MIKROSKOPIE POTRAVIN

Rozměr: px
Začít zobrazení ze stránky:

Download "MIKROSKOPIE POTRAVIN"

Transkript

1 VETERINÁRNÍ A FARMACEUTICKÁ UNIVERZITA BRNO FAKULTA VETERINÁRNÍ HYGIENY A EKOLOGIE Ústav hygieny a technologie vegetabilních potravin MIKROSKOPIE POTRAVIN MVDr. Matej Pospiech, Ph.D. doc. MVDr. Bohuslava Tremlová, Ph.D. Mgr. Zdeňka Javůrková, Ph.D MVDr. Zuzana Řezáčová Lukášková, Ph.D. Mgr. Michaela Petrášová BRNO 2014

2 Tato učebnice je spolufinancována z Operačního programu Vzdělávání pro konkurenceschopnost: Inovace bakalářského a navazujícího magisterského studijního programu v oboru Bezpečnost a kvalita potravin (reg. č. CZ.1.07/2.2.00/ )

3 OBSAH OBSAH ÚVOD CÍLE MIKROSKOPICKÉHO VYŠETŘOVÁNÍ POTRAVIN MIKROSKOPICKÉ METODY A TECHNIKY PRO ANALÝZU POTRAVIN VÝBĚR VHODNÉ METODY A TECHNIKY SVĚTELNÁ MIKROSKOPIE Zpracování vzorků pro světelnou mikroskopii Barvení mikroskopických preparátů Přehledná barvení Cílená barvení Imunohistochemické metody (IHC) MODIFIKACE SVĚTELNÉ MIKROSKOPIE Polarizační mikroskopie Fázový kontrast Interferenční mikroskopie Fluorescenční mikroskopie Aplikace jednotlivých metod světelné mikroskopie ELEKTRONOVÁ MIKROSKOPIE Transmisní elektronová mikroskopie (TEM) Skenovací elektronová mikroskopie (SEM) Použití elektronové mikroskopie v potravinářství DALŠÍ TYPY MIKROSKOPICKÝCH METOD Infračervená mikroskopie Konfokální mikroskopie Mikroskopické metody skenovací sondou Mikroskopie blízkého pole Skenovací tunelová mikroskopie (STM) Mikroskopie atomárních sil (AFM) Akustická mikroskopie KVALITATIVNÍ A KVANTITATIVNÍ MIKROSKOPICKÁ ANALÝZA Kvalitativní mikroskopické vyšetření Semikvantitativní mikroskopické vyšetření Kvantitativní mikroskopické vyšetření SUROVINY ROSTLINNÉHO PŮVODU MOUKY A ŠKROBY Mouky Škroby NEŠKROBOVÉ POLYSACHARIDY KARAGENANY LUŠTĚNINY A SUROVINY Z NICH KOŘENÍ Technologie zpracování koření Použití koření ve výrobě potravin Oddenky Zázvor Kurkuma Kůry Skořice Listy a natě Bobkový list Majoránka

4 4.5.6 Květy a součásti květů Hřebíček Plody a semena Pepř Nové koření Paprika Muškátový květ a muškátový oříšek Kmín Další druhy koření Cibule Česnek ROSTLINNÉ ALERGENY Sezam Podzemnice olejná Hořčice Celer Stromové ořechy Mandle Lískový ořech Vlašský ořech HOUBY KAKAOVÉ BOBY KÁVOVÉ BOBY SUROVINY ŽIVOČIŠNÉHO PŮVODU PRINCIPY DIAGNOSTIKY ŽIVOČIŠNÝCH PRODUKTŮ URČENÝCH K VÝROBĚ POTRAVIN Epitely Pojivová tkáň Svalová tkáň Mikroskopická struktura dalších poživatelných částí Využitelné části trávicí soustavy Využitelné části dýchací soustavy Využitelné části oběhové soustavy Využitelné části mízní soustavy Využitelné části nervové soustavy Využitelné části močové soustavy Využitelné části pohlavní soustavy Využitelné části kožní soustavy MLÉKO VEJCE MIKROSKOPIE HOTOVÝCH POTRAVIN MIKROSKOPIE MASNÝCH VÝROBKŮ Mikrostruktura mělněných masných výrobků Mikrostruktura celosvalových masných výrobků Mikrostruktura vařených a pečených masných výrobků Mikrostruktura trvanlivých výrobků Mikrostruktura roztíratelných fermentovaných masných výrobků Mikrostruktura výrobků z drůbežího masa MIKROSKOPIE MLÉČNÝCH VÝROBKŮ MIKROSKOPIE PEKÁRENSKÝCH VÝROBKŮ MIKROSKOPIE MEDU MIKROSKOPIE SPECIÁLNÍCH PRODUKTŮ LITERATURA REJSTŘÍK

5 1 ÚVOD Kvalita potravin zahrnuje celou řadu vzájemně propojených nebo na sebe buď přímo či nepřímo navazujících aspektů - hygienických, nutričních, technologických, senzorických a informačních. Kvalita finálního výrobku je odvozena od kvality surovin a je ovlivňována v pozitivním i negativním smyslu v celém průběhu potravinového řetězce. Snížení kvality výrobků mohou tedy způsobit nekvalitní suroviny, technologické chyby až úmyslné porušení nebo falšování. Falšování potravin zůstává problémem i v současnosti, a proto je třeba neustále zdokonalovat analytické metody pro detekci jednotlivých součástí potravin. Ze skupiny optických metod pak zejména zobrazovací metody představují jedny z nejvhodnějších postupů pro hodnocení skladby a struktury potravin. Je pro to několik důvodů mikroskopická stavba základních surovin je známá, změny po základních technologických postupech jsou popsány, lze využít cílené diagnostické metody. Mikroskopické metody umožňují získat přehled o rozmístění a velikosti součástí ve výrobku a způsobu jejich zpracování. V případě potřeby je možné převést mikroskopický obraz na číselná data, která dovolují statistické zpracování. V České republice není tento způsob vyšetření potravinářských výrobků obvyklý. V řadě evropských zemí (Rakousko, Německo, Francie, Holandsko, Rusko) je však používáno jako cílené vyšetření a je také součástí potravinářské legislativy a souborů analytických metod pro vyšetřování potravin. Výsledek analýzy může být rozhodujícím faktorem pro posouzení dodržování technologického postupu a některých způsobů falšování potravin. Obvykle jde o kvalitativní vyšetření, tzn. o zjištění přítomnosti jednotlivých tkání a posouzení jejich přípustnosti nebo vhodnosti pro daný výrobek. Učebnice Mikroskopie potravin je určena pro všechny, kteří chtějí získat ucelené znalosti související s využitím mikroskopických metod a technik pro analýzu potravin. Zároveň by měla kniha sloužit jako učebnice pro studenty potravinářských oborů a také jako zdroj informací pro odborníky z potravinářské praxe a výzkumu. Učebnice je rozdělena na dvě samostatné knihy. První kniha je zaměřena na popis metod a technik vhodných ke studiu i praktickému mikroskopickému vyšetření, na popis mikroskopické stavby nejvýznamnějších potravinových surovin rostlinného a živočišného původu, dále hotových výrobků s využitím popisu změn surovin v souvislosti s technologickým opracováním a se zaměřením na hodnocení skladby a struktury potravinářských výrobků. Druhá kniha představuje mikroskopický atlas potravin a potravinových surovin s minimálním podílem textu. Odkazy na atlas jsou v učebnici mikroskopie potravin propojeny textem obr. ax-x. Učebnice bude jistě vhodnou učební pomůckou pro vysokoškolsky připraveného odborníka v oblasti kvality a složení potravin a rozhodování o jejich použitelnosti. Hlubší znalosti a praktické dovednosti v této oblasti mohou získat studiem specializovaných předmětů Struktura a skladba potravin a Mikroskopie potravin. Autory jednotlivých kapitol jsou pracovníci Ústavu hygieny a technologie vegetabilních potravin Fakulty veterinární hygieny a ekologie VFU Brno. Autorům i odborníkům, kteří se podíleli na recenzi textu, patří poděkování. 4

6 2 CÍLE MIKROSKOPICKÉHO VYŠETŘOVÁNÍ POTRAVIN Mikroskopické metody (mikroskopie světelná, elektronová, laserová, mikroskopie atomových sil aj.) a další zobrazovací techniky jsou jedny z nejvhodnějších postupů pro hodnocení složení a struktury potravin. Cíle mikroskopického vyšetření určují počet a způsob odebíraných vzorků a také jejich další zpracování a vyšetření. Složení potravin V současné době je dobře známá mikroskopická stavba surovin rostlinného a živočišného původu a jsou popsány změny po základních technologických postupech. Základní mikroskopickou technikou při hodnocení složení potravin je světelná mikroskopie a její modifikace, fluorescenční mikroskopie a v menší míře i ostatní techniky. Mikroskopické metody jsou schopné i s využitím řady cílených diagnostických postupů zprostředkovat informace nutné pro identifikaci složek potravin a posouzení vzhledem k jejich kvalitě, velikosti, rozmístění a množství a následně tyto informace využít také pro hodnocení případného falšování potravin. V případě potřeby je mikroskopický obraz možné převést na data, která dovolují statistické zpracování ať už digitálních nebo analogových snímků. Složení potravin je do určité míry regulováno předpisy národními a na úrovni Evropské unie. Konkrétní požadavky na jejich složení umožňují, aby se zachovala určitá kvalita potravin ve spojení s konkrétním druhem výrobku a použitím určitého názvu. Struktura potravin Struktura a uspořádání potravinového materiálu mají přímý vztah k dalším vlastnostem potravin, zejména organoleptickým, a proto jsou jedním z prvků určujících kvalitu potravin. Charakter a stupeň změn surovin v souvislosti s technologickým opracováním jsou podmíněny jejich strukturou a parametry technologického procesu. Základem mechanické struktury potravin je struktura rostlinných a živočišných tkání, jejichž původní vlastnosti jsou známé a souvisí s jejich funkcí v živém organizmu. Přirozené změny těchto struktur jsou způsobené enzymatickými procesy, např. při zrání produktů nebo jejich kažení. Strukturální vlastnosti se však podstatně mění také při technologických procesech, zahrnujících vlivy chemické, mechanické a termické. Kromě porušení původní struktury dochází v řadě případů k vytváření nových struktur, které v nativním materiálu přítomné nebyly. Některé takové příklady jsou známé už celá staletí např. struktura masných výrobků, gelové vlastnosti pudinků a pórovitost chlebové střídky. Existuje však řada jiných potravin, jejichž struktura ještě popsána nebyla. Je tedy stále příležitost přinést nové znalosti o struktuře potravin, případně doplnit již známé informace. V současné době se vyrábějí potraviny nových typů struktur (např. pěny, emulze, disperze, extruze a vlákna) a používají se nové funkční přísady do potravin. Vznik těchto nových struktur a působení různých přísad v potravinách lze vysvětlit pomocí strukturálních studií. Následně lze využít těchto znalostí k cílené produkci dalších nových struktur v potravinách eventuálně k vyvarování se nedostatků při výrobě. Při studiu struktury potravin se uplatňují i náročnější mikroskopické techniky elektronová mikroskopie, konfokální laserová mikroskopie, atomová mikroskopie a další. Vizualizace přesné a skutečné struktury potraviny je nesmírně obtížná. Každý krok přípravy vzorku pro mikroskopii jej do určité míry mění. Nešetrné nebo záměrné odstranění vody, tuku nebo jiných substancí během přípravy působí změny vztahů, které existují mezi jednotlivými komponentami. Takové změny musí tudíž být brány do úvahy při formulaci závěrů a zobecňování výsledků analýz. Nejlepší přístup pro správné získání informací o vzorku potraviny je použití několika zobrazovacích technik pro srovnání a potvrzení výsledků. 5

7 Pro kvantifikaci některých znaků potraviny je používána analýza obrazu, která umožňuje zpracování dat získaných přímo v digitální podobě z mikroskopu. Parametry, jako jsou rozměry a tvary sledovaného objektu k celkové ploše vzorku, lze prakticky využít např. pro programování automatických operací na výrobních linkách. 6

8 3 MIKROSKOPICKÉ METODY A TECHNIKY PRO ANALÝZU POTRAVIN Optické metody patří mezi biofyzikální metody, které využívají rychlé, přesné a neinvazivní techniky pro zjištění technologické a senzorické kvality potravin, navíc je možné je zapojit on-line do technologického procesu. Biofyzikální metody mohou buď přímo měřit vlastnosti, nebo komponenty potravin anebo je vypočítat nepřímo pomocí korelací mezi několika parametry z dat získaných těmito měřeními. Jednotlivé metody poskytují různé klíčové informace pro posouzení potravin. Současnost i budoucnost výzkumu potravin je v kombinování metod pro získání a zpracování výsledků zobrazovacích metod. Kombinace metod je základem pro získání objektivních výsledků, případně pro jejich lepší vizualizaci. 3.1 VÝBĚR VHODNÉ METODY A TECHNIKY Mikroskopické techniky a metody se odlišují v metodě získání obrazu, rozlišení a typu detekovaného signálu a dávají podrobný, speciální druh informace, která je zvláštní podle použité techniky. Obvykle se rozdělují podle druhu záření, které se používá na analýzu sledovaných složek: a) Mikroskopické metody využívající světelné záření klasická světelná mikroskopie polarizační mikroskopie b) Mikroskopické metody využívající proud elektronů transmisní elektronová mikroskopie skenovací elektronová mikroskopie c) Mikroskopické metody využívající jiné druhy záření d) Mikroskopické metody využívající rastrovací sondu V potravinářské praxi se nejčastěji jedná o použití mikroskopie světelné (klasické nebo jejích modifikací) a mikroskopie elektronové. Méně často, spíše v oblasti výzkumu, se setkáváme s ostatními mikroskopickými metodami. O výběru vhodné metody rozhoduje cíl vyšetření a vlastnosti vyšetřované matrice. Obecně je cílem každého vyšetření poskytnout přesnou informaci o struktuře a složení potravin, každá z metod však umožňuje různé stupně zvětšení a je vhodná pro různé složky vyšetřované matrice. 3.2 SVĚTELNÁ MIKROSKOPIE Světelná mikroskopie je nejjednodušší technikou pro získání obrazu vzorku potravin. V potravinářském průmyslu je využívaná od vzniku prvních instrumentálních zařízení. Její primární použití bylo spojeno s odhalováním některých způsobů falšování potravin. V současné době je používána řada mikroskopických technik pro získání mikrostrukturálních informací o potravinách, o potravinových složkách a také o distribuci a uspořádání potravinových komponent. Pomocí světelné mikroskopie můžeme zjistit vzájemné interakce potravinových složek a zjistit také hodnotné informace, které umožňují pochopení vlastností finálních produktů, zpracování a technologických procesů a jejich dopad na strukturu jednotlivých složek. 7

9 Princip světelné mikroskopie Vizualizace detailů objektů umožňuje vytvoření zvětšeného obrazu světlem procházejícím přes soustavu skleněných čoček. Maximální zvětšení je násobkem objektivového a okulárového zvětšení. Světelná mikroskopie může dosáhnout zvětšení až 1200krát, avšak pro analýzu složek a struktury potravin je většinou postačující zvětšení 100 až 200krát. Zvětšení 400 až 600krát je potřebné pro práci s emulzemi, pro posouzení přítomnosti mikroorganizmů (žádoucích i nežádoucích), kvasinek či mycelií a spór nižších hub. Limitem pro světelnou mikroskopii je propustnost sledovaných struktur pro světelné záření. Vzorky je nutné zpracovat histologickou technikou nebo vytvořit tenký nátěr. Větší zvětšení potřebuje tenčí řez a silnější zdroj světla. Absorpci světla můžeme také cíleně ovlivnit použitím různých barvících technik, kdy barvivo reaguje se sledovanými strukturami, mění absorpci světla o určitých vlnových délkách a vznikají tak barevně odlišené struktury. Pro vyšetření vzorků bez úpravy je možné použít stereomikroskopické, které ale dosahují zvětšení maximálně 200krát a analyzují jenom povrch vzorku. Technika je používána ke sledování větších součástí v potravinách, např. koření, zjištění cizích částic nebo vyšetření práškových materiálů. Výhodou je, že se vzorek nemusí nijak předem zpracovávat, nevýhodou je nepříliš velké zvětšení. Pro lepší zobrazení 3D efektu, který tento typ mikroskopu umožňuje, je vhodné volit LED osvětlení, které umožňuje nasvícení z různých stran Zpracování vzorků pro světelnou mikroskopii Základem pro dosažení očekávaného výsledku je správný odběr, ošetření a zpracování vzorku. Odběr vzorků Vzorky pevných potravin jsou odebírány podle toho, jaký je cíl vyšetření. Objektivitu posouzení složení a struktury potraviny zajišťuje odběr dostatečného počtu vzorků, který zohlední velikost, konzistenci a homogenitu vyšetřované potraviny. U masného výrobku se vzorky odebírají z míst od sebe co nejvíce vzdálených, tak aby postihly střed výrobku a podobalovou vrstvu, příp. i obal, pokud je součástí výrobku. U výrobků nestejnorodé konzistence se vzorky odebírají zejména z rozmělněných částí. U homogenních vzorků není místo odběru vzorků omezeno. Vzorky tekutých, roztíratelných a sypkých potravin se odebírají rovněž z různých částí výrobku. Z výrobků jsou odebrány obvykle 3-4 vzorky, které se obvykle zpracovávají a vyhodnocují samostatně (obr. 1). Je možné však vytvořit průměrný vzorek a teprve ten rozdělit na 3 4 dílčí vzorky. V případě výskytu podezřelých míst a při podezření na falšování potraviny je vhodné odebrat větší počet vzorků. Vzorky se v tomto případě nespojují do průměrného vzorku a vyšetřují se vždy samostatně. Zpracování vzorků Vzorky z potravin, které podléhají zkáze, se před zpracováním fixují a to buď chemicky, nebo zmražením. U pevných vzorků je vhodné před fixací vzorek upravit na velikost asi 1 cm 3 (obr. 2). Vzorky výrobků s drobivou konzistencí se zabalí do gázy, příp. uzavřou do speciálních krabiček s otvory, aby se při zpracovávání nerozpadly (obr. 3). Do fixační tekutiny se vzorky ukládají minimálně na 24 h, nejčastěji se používá formaldehyd v koncentraci 5 10 %. K urychlení fixace, případně z důvodu vysokého obsahu tuku ve vzorku, lze využít i jiné fixační tekutiny (Carnoyova nebo Bodianova fixační směs). 8

10 Obr. 1 Odběr vzorku (autoři) Obr. 2 Úprava velikosti vzorku (autoři) Vzorky se po potřebné době fixace a odvodnění zalévají do vhodného média, v případě masných výrobků nejčastěji do parafínu (obr. 4). Z takto vyrobených bloků se připravují tenké řezy (obvykle kolem 4 m) pro mikroskopické vyšetření. Urychlení této fáze zpracování vzorků a rovněž některé další výhody (menší poškození) představuje zmrazení vzorku, ze zmrazených vzorků se mikroskopické řezy krájí přímo na kryotomu. Obr. 3 Umístění vzorku do histologické kazety (autoři) Obr. 4 Příprava parafínového bločku (autoři) Parafínové i zmrazené řezy se přenášejí na podložní skla a na nich se po usušení a odstranění parafinu z parafinových řezů barví (obr. 5). Z tekutých a lehce roztíratelných výrobků je možné vytvořit přímo tenký roztěr, který se dále barví stejným postupem. Podobně se přímo mohou zpracovat i sypké materiály. V některých případech lze sypké materiály zamíchat do parafínu a vytvořit parafínové bločky, které se dále zpracovávají výše uvedeným způsobem. Trvalé preparáty se montují do média, které je fixuje na podložním skle a zároveň umožní jejich vyšetření ve světelném mikroskopu (obr. 6) Barvení mikroskopických preparátů Až na několik málo výjimek jsou vzorky bezbarvé, což velice znesnadňuje jejich pozorování světelným mikroskopem. Metody barvení byly vyvinuty nejen pro zviditelnění jednotlivých složek vzorku, ale také pro jejich snadné odlišení. Použití barviv bylo v minulosti a možná je i dnes často založeno na empirii, ale v řadě případů jsou přesně známé mechanismy vzniku 9

11 zbarvení. K barvení jsou používána převážně barviva rozpuštěná ve vodě, výjimečně v alkoholu. Převážně se jedná o směsi barviv nebo postupnou aplikaci různých barviv. Obr. 5 Barvení preparátů (autoři) Obr. 6 Montování preparátů (autoři) Mechanismus vzniku zbarvení závisí na barvivu a barvené součásti: fyzikální přijetí barviva prostřednictvím rozpustnosti ve struktuře, difuze barviva, prosáknutí (závisí na hustotě struktury, velikosti molekul a koncentraci barviva), chemický vznikají pravé chemické vazby (histochemické metody), zejména syntetická barviva, projevuje se afinita kyselých barviv k zásaditým složkám a naopak. Podle způsobu barvení: nepřímé (adjektivní) barvení dochází k tvorbě tzv. barevných laků, kontakt s barvivem je zprostředkován pomocí mořidla, které upraví povrch biologické struktury anebo přímo reaguje s barvivem, přímé (substantivní) barvení. Podle postupu barvení: progresívní barvení roztok barviva působí na řez do dosažení dostačujícího zbarvení, regresívní barvení a diferenciace řez se přebarví a přebytek barviva se odstraní diferenciační tekutinou, sukcedánní objekt barvíme postupně dvěma nebo více barvivy po sobě, každé barví jinou složku (hematoxylin-eozin), simultánní barvíme současně více barvivy v jednom roztoku. Podle výsledku barvení: ortochromatické součásti vzorku se barví v různých odstínech jedné barvy (kyselina pikrová), metachromatické barvení součásti vzorku se barví jiným odstínem než má barvivo (modrá barviva, např. toluidinová modř). V následující části je uveden přehled nejběžnějších barvících metod využívaných v mikroskopii potravin se stručným popisem cílených struktur. Nejedná se však o výčet úplný. U jednotlivých barvení jsou dále popsány mechanismy barvení a struktury, které jsou zvýrazněny. 10

12 Přehledná barvení Přehledná barvení se používají za účelem zobrazení všech struktur potravin a slouží zejména k posuzování uspořádaní a struktury výrobku. Správná diagnostika je založena na znalosti nevelkých barevných odlišností a na znalosti vzhledu složek potraviny. Hematoxylin-eozin Hematoxylin-eozin (dále také HE) je běžně používané přehledné histologické barvení, které našlo uplatnění také v mikroskopii potravin. Jedná se o nepřímé, sukcedánní, bazické barvivo. Vlastní barvící látkou je hematein (oxidační produkt hematoxylinu), důležité je spojení hemateinu s hliníkem z kamence draselného (tzv. mořidlo), tak vzniká potřebný barevný lak. Je to silně pozitivně nabité jaderné barvivo. Jádra jsou barvena modře, obarvení jader přitom nevyžaduje přítomnost DNA a je pravděpodobně dáno vazbou hemateino solného komplexu s bazickými nukleoproteiny bohatými na arginin. Podle druhu mořidla pak se pak označují různé druhy hematoxylinu (např. kamencový Mayerův, železitý Weigertův). Eozin je kyselé, xantenové, cytoplasmatické barvivo. Jedná se o skupinu barviv - nejčastěji se používá erytrosin a žlutý eozin. Eozinem se barví intracelulární a extracelulární proteiny. Barvení je vhodné zejména pro barvení potravin živočišného původu (obr. 7 a 8) a lze je tedy použít pro průkaz běžných struktur masných výrobků, např. pro určení druhu svaloviny, průkazu pojivových tkání včetně tkáně tukové a také pro určení použitých orgánů. Změny v barvitelnosti jader a kolagenního vaziva v důsledku tepelného ošetření výrobků lze použít na určení tepelného namáhání tkání a tím i na potvrzení nebo vyvrácení tepelného ošetření výrobků. U materiálu rostlinného původu je barvení méně výrazné, důvodem je složení buněčných stěn, které se tímto způsobem nebarví. Také další polysacharidové součásti rostlinných buněk a pletiv včetně škrobu jsou neobarveny nebo barveny jenom slabě, ale je možné prokázat buněčná jádra, buněčnou cytoplazmu a proteinové inkluze jako jsou například aleuronová zrna, která představují zásobní proteiny řady semen. Barvení lze tedy použít na průkaz celozrnných obilovin, papriky, kmínu a dalších součástí s vyšším obsahem proteinů ve formě aleuronových zrn. A B Obr. 7 Svalovina kosterní, HE (autoři) Obr. 8 Lymforetikulární tkáň mízní uzlina, HE A mízní uzlík, B kolagenní vazivo (autoři) Toluidinová modř Barvení toluidinovou modří je další přehledné barvení, vhodné zejména pro barvení kryostatových řezů. Jedná se o základní bazické barvivo vhodné pro identifikaci potravinových součástí, které obsahují aniontové skupiny. Schopnost různých složek 11

13 potraviny vázat barvivo je dána množstvím a zejména vzájemnou vzdáleností aniontových skupin, nazýváme ji metachromazií a barviva jsou označována jako metachromatická. Při vzdálenosti aniontových skupin nad 0,45 nm se naváže jenom jedna molekula toluidinové modři a výsledkem je modré zbarvení. Hovoříme o slabě pozitivní metachromazii, která je typická pro glykoproteiny. V případě vzdálenosti aniontových skupin menší než 0,45 nm dochází mezi molekulami barviva k polymerizaci a změně barvy na purpurovou (červenorudou), jedná o pozitivní metachromazii, která je typická zejména pro polysacharidy s vyšším počtem sulfátových skupin. Barvení lze použít jak pro živočišné tak také pro rostlinné suroviny. Výsledkem barvení potravin živočišného původu je světle modrá svalovina s červeno fialovými jádry, kolagen je zbarven bledě fialově, tepelně opracovaný kolagen bledě modře s modrofialovými jádry, elastické vazivo je tyrkysové (obr. 9 a 10). U rostlinných tkání jsou buněčné stěny barveny tmavě purpurově, sójový protein tmavě modře až purpurově, pšeničný protein světle modrozeleně, celulóza tmavě modře až modrozeleně (obr. 11 a 12). Tuky se nebarví, v případě mastných kyselin je zbarvení světle modré. Potravinové gumy jsou zbarveny růžově, purpurově anebo tmavě purpurově (obr. 13 a 14). Výhodou barvení toluidinovou modří je právě schopnost rozlišit rostlinné a živočišné proteiny na základě již zmíněné metachromazie. Určité omezení má při analýze potravin s vysokým obsahem organických kyselin (kečup, ocet) a tedy s nízkým ph, kde dochází k redukci zbarvení vlivem omezené vazby barviva na aniontové skupiny. A A B Obr. 9 Modelový vzorek, toluidinová modř A kolagen (bledě fialově), B pšeničný protein (světle modře) (Flint & Firth, 1988) B Obr. 10 Modelový vzorek, toluidinová modř A svalovina (světle modře), B stěny buněk (fuchsiově) (Flint & Firth, 1988) A B A B Obr. 11 Modelový vzorek, toluidinová modř A sójový protein (tmavě modře), B pšeničný protein (světle modře) (Flint & Firth, 1988) Obr. 12 Modelový vzorek, toluidinová modř A sójový protein (modře), B stěny buněk (fuchsiově) (Flint & Firth, 1988) 12

14 Obr. 13 Karagenan, toluidinová modř (Flint, 1990) Obr. 14 Pektin, toluidinová modř (Flint, 1990) Cílená barvení Cílená barvení jsou určena pro zvýraznění struktur, které chceme prokázat. Další (často i hlavní) složky potraviny jsou méně viditelné. Většina cílených barviv působí na principu histochemických barvení. Znamená to, že dochází k chemické vazbě mezi barvivem a sledovanou strukturou např. určitého druhu proteinu, polysacharidu nebo fosforečnanu vápenatého. Pro usnadnění orientace jsou metody rozděleny do skupin podle cílové složky. Barvení kolagenu Massonovy trichromy existují tři základní druhy trichromů, jejichž název vychází z výsledné barvy kolagenního vaziva. Jedná se o trichrom žlutý, modrý a zelený. Žlutý trichrom má omezené použití, barvení je málo trvanlivé. Z tohoto důvodu se častěji setkáváme s použitím modrých nebo zelených trichromů, které poskytují standardní výsledek barvení a rovněž barevně odliší základní druhy tkání. Barvení modrým trichromem vyžaduje po obarvení jader použití mořidla (kyselina fosfowolframová), které zajistí vazbu dalších barviv na vzorek. Výsledkem barvení modrého trichromu (barvení azanem) jsou modře až hnědočerně zbarvená jádra, červeně zbarvená svalovina, oranžově zbarvené erytrocyty a modře zbarvené kolagenní vazivo (obr. 15). U zeleného trichromu jsou výsledky barvení stejné kromě zbarvení kolagenního vaziva, které je zelené (obr. 16). B A A C B Obr. 15 Játra, Massonův trichrom modrý A vazivo, B jaterní trámce (autoři) 13 Obr. 16 Svalovina, Massonův trichrom zelený A svalovina, B vazivo, C tukové buňky (autoři)

15 Calleja výhodou tohoto barvení je snadná kombinovatelnost s dalšími barvivy, jako je například Lugolův roztok nebo Periodic Acid-Schiff s reagent (dále také PAS). Výsledkem barvení je modře zbarvené kolagenní vazivo, zeleně zbarvená svalovina (obr. 17 až 19). Jádra buněk jsou zbarvena červeně. Picro-Sirius Red barvení určené průkaz kolagenu v různých druzích živočišných tkání (kosti, chrupavky, vazivo). Metodu lze použít pro průkaz kolagenu v masných výrobcích (obr. 20). A A B C B C Obr. 17 Párek, Calleja A kolagenní vazivo (modře), B kostní úlomek (tmavě modře), C spojka (autoři) B Obr. 18 Modelový vzorek s vlákninou, PAS-Calleja A kolagenní vazivo (modře), B svalovina (zeleně), C polysacharidy (růžově) (autoři) C A A Obr. 19 Masný výrobek, Lugol-Calleja A kolagenní vazivo (modře), B svalovina (zeleně), C škrob (černě) (autoři) Obr. 20 Tuková tkáň, Picro-Sirius Red A kolagenní vazivo (červeně) ( Slimani, 2012) Barvení elastinu a retikulinu K obarvení elastického vaziva lze použít zejména cílené barvení orceinem, aldehydovým fuchsinem a Weigertovým resorcinovým fuchsinem. Výsledkem barvení orceinem jsou červenohnědě zbarvená elastická vlákna (obr. 21) a modře zbarvená jádra buněk. Aldehydový fuchsin barví elastické vazivo jasně fialově. Stabilním, ale zdlouhavým postupem s Weigertovým resorcinovým fuchsinem získáme modročerně zbarvení elastických vláken a červené zbarvení buněčných jader. Barvení retikulárního vaziva nemá v potravinách významné praktické použití. Běžně používané barvení je založené na principu impregnace retikulárních vláken dusičnanem stříbrným barvení dle Gömöriho. Principem metody je oxidace řezů manganistanem 14

16 draselným a vybělení pyrosiřičitanem. Poté následuje moření železitým kamencem a impregnace retikulárních vláken amoniakálním roztokem stříbra. Pro docílení černého zbarvení se řezy vloží do chloridu zlatitého. Posledním krokem je ustálení vzniklého komplexu roztokem sirnatanu sodného. Výsledkem barvení jsou šedě až černě zbarvená retikulární vlákna (obr. 22). Další možností pro průkaz retikulárních vláken je barvení histochemickou reakcí PAS. A A Obr. 21 Stěna cévy, orcein A elastická vlákna (hnědočerveně) (autoři) Obr. 22 Plíce, Gömöri A retikulární vlákna (černě) (autoři) Barvení kostní tkáně Na průkaz kostní tkáně se nejčastěji využívají metody histochemické. S nejlepšími výsledky se setkáváme u barvení dle Kossy a barvením alizarinovou červení. Principem barvení dle Kossy je reakce nitrátů stříbra s vápennými solemi. Výsledkem barevní jsou černě zbarvené vápenaté soli a červená jádra buněk (obr. 23). U barvení alizarinovu červení dochází ke vzniku chelátových komplexů mezi barvivem Alizarin Red S a vápenatými ionty. Takto vzniklý komplex vykazuje také dvojlomné vlastnosti a lze ho tedy detekovat pomocí polarizačního vyšetření. Výsledkem barvení jsou červeně zbarvené vápenaté ionty (obr. 24). Podobné výsledky lze dosáhnou i s výše uvedeným barvivem Picro Sirius Red. Kromě histochemických metod lze na průkaz kostní tkáně použít také přehledné barvící postupy, jako je například hematoxylin-eosin nebo toluidinová modř, kde se identifikace opírá o charakteristickou strukturu kostní tkáně. A A Obr. 23 Masný výrobek, dle Kossy A kostní úlomek (černě) (autoři) Obr. 24 Masný výrobek, alizarinová červeň A kostní úlomek (černě) (autoři) 15

17 Barvení tuků Pod označením lipidy rozumíme skupinu látek značně heterogenních. Obecně lze říct, že se jedná o látky, které lze z tkání a pletiv extrahovat pomocí organických rozpouštědel (např. éter, chloroform, benzen) a ve vodě jsou nerozpustné. Pro naše účely je lze rozdělit na lipidy neutrální, vosky, fosfolipidy a glykolipidy. Kapénky nacházející se v tukových nebo olejových buňkách patří mezi neutrální lipidy. Vosky jsou součástí kutikuly rostlin. Fosfolipidy jsou součástí buněčných membrán a membránových komplexů buněk. Glykolipidy se vyskytují zejména v mozkové kůře a na povrchu buněk. Pokud chceme prokázat lipidy, musíme se při zpracování vzorků vyvarovat použití organických rozpouštědel. Po fixaci ve vodných fixativech (např. 10% formaldehyd) se vzorek krájí na zmrazovacím mikrotomu. Po nakrájení následuje vlastní barvení a obarvené vzorky je nutné uzavírat do vodou ředitelných médií. Nejčastěji se používá glycerin-želatina, levulázové sirupy nebo sirup s arabské gumy. Pro barvení lipidů se používají barviva rozpustná v tucích a nerozpustná ve vodě. Na barvení tuku v potravinách se nejčastěji používají barvení sudanovými barvivy a olejovou červení. Obr. 25 Tuková tkáň, sudanová čerň tukové kuličky (černě) (autoři) Obr. 26 Tuková tkáň, olejová červeň tukové kuličky (oranžově) (autoři) Barvení sudanovými barvivy Je to skupina barviv, patří sem Sudan I, II, III, IV a sudanová čerň. Tato barviva jsou cílená především na neutrální tuky. Přibarvují však i tuky jiné povahy, proto je tato metoda především základní orientační metodou. Výsledkem barvení sudanovou černí je modročerně až černě zbarvený tuk, ostatní struktury jsou barveny do modra, výhodou je to, že obarví i drobné kapénky tuku (obr. 25). Výsledkem barvení Sudanem I IV je červeně zbarvený tuk, oranžově zbarvené ostatní struktury a modře zbarvená jádra. Barvení olejovou červení je dalším barvením na neutrální tuky, olejová červeň podobně jako sudanová čerň obarvuje drobné kapénky tuků. Výsledkem barvení je červenoranžově zbarvený tuk, oranžově zbarvení ostatních struktur a modrá jádra (obr. 26). Barvení celkových polysacharidů Sacharidy jsou hojně zastoupenou látkou v rostlinných pletivech a živočišných tkáních. Histochemickou detekci však nelze stanovovat monosacharidy a oligosacharidy, které se nachází v rozpustné formě. Během zpracovaní vzorků totiž dochází k jejich difuzi do používaných roztoků. V živočišných tkáních se nacházejí převážně jednoduché sacharidy, jejichž detekce není mikroskopickými metodami možná. Ty, které lze detekovat, jsou většinou spojeny s proteiny glykoproteiny. Glykoproteiny mají bílkovinnou složku, která je v převaze a nese kovalentně navázané dvou až šesti článkové oligosacharidy. Jedná 16

18 se zejména o proteiny séra, krevních skupin, sekreční produkty endo a exokrinních žláz a amyloid. Další polysacharidy živočišných tkání jsou glykosaminoglykany (mukopolysacharidy). Jsou tvořeny lineárními řetězci uronových kyselin a aminocukrů. U rostlinných surovin jsou sacharidy zastoupeny ve větší míře. Pro mikroskopickou identifikaci rostlinných pletiv mají rovněž význam zejména polysacharidy škroby, celulóza, hemicelulóza, pektiny aj. Pro identifikaci polysacharidů lze použít tři základní techniky vazbu bazických barviv, oxidační metody nebo aplikaci lektinů. Každý z uvedených postupů může být doplněn buď chemickou blokádou funkčních skupin (acetylace hydroxylů) nebo enzymatickou extrakcí mukosubstance (amyláza, hyaluronidáza, neuraminidáza). Mezi používaná bazická barviva pro identifikaci polysacharidů patří výše zmíněná toluidinová modř, dále také metylénová a alciánová modř. Alciánová modř se používá zejména na průkaz kyselých glykosaminoglykanů, které jsou zbarveny modrozeleně. Aplikace lektinů je principiálně podobná metodám imunohistochemickým. Lektiny jsou látky rostlinného, živočišného, nebo bakteriálního původu, které se selektivně vážou na terminální mono- a oligo- sacharid buněčných glykoproteinů, glykopeptidů a glykosaminoglykanů. Pro samotnou vizualizaci musí být na lektin navázán chromogen. Nejčastěji se používají fluorochromy. Mezi oxidační metody patří metoda využívající PAS reakce (Periodic Acid-Schiff s reagent), která může být úspěšně kombinovaná s jinými barvicími postupy (obr. 27). C B A Obr. 27 Střevo, PAS (dobarveno HE) mukopolysacharidy (růžově) (autoři) Obr. 28 Šunka, PAS-Calleja A kosterní svalovina (zeleně), B kolagenní vazivo (modře), C jádra (červeně) (autoři) Barvení PAS-Calleja Pro diagnostiku jednotlivých surovin v potravinách se hodí nejvíce kombinace PAS-Calleja. Toto barvení využívá oxidační metodu PAS s dobarvením dalších struktur cíleným barvením dle Callejy na průkaz kolagenu. Principem PAS reakce je oxidace 1,2-hydroxylových skupin hexóz, 1-hydroxy-2-amino- 1-hydroxy-2-alkylamino, 1-hydroxy-2-ketoskupin kyselinou. Nejčastěji je používána 1% kyselina jodistá. Oxidací vznikají aldehydy, jejichž přítomnost je prokázána pomocí Schiffova činidla. Pozitivní PAS reakce dává růžově červené až purpurově červené zbarvení. Výsledkem barvení jsou tedy celkové polysacharidy (včetně škrobu) růžově červené až purpurově červené zbarvené. Kolagenní vazivo je barveno modře, jádra jsou červené a svalovina zelená až žlutě zelená (obr. 28). V případě průkazu škrobu nebo glykogenu je vhodné dělat kontrolní řez, který je po dobu 30 minut vystaven působení amylázy nebo diastázy. Působení těchto enzymů dochází k jejich rozštěpení. Kontrolní řez 17

19 má být PAS negativní. V případě jiných polysacharidů, které jsou vůči amyláze rezistentní, je kontrolní řez naopak PAS pozitivní. Barvení škrobů Jodové roztoky Toto barvení je klasickou metodou pro průkaz škrobů. Hlavním limitem použití jodu je jeho rozpustnost ve vodě. Nejčastěji se používá jod rozpuštěný v škrobovém mazu, ale je možné také použít jod v alkoholovém roztoku jodová tinktura (obr. 29). Další možností použití tohoto barvení je barvení v jodových párách, zejména pro potraviny obsahující tepelně opracovaný (želatinizovaný škrob), který má tendenci se rozpouštět ve vodných roztocích jodu. B A B A Obr. 29 Bramborový a kukuřičný škrob, Lugol A bramborový škrob (hnědě), B kukuřičný škrob (světle hnědě) (autoři) Obr. 30 Mouka, trypanová modř A poškozený škrob (modře), B nepoškozený se nebarví (Flint, 1994) Trypanová modř Ve srovnání s jodovými roztoky trypanová modř barví jenom poškozená škrobová zrna. Trypanová modř patří do skupiny azobarviv, které se váží s některými polysacharidy (celulosa, škrob) vodíkovými můstky, kterou usnadňuje podlouhlý tvar molekul barviva. Podstatou barvení je, že poškozená škrobová zrna včetně škrobů želatinizovaných umožní přestup molekul barviva do škrobového zrna a navázání na molekuly amylózy a amylopektinu. Využití barvící metody je tedy vhodné při sledování změn v procesech mletí obilí. Další využití tohoto barvení je také v barvení plísní ať už kulturních nebo patogenních, kde se využívá vazba s celulózou. Poškozený škrob se barví modře, slabě poškozený škrob světle modře a nepoškozený škrob se nebarví (obr. 30). U plísní a celulózy je výsledná barva světle modrá a u lignifikované celulózy tmavě modrá Imunohistochemické metody (IHC) Imunohistochemie se rozvíjela z histochemie, a to zaváděním postupně objevovaných zákonitostí specifické imunologické reakce a s rozvojem její dostupnosti pro běžné laboratoře. Původní histochemie vznikala přibližně od 30. let dvacátého století na hranici histologie a analytické chemie a biochemie. Jejím cílem je identifikovat a lokalizovat chemické látky v místě jejich výskytu v tkáních na úrovni histologické či cytologické. 18

20 Základem pro imunohistochemické techniky byla možnost kovalentní vazby molekul imunoglobulinů s jinými molekulami, což se stalo předmětem výzkumu již ve 30. letech dvacátého století. Do patologické diagnostiky se tyto techniky dostávaly od 50. let a postupně byla zlepšována specifita, senzitivita a dostupnost stále širšího spektra metod, k čemuž napomohl i rozvoj molekulárního, proteinového a genového inženýrství nezbytný pro produkci reagencií potřebné kvality a kvantity. V 70. letech dvacátého století byly připraveny protilátky proti jednotlivým epitopům (antigenní determinantě), tzv. monoklonální protilátky. Do imunohistochemických metod spadají všechny techniky využívající mono- či polyklonální značené protilátky, kterými lokalizujeme a vizualizujeme příslušné tkáňové antigeny. Imunohistochemické metody jsou využívány zejména v medicínských oborech. V potravinářství lze tyto metody použít na průkaz rostlinných alergenů, průkaz nervové tkáně, typizaci svaloviny nebo typizaci kolagenu. Podle intenzity vazby a jejích násobku rozdělujeme imunohistochemické metody na metody přímé a nepřímé. Přímé metody využívají protilátky značené vizualizačním činidlem. Specifická vazba protilátek na antigen se uskuteční i tehdy, jestliže je antigen zabudován nebo tvoří součást organizovaných supramolekulárních struktur, jakými jsou v histologických řezech buňky a jejich různé komponenty včetně buněčných povrchů. Rozmístění označené protilátky se pak hodnotí ve světelném, flurescenčním nebo elektronovém mikroskopu. Podmínkou je, aby antigen byl ve tkáních v dostatečném množství, které umožní jeho detekci. V případě, že je ve tkáních antigenu málo, je vhodnější použít metody nepřímé, které zahrnují znásobení síly signálu vložením dalších stupňů do imunologické reakce. Podle stupně násobení dělíme tyto metody na dvoustupňové a třístupňové. U dvoustupňové metody je v prvním kroku použita neoznačená protilátka specifická proti zvolenému antigenu. Nazýváme ji primární protilátkou. Ve druhém kroku je použita značená protilátka proti protilátce primární (sekundární protilátka) nejčastěji proti Fc fragmentu imunoglobulinů zvířete, které bylo producentem primární protilátky. Třístupňové a vícestupňové metody slouží k ještě většímu zesílení signálu a jsou použity v případě, že množství antigenu v potravině je malé nebo byla snížená jeho antigenicita například z důvodu tepelného opracování, mechanického namáhání nebo působením kyselin či konzervačních látek. U těchto metod je podobně v prvním kroku použita primární protilátka proti prokazovanému antigenu. Ve druhém kroku je použita také neznačená protilátka (sekundární) proti protilátce primární. Sekundární protilátku je nutno přidávat v nadbytku, aby nebyla vazebně vysycena obě její ramena (Fab fragmenty IgG molekuly), což by poskytlo falešně negativní výsledek. Ve třetím kroku použijeme značený komplex. Hlavní částí komplexu je enzym, který v dalších krocích reaguje s barvivem (chromogenem). Z enzymů se používá zejména křenová peroxidáza nebo alkalická fosfatáza. Další součástí komplexu jsou spojovací látky. Může se jednat o protilátku s reaktivitou se sekundární protilátkou nebo je využita specifická aktivita jiných látek jako jsou například avidin a biotin. Právě metody využívající specifické vazby avidinu nebo streptavidinu (produkt bakterií) s biotinem představují v současnosti nejcitlivější imunohistochemické metody. Pro nepřímé imunohistochemické metody je výhodnější k identifikaci cílové součásti fluorescenční mikroskop, z důvodu snadnější kvantifikace výsledků a také vysoká míry detekce. Imunohistochemické metody se používají v potravinách pro lokalizaci látek s antigenními vlastnostmi (specifické proteiny) - součásti svaloviny jako jsou aktin, myosin nebo kolagen, suroviny z mléka (např. syrovátkové bílkoviny v masných výrobcích) nebo z vajec. Touto metodou lze dále identifikovat rostlinné bílkoviny (sójové, pšeničné aj.) na základě výraznějšího zvýraznění pomocí vazby značených specifických protilátek a DAB chromogenem oproti dobarvenému pozadí. Při kombinaci tohoto barevného systému s dalším, např. s BCIP/NBT chromogenem, pak lze metodou dvojího značení souběžně vyšetřovat přítomnost dvou bílkovin během jednoho vyšetření. Imunohistochemická metoda má však 19

Struktura a skladba potravin Magisterský studijní program. Přednáška 4.

Struktura a skladba potravin Magisterský studijní program. Přednáška 4. Struktura a skladba potravin Magisterský studijní program Přednáška 4. Zobrazovací techniky a jejich využití při studiu struktury a skladby potravin. Téma 1. Světelná mikroskopie Přehledné a cílené barvící

Více

Fluorescenční vyšetření rostlinných surovin. 10. cvičení

Fluorescenční vyšetření rostlinných surovin. 10. cvičení Fluorescenční vyšetření rostlinných surovin 10. cvičení Cíl cvičení práce s fluorescenčním mikroskopem detekce vybraných rostlinných surovin Princip nepřímé dvojstupňové IHC s použitím fluorochromu Fluorescenční

Více

Modul IB. Histochemie. CBO Odd. histologie a embryologie. MUDr. Martin Špaček

Modul IB. Histochemie. CBO Odd. histologie a embryologie. MUDr. Martin Špaček Modul IB Histochemie CBO Odd. histologie a embryologie MUDr. Martin Špaček Histochemie Histologická metoda užívaná k průkazu různých látek přímo v tkáních a buňkách Histochemie Katalytická histochemie

Více

Diagnostika amyloidózy z pohledu patologa Látalová P., Flodr P., Tichý M.

Diagnostika amyloidózy z pohledu patologa Látalová P., Flodr P., Tichý M. Diagnostika amyloidózy z pohledu patologa Látalová P., Flodr P., Tichý M. Ústav klinické a molekulární patologie LF UP a FN Olomouc Úvodem -vzácná jednotka i pro patologa Statistika Ústavu klinické a

Více

MIKROSKOPIE JAKO NÁSTROJ STUDIA MIKROORGANISMŮ

MIKROSKOPIE JAKO NÁSTROJ STUDIA MIKROORGANISMŮ Mikroskopické techniky MIKROSKOPIE JAKO NÁSTROJ STUDIA MIKROORGANISMŮ Slouží k vizualizaci mikroorganismů Antoni van Leeuwenhoek (1632-1723) Čočka zvětšující 300x Různé druhy mikroskopů, které se liší

Více

Fluorescenční mikroskopie

Fluorescenční mikroskopie Fluorescenční mikroskopie Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 1 VYUŽITÍ FLUORESCENCE, PŘÍMÁ FLUORESCENCE, PŘÍMÁ A NEPŘÍMA IMUNOFLUORESCENCE, BIOTIN-AVIDINOVÁ METODA IMUNOFLUORESCENCE

Více

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají

Více

Diagnostické metody v analýze potravin. Matej Pospiech, FVHE Brno

Diagnostické metody v analýze potravin. Matej Pospiech, FVHE Brno Diagnostické metody v analýze potravin Matej Pospiech, FVHE Brno Důvody diagnostiky potravin Dodržování legislativních požadavků Vlastní kontrola v provozu Národní legislativa Evropská a mezinárodní legislativa

Více

Metoda Live/Dead aneb využití fluorescenční mikroskopie v bioaugmentační praxi. Juraj Grígel Inovativní sanační technologie ve výzkumu a praxi

Metoda Live/Dead aneb využití fluorescenční mikroskopie v bioaugmentační praxi. Juraj Grígel Inovativní sanační technologie ve výzkumu a praxi Metoda Live/Dead aneb využití fluorescenční mikroskopie v bioaugmentační praxi Juraj Grígel Inovativní sanační technologie ve výzkumu a praxi Co je to vlastně ta fluorescence? Některé látky (fluorofory)

Více

PŘEHLED OBECNÉ HISTOLOGIE

PŘEHLED OBECNÉ HISTOLOGIE PŘEDMLUVA 8 1. ZÁKLADY HISTOLOGICKÉ TECHNIKY 9 1.1 Světelný mikroskop a příprava vzorků pro vyšetření (D. Horký) 9 1.1.1 Světelný mikroskop 9 1.1.2 Zásady správného mikroskopování 10 1.1.3 Nejčastější

Více

Vápník a kostní úlomky

Vápník a kostní úlomky Vápník a kostní úlomky Matej Pospiech Veterinární a farmaceutická univerzita Brno, Ústav vegetabilních potravin mpospiech@vfu.cz Školení pracovníků masného průmyslu, Brno 13.10.2015 Současná hodnotící

Více

Elektronová mikroskopie SEM, TEM, AFM

Elektronová mikroskopie SEM, TEM, AFM Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první

Více

OBSAH 1 ÚVOD... 7. 1.1 Výrobek a materiál... 7 1.2 Přehled a klasifikace materiálů pro výrobu... 8 2 ZDROJE DŘEVA... 13

OBSAH 1 ÚVOD... 7. 1.1 Výrobek a materiál... 7 1.2 Přehled a klasifikace materiálů pro výrobu... 8 2 ZDROJE DŘEVA... 13 OBSAH 1 ÚVOD................................................. 7 1.1 Výrobek a materiál........................................ 7 1.2 Přehled a klasifikace materiálů pro výrobu..................... 8 2

Více

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA OPTIKA ZÁKLADNÍ POJMY Optika a její dělení Světlo jako elektromagnetické vlnění Šíření světla Odraz a lom světla Disperze (rozklad) světla OPTIKA

Více

FLUORESCENČNÍ MIKROSKOP

FLUORESCENČNÍ MIKROSKOP FLUORESCENČNÍ MIKROSKOP na gymnáziu Pierra de Coubertina v Táboře Pavla Trčková, kabinet Biologie, GPdC Tábor Co je fluorescence Fluorescence je jev spočívající v tom, že některé látky (fluorofory) po

Více

Název: POZOROVÁNÍ PLASTIDŮ,VAKUOL, BUNĚČNÉ STĚNY Autor: Paed.Dr.Ludmila Pipková

Název: POZOROVÁNÍ PLASTIDŮ,VAKUOL, BUNĚČNÉ STĚNY Autor: Paed.Dr.Ludmila Pipková Název: POZOROVÁNÍ PLASTIDŮ,VAKUOL, BUNĚČNÉ STĚNY Autor: Paed.Dr.Ludmila Pipková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět: biologie Mezipředmětové vztahy: ekologie Ročník: 2.a 3.

Více

Viková, M. : MIKROSKOPIE II Mikroskopie II M. Viková

Viková, M. : MIKROSKOPIE II Mikroskopie II M. Viková II Mikroskopie II M. Viková LCAM DTM FT TU Liberec, martina.vikova@tul.cz Osvětlovac tlovací soustava I Výsledkem Köhlerova nastavení je rovnoměrné a maximální osvětlení průhledného preparátu, ležícího

Více

Buňka cytologie. Buňka. Autor: Katka www.nasprtej.cz Téma: buňka stavba Ročník: 1.

Buňka cytologie. Buňka. Autor: Katka www.nasprtej.cz Téma: buňka stavba Ročník: 1. Buňka cytologie Buňka - Základní, stavební a funkční jednotka organismu - Je univerzální - Všechny organismy jsou tvořeny z buněk - Nejmenší životaschopná existence - Objev v 17. stol. R. Hooke Tvar: rozmanitý,

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

Střední škola gastronomie, hotelnictví a lesnictví Bzenec náměstí Svobody 318. Profilová část maturitní zkoušky

Střední škola gastronomie, hotelnictví a lesnictví Bzenec náměstí Svobody 318. Profilová část maturitní zkoušky Střední škola gastronomie, hotelnictví a lesnictví Bzenec náměstí Svobody 318 Obor: 29 42 M / 01 Analýza potravin Období: jarní 2015 Profilová část maturitní zkoušky 1. Povinná volitelná zkouška Předmět:

Více

Optika OPTIKA. June 04, 2012. VY_32_INOVACE_113.notebook

Optika OPTIKA. June 04, 2012. VY_32_INOVACE_113.notebook Optika Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

Digitální učební materiál

Digitální učební materiál Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/3.080 Zkvalitnění výuky prostřednictvím ICT III/ Inovace a zkvalitnění výuky prostřednictvím

Více

Ultrazvuková defektoskopie. Vypracoval Jan Janský

Ultrazvuková defektoskopie. Vypracoval Jan Janský Ultrazvuková defektoskopie Vypracoval Jan Janský Základní principy použití vysokých akustických frekvencí pro zjištění vlastností máteriálu a vad typické zařízení: generátor/přijímač pulsů snímač zobrazovací

Více

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 - Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické

Více

Složky potravy a vitamíny

Složky potravy a vitamíny Složky potravy a vitamíny Potrava musí být pestrá a vyvážená. Měla by obsahovat: základní živiny cukry (60%), tuky (25%) a bílkoviny (15%) vodu, minerální látky, vitaminy. Metabolismus: souhrn chemických

Více

Základy světelné mikroskopie

Základy světelné mikroskopie Základy světelné mikroskopie Kotrba, Babůrek, Knejzlík: Návody ke cvičením z biologie, VŠCHT Praha, 2006. zvětšuje max. 2000 max. 1 000 000 cca 0,2 mm stovky nm až desetiny nm rozlišovací mez = nejmenší

Více

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

Oligobiogenní prvky bývají běžnou součástí organismů, ale v těle jich již podstatně méně (do 1%) než prvků makrobiogenních.

Oligobiogenní prvky bývají běžnou součástí organismů, ale v těle jich již podstatně méně (do 1%) než prvků makrobiogenních. 1 (3) CHEMICKÉ SLOŢENÍ ORGANISMŮ Prvky Stejné prvky a sloučeniny se opakují ve všech formách života, protože mají shodné principy stavby těla i metabolismu. Např. chemické děje při dýchání jsou stejné

Více

V organismu se bílkoviny nedají nahradit žádnými jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.

V organismu se bílkoviny nedají nahradit žádnými jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy. BÍLKOVINY Bílkoviny jsou biomakromolekulární látky, které se skládají z velkého počtu aminokyselinových zbytků. Vytvářejí látkový základ života všech organismů. V tkáních vyšších organismů a člověka je

Více

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření hodnoty ph a vodivosti kapalin

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření hodnoty ph a vodivosti kapalin Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření hodnoty ph a vodivosti kapalin Autor: Doc. Ing. Josef Formánek, Ph.D. Podklady k principu měření hodnoty ph a vodivosti

Více

Střední škola gastronomie, hotelnictví a lesnictví Bzenec náměstí Svobody 318. Profilová část maturitní zkoušky

Střední škola gastronomie, hotelnictví a lesnictví Bzenec náměstí Svobody 318. Profilová část maturitní zkoušky Střední škola gastronomie, hotelnictví a lesnictví Bzenec náměstí Svobody 318 Obor: 29 42 M / 01 Analýza potravin Období: jarní 2015 Profilová část maturitní zkoušky 1. Povinná volitelná zkouška Předmět:

Více

BÍLKOVINY. V organismu se nedají nahradit jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.

BÍLKOVINY. V organismu se nedají nahradit jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy. BÍLKOVINY o makromolekulární látky, z velkého počtu AMK zbytků o základ všech organismů o rostliny je vytvářejí z anorganických sloučenin (dusičnanů) o živočichové je musejí přijímat v potravě, v trávicím

Více

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části

Více

Střední škola gastronomie, hotelnictví a lesnictví Bzenec, náměstí Svobody 318. Profilová část maturitní zkoušky

Střední škola gastronomie, hotelnictví a lesnictví Bzenec, náměstí Svobody 318. Profilová část maturitní zkoušky Střední škola gastronomie, hotelnictví a lesnictví Bzenec, náměstí Svobody 318 Obor: 29 42 M / 01 Analýza potravin Třída: AN4A Období: jaro 2013 Profilová část maturitní zkoušky 1. Povinná volitelná zkouška

Více

Mykologická analýza potravin

Mykologická analýza potravin Mykologická analýza potravin a. Souhrn V roce 2010 byl zahájen druhý dvouletý cyklus nově uspořádaného Monitoringu dietární expozice člověka a tím i pozměněného projektu "MYKOMON". Vzhledem k detailnějšímu

Více

Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám

Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám VY_32_INOVACE_ Y_32_INOVACE_TVÚČH1A_0660 _BAR Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám Číslo projektu: CZ.1.07/1.5.00/34.0883 Název projektu: Rozvoj vzdělanosti Číslo šablony:

Více

LIPIDY. Látka lanolin se získává z ovčí vlny. ANO - NE. tekutý lipid s vázanými nenasycenými mastnými kyselinami. olej vystavený postupnému vysychání

LIPIDY. Látka lanolin se získává z ovčí vlny. ANO - NE. tekutý lipid s vázanými nenasycenými mastnými kyselinami. olej vystavený postupnému vysychání LIPIDY autor: Mgr. Hana Sloupová 1. Doplň tvrzení: Lipidy jsou přírodní látky. Patří mezi ně...,... a... Tuky jsou estery... a mastných... kyselin. Nasycené tuky obsahují ve svých molekulách karboxylové

Více

Základní pojmy. Je násobkem zvětšení objektivu a okuláru

Základní pojmy. Je násobkem zvětšení objektivu a okuláru Vznik obrazu v mikroskopu Mikroskop se skládá z mechanické části (podstavec, stojan a stolek s křížovým posunem), osvětlovací části (zdroj světla, kondenzor, clona) a optické části (objektivy a okuláry).

Více

Moderní metody rozpoznávání a zpracování obrazových informací 15

Moderní metody rozpoznávání a zpracování obrazových informací 15 Moderní metody rozpoznávání a zpracování obrazových informací 15 Hodnocení transparentních materiálů pomocí vizualizační techniky Vlastimil Hotař, Ondřej Matúšek Katedra sklářských strojů a robotiky Fakulta

Více

Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Písek

Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Písek Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Písek Pracovní list DUMu v rámci projektu Evropské peníze pro Obchodní akademii Písek", reg. č. CZ.1.07/1.5.00/34.0301, Číslo a název

Více

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY DROBNÝCH KOVOVÝCH OZDOB Z HROBU KULTURY SE ZVONCOVÝMI POHÁRY Z HODONIC METODOU SEM-EDX

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY DROBNÝCH KOVOVÝCH OZDOB Z HROBU KULTURY SE ZVONCOVÝMI POHÁRY Z HODONIC METODOU SEM-EDX / 1 ZPRACOVAL Mgr. Martin Hložek TMB MCK, 2011 ZADAVATEL David Humpola Ústav archeologické památkové péče v Brně Pobočka Znojmo Vídeňská 23 669 02 Znojmo OBSAH Úvod Skanovací elektronová mikroskopie (SEM)

Více

Ukazka knihy z internetoveho knihkupectvi www.kosmas.cz

Ukazka knihy z internetoveho knihkupectvi www.kosmas.cz Ukazka knihy z internetoveho knihkupectvi www.kosmas.cz Tato kniha vznikla díky sponzorským příspěvkům a spolupráci firem: Nikon, Bamed a Biotech. Hlavní sponzor Další sponzoři HISTOPATOLOGICKÝ ATLAS Autorky:

Více

Bezlepkové výrobky. POEX Velké Meziříčí, a.s. Třebíčská 384 594 01 Velké Meziříčí tel.: 566502706 www.poex.cz

Bezlepkové výrobky. POEX Velké Meziříčí, a.s. Třebíčská 384 594 01 Velké Meziříčí tel.: 566502706 www.poex.cz Bezlepkové výrobky POEX Velké Meziříčí, a.s. Třebíčská 384 594 01 Velké Meziříčí tel.: 566502706 www.poex.cz Snídaňové cereálie vhodné také jako rychlá svačina, do školy, snack na cesty, jako alternativa

Více

Falšování potravin. MVDr. Matej Pospiech, Ph.D.

Falšování potravin. MVDr. Matej Pospiech, Ph.D. Falšování potravin MVDr. Matej Pospiech, Ph.D. Mendelova univerzita, 31.10.2013 Obsah přednášky úvod, historie co považujeme za falšování specifika falšování potravin nejčastější způsoby falšování u jednotlivých

Více

Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA)

Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA) Optoelektronika elektro-optické převodníky - LED, laserové diody, LCD Elektro-optické převodníky žárovka - nejzákladnější EO převodník nevhodné pro optiku široké spektrum vlnových délek vhodnost pro EO

Více

Využití a princip fluorescenční mikroskopie

Využití a princip fluorescenční mikroskopie Využití a princip fluorescenční mikroskopie fyzikálně chemický děj Fluorescence typem luminiscence (elektroluminiscence, fotoluminiscence, radioluminiscence a chemiluminiscenci) patří mezi fotoluminiscenční

Více

Inovace profesní přípravy budoucích učitelů chemie

Inovace profesní přípravy budoucích učitelů chemie Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika

ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika ODRAZ A LOM SVĚTLA Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika Odraz světla Vychází z Huygensova principu Zákon odrazu: Úhel odrazu vlnění je roven úhlu dopadu. Obvykle provádíme konstrukci pomocí

Více

Buňka. základní stavební jednotka organismů

Buňka. základní stavební jednotka organismů Buňka základní stavební jednotka organismů Buňka Buňka je základní stavební a funkční jednotka těl organizmů. Toto se netýká virů (z lat. virus jed, je drobný vnitrobuněčný cizopasník nacházející se na

Více

Koření. Vybrané druhy koření a jejich využití, zpracování, jejich mikroskopická struktura a průkaz falšování

Koření. Vybrané druhy koření a jejich využití, zpracování, jejich mikroskopická struktura a průkaz falšování Koření Vybrané druhy koření a jejich využití, zpracování, jejich mikroskopická struktura a průkaz falšování Co je to koření? kořením se rozumí části rostlin jako kořeny, oddenky, kůra, listy, nať, květy,

Více

Základy mikroskopie. Úkoly měření: Použité přístroje a pomůcky: Základní pojmy, teoretický úvod: Úloha č. 10

Základy mikroskopie. Úkoly měření: Použité přístroje a pomůcky: Základní pojmy, teoretický úvod: Úloha č. 10 Úloha č. 10 Základy mikroskopie Úkoly měření: 1. Seznamte se základní obsluhou třech typů laboratorních mikroskopů: - biologického - metalografického - stereoskopického 2. Na výše jmenovaných mikroskopech

Více

DUM VY_52_INOVACE_12CH33

DUM VY_52_INOVACE_12CH33 Základní škola Kaplice, Školní 226 DUM VY_52_INOVACE_12CH33 autor: Kristýna Anna Rolníková období vytvoření: říjen 2011 duben 2012 ročník, pro který je vytvořen: 9. vzdělávací oblast: vzdělávací obor:

Více

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : CHEMIE Ročník: 1.ročník a kvinta Obecná Bezpečnost práce Názvosloví anorganických sloučenin Zná pravidla bezpečnosti práce a dodržuje je.

Více

1. Teorie mikroskopových metod

1. Teorie mikroskopových metod 1. Teorie mikroskopových metod A) Mezi první mikroskopové metody patřilo barvení biologických preparátů vhodnými barvivy, což způsobilo ovlivnění amplitudy světla prošlého preparátem, který pak byl snadno

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má

Více

Veronika Janů Šárka Kopelentová Petr Kučera. Oddělení alergologie a klinické imunologie FNKV Praha

Veronika Janů Šárka Kopelentová Petr Kučera. Oddělení alergologie a klinické imunologie FNKV Praha Veronika Janů Šárka Kopelentová Petr Kučera Oddělení alergologie a klinické imunologie FNKV Praha interakce antigenu s protilátkou probíhá pouze v místech epitopů Jeden antigen může na svém povrchu nést

Více

Přednáška č.14. Optika

Přednáška č.14. Optika Přednáška č.14 Optika Obsah základní pojmy odraz a lom světla disperze polarizace geometrická optika elektromagnetické záření Světlo = elektromagnetické vlnění o vlnové délce 390nm (fialové) až 790nm (červené)

Více

VYUŽITÍ METOD UV-VIS SPEKTROFOTOMETRIE A NIR SPEKTROFOTOMETRIE PŘI ANALÝZE ROSTLINNÝCH PRODUKTŮ

VYUŽITÍ METOD UV-VIS SPEKTROFOTOMETRIE A NIR SPEKTROFOTOMETRIE PŘI ANALÝZE ROSTLINNÝCH PRODUKTŮ VYUŽITÍ METOD UV-VIS SPEKTROFOTOMETRIE A NIR SPEKTROFOTOMETRIE PŘI ANALÝZE ROSTLINNÝCH PRODUKTŮ Martina Ošťádalová a kol. Ústav vegetabilních potravin a rostlinné produkce, Fakulta veterinární hygieny

Více

Pekařství Kovářov. Informace o výrobcích

Pekařství Kovářov. Informace o výrobcích Vydáno v roce 2012 Pekařství Kovářov Informace o výrobcích Zákon o potravinách č. 110/1997 a spousty následujících vyhlášek Pekařství Kovářov 398 55 Kovářov 53 IČO: 691 07 670 1/6 22.3.2012 složení výrobků

Více

Přírodní látky pracovní list

Přírodní látky pracovní list Přírodní látky pracovní list VY_52_INOVACE_199 Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemie Ročník: 9 Přírodní látky pracovní list 1)Doplňte křížovku Tajenkou je název skupiny přírodních

Více

Variace Soustava tělního pokryvu

Variace Soustava tělního pokryvu Variace 1 Soustava tělního pokryvu 21.7.2014 16:11:18 Powered by EduBase BIOLOGIE ČLOVĚKA SOUSTAVA TĚLNÍHO POKRYVU KŮŽE A JEJÍ DERIVÁTY Kožní ústrojí Pokryv těla: Chrání každý organismus před mechanickým

Více

Střední škola obchodu, řemesel a služeb Žamberk. Výukový materiál. zpracovaný v rámci projektu. EU Peníze SŠ

Střední škola obchodu, řemesel a služeb Žamberk. Výukový materiál. zpracovaný v rámci projektu. EU Peníze SŠ Střední škola obchodu, řemesel a služeb Žamberk Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Registrační číslo projektu: CZ.1.07/1.5.00/34.0130 Šablona: III/2 Ověřeno ve výuce dne: 19. 10.

Více

Úkoly. 1 Teoretický úvod. 1.1 Mikroskop

Úkoly. 1 Teoretický úvod. 1.1 Mikroskop Úkoly 1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou. Odhadněte maximální chyby měření. 2. Změřte zvětšení a zorná pole mikroskopu pro

Více

TUKY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 15. 3. 2013. Ročník: devátý

TUKY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 15. 3. 2013. Ročník: devátý TUKY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 15. 3. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí s lipidy. V rámci tohoto

Více

Gramovo barvení bakterií

Gramovo barvení bakterií Předmět: Biologie ŠVP: Prokaryotní organismy Doporučený věk žáků: 16-18 let Doba trvání: 45 minut Specifické cíle: poznat jednu z nejdůležitějších a nejpoužívanějších mikrobiologických technik Seznam pomůcek:

Více

Části postižených tkání či orgánů / záněty, benigní či

Části postižených tkání či orgánů / záněty, benigní či Zdravotnická laboratoř VELAB s.r.o. LP 01 příloha 1: Seznam vyšetření laboratoře Název vyšetření: Cervikovaginální histologické vyšetření a diagnostika PAP Metoda slouží k záchytu prekanceróz a malignity

Více

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY ZLATÝCH A STŘÍBRNÝCH KELTSKÝCH MINCÍ Z BRATISLAVSKÉHO HRADU METODOU SEM-EDX. ZPRACOVAL Martin Hložek

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY ZLATÝCH A STŘÍBRNÝCH KELTSKÝCH MINCÍ Z BRATISLAVSKÉHO HRADU METODOU SEM-EDX. ZPRACOVAL Martin Hložek / 1 ZPRACOVAL Martin Hložek TMB MCK, 2011 ZADAVATEL PhDr. Margaréta Musilová Mestský ústav ochrany pamiatok Uršulínska 9 811 01 Bratislava OBSAH Úvod Skanovací elektronová mikroskopie (SEM) Energiově-disperzní

Více

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Molekulová spektroskopie 1. Chemická vazba, UV/VIS Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická

Více

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu:

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: VY_32_INOVACE_04_BUŇKA 1_P1-2 Číslo projektu: CZ 1.07/1.5.00/34.1077

Více

Techniky detekce a určení velikosti souvislých trhlin

Techniky detekce a určení velikosti souvislých trhlin Techniky detekce a určení velikosti souvislých trhlin Přehled Byl-li podle obecných norem nebo regulačních směrnic detekovány souvislé trhliny na vnitřním povrchu, musí být následně přesně stanoven rozměr.

Více

Polysacharidy příručka pro učitele. Obecné informace:

Polysacharidy příručka pro učitele. Obecné informace: Obecné informace: Polysacharidy příručka pro učitele Téma Polysacharidy se probírá v rozsahu jedné vyučovací hodiny. Téma je možné rozšířit o žákovské referáty na téma Výroba papíru nebo Zásady racionálního

Více

VY_52_Inovace_242 Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemie Ročník: 8, 9 Projekt EU peníze školám Operačního programu Vzdělávání

VY_52_Inovace_242 Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemie Ročník: 8, 9 Projekt EU peníze školám Operačního programu Vzdělávání Sacharidy VY_52_Inovace_242 Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemie Ročník: 8, 9 Projekt EU peníze školám Operačního programu Vzdělávání pro konkurenceschopnost Sacharidy název z řeckého

Více

Číslo projektu: CZ.1.07/1.5.00/34.0290. Ročník: 1.

Číslo projektu: CZ.1.07/1.5.00/34.0290. Ročník: 1. Zlepšení podmínek pro vzdělávání na středních školách Operačního programu Vzdělávání pro konkurenceschopnost Název a adresa školy: Integrovaná střední škola Cheb, Obrněné brigády 6, 350 11 Cheb Číslo projektu:

Více

Stavba dřeva. Chemické složení dřeva. Ústav nauky o dřevě

Stavba dřeva. Chemické složení dřeva. Ústav nauky o dřevě Stavba dřeva Chemické složení dřeva Ústav nauky o dřevě 2007/2008 1 Definice dřeva z chemického hlediska Dřevo - složitý komplex chemických látek, především biopolymerů - chemické složení submikroskopická

Více

řez s příchutí ananasu Hmotnost: Název potraviny:

řez s příchutí ananasu Hmotnost: Název potraviny: Název potraviny: řez s příchutí ananasu Hmotnost: 90g Složení potraviny: jedlý tuk rostlinný vícedruhový (olej rostlinný (kokosový, řepkový, 28,84 palmový),, emulgátory E322, E471, E475, sůl, konzervant

Více

M I K R O S K O P I E

M I K R O S K O P I E Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Název školy: Střední zdravotnická škola a Obchodní akademie, Rumburk, příspěvková organizace Registrační číslo projektu: CZ.1.07/1.5.00/34.0649

Více

Kuřecí lázeňský salám. 48 hodin. Kuřecí prsní šunka. Výrobce: Masokombinát Plzeň s.r.o. A-PDF Merger DEMO : Purchase from www.a-pdf.

Kuřecí lázeňský salám. 48 hodin. Kuřecí prsní šunka. Výrobce: Masokombinát Plzeň s.r.o. A-PDF Merger DEMO : Purchase from www.a-pdf. A-PDF Merger DEMO : Purchase from www.a-pdf.com to Podnikatelská remove the watermark 1094/15, 301 00, Plzeň KÓD NÁZEV VÝROBKU SLOŽENÍ, druh výrobku/skupina, alergologické informace, obsah tuku, soli,

Více

EXTRAKCE, CHROMATOGRAFICKÉ DĚLENÍ (C18, TLC) A STANOVENÍ LISTOVÝCH BARVIV

EXTRAKCE, CHROMATOGRAFICKÉ DĚLENÍ (C18, TLC) A STANOVENÍ LISTOVÝCH BARVIV Úloha č. 7 Extrakce a chromatografické dělení (C18 a TLC) a stanovení listových barviv -1 - EXTRAKCE, CHROMATOGRAFICKÉ DĚLENÍ (C18, TLC) A STANOVENÍ LISTOVÝCH BARVIV LISTOVÁ BARVIVA A JEJICH FYZIOLOGICKÝ

Více

Optika. Zápisy do sešitu

Optika. Zápisy do sešitu Optika Zápisy do sešitu Světelné zdroje. Šíření světla. 1/3 Světelné zdroje - bodové - plošné Optická prostředí - průhledné (sklo, vzduch) - průsvitné (matné sklo) - neprůsvitné (nešíří se světlo) - čirá

Více

Vzdělávací materiál. vytvořený v projektu OP VK. Anotace. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu:

Vzdělávací materiál. vytvořený v projektu OP VK. Anotace. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

Charakteristika metody. Základní vybavení OA. Fáze analýzy obrazu. Analýza objektů. Srovnání senzorické a obrazové analýzy. Výhody a nevýhody AO

Charakteristika metody. Základní vybavení OA. Fáze analýzy obrazu. Analýza objektů. Srovnání senzorické a obrazové analýzy. Výhody a nevýhody AO Charakteristika metody Základní vybavení OA Fáze analýzy obrazu Analýza objektů Srovnání senzorické a obrazové analýzy Výhody a nevýhody AO Využití v potravinářské praxi Případové studie první použití

Více

Vlnové vlastnosti světla. Člověk a příroda Fyzika

Vlnové vlastnosti světla. Člověk a příroda Fyzika Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická

Více

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro

Více

Druhy a složení potravin

Druhy a složení potravin Druhy a složení potravin Přednáška 11 Doc. MVDr. Bohuslava Tremlová, Ph.D. Magisterský studijní program Veterinární hygiena a ekologie Obsah přednášky: Kvalita potravin - autenticita potravin, náhražky

Více

METALOGRAFIE I. 1. Úvod

METALOGRAFIE I. 1. Úvod METALOGRAFIE I 1. Úvod Metalografie je nauka, která pojednává o vnitřní stavbě kovů a slitin. Jejím cílem je zviditelnění struktury materiálu a následné studium pomocí světelného či elektronového mikroskopu.

Více

Principy a instrumentace

Principy a instrumentace Průtoková cytometrie Principy a instrumentace Ing. Antonín Hlaváček Úvod Průtoková cytometrie je moderní laboratorní metoda měření a analýza fyzikálních -chemických vlastností buňky během průchodu laserovým

Více

Renáta Kenšová. Název: Školitel: Datum: 24. 10. 2014

Renáta Kenšová. Název: Školitel: Datum: 24. 10. 2014 Název: Školitel: Sledování distribuce zinečnatých iontů v kuřecím zárodku za využití moderních technik Monitoring the distribution of zinc ions in chicken embryo using modern techniques Renáta Kenšová

Více

Sedláček Tibor SELGEN, a.s. ŠS Stupice, Stupice 24, Sibřina 25084 laborator@selgen.cz. Kvalita pšenice

Sedláček Tibor SELGEN, a.s. ŠS Stupice, Stupice 24, Sibřina 25084 laborator@selgen.cz. Kvalita pšenice Sedláček Tibor SELGEN, a.s. ŠS Stupice, Stupice 24, Sibřina 25084 laborator@selgen.cz Kvalita pšenice Kvalitou suroviny obecně rozumíme vhodnost pro technologické zpracování při výrobě finálního produktu.

Více

Světlo 1) Světlo patří mezi elektromagnetické vlnění (jako rádiový signál, Tv signál) elmg. vlnění = elmg. záření

Světlo 1) Světlo patří mezi elektromagnetické vlnění (jako rádiový signál, Tv signál) elmg. vlnění = elmg. záření OPTIKA = část fyziky, která se zabývá světlem Studuje zejména: vznik světla vlastnosti světla šíření světla opt. přístroje (opt. soustavami) Otto Wichterle (gelové kontaktní čočky) Světlo 1) Světlo patří

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Geotechnický monitoring učební texty, přednášky Způsoby monitoringu doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního oboru Geotechnika CZ.1.07/2.2.00/28.0009.

Více

Energetický metabolizmus buňky

Energetický metabolizmus buňky Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie

Více

Zdroje optického záření

Zdroje optického záření Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon

Více

SVĚTLO A TMA ROZKLAD A MÍCHÁNÍ BAREV

SVĚTLO A TMA ROZKLAD A MÍCHÁNÍ BAREV SVĚTLO A TMA ROZKLAD A MÍCHÁNÍ BAREV Světlo vypadá jako bezbarvé, ale ve skutečnosti je směsí červené, žluté, zelené, modré, indigové modři a fialové barvy. Jednoduchými pokusy můžeme světlo rozkládat

Více

Stručný úvod do spektroskopie

Stručný úvod do spektroskopie Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.18 Dřeviny Kapitola 9 Submikroskopická stavba

Více

Název výrobku ( případně vžitý název) : Výrobce - název a adresa: Složení výrobku

Název výrobku ( případně vžitý název) : Výrobce - název a adresa: Složení výrobku Šumavské párky skop. střevo EAN/obj.číslo 10101 vepřové maso 34%, hovězí maso 10%, vepřové sádlo, voda, vepřové kůže, sója, solící směs ( jedlá sůl, konzervant E250, dextróza), bramborový škrob, stabilizátor

Více

Stanovení koncentrace (kvantifikace) proteinů

Stanovení koncentrace (kvantifikace) proteinů Stanovení koncentrace (kvantifikace) proteinů Bioanalytické metody Prof. RNDr. Pavel Peč, CSc. Úvod Kritéria výběru metod stanovení koncentrace proteinů jsou založena na možnostech pro vlastní analýzu,

Více

Základy mikroskopování

Základy mikroskopování Gymnázium a Střední odborná škola pedagogická, Čáslav, Masarykova 248 M o d e r n í b i o l o g i e reg. č.: CZ.1.07/1.1.32/02.0048 TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM

Více