něco špatného na tom, že kreslí graf pomocí dvou bodů. Říkám jim, že špatně to určitě není, ale je to ve většině případů pomalejší. Uvedený postup kreslení funkcí však nemá cenu nikde speciálně zformulovávat, měl b být důsledkem toho, že studenti při kreslení funkcí neustále přemýšlejí o tom, jak je nakreslit rchleji a úsporněji, o tom, jak hodnot konstant v předpisu souvisejí s výsledným tvarem a vužívají to. Předchozí odstavec platí ještě více v následujících příkladech, kde kreslení ze zkušenosti může ušetři opravdu hodně času. Je potřeba ale zdůrazňovat, že kreslení ze dvou bodů je rozhodně správné a mělo b plnit roli jistot, kterou studenti použijí, kdž nebudou vidět jiný postup. Vrátíme se do historie (nedávné). Při zjišťování významu konstant a, b v předpisu lineární funkce = a + b jsme do jednoho obrázku kreslili více funkcí, které se lišil například v hodnotě konstant b: Například graf funkcí: f : =, f : = +, f : = + 3, f : 3 = ve společném obrázku vpadají takto:

3 Předpis i graf všech čtř funkcí jsou si hodně podobné zkusíme ušetřit místo a zapíšeme = + b; b ; 0;;3 je všechn najednou: { } místo čtř funkcí jsme napsali jedinou. Na místě, kde se funkce navzájem lišil, je napsán ;0;;3. parametr b ( něco jako žolík ), za něž můžeme dosazovat konkrétní hodnot { } Dosazením hodnot parametru získáme konkrétní lineární funkce (jak jsme je znali dosud). Parametrický zápis můžeme chápat jako vzorový předpis, ze kterého získáme dosazením hodnot za parametr hotové konkrétní funkce. = +. Př. 3: Nakresli parametrický sstém funkcí b; b { ; ;3} Postupně dosazujeme hodnot parametru a kreslíme konkrétní funkce: b = = + Kreslíme graf funkce = + : 0; b = funkce prochází bodem [ ] a = musíme změnit o dvě, ab se ;0 zmenšilo o [ ] 3

4 b = = + Funkce má stejnou hodnotu a jako předchozí grafem bude rovnoběžná přímka, 0; b = funkce prochází bodem [ ] b = 3 = + 3 Funkce má stejnou hodnotu a jako předchozí grafem bude rovnoběžná přímka, 0; b = funkce prochází bodem [ ] Mohli jsme si ušetřit práci, z významu konstant b blo jasné, že všechn tři graf budou rovnoběžné přímk s různým posunutím ve svislém směru. Pedagogická poznámka: U předchozího příkladu je třeba ohlídat, ab studenti dobře rozuměli tomu, že nejdříve si volí (ze tří možností) hodnotu parametru (například b = ). Touto volbou získají konkrétní funkci = 0,5 +. Při kreslení jejího grafu pak mohou volit hodnot, ab získali dva bod na sestrojení grafu. Tato druhá volba není většinou nutná a jde o jinou úroveň řešení příkladu, než ve které volíme hodnotu parametru b. Studentům, kteří s tím mají problém, je třeba zdůrazňovat, že řešení příkladu probíhá na dvou úrovních. Ve všší úrovni volíme hodnot parametru (a získáváme konkrétní funkce), v nižší úrovni kreslíme graf těchto funkcí. Při kreslení grafu konkrétní funkce nás pak vůbec nezajímá, jakým způsobem jsme ji získali. Považuji tento příklad za jeden ze způsobů, jak student učit spouštění podprogramů. Postřeh: Parametr nám při kreslení sstému funkcí pomáhá. Konstanta v předpisu funkce = + b nám říká, že všechn kreslené funkce mají stejný sklon a jsou navzájem rovnoběžné, parametr b pak říká, že kreslené funkce se budou lišit v posunutí ve svislém směru. Při řešení dalších příkladů budeme společné rs jednotlivých funkcí v sstému vužívat.

5 Př. : Nakresli parametrický sstém funkcí a ; a { ;0;; } Postřeh: Funkce jsou dán předpisem a a = 0 = 0 + = - konstantní funkce a = = + = +, a =, kdž zvětšíme o, se zvětší o [ ; ] a = = + = +, a =, kdž zvětšíme o, se zvětší o [ ;3 ] a = = ( ) + = +, a =, kdž zvětšíme o, se zmenší o [ ;0 ] = +. = + všechn graf prochází bodem [ 0; ] Př. 5: Nakresli parametrický sstém funkcí b; b ( ; ) =. Postřeh: Všechn funkce = b = 0 + b mají konstantu a = 0 všechn jsou konstantní kreslíme nekonečně mnoho vodorovných přímek, které se liší posunutím ve svislém směru Hranou intervalu je b = hledáme všechn funkce, jejichž graf jsou výše než graf funkce = graf funkce = nakreslíme čárkovaně a tečkovaně naznačíme některé z hledaných grafů Př. 6: Nakresli parametrický sstém funkcí = 3 + b; b ;. Postřeh: Všechn funkce = 3 + b mají konstantu a = 3 graf všech hledaných funkcí jsou navzájem rovnoběžné přímk, které se liší v posunutí ve svislém směru Dolní hranou intervalu je b = kreslíme funkci = 3 5

6 prochází bodem [ 0; ], a = 3 kdž se zvětší o, zvětší se o 3 další bod [ ; ] Horní hranou intervalu je b = kreslíme funkci = 3 + její graf je rovnoběžný s grafem funkce = 3, prochází bodem [ 0; ] Ostatní hledané funkce leží v pásu mezi graf předchozích funkcí Př. 7: Nakresli parametrický sstém funkcí = a ; a ;3). Postřeh: Všechn funkce = a mají konstantu b = graf všech hledaných funkcí prochází bodem [ 0; ] Dolní hranou intervalu je a = kreslíme funkci = prochází bodem [ 0; ], a = kdž se zvětší o, zmenší se o další bod [ ; 3] Horní hranou intervalu je 3 a = kreslíme funkci = 3 prochází bodem [ 0; ], a = 3 kdž se zvětší o, zvětší se o 3 další bod [ ; ] Ostatní hledané funkce leží v pásu mezi graf předchozích funkcí Pedagogická poznámka: Třídu snchronizuji u předchozího příkladu tak, ab se o následující dva příklad mohli pokusit všichni. 6

7 Př. 8: Na následujících obrázcích jsou naznačen graf parametrických sstémů lineárních funkcí. Zapiš oba tto sstém. Předpokládej, že v obrázcích jsou zachcen etrémní možné případ (všechn hledané nenakreslené lineárních funkce ted musí ležet mezi nakreslenými funkcemi). V obou případech volíme parametr z oboustranně uzavřeného intervalu a) všechn funkce na levém obrázku mají stejný sklon liší se v absolutním členu. Zajímají nás etrémní příklad zelená a modrá přímka modrá přímka: při zvětšení o se zmenší o, prochází bodem [ 0;5 ] jde o přímku = + 5 zelená přímka: prochází bodem [ 0; 3] jde o přímku = 3 hledané lineární funkce můžeme zapsat = + b; b 3;5 b) všechn funkce na pravém obrázku prochází stejným bodem a liší se ve sklonu liší se v lineárním členu. Zajímají nás etrémní příklad červená a modrá přímka červená přímka: při zvětšení o se zvětší o, prochází bodem [ 0; ] jde o přímku = + modrá přímka: při zvětšení o se zmenší o, prochází bodem [ 0; ] jde o přímku = + hledané lineární funkce můžeme zapsat = a + ; a ; Př. 9: Nakresli graf libovolné funkce: a) = a + ; a > 0 b) = + b; b < 0 c) = a + b; a < 0; b > 0 a) = a + ; a > 0 libovolná rostoucí lineární funkce procházející bodem [ 0; ] b) = + b; b < 0 libovolná lineární funkce rovnoběžná s funkcí =, která se s osou protíná nad osou 7

8 c) = a + b; a < 0; b > 0 libovolná klesající lineární funkce, která se s osou protíná nad osou Pedagogická poznámka: Předchozí příklad je pro část studentů opět těžký v tom, že mají obrovskou volnost, která je paradoně strašně svazuje. Shrnutí: Parametr nám umožňuje najednou popsat více funkcí. 8

2.8.6 Parametrické systémy funkcí

2.8.6 Parametrické systémy funkcí .8.6 Parametrické sstém funkcí Předpoklad:, 0,, 50, 60 Stejně jako parametrická rovnice zastupuje mnoho rovnic najednou, parametrick zadaná funkce zastupuje mnoho funkcí. Pedagogická poznámka: Názornost

Více

2.1.17 Parametrické systémy lineárních funkcí II

2.1.17 Parametrické systémy lineárních funkcí II .1.17 Parametrické sstém lineárních funkcí II Předpoklad: 11 Pedagogická poznámka: Celá hodina vznikla na základě jednoho příkladu ze sbírk úloh od Jindr Petákové. S příkladem mělo několik generací studentů

Více

2.1.10 Lineární funkce III

2.1.10 Lineární funkce III ..0 Lineární funkce III Předpoklad: 09 Minulá hodina Lineární funkce je každá funkce, která jde zapsat ve tvaru = a + b, kde a, b R. Grafem lineární funkce je přímka (část přímk), kterou kreslíme většinou

Více

( ) Grafy mocninných funkcí. Předpoklady: 2414, 2701, 2702

( ) Grafy mocninných funkcí. Předpoklady: 2414, 2701, 2702 74 Graf mocninných funkcí Předpoklad: 44, 70, 70 Pedagogická poznámka: Hodina se skládá ze dvou částí V první nakreslíme opakováním základní metod graf několika odvozenin z mocninných funkcí V druhé části

Více

2.1.9 Lineární funkce II

2.1.9 Lineární funkce II .1.9 Lineární funkce II Předpoklad: 108 Př. 1: Přiřaď k jednotlivým čarám na obrázku, jednotlivé variant zadání příkladu o Orlické přehradě: a) původní zadání (přítok 000 m /s, odtok je 1000 m /s, 500

Více

= - rovnost dvou výrazů, za x můžeme dosazovat různá čísla, tím měníme

= - rovnost dvou výrazů, za x můžeme dosazovat různá čísla, tím měníme - FUNKCE A ROVNICE Následující základní znalosti je nezbytně nutné umět od okamžiku probrání až do konce kapitoly (většinou do napsání čtvrtletní písemné práce, na výjimky z tohoto pravidla bude upozorněno).

Více

2.1.5 Graf funkce I. Předpoklady: 2104

2.1.5 Graf funkce I. Předpoklady: 2104 ..5 Graf funkce I Předpoklad: 0 Pedagogická poznámka: Největší změnou oproti klasickému řazení v gmnaziální sadě, je spojení dílů o rovnicích a funkcích. Představa grafu umožňuje studentům daleko lépe

Více

2.3.20 Grafické řešení soustav lineárních rovnic a nerovnic

2.3.20 Grafické řešení soustav lineárních rovnic a nerovnic .3.0 Grafické řešení soustav lineárních rovnic a nerovnic Předpoklad: 307, 311 Př. 1: Vřeš soustavu rovnic + =. Pokud se také o grafické řešení. = 5 Tak jednoduchou soustavu už jsme dlouho neměli: + =

Více

Grafické řešení rovnic a jejich soustav

Grafické řešení rovnic a jejich soustav .. Grafické řešení rovnic a jejich soustav Předpoklady: 003 Pedagogická poznámka: V této hodině kreslíme na čtverečkovaný papír tak, aby jeden čtvereček představovala vzdálenost. Př. : Vyřeš graficky soustavu

Více

Funkce přímá úměrnost III

Funkce přímá úměrnost III .. Funkce přímá úměrnost III Předpoklad: 000 Př. : Na obrázku jsou nakreslen graf následujících přímých úměrnosti. Popiš je. a) = b) = c) = d) = Která z nakreslených funkcí není v nabídce? Odhadni její

Více

7.5.3 Hledání kružnic II

7.5.3 Hledání kružnic II 753 Hledání kružnic II Předpoklady: 750 Pedagogická poznámka: Tato hodina patří mezi vůbec nejtěžší Není reálné předpokládat, že by většina studentů dokázala samostatně přijít na řešení, po čase na rozmyšlenou

Více

Nepřímá úměrnost I

Nepřímá úměrnost I .. Nepřímá úměrnost I Předpoklady: 000 Př. : Která z následujících slovních úloh popisuje nepřímou úměrnost? Zapiš nepřímou úměrnost jako funkci. a) 7 rohlíků stojí Kč. Kolik bude stát rohlíků? b) Pokud

Více

2.5.1 Kvadratická funkce

2.5.1 Kvadratická funkce .5.1 Kvadratická funkce Předpoklad: 1 Pedagogická poznámka: Velká většina studentů zvládne hodinu zcela samostatně. Snažím se nezapomenout je pochválit. Slovo kvadratická už známe, začínali jsme s kvadratickou

Více

Vektory II. Předpoklady: Umíme už vektory sčítat, teď zkusíme opačnou operací rozklad vektoru na složky.

Vektory II. Předpoklady: Umíme už vektory sčítat, teď zkusíme opačnou operací rozklad vektoru na složky. 5 Vektor II Předpoklad: 4 Umíme už vektor sčítat, teď zkusíme opačnou operací rozklad vektoru na složk Př : Na obrázku je nakreslena síla Nakresli do obrázku síl a tak, ab platilo = + Kolik má úloha řešení?

Více

Grafy funkcí odvozených z funkcí sinus a cosinus II

Grafy funkcí odvozených z funkcí sinus a cosinus II .. Grafy funkcí odvozených z funkcí sinus a cosinus II Předpoklady: 0 Pedagogická poznámka: Pokud máte málo času můžete z této hodiny vyřešit pouze první tři příklady a ve zbývajících 5 minutách projít

Více

2.1.6 Graf funkce II. Předpoklady: 2105

2.1.6 Graf funkce II. Předpoklady: 2105 .. Graf funkce II Předpoklad: 05 Pedagogická poznámka: Stejně jako u předchozí hodin, dávám studentům vtištěné zadání s obrázk, ab se mohli snáze orientovat a mohli pracovat rozdílným tempem. Horší studenti

Více

2.5.1 Kvadratická funkce

2.5.1 Kvadratická funkce .5.1 Kvadratická funkce Předpoklad: 1 Pedagogická poznámka: Velká většina studentů zvládne hodinu zcela samostatně. Snažím se nezapomenout je pochválit. Slovo kvadratická už známe, začínali jsme s kvadratickou

Více

( + ) ( ) f x x f x. x bude zmenšovat nekonečně přesný. = derivace funkce f v bodě x. nazýváme ji derivací funkce f v bodě x. - náš základní zápis

( + ) ( ) f x x f x. x bude zmenšovat nekonečně přesný. = derivace funkce f v bodě x. nazýváme ji derivací funkce f v bodě x. - náš základní zápis 1.. Derivace elementárních funkcí I Předpoklad: 1 Shrnutí z minulé hodin: Chceme znát jakým způsobem se mění hodnot funkce f ( f ( + f ( přibližná hodnota změn = přesnost výpočtu se bude zvětšovat, kdž

Více

2.7.3 Použití grafů základních mocninných funkcí

2.7.3 Použití grafů základních mocninných funkcí .7.3 Použití grafů základních mocninných funkcí Předpoklady: 70, 70 Pedagogická poznámka: Jedním z nejdůležitějších cílů hodiny je, aby si studenti kreslili obrázky, které jim při řešení příkladů doopravdy

Více

Grafy funkcí odvozených z funkcí sinus a cosinus I

Grafy funkcí odvozených z funkcí sinus a cosinus I 4..0 Grafy funkcí odvozených z funkcí sinus a cosinus I Předpoklady: 409 Pedagogická poznámka: Kvůli následující hodině je třeba dát pozor, příliš se nezaseknout na začátku hodiny a postupovat tak, aby

Více

[ 5;4 ]. V intervalu 1;5 je funkce rostoucí (její první derivace je v tomto intervalu

[ 5;4 ]. V intervalu 1;5 je funkce rostoucí (její první derivace je v tomto intervalu 1..1 Průběh funkce III (prohnutí Předpoklad: 111 Pedagogická poznámka: Při poctivém probírání b tato látka zabrala dvě celé vučovací hodin. Studenti z toho nebudou příliš nadšení, je zde příliš mnoho definic

Více

Logaritmická funkce I

Logaritmická funkce I .9. Logaritmická funkce I Předpoklady: 90 Porovnáváme hodnoty eponenciální a logaritmické funkce. Jak souvisejí dvojice čísel a y u obou funkcí? Eponenciální funkce y = Logaritmická funkce y = log Hodnoty

Více

2.4.9 Rovnice s absolutní hodnotou I

2.4.9 Rovnice s absolutní hodnotou I ..9 Rovnice s absolutní hodnotou I Předpoklady: 0, 0, 05 Pedagogická poznámka: Obsah hodiny odpovídá přibližně 5 minutám. Je samozřejmě možné ji spojit s následující hodinou, pak ovšem část příkladů nestihnete

Více

2.7.7 Inverzní funkce

2.7.7 Inverzní funkce 77 Inverzní funkce Předpoklad: 0, 08 Pedagogická poznámka: Stihnout celý obsah této hodin za 5 minut znamená docela úprk, ale jak mám vzkoušené až na dokončení posledního příkladu je to zvládnutelné Pedagogická

Více

Funkce rostoucí, funkce klesající II

Funkce rostoucí, funkce klesající II .. Funkce rostoucí, funkce klesající II Předpoklad: Př. : Rozhodni, zda funkce = na následujícím obrázku je rostoucí nebo klesající. = - - - - Pro záporná jde funkce dolů, pro kladná nahoru není ani rostoucí

Více

5.1.3 Obrazy těles ve volném rovnoběžném promítání I

5.1.3 Obrazy těles ve volném rovnoběžném promítání I 5.1.3 Obrazy těles ve volném rovnoběžném promítání I Předpoklady: 5102 Pedagogická poznámka: K obrazům těles ve volném rovnoběžném promítání je možné přistoupit dvěma způsoby: Látku v podstatě přeskočit

Více

Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou

Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou Funkce jedné reálné proměnné lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou lineární y = ax + b Průsečíky s osami: Px [-b/a; 0] Py [0; b] grafem je přímka (získá se pomocí

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

Grafy relací s absolutními hodnotami

Grafy relací s absolutními hodnotami ..5 Grafy relací s absolutními hodnotami Předpoklady: 0, 0, 03, 0, 05,, 3 Pedagogická poznámka: Tato hodina nepatří do klasických středoškolských osnov. Je reakcí na fakt, že relace s absolutními hodnotami

Více

7.1.2 Kartézské soustavy souřadnic II

7.1.2 Kartézské soustavy souřadnic II 7..2 Kartéské soustav souřadnic II Předpoklad: 70 Zavedení kartéské soustav souřadnic minulé hodin: Kartéskou soustavou souřadnic v rovině naýváme dvojici číselných os, v rovině, pro které platí:. obě

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 7.3.9 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme. Vrátíme se obecné rovnici přímy:

Více

2.4.7 Omezenost funkcí, maximum a minimum

2.4.7 Omezenost funkcí, maximum a minimum ..7 Omezenost funkcí, maimum a minimum Předpoklady: 03, 0 Př. : Nakresli vedle sebe grafy funkcí: y =, y =, y3 =. Urči jejich obory hodnot. f - - - - - - - - - - - - H ( f ) = R H ( f ) = ; ) H ( f ) =

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

Nejprve si uděláme malé opakování z kurzu Množiny obecně.

Nejprve si uděláme malé opakování z kurzu Množiny obecně. @021 3. Řešení grafické přímka v kartézské soustavě souřadnic Nejprve si uděláme malé opakování z kurzu Množiny obecně. Rovnice ax + by + c = 0, kde aspoň jedno z čísel a,b je různé od nuly je v kartézské

Více

Další polohové úlohy

Další polohové úlohy 5.1.16 alší polohové úlohy Předpoklady: 5115 Průniky přímky s tělesem Př. 1: Je dána standardní krychle. Sestroj průnik přímky s krychlí pokud platí: leží na polopřímce, =, leží na polopřímce, =. Příklad

Více

7.1.2 Kartézské soustavy souřadnic II

7.1.2 Kartézské soustavy souřadnic II 7..2 Kartéské soustav souřadnic II Předpoklad: 70 Zavedení kartéské soustav souřadnic minulé hodin: Kartéskou soustavou souřadnic v rovině naýváme dvojici číselných os, v rovině, pro které platí:. obě

Více

7.5.1 Středová a obecná rovnice kružnice

7.5.1 Středová a obecná rovnice kružnice 7.5.1 Středová a obecná rovnice kružnice Předpoklady: kružnice, 505, 7103, 730 Pedagogická poznámka: Pro tuto hodinu (a mnoho dalších hodin v kapitole o kuželosečkách) je rozhodující, aby studenti uměli

Více

5.1.2 Volné rovnoběžné promítání

5.1.2 Volné rovnoběžné promítání 5.1.2 Volné rovnoběžné promítání Předpoklady: 5101 Základní stereometrický problém: zabýváme se trojrozměrnými objekty, ale k práci používáme dvojrozměrný papír musíme najít způsob, jak trojrozměrné objekty

Více

Hledané složky vektoru tvoří odvěsny pravoúhlého trojúhelníku:

Hledané složky vektoru tvoří odvěsny pravoúhlého trojúhelníku: 7 Vektor III Předpoklad: 006 Pedagogická ponámka: Příklad, 4, 5 je možné vnechat, důležité je, ab alespoň 5 minut blo na příklad 7 Pedagogická ponámka: Úvodní příklad vužívám k prokoušení látk minulé hodin

Více

( 2 ) ( 8) Nerovnice, úpravy nerovnic. Předpoklady: 2114, Nerovnice například 2x

( 2 ) ( 8) Nerovnice, úpravy nerovnic. Předpoklady: 2114, Nerovnice například 2x ..5 Nerovnice, úpravy nerovnic Předpoklady:, 03 Nerovnice například 3 < + 5 - zápis nerovnosti hodnot dvou výrazů. Za můžeme dosazovat různá čísla, tím měníme hodnoty obou výrazů. Hledáme takové, aby nerovnost

Více

x 0; x = x (s kladným číslem nic nedělá)

x 0; x = x (s kladným číslem nic nedělá) .. Funkce absolutní hodnota Předpoklady: 08, 07 x - zničí znaménko čísla, všechna čísla změní na nezáporná Jak vyjádřit matematicky? Pomocí číselné osy: x je vzdálenost obrazu čísla na číselné ose od počátku.

Více

Lineární funkce IV

Lineární funkce IV .. Lineární funkce IV Předpoklady 0 Pedagogická poznámka Říkám studentům, že cílem hodiny není naučit se něco nového, ale použít to, co už známe (a možná se také přesvědčit o tom, jak se nemůžeme obejít

Více

2.3.9 Lineární nerovnice se dvěma neznámými

2.3.9 Lineární nerovnice se dvěma neznámými .3.9 Lineární nerovnice se dvěma neznámými Předpoklady: 308 Př. 1: Najdi všechna řešení nerovnice 6x + 1 10. Zkusíme jako u rovnice. 6x + 1 10 3y 9 6x 9 6x y = 3 x 3 Jak zapsat množinu všech řešení? K

Více

Kvadratické nerovnice Předpoklady: Př. 1: Úvaha: Pedagogická poznámka:

Kvadratické nerovnice Předpoklady: Př. 1: Úvaha: Pedagogická poznámka: ..10 Kvadratické nerovnice Předpoklady: 01, 0, 0, 07 Př. 1: Vyřeš nerovnici 0. 0 - mohu rozložit na součin není to nic nového + 1 0 ( )( ) Hledám nulové body: 0 ( ) = = ( ) ( ; 1) ( 1; ) ( ; ) ( ) - -

Více

5.1.4 Obrazy těles ve volném rovnoběžném promítání II

5.1.4 Obrazy těles ve volném rovnoběžném promítání II 5.1.4 Obrazy těles ve volném rovnoběžném promítání II Předpoklady: 5103 tejně jako minule začneme opakováním pravidel. Pravidla uvádíme od nejvíce a nejsnáze používaných k méně a hůře použitelným. Útvary

Více

2.4.9 Rovnice s absolutní hodnotou I

2.4.9 Rovnice s absolutní hodnotou I ..9 Rovnice s absolutní hodnotou I Předpoklady: 0, 0, 05 Pedagogická poznámka: Obsah hodiny odpovídá přibližně 5 minutám. Je samozřejmě možné ji spojit s následující hodinou, pak ovšem část příkladů nestihnete

Více

7.1.3 Vzdálenost bodů

7.1.3 Vzdálenost bodů 7.. Vzdálenost bodů Předpoklady: 70 Př. : Urči vzdálenost bodů A [ ;] a B [ 5;] obecný vzorec pro vzdálenost bodů A[ a ; a ] a [ ; ]. Na základě řešení příkladu se pokus sestavit B b b. y A[;] B[5;] Z

Více

2.4.13 Kreslení graf obecné funkce II

2.4.13 Kreslení graf obecné funkce II ..1 Kreslení graf obecné funkce II Předpoklady: 0, 0, 1 Stejně jako v minulé hodině budeme kreslit grafy funkcí odvozených od funkce y = f ( x), která je dána grafem na obrázku: Př. 1: Nakresli graf funkce

Více

PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII

PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII V úvodu analytické geometrie jsme vysvětlili, že její hlavní snahou je popsat geometrické útvary (body, vektory, přímky, kružnice,...) pomocí čísel nebo proměnných.

Více

4.4.8 Zase nějaké... Předpoklady: ,6 l benzínu stálo 993,24 Kč. Kolik Kč by stálo 44,8 litru benzínu?

4.4.8 Zase nějaké... Předpoklady: ,6 l benzínu stálo 993,24 Kč. Kolik Kč by stálo 44,8 litru benzínu? ..8 Zase nějaké... Předpoklad: 000 Př. :, l benzínu stálo 99, Kč. Kolik Kč b stálo,8 litru benzínu? Čím více benzínu koupíme, tím více musíme zaplatit přímá úměrnost., litru 99, Kč,8 litru 99, = /,8 (cena

Více

7.2.1 Vektory. Předpoklady: 7104

7.2.1 Vektory. Předpoklady: 7104 7..1 Vektory Předpoklady: 7104 Některé fyzikální veličiny (například rychlost, síla) mají dvě charakteristiky: velikost, směr. Jak je znázornit? Jedno číslo (jako například pro hmotnost m = 55kg ) nestačí.

Více

Hyperbola. Předpoklady: 7507, 7512

Hyperbola. Předpoklady: 7507, 7512 7.5.6 Hperbola Předpoklad: 7507, 75 Pedagogická poznámka: Na první pohled se nezdá, že b hodina bla příliš zaplněná, ale kreslení obrázků studentům (spíše studentkám) docela trvá. Je dobré vsvětlit, že

Více

Funkce tangens. cotgα = = B a. A Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá b přilehlá.

Funkce tangens. cotgα = = B a. A Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá b přilehlá. 4..0 Funkce tangens c B a A b C Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá tgα = = b přilehlá b přilehlá cotgα = = a protilehlá Pokud chceme definici pro všechna x R nemůžeme

Více

Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková. Výukový materiál

Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková. Výukový materiál 1 Výukový materiál Identifikační údaje škol Všší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 07 7 Varnsdorf, IČO: 1838387 www.vosassvdf.cz, tel. +2012372632 Číslo

Více

4.3.3 Goniometrické nerovnice I

4.3.3 Goniometrické nerovnice I 4 Goniometrické nerovnice I Předpoklady: 40 Pedagogická poznámka: Nerovnice je stejně jako rovnice možné řešit grafem i jednotkovou kružnicí Oba způsoby mají své výhody i nevýhody a jsou v podstatě rovnocenné

Více

2.3.8 Lineární rovnice s více neznámými II

2.3.8 Lineární rovnice s více neznámými II ..8 Lineární rovnice s více neznámými II Předpoklady: 07 Tato hodina má dva cíle: Procvičit si řešení rovnic se dvěma neznámými z minulé hodiny. Zkusit vyřešit dodržováním pravidel a pochopením základů

Více

8.2 GRAFY LINEA RNI CH LOMENY CH FUNKCI

8.2 GRAFY LINEA RNI CH LOMENY CH FUNKCI 8.2 GRAFY LINEA RNI CH LOMENY CH FUNKCI Počítáme s Jindrou Petákovou 8 Francl Pavel Obsah Příklad č. 9... 2 a)... 2 b)... 3 c)... 4 d)... 5 e)... 6 g)... 8 h)... 9 i)... 10 j)... 11 k)... 12 l)... 13 Příklad

Více

2.6.5 Další použití lineárních lomených funkcí

2.6.5 Další použití lineárních lomených funkcí .6.5 Další použití lineárních lomených funkcí Předpoklady: 60, 603 U předchozích funkcí jsme měli vždy s funkcemi rovnice existují lineární lomené rovnice a nerovnice? Jak by vypadaly? Například takto:

Více

5.1.4 Obrazy těles ve volném rovnoběžném promítání II

5.1.4 Obrazy těles ve volném rovnoběžném promítání II 5.1.4 Obrazy těles ve volném rovnoběžném promítání II Předpoklady: 050103 tejně jako minule začneme opakováním pravidel. Pravidla uvádíme od nejvíce a nejsnáze používaných k méně a hůře použitelným. Útvary

Více

Funkce tangens. cotgα = = Předpoklady: B a. A Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá b přilehlá

Funkce tangens. cotgα = = Předpoklady: B a. A Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá b přilehlá 4..4 Funkce tangens Předpoklady: 40 c B a A b C Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá tgα = = b přilehlá b přilehlá cotgα = = a protilehlá Pokud chceme definici pro

Více

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s. 3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě

Více

Základní poznatky o funkcích

Základní poznatky o funkcích Základní poznatk o funkcích Tajemství černé skříňk (Definice funkce, základní pojm) 0 c, d, g, h 0 a) ANO b) NE 0 D( f )={ 6} H( f )={ 7} 0 a) D( f )={ 0 } b) H( f )={ 8 9 0 } c) f ( 0)= f ( )=9 f ( )=

Více

5.2.3 Duté zrcadlo I. Předpoklady: 5201, 5202

5.2.3 Duté zrcadlo I. Předpoklady: 5201, 5202 5.2.3 Duté zrcadlo I Předpoklady: 520, 5202 Dva druhy dutých zrcadel: Kulové zrcadlo = odrazivá plocha zrcadla je částí kulové plochy snazší výroba, ale horší zobrazení (pro přesné zobrazení musíme použít

Více

KVADRATICKÉ FUNKCE. + bx + c, největší hodnotu pro x = a platí,

KVADRATICKÉ FUNKCE. + bx + c, největší hodnotu pro x = a platí, KVADRATICKÉ FUNKCE Definice Kvadratická funkce je každá funkce na množině R (tj. o definičním ooru R), daná ve tvaru y = ax + x + c, kde a je reálné číslo různé od nuly,, c, jsou liovolná reálná čísla.

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

Parabola a přímka

Parabola a přímka 755 Parabola a přímka Předpoklad: 755, 756, 75, 75, 753 Pedagogická poznámka: Na probrání celého obsahu je třeba tak jeden a půl vučovací hodin Pokud tolik času nemáte, je potřeba buď rchle proběhnout

Více

4.3.3 Goniometrické nerovnice

4.3.3 Goniometrické nerovnice 4 Goniometrické nerovnice Předpoklady: 40 Pedagogická poznámka: Nerovnice je stejně jako rovnice možné řešit grafem i jednotkovou kružnicí Oba způsoby mají své výhody i nevýhody a jsou v podstatě rovnocenné

Více

Lineární funkce, rovnice a nerovnice

Lineární funkce, rovnice a nerovnice Lineární funkce, rovnice a nerovnice 1. Lineární funkce 1.1 Základní pojmy Pojem lineární funkce Funkce je předpis, který každému číslu x z definičního oboru funkce přiřadí právě jedno číslo y Obecně je

Více

2.4.3 Kreslení grafů funkcí metodou napodobení výpočtu II

2.4.3 Kreslení grafů funkcí metodou napodobení výpočtu II ..3 Kreslení grafů funkcí metodou napodobení výpočtu II Předpoklady: 0 Př. : Nakresli graf funkce y = x +. Určení hodnoty pro x vypadá takto: Vybereme x, například x = Nakreslíme funkci y = x Uděláme (

Více

Hledání úhlů se známou hodnotou goniometrické funkce

Hledání úhlů se známou hodnotou goniometrické funkce 4 Hledání úhlů se známou hodnotou goniometrické funkce Předpoklady: 40 Př : Najdi všechny úhly x 0;π ), pro které platí sin x = Postřeh: Obrácená úloha než dosud Zatím jsme hledali pro úhly hodnoty goniometrických

Více

Poznámky k semináři z termomechaniky Grafy vody a vodní páry

Poznámky k semináři z termomechaniky Grafy vody a vodní páry Příklad 1 Sytá pára o tlaku 1 [MPa] expanduje izotermicky na tlak 0,1 [MPa]. Znázorněte v diagramech vody a vodní páry. Jelikož se jedná o izotermický děj, je výhodné použít diagram T-s. Dále máme v zadání,

Více

2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I

2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I .. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla

Více

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla.

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Lineární funkce Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Číslo b je hodnota funkce f v bodě 0. Definičním oborem lineární funkce je množina

Více

Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí. Definičním oborem kvadratické funkce je množina reálných čísel.

Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí. Definičním oborem kvadratické funkce je množina reálných čísel. Kvadratická funkce Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí y = ax 2 + bx + c Číslo a je různé od nuly, b,c jsou libovolná reálná čísla. Definičním oborem kvadratické funkce je

Více

5.2.4 Kolmost přímek a rovin II

5.2.4 Kolmost přímek a rovin II 5.2.4 Kolmost přímek a rovin II Předpoklady: 5203 Př. 1: Zformuluj stereometrické věty analogické k planimetrické větě: aným bodem lze v rovině k dané přímce vést jedinou kolmici. Věta: aným bodem lze

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

Funkce pro učební obory

Funkce pro učební obory Variace 1 Funkce pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,

Více

( ) Opakování vlastností funkcí. Předpoklady:

( ) Opakování vlastností funkcí. Předpoklady: .. Opakování vlastností funkcí Předpoklad: Pedagogická poznámka: Tato hodina je zamýšlená jako první, druhá ve třetím ročníku. Podle toho, které úkol necháte student řešit, může trvat jednu až dvě vučovací

Více

Funkce. Úkol: Uveďte příklady závislosti dvou veličin.

Funkce. Úkol: Uveďte příklady závislosti dvou veličin. Funkce Pojem funkce Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Funkce vyjadřuje závislost

Více

3.2.4 Podobnost trojúhelníků II

3.2.4 Podobnost trojúhelníků II 3..4 Podobnost trojúhelníků II Předpoklady: 33 Př. 1: V pravoúhlém trojúhelníku s pravým uhlem při vrcholu sestroj výšku na stranu. Patu výšky označ. Najdi podobné trojúhelníky. Nakreslíme si obrázek:

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce

14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce . Monotonnost, lokální extrém, globální extrém a asmptot funkce Studijní text. Monotonnost, lokální extrém, globální extrém a asmptot funkce A. Rostoucí a klesající funkce Pojm rostoucí, klesající a konstantní

Více

4.3.1 Goniometrické rovnice I

4.3.1 Goniometrické rovnice I 4.. Goniometrické rovnice I Předpoklady: 4, 4, 46, 47 Pedagogická poznámka: Úspěšnost této hodiny zcela závisí na tom, jak rychle jsou studenti schopni hledat ke známým hodnotám goniometrických funkcí

Více

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.

Více

VY_32_INOVACE_M-Ar 8.,9.20 Lineární funkce graf, definiční obor a obor hodnot funkce

VY_32_INOVACE_M-Ar 8.,9.20 Lineární funkce graf, definiční obor a obor hodnot funkce VY_32_INOVACE_M-Ar 8.,9.20 Lineární funkce graf, definiční obor a obor hodnot funkce Anotace: Prezentace zavádí pojmy lin. funkce, její definiční obor a obor hodnot funkce. Dále vysvětluje typy funkcí

Více

2.3.6 Práce plynu. Předpoklady: 2305

2.3.6 Práce plynu. Předpoklady: 2305 .3.6 Práce lynu Předoklady: 305 Děje v lynech nejčastěji zobrazujeme omocí diagramů grafů závislosti tlaku na objemu. Na x-ovou osu vynášíme objem a na y-ovou osu tlak. Př. : Na obrázku je nakreslen diagram

Více

2.9.1 Exponenciální funkce

2.9.1 Exponenciální funkce .9. Eponenciální funkce Předpoklad: 7 Funkce, které už známe: 5 =, =, =,. = =, = =, = =, 3 3 = =, = =, ( 9 = 3, protože 3 = 9. Odmocnina je inverzní k mocnině a proto ověřujeme hodnot odmocnin pomocí mocnění)

Více

4.2.4 Orientovaný úhel I

4.2.4 Orientovaný úhel I 44 Orientovaný úhel I Předpoklady: 3508 Definice úhlu ze základní školy: Úhel je část roviny ohraničená dvojicí polopřímek se společným počátečním bodem (konvexní a nekonvexní úhel) Nevýhody této definice:

Více

2.1.9 Lineární funkce II

2.1.9 Lineární funkce II .1.9 Lineární funkce II Předpoklad: 108 Pedagogická poznámka: Je třeba postupovat tak, ab na příklad 6, kde se poprvé kreslí graf lineárních funkcí, zblo minimálně 10 minut. Př. 1: Přiřaď k jednotlivým

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

2.3.7 Lineární rovnice s více neznámými I

2.3.7 Lineární rovnice s více neznámými I ..7 Lineární rovnice s více neznámými I Předpoklady: 01 Pedagogická poznámka: Následující hodinu považuji za velmi důležitou hlavně kvůli pochopení soustav rovnic, které mají více než jedno řešení. Proto

Více

( ) ( ) Logaritmické nerovnice II. Předpoklady: 2924

( ) ( ) Logaritmické nerovnice II. Předpoklady: 2924 5 Logaritmické nerovnice II Předpoklad: Pedagogická poznámka: Většina studentů spočítá pouze první tři příklad, nejlepší se dostanou až k pátému Pedagogická poznámka: U následujících dvou příkladů je opět

Více

Funkce kotangens. cotgα = = Zopakuj všechny části předchozí kapitoly pro funkci kotangens. B a

Funkce kotangens. cotgα = = Zopakuj všechny části předchozí kapitoly pro funkci kotangens. B a 4.. Funkce kotangens Zopakuj všechny části předchozí kapitoly pro funkci kotangens. c B a A b C Tangens a kotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá tgα = = b přilehlá b přilehlá

Více

Centrovaná optická soustava

Centrovaná optická soustava Centrovaná optická soustava Dvě lámavé kulové ploch: Pojem centrovaná optická soustava znamená, že splývají optické os dvou či více optických prvků. Základním příkladem takové optické soustav jsou dvě

Více

37. PARABOLA V ANALYTICKÉ GEOMETRII

37. PARABOLA V ANALYTICKÉ GEOMETRII 37.. Napiš rovnici paraboly, která má osu rovnoběžnou s osou y a prochází body A 0; 60, B 4; 8, C 8;36. 0m p60n 4m p8n 8m p36n m p pn 0 6 8 6 mm p pn 64 6 7 3 mm p pn 6 8m64 p 3 64 6m9 p Je-li osa rovnoběžná

Více

( x) ( ) ( ) { } Vzorce pro dvojnásobný úhel II. Předpoklady: Urči definiční obor výrazů a zjednoduš je. 2. x x x

( x) ( ) ( ) { } Vzorce pro dvojnásobný úhel II. Předpoklady: Urči definiční obor výrazů a zjednoduš je. 2. x x x 9 Vzorce pro dvojnásobný úhel II Předpoklady: 08 Př : Urči definiční obor výrazů a zjednoduš je a) ( sin cos ) sin x + cos x sin x x + x sin x b) cos x + cos x + sin x + cos x sin x a) x R sin x + cos

Více

4.3.2 Goniometrické nerovnice

4.3.2 Goniometrické nerovnice 4 Goniometrické nerovnice Předpoklady: 40 Pedagogická poznámka: Nerovnice je stejně jako rovnice možné řešit grafem i jednotkovou kružnicí Oba způsoby mají své výhody i nevýhody a jsou v podstatě rovnocenné

Více

5.2.3 Duté zrcadlo I. Předpoklady: 5201, 5202

5.2.3 Duté zrcadlo I. Předpoklady: 5201, 5202 5.2.3 Duté zrcadlo I Předpoklady: 5201, 5202 Dva druhy dutých zrcadel: kulové = odrazivá plocha zrcadla je částí kulové plochy snazší výroba, ale horší zobrazení (aby se zobrazovalo přesně, musíme použít

Více