Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Rozměr: px
Začít zobrazení ze stránky:

Download "Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově"

Transkript

1 Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_4_Mechanická práce a energie Ing. Jakub Ulmann

2 4 Mechanická práce a energie 4.1 Mechanická práce 4.2 Výkon a účinnost 4.3 Energie 4.4 Polohová energie 4.5 Kinetická energie 4.6 Mechanická energie

3 4 Mechanická práce a energie 4.1 Mechanická práce Práce v běžném vnímání může být různorodá. Lidé srovnávají duševní a fyzickou práci Fyzika je přírodní věda (snaží se být exaktní) zavádí práci jako objektivní veličinu práce musí být spojená s viditelnou změnou stavu těles apod. Práce se značí W (od anglického slova work) a měří s v joulech - 1 J.

4 Př. 1: Rozhodni, zda se v následujících případech koná práce: a) Po podlaze tlačíme skříň. b) Zvedáme batoh. c) Držíme kýbl plný vody. d) Kulička se pohybuje rovnoměrně bez tření. e) Roztáčí se kotouč cirkulárky. f) Měsíc se rovnoměrně otáčí kolem Země. g) Automobil zrychluje. Co mají všechny situace, při kterých se koná práce, společného?

5 Jednotka: [W] = J = N m W F s Př. 2: Popiš, jak předvedeš práci 1 J. Př. 3: Vypočti práci, kterou vykonáš při zvednutí kýble s vodou (hmotnost dohromady je 7 kg) do výšky 75 cm nad zemí.

6 Př. 4: Dělník tlačí po vodorovných kolejích vozík o hmotnosti 800 kg. Jakou práci vykoná na dráze 25 m, je-li součinitel tření 0,01? Př. 5: Určete práci, kterou vykoná při tažení saní psí spřežení. K tažení saní je nutná síla 250 N, psi potáhnou saně rychlostí 10 km/h dvě hodiny. Postroje psího spřežení jsou k saním zapojeny vodorovně. Př. 6: Kulička se pohybuje rovnoměrně po hladkém povrchu bez tření. Které síly na ni působí a proč je nebereme v úvahu při výpočtu práce? Znázorněte.

7 Síly, které jsou kolmé na dráhu tělesa, nekonají žádnou práci. Zatím jsme nijak nezohlednili fakt, že síla i posunutí jsou veličiny vektorové. Přesněji platí: Práce je dána vztahem W F scos kde α je úhel mezi trajektorií tělesa a působící silou. cos 90 = 0 síly kolmé na trajektorii práci nekonají Např. Gravitační síla Země na Měsíc Jakou mechanickou práci vykonáme, táhneme-li po vodorovné rovině vozík do vzdálenosti 100 m, přičemž na něj působíme silou o velikosti 20 N? Řešte pro případy, kdy síla působící na vozík svírá se směrem trajektorie úhel a) 0, b) 30, c) 60.

8 Př. 7: Při přemístění bedny do vzdálenosti 30 m, jsi vykonal práci J. Jakou silou jsi musel těleso tahat, jestliže síla, kterou jsi bednu táhl: a) měla směr posunutí tělesa, b) svírala s posunutím tělesa úhel o velikosti 30? Př. 8: Stěhovák tlačí po vodorovné rovině bednu. Na bednu působí také třecí síla. Jaké je znaménko práce, kterou koná tato síla?

9 Př. 9: Letí na Tebe míč a Ty ho chytíš. Jaké je znaménko práce, kterou konal během chytání míč? Jaké je znaménko práce, kterou jsi konal ty?

10 Př. 10: Prodloužení nebo stlačení pružiny je přímo úměrné síle, která na ni působí. Jakou práci vykonáme, prodloužímeli pružinu o 5 cm z nulové síly na konečnou sílu 20 N. F Práci můžeme vyjádřit graficky jako plochu pod čarou... F W F s s

11 Př. 11: Urči práci, kterou vykoná gravitační síla během prvních tří sekund pádu parašutisty o hmotnosti 90 kg Jakou mechanickou práci vykonáme, jestliže zvedáme závaží o hmotnosti 5 kg do výšky 2 m a) rovnoměrným pohybem, b) se zrychlením 2 m s 2? Po vodorovné trati se rozjíždí vlak se zrychlením 0,5 m s 2. Jakou práci vykoná lokomotiva o tažné síle 40 kn za dobu 1 min? Odporové síly neuvažujte. Fyzika úlohy na straně 105. Sbírka úloh úlohy až

12 4.2 Výkon a účinnost Př. 1: Při výběru zahradního čerpadla mohl Petr vybírat ze tří čerpadel. První čerpadlo vyčerpá za 1 sekundu 3,5 l vody, druhé čerpadlo vyčerpá za minutu 200 litrů vody a třetí vyčerpá 1 m 3 za pět minut. Které z čerpadel je nejvýhodnější a má největší výkon, pokud se všechny údaje vztahují k čerpání vody ze stejné hloubky? Porovnáme tím, že sjednotíme na stejné jednotky:

13 Výkonnost zařízení se udává pomocí výkonu P. Je to množství práce za určitý čas. Jednotkou výkonu je 1 watt. P W t Podobně jako u rychlosti můžeme zjistit okamžitý výkon: P W t Př. 2: Motor výtahu zvedne náklad o hmotnosti 240 kg do výšky 36 m za dobu 90 s. Jaký je jeho průměrný výkon?

14 Př. 3: Vypočti kolik Joulů je 1 kwh jednotka práce, která se používá při měření spotřeby elektrického proudu. Do jaké výšky by Tě vyzvedl výtah, kdyby měl vykonat stejně velkou práci?

15 Př. 4: Motor auta vyvíjí při rychlosti 130 km/h tažnou sílu 500 N. Jaký je jeho výkon?

16 Všechny přístroje mají jednu zásadní vadu: pouze část energie, kterou jim dodáváme dovedou přeměnit v užitečnou práci. Porovnáváme přístroje i podle velikosti ztrát. Rozlišujeme: P - užitečný výkon (výkon) = výkon, kvůli kterému je přístroj konstruován (u auta mechanický výkon, u žárovky vyzářený výkon, ) P 0 - příkon = výkon odebraný ze zdroje energie (u auta výkon obsažený v palivu, u žárovky elektrický příkon, ) Účinnost přístroje je dána poměrem výkonu k příkonu. P P 0 řecké písmeno eta, bezrozměrná jednotka

17 Často se udává v procentech. Výsledek vynásobíme 100. U reálných zařízení je vždy menší než 1 (menší než 100 %). Př. 6: Na ohřátí 1,5 litru vody ze 7 C na 100 C je třeba J. Jak dlouho bude trvat uvaření čaje v konvici o příkonu W a účinnosti 80 %? Př. 7: Jaký příkon musí mít elektromotor čerpadla, které vyčerpá za 1 min vodu a objemu 1 hl ze studny hluboké 10 m?

18 Př. 8: Odhadni výkon, který je člověk schopen podávat: a) chvilkově (například po dobu půl minuty), b) trvale (například po dobu půl hodiny). Navrhni způsoby, jak odhadované veličiny alespoň přibližně změřit Elektromotor jeřábu o příkonu 20 kw dopravuje náklad o hmotnosti 800 kg stálou rychlostí 2 m s 1. Určete účinnost zařízení Elektromotor o příkonu 10 kw pracuje s účinností 90 %. Jakou mechanickou práci vykoná za 6 hodin? Práci počítejte v kwh.

19 4.3 Energie Př. 1: Na stole je položena kulička. Jak můžeme této kuličce dodat energii?

20 4.4 Potenciální energie Tento druh energie souvisí s polohou, nazývá se proto polohová (potenciální - index p) energie. Udává se v Joulech. Př. 1: Najdi veličiny, na kterých závisí velikost potenciální energie předmětů v gravitačním poli Země a Měsíce. Porovnáme tuto energii s prací, kterou může díky pádu z výšky h vykonat gravitační síla: Podobně práce, kterou musíme vykonat, abychom zvedli těleso do výšky h.

21 Př. 2: Stavební výtah zvedl do výšky cihly o hmotnosti 150 kg. Cihly tak získaly potenciální energii J. Do jaké výšky výtah cihly zvedl? Jakou práci výtah při zvedání cihel vykonal? Př. 3: Ve třídě, jejíž podlaha se nachází 8 m nad zemí, zvedl učitel ze stolu vysokého 80 cm míč o hmotnosti 350 g do výšky 60 cm nad stůl. Urči potenciální energii míče. Potenciální energie tělesa se vždy vztahuje ke dvěma bodům - poloze tělesa a místu, kde bychom potenciální energii považovali za nulovou (místo s nulovou hladinou potenciální energie).

22 Př. 4: Učebna má strop ve výšce 350 cm. Učitel vysoký 181 cm zvedl do výšky 160 cm nad podlahou třídnici o hmotnosti 150 g. Urči potenciální energii třídnice, pokud se hladina nulové potenciální energie nachází: a) na úrovni podlahy, b) na stole vysokém 75 cm, c) ve výšce 181 cm nad podlahou, d) ve výšce stropu. Vysvětli význam znamének u jednotlivých výsledků.

23 Př. 5: Z výšky 30 cm nad stolem vysokým 75 cm spadne na zem kulička o hmotnosti 100 g. Urči její potenciální energii na počátku a na konci pádu. Urči změnu její potenciální energie během pádu. Za hladinu nulové potenciální energie považuj podlahu. Př. 6: Z výšky 30 cm nad stolem vysokým 75 cm spadne na zem kulička o hmotnosti 100 g. Urči její potenciální energii na počátku a na konci pádu. Urči změnu její potenciální energie během pádu. Za hladinu nulové potenciální energie považuj desku stolu.

24 Př. 7: Těleso o hmotnosti 10 kg je puštěno z výšky 2 m a zaryje se do hloubky 2,3 cm. Vypočtěte průměrný odpor půdy (sílu, kterou půda brzdí těleso). Fyzika úlohy na straně Sbírka úloh úlohy až 2.202,208.

25 4.5 Kinetická energie Energii, kterou mají všechny pohybující se předměty nazýváme pohybovou energií (kinetickou - index k). Př. 1: Odhadni, na kterých veličinách závisí množství kinetické energie, kterou má pohybující se předmět a navrhni vzorec pro její výpočet.

26 Odvodíme vzorec pro kinetickou energii pro těleso, které zrychluje díky působení gravitační síly. Upuštěná křída padá k zemi (odpor vzduchu zanedbáváme). F g - gravitační síla Země je rovnoběžná s posunutím W = F g s Kinetická energie krabičky se při padání zvětší z nuly na maximální hodnotu (při největší rychlosti). Změna kinetické energie tělesa se rovná práci, kterou vykoná výslednice působících sil: ΔE k = W Spočteme práci, kterou vykoná gravitační síla při pádu křídy, a tím získáme velikost kinetické energie: E k 1 W F s mg gt 2 g 2 2 m gt mv

27 Odvozený vztah platí obecně. Kinetická energie hmotného bodu o hmotnosti m, který se pohybuje rychlostí o velikosti v, je dána vztahem: Ek 1 mv 2 2 Př. 5: Urči kinetickou energii: a) chodce o hmotnosti 75 kg jdoucího rychlostí 5 km/h, b) auta o hmotnosti 1,6 t jedoucího rychlostí 130 km/h, c) mouchy o hmotnosti 0,1 g letící rychlostí 8 km/h.

28 Př. 6: Urči kinetickou energie prázdné pivní láhve vyhozené z okna vlaku jedoucího rychlostí 90 km/h vzhledem: a) k vlaku b) ke kolejím c) k vlaku, jedoucímu stejnou rychlostí v protisměru. Rychlost, kterou cestující láhev vyhodil, považuj vzhledem k rychlostem vlaku za zanedbatelně malou. Hmotnost prázdné pivní láhve je 340 g. Fyzika úlohy na straně Sbírka úloh úlohy až

29 4.6 Mechanická energie Součet kinetické a potenciální energie tvoří celkovou mechanickou energii tělesa. E E k E p Př. 1: Kámen o hmotnosti 5 kg volně pustíme z věže vysoké 45 m. Urči potenciální, kinetickou a mechanickou energii kamene: a) v okamžiku vypuštění, b) po 2 s pádu, c) po 3 s pádu. Za hladinu nulové potenciální energie považuj patu věže.

30 Zákon zachování mechanické energie: Při všech mechanických dějích se zanedbatelným působením odporových sil (tření, odpor vzduchu apod.) se může měnit kinetická energie tělesa v potenciální a naopak, jejich součet však zůstává konstantní. E E k E p konst. Př. 2: Kámen o hmotnosti 5 kg volně pustíme z věže vysoké 20 m. Popiš, jak se v průběhu pádu mění jeho potenciální a kinetická energie. Která síla změny obou druhů energií způsobuje? Odpor vzduchu zanedbej.

31 Př. 3: Jak by skákal míček volně puštěný na podlahu podle zákona zachování mechanické energie. Př. 4: Zakreslete a popište kvalitativně, jak se mění energie snowboardisty na U rampě.

32 Na co je zákon zachování mechanické energie dobrý? Nemusíme se zajímat o to, jak děj probíhal, můžeme porovnávat dvě různé situace. Př. 5: Urči rychlost, kterou dopadne na zem předmět padající z výšky 0,5 m. Odpor vzduchu zanedbej. Př. 6: Jakou rychlostí by se pohyboval cyklista, který sjel z kopce vysokého 100 m a zanedbáme všechny odporové síly. Hmotnost cyklisty i s kolem je 100 kg. Fyzika úlohy na straně 113 a 115 Sbírka úloh úlohy 2.203,204, 209 a 210.

33 Autor prezentace a ilustrací: Ing. Jakub Ulmann Fotografie použité v prezentaci: Na snímku 1: Ing. Jakub Ulmann Použitá literatura a zdroje: [1] RNDr. Milan Bednařík, CSc., doc. RNDr. Miroslava Široká, CSc.: Fyzika pro gymnázia - Mechanika, Prometheus, Praha 2007 [2] Doc. RNDr. Oldřich Lepil, CSc., RNDr. Milan Bednařík, CSc., doc. RNDr. Miroslava Široká, CSc.: Fyzika Sbírka úloh pro střední školy, Prometheus, Praha 2010 [3] Mgr. Jaroslav Reichl: Klíč k fyzice, Albatros, Praha 2005 [4] Mgr. Jaroslav Reichl, [5] Mgr. Martin Krynický,

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_2_Kinematika hmotného bodu Ing. Jakub Ulmann 2 Kinematika hmotného bodu Nejstarším odvětvím fyziky,

Více

PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika PRÁCE, VÝKON, ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Mechanická práce Závisí na velikosti síly, kterou působíme na těleso, a na dráze, po které těleso posuneme Pokud má síla stejný

Více

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,

Více

Digitální učební materiál

Digitální učební materiál Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Ze vztahu pro mechanickou práci vyjádřete fyzikální rozměr odvozené jednotky J (joule).

Ze vztahu pro mechanickou práci vyjádřete fyzikální rozměr odvozené jednotky J (joule). Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MECHANIKA PRÁCE A ENEGRIE Teorie Uveďte tři konkrétní

Více

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? MECHANICKÁ PRÁCE 1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? l = s = 6 cm = 6 10 2 m F = 120 N W =? (J) W = F. s W = 6 10 2 120 = 7,2 W = 7,2 J

Více

(2) 2 b. (2) Řešení. 4. Platí: m = Ep

(2) 2 b. (2) Řešení. 4. Platí: m = Ep (1) 1. Zaveďte slovy fyzikální veličinu účinnost 2. Vyjádřete 1 Joule v základních jednotkách SI. 3. Těleso přemístíme do vzdálenosti 8,1 m, přičemž na ně působíme silou o velikosti 158 N. Jakou práci

Více

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie PRÁCE A ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Práce Pokud síla vyvolává pohyb Fyzikální veličina ( odvozená ) značka: W základní jednotka: Joule ( J ) Vztah pro výpočet práce: W = F s Práce

Více

CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz. III/ 2- Inovace a zkvalitnění výuky prostřednictvím ICT

CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz. III/ 2- Inovace a zkvalitnění výuky prostřednictvím ICT Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 8. října 707, příspěvková organizace CZ.1.07/1.5.00/34.0880 Digitální

Více

7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i.

7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i. Newtonovy pohybové zákony 1. Síla 60 N uděluje tělesu zrychlení 0,8 m s-2. Jak velká síla udělí témuž tělesu zrychlení 2 m s-2? BI5147 150 N 2. Těleso o hmotnosti 200 g, které bylo na začátku v klidu,

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007 TEST Z FYZIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-F-2006-01 1. Převeďte 37 mm 3 na m 3. a) 37 10-9 m 3 b) 37 10-6 m 3 c) 37 10 9 m 3 d) 37 10 3 m 3 e) 37 10-3 m 3 2. Voda v řece proudí rychlostí 4 m/s. Kolmo

Více

Přípravný kurz z fyziky na DFJP UPa

Přípravný kurz z fyziky na DFJP UPa Přípravný kurz z fyziky na DFJP UPa 26. 28.8.2015 RNDr. Jan Zajíc, CSc. ÚAFM FChT UPa Pohyby rovnoměrné 1. Člun pluje v řece po proudu z bodu A do bodu B rychlostí 30 km.h 1. Při zpáteční cestě z bodu

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ_33 Jméno autora: Třída/ročník: Mgr. Alena

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Česká Lípa, 28. října 2707, příspěvková organizace. CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz

Česká Lípa, 28. října 2707, příspěvková organizace. CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE

Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE 1 Rozhodni a zdůvodni, zda koná práci člověk, který a) vynese tašku do prvního patra, b) drží činku nad hlavou, c) drží tašku s nákupem na zastávce autobusu, d)

Více

Úlohy 1. kola 54. ročníku Fyzikální olympiády Databáze pro kategorie E a F

Úlohy 1. kola 54. ročníku Fyzikální olympiády Databáze pro kategorie E a F Úlohy 1. kola 54. ročníku Fyzikální olympiády Databáze pro kategorie E a F 1. Sjezdové lyžování Závodní dráha pro sjezdové lyžování má délku 1 800 m a výškový rozdíl mezi startem a cílem je 600 m. Nahradíme

Více

POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ

POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ Předmět: Ročník: Vytořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 9. 9. 01 Náze zpracoaného celku: POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ Jde o pohyby těles blízkosti porchu

Více

II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO

II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO 2.1 Vnitřní energie tělesa a) celková energie (termodynamické) soustavy E tvořena kinetickou energií E k jejího makroskopického pohybu jako celku potenciální energií

Více

2. Mechanika - kinematika

2. Mechanika - kinematika . Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu

Více

4. Práce, výkon, energie a vrhy

4. Práce, výkon, energie a vrhy 4. Práce, výkon, energie a vrhy 4. Práce Těleso koná práci, jestliže působí silou na jiné těleso a posune jej po určité dráze ve směru síly. Příklad: traktor táhne přívěs, jeřáb zvedá panel Kdy se práce

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

Příklady: 7., 8. Práce a energie

Příklady: 7., 8. Práce a energie Příklady: 7., 8. Práce a energie 1. Dělník tlačí bednu o hmotnosti m = 25, 0 kg vzhůru po dokonale hladké nakloněné rovině o úhlu sklonu α = 25. Působí na ni při tom stálou silou F o velikosti F = 209

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_5_Stacionární magnetické pole

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_5_Stacionární magnetické pole Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_5_Stacionární magnetické pole Ing. Jakub Ulmann 5 Stacionární magnetické pole 5.1 Magnetické pole kolem

Více

Dynamika hmotného bodu

Dynamika hmotného bodu Mechanika příklady pro samostudium Dynamika hmotného bodu Příklad 1: Určete konstantní sílu F, nutnou pro zrychlení automobilu o hmotnosti 1000 kg z klidu na rychlost 20 m/s během 10s. Dáno: m = 1000 kg,

Více

Pokyny k řešení didaktického testu - Dynamika

Pokyny k řešení didaktického testu - Dynamika Dynamika hmotného bodu 20 Pokyny k řešení didaktického testu - Dynamika 1. Test obsahuje 20 otázek, které jsou rozděleny do několika skupin. Skupiny jsou označeny římskými číslicemi. Úvodní informace se

Více

Úlohy pro 52. ročník fyzikální olympiády, kategorie EF

Úlohy pro 52. ročník fyzikální olympiády, kategorie EF FO52EF1: Dva cyklisté Dva cyklisté se pohybují po uzavřené závodní trase o délce 1 200 m tak, že Lenka ujede jedno kolo za dobu 120 s, Petr za 100 s. Při tréninku mohou vyjet buď stejným směrem, nebo směry

Více

Termika. Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději.

Termika. Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději. Termika Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději. 1. Vnitřní energie Brownův pohyb a difúze látek prokazují, že částice látek jsou v neustálém neuspořádaném pohybu. Proto mají kinetickou

Více

Práce. Práce se značí:

Práce. Práce se značí: Práce Z fyzikálního hlediska konáme práci, jestliže působíme určitou silou po nějaké dráze, tj. jestliže působíme silou na těleso a způsobíme tím jeho pohyb. F Práce se značí: Jednotka: W J (joule) Jestliže

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

Název DUM: Polohová energie v příkladech

Název DUM: Polohová energie v příkladech Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Polohová energie

Více

F - Dynamika pro studijní obory

F - Dynamika pro studijní obory F - Dynamika pro studijní obory Určeno jako učební text pro studenty dálkového studia a jako shrnující a doplňkový text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven

Více

Mechanická práce, výkon a energie pro učební obory

Mechanická práce, výkon a energie pro učební obory Variace 1 Mechanická práce, výkon a energie pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1.

Více

Fyzikální veličiny. Převádění jednotek

Fyzikální veličiny. Převádění jednotek Fyzikální veličiny Vlastnosti těles, které můžeme měřit nebo porovnávat nazýváme fyzikální veličiny. Značka fyzikální veličiny je písmeno, kterým se název fyzikální veličiny nahradí pro zjednodušení zápisu.

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově. 07_3_Elektrický proud v polovodičích

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově. 07_3_Elektrický proud v polovodičích Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_3_Elektrický proud v polovodičích Ing. Jakub Ulmann 3 Polovodiče Př. 1: Co je to? Př. 2: Co je to? Mikroprocesor

Více

Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium

Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium V řešení číslujte úlohy tak, jak jsou číslovány v zadání. U všech úloh uveďte stručné zdůvodnění. Vyřešené úlohy zašlete elektronicky

Více

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z 5. Práce a energie 5.1. Základní poznatky Práce W jestliže se hmotný bod pohybuje po trajektorii mezi body (1) a (), je práce definována křivkovým integrálem W = () () () F dr = Fx dx + Fy dy + (1) r r

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454. Název DUM: Výkon v příkladech

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454. Název DUM: Výkon v příkladech Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Výkon v příkladech

Více

Témata pro přípravu k praktické maturitní zkoušce z odborných předmětů obor strojírenství, zaměření počítačová grafika

Témata pro přípravu k praktické maturitní zkoušce z odborných předmětů obor strojírenství, zaměření počítačová grafika Témata pro přípravu k praktické maturitní zkoušce z odborných předmětů obor strojírenství, zaměření počítačová grafika Práce budou provedeny na PC pomocí CAD, CAM, Word a vytištěny. Součástí práce může

Více

POHYBY TĚLES / GRAF ZÁVISLOSTI DRÁHY NA ČASE - PŘÍKLADY

POHYBY TĚLES / GRAF ZÁVISLOSTI DRÁHY NA ČASE - PŘÍKLADY POHYBY TĚLES / GRAF ZÁVISLOSTI DRÁHY NA ČASE - PŘÍKLADY foto: zdroj www.google.cz foto: zdroj www.google.cz foto: zdroj www.google.cz Na obrázku je graf závislosti dráhy tělesa na čase. Odpověz na otázky:

Více

Datum, období vytvoření:

Datum, období vytvoření: Identifikátor materiálu: EU-OPVK-ICT2/3/1/14 Datum, období vytvoření: říjen 2013 Vzdělávací oblast : Člověk a příroda Vzdělávací obor, tematický okruh: Elektrická práce, energie a výkon Předmět: Fyzika

Více

HMOTNÝ BOD, POHYB, POLOHA, TRAJEKTORIE, DRÁHA, RYCHLOST

HMOTNÝ BOD, POHYB, POLOHA, TRAJEKTORIE, DRÁHA, RYCHLOST Škola: Autor: Šablona: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek VY_32_INOVACE_MGV_F_SS_1S1_D02_Z_MECH_Hmotny_bod_r ychlost_pl Člověk a příroda Fyzika Mechanika

Více

Práce, výkon, energie

Práce, výkon, energie Práce, výkon, energie (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 23. října 2009 Obsah Mechanická práce Výkon, příkon, účinnost Mechanická energie Kinetická energie Potenciální energie

Více

fyzika v příkladech 1 a 2

fyzika v příkladech 1 a 2 Sbírka pro předmět Středoškolská fyzika v příkladech 1 a 2 Mechanika: kapaliny a plyny zadání 1. Ve dně nádoby je otvor, kterým vytéká voda. Hladina vody v nádobě je 30 cm nade dnem. Jakou rychlostí vytéká

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou

Více

FYZIKA. Kapitola 3.: Kinematika. Mgr. Lenka Hejduková Ph.D.

FYZIKA. Kapitola 3.: Kinematika. Mgr. Lenka Hejduková Ph.D. 1. KŠPA Kladno, s. r. o., Holandská 2531, 272 01 Kladno, www.1kspa.cz FYZIKA Kapitola 3.: Kinematika Mgr. Lenka Hejduková Ph.D. Kinematika obor, který zkoumá pohyb bez ohledu na jeho příčiny klid nebo

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_368 Jméno autora: Třída/ročník: Mgr. Alena Krejčíková

Více

Laboratorní práce č. 3: Měření součinitele smykového tření

Laboratorní práce č. 3: Měření součinitele smykového tření Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 3: Měření součinitele smykového tření G Gymnázium Hranice Přírodní vědy moderně a interaktivně

Více

TÉMA: Molekulová fyzika a tepelné děje v plynech VNITŘNÍ ENERGIE TĚLESA

TÉMA: Molekulová fyzika a tepelné děje v plynech VNITŘNÍ ENERGIE TĚLESA U.. vnitřní energie tělesa ( termodynamické soustavy) je celková kinetická energie neuspořádaně se pohybujících částic tělesa ( molekul, atomů, iontů) a celková potenciální energie vzájemné polohy těchto

Více

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 2. Kinematika Autor: Jazyk: Aleš Trojánek čeština Datum vyhotovení:

Více

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 6. Energie 1 Autor: Jazyk: Aleš Trojánek čeština Datum vyhotovení:

Více

b=1.8m, c=2.1m. rychlostí dopadne?

b=1.8m, c=2.1m. rychlostí dopadne? MECHANIKA - PŘÍKLADY 1 Příklad 1 Vypočítejte síly v prutech prutové soustavy, je-li zatěžující síla F. Rozměry prutů jsou h = 1.2m, b=1.8m, c=2.1m. Příklad 2 Vypočítejte zrychlení tělesa o hmotnosti m

Více

sf_2014.notebook March 31, 2015 http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj

sf_2014.notebook March 31, 2015 http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj 1 2 3 4 5 6 7 8 Jakou maximální rychlostí může projíždět automobil zatáčku (o poloměru 50 m) tak, aby se navylila voda z nádoby (hrnec válec o poloměru

Více

POHYBY TĚLESA V ODPORUJÍCÍM PROSTŘEDÍ

POHYBY TĚLESA V ODPORUJÍCÍM PROSTŘEDÍ POHYBY TĚLESA V ODPORUJÍCÍM PROSTŘEDÍ Studijní text pro řešitele FO, kat. B Ivo Volf, Přemysl Šedivý Úvod Základní zákon klasické mechaniky, zákon síly, který obvykle zapisujeme vetvaru F= m a, (1) umožňuje

Více

Zákon zachování energie - příklady

Zákon zachování energie - příklady DUM Základy přírodních věd DUM III/2-T3-13 Téma: ZZE - příklady Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Zákon zachování energie - příklady 1.) Jakou má polohovou energii

Více

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I Mechanika hmotného bodu Autor: Kateřina Kárová Text vznikl v rámci bakalářské práce roku 2006. Návod na práci s

Více

4IS01F8 mechanická práce.notebook. Registrační číslo projektu: CZ.1.07/1.4.00/ Šablona: III/2. Sada: VY_32_INOVACE_4IS Pořadové číslo: 01

4IS01F8 mechanická práce.notebook. Registrační číslo projektu: CZ.1.07/1.4.00/ Šablona: III/2. Sada: VY_32_INOVACE_4IS Pořadové číslo: 01 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_4IS Pořadové číslo: 01 Ověření ve výuce Třída: 8.A Datum: 26.9.2012 1 Mechanická práce Předmět: Ročník: Fyzika 8. ročník

Více

Laboratorní práce č. 1: Určení výtokové rychlosti kapaliny

Laboratorní práce č. 1: Určení výtokové rychlosti kapaliny Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 1: Určení výtokové rychlosti kapaliny Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY FYZIKÁLNA 2. ročník šestiletého studia

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

1.5.9 Zákon zachování mechanické energie III Předpoklady: Dokonale pružný centrální ráz dvou koulí Pedagogická poznámka:

1.5.9 Zákon zachování mechanické energie III Předpoklady: Dokonale pružný centrální ráz dvou koulí Pedagogická poznámka: .5.9 Zákon zacování mecanické energie III Předpoklady: 58 Dokonale pružný centrální ráz dvou koulí v v m m Speciální typ srážky, situace známá z kulečníku: dokonale pružný: při srážce se neztrácí energie,

Více

SBÍRKA ÚLOH Z FYSIKY. Gymnázium F. X. Šaldy. pro přípravu k maturitní zkoušce, k přijímacím zkouškám do vysokých škol a k práci ve fysikálním semináři

SBÍRKA ÚLOH Z FYSIKY. Gymnázium F. X. Šaldy. pro přípravu k maturitní zkoušce, k přijímacím zkouškám do vysokých škol a k práci ve fysikálním semináři Gymnázium F. X. Šaldy PŘEDMĚTOVÁ KOMISE FYSIKY SBÍRKA ÚLOH Z FYSIKY pro přípravu k maturitní zkoušce, k přijímacím zkouškám do vysokých škol a k práci ve fysikálním semináři Sazba: Honsoft, 2006 2007.

Více

MECHANIKA TUHÉHO TĚLESA

MECHANIKA TUHÉHO TĚLESA MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny

Více

17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N?

17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N? 1. Za jaký čas a jakou konečnou rychlostí (v km/hod.) dorazí automobil na dolní konec svahu dlouhého 25 m a skloněného o 7 0 proti vodorovné rovině, jestliže na horním okraji začal brzdit na hranici možností

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Účinnost v

Více

BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti)

BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) BIOMECHANIKA 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin

Více

Řešení testu 1b. Fyzika I (Mechanika a molekulová fyzika) NOFY021. 19. listopadu 2015

Řešení testu 1b. Fyzika I (Mechanika a molekulová fyzika) NOFY021. 19. listopadu 2015 Řešení testu b Fyzika I (Mechanika a olekulová fyzika) NOFY0 9. listopadu 05 Příklad Zadání: Kulička byla vystřelena vodorovně rychlostí 0 /s do válcové roury o průěru a koná pohyb naznačený na obrázku.

Více

1.1.7 Rovnoměrný pohyb I

1.1.7 Rovnoměrný pohyb I 1.1.7 Rovnoměrný pohyb I Předpoklady: 116 Kolem nás se nepohybují jenom šneci. Existuje mnoho různých druhů pohybu. Začneme od nejjednoduššího druhu pohybu rovnoměrného pohybu. Př. 1: Uveď příklady rovnoměrných

Více

Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013

Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013 Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013 Test přijímací zkoušky bude obsahovat úlohy uzavřené, kdy žák vybírá správnou odpověď ze čtyř nabízených variant (správná je vždy právě

Více

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6.

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6. Tématický plán Hodiny: Září 7 Říjen 8 Litopad 8 Proinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6 Σ = 73 h Hodiny Termín Úvod Kinematika 8 + 1 ½ říjen Dynamika 8 + 1 konec litopadu Energie 5

Více

Práce a výkon při přemístění tělesa. Účinnost robota.

Práce a výkon při přemístění tělesa. Účinnost robota. Název: Práce a výkon při přemístění tělesa. Účinnost robota. Tematický celek: Mechanická práce a energie. Úkol: 1. Zopakujte si, co víte o fyzikálních veličinách práce a výkon. 2. Navrhněte konstrukci

Více

Úlohy z fyziky 8. ROČNÍK

Úlohy z fyziky 8. ROČNÍK Úlohy z fyziky Úlohy jsou čerpány z publikace Tématické prověrky z učiva fyziky základní školy autorů Jiřího Bohuňka a Evy Hejnové s ilustracemi Martina Maška (vydavatelství Prometheus 2005), která odpovídá

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU

Více

Dynamika 43. rychlost pohybu tělesa, třecí sílu, tlakovou sílu ...

Dynamika 43. rychlost pohybu tělesa, třecí sílu, tlakovou sílu ... Dynamika 43 Odporové síly a) Co je příčinou vzniku odporových sil?... b) Jak se odporové síly projevují?... c) Doplňte text nebo vyberte správnou odpověď: - když se těleso posouvá (smýká) po povrchu jiného

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově. 07_4_Elektrický proud v kapalinách a plynech

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově. 07_4_Elektrický proud v kapalinách a plynech Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_4_Elektrický proud v kapalinách a plynech Ing. Jakub Ulmann 4.1 Elektrický proud v kapalinách Sestavíme

Více

Úloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie.

Úloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie. Slovní úlohy - řešené úlohy Úměra, poměr Úloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie. Každý rozměr zvětšíme tak, že jeho

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1 Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1 Ing. Jakub Ulmann Zobrazování optickými soustavami 1. Optické

Více

GRAVITAČNÍ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

GRAVITAČNÍ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník GRAVITAČNÍ POLE Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Gravitace Vzájemné silové působení mezi každými dvěma hmotnými body. Liší se od jiných působení. Působí vždy přitažlivě. Působí

Více

6. Střídavý proud. 6. 1. Sinusových průběh

6. Střídavý proud. 6. 1. Sinusových průběh 6. Střídavý proud - je takový proud, který mění v čase svoji velikost a smysl. Nejsnáze řešitelný střídavý proud matematicky i graficky je sinusový střídavý proud, který vyplývá z konstrukce sinusovky.

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_6_Mechanika tuhého tělesa Ing. Jakub Ulmann 6 Mechanika tuhého tělesa 6.1 Pohyb tuhého tělesa 6.2 Moment

Více

4. Žádná odpověď není správná -0

4. Žádná odpověď není správná -0 1. Auto rychlé zdravotnické pomoci jelo první polovinu dráhy rychlostí v1 = 90 km.h -1, druhou polovinu dráhy rychlostí v2 = 72 km.h -1. Určete průměrnou rychlost. 1. 81,5 km.h -1-0 2. 80 km.h -1 +0 3.

Více

Kinematika pohyb rovnoměrný

Kinematika pohyb rovnoměrný DUM Základy přírodních věd DUM III/2-T3-03 Téma: Kinematika rovnoměrný Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Kinematika rovnoměrný Kinematika je jedna ze základních

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově. 05_1_Fyzikální veličiny a jejich měření

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově. 05_1_Fyzikální veličiny a jejich měření Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_1_Fyzikální veličiny a jejich měření Ing. Jakub Ulmann 1 Obsah a metody fyziky 1.1 O čem fyzika pojednává

Více

Mechanická práce při rotačním pohybu síla F mění neustále svůj směr a tudíž stále působí ve směru dráhy, síla F na dráze odpovídající úhlu natočení ϕ s W = R ϕ = F R ϕ dosadíme-li za [ N m J ] W = M k

Více

Výpočty fyzikálních úkolů kores. sem. MFF UK pro ZŠ

Výpočty fyzikálních úkolů kores. sem. MFF UK pro ZŠ Úloha IV.C... Zákon zachování zimy 9 bodů; průměr 2,95; řešilo 39 studentů 1. Jednoho chladného pondělí sněžilo natolik, že to Tomovi zasypalo dům. Vytáhl tedy ze sklepa lopatu na sníh a pustil se do práce.

Více

Příklad 1. Jak velká vztlakovásíla bude zhruba působit na ocelové těleso o objemu 1 dm 3 ponořené do vody? /10 N/ p 1 = p 2 F 1 = F 2 S 1 S 2.

Příklad 1. Jak velká vztlakovásíla bude zhruba působit na ocelové těleso o objemu 1 dm 3 ponořené do vody? /10 N/ p 1 = p 2 F 1 = F 2 S 1 S 2. VII Mechanika kapalin a plynů Příklady označené symbolem( ) jsou obtížnější Příklad 1 Jak velká vztlakovásíla bude zhruba působit na ocelové těleso o objemu 1 dm 3 ponořené do vody? /10 N/ Stručné řešení:

Více

KINEMATIKA 2. DRÁHA. Mgr. Jana Oslancová VY_32_INOVACE_F1r0202

KINEMATIKA 2. DRÁHA. Mgr. Jana Oslancová VY_32_INOVACE_F1r0202 KINEMATIKA 2. DRÁHA Mgr. Jana Oslancová VY_32_INOVACE_F1r0202 OPAKOVÁNÍ ZÁKLADNÍCH POJMŮ Otázka 1: Co znamená pojem hmotný bod a proč jej zavádíme? Uveď praktické příklady. Otázka 2: Pomocí čeho udáváme

Více

Výpočtový program DYNAMIKA VOZIDLA Tisk výsledků

Výpočtový program DYNAMIKA VOZIDLA Tisk výsledků Zadané hodnoty: n motoru M motoru [ot/min] [Nm] 1 86,4 15 96,4 2 12,7 25 14,2 3 16 35 11 4 93,7 45 84,9 5 75,6 55 68,2 Výpočtový program DYNAMIKA VOZIDLA Tisk výsledků m = 1265 kg (pohotovostní hmotnost

Více

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný

Více

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje

Více

MECHANICKÁ PRÁCE A ENERGIE

MECHANICKÁ PRÁCE A ENERGIE MECHANICKÁ RÁCE A ENERGIE MECHANICKÁ RÁCE Konání práce je podmíněno silovým působením a pohybem Na čem závisí velikost vykonané práce Snadno určíme práci pro případ F s ráci nekonáme, pokud se těleso nepřemísťuje

Více

Pracovní list číslo 01

Pracovní list číslo 01 Matematika v jiných předmětech Pracovní list číslo 01 1. Ze vzorce pro výpočet kinetické energie tělesa E = mv. Při tepelné výměně mezi dvěma tělesy platí kalorimetrická rovnice: c 1 m 1 (t 1 -t) = c m

Více

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D19_Z_OPAK_KV_Mechanicke_kmitani_T Člověk a příroda Fyzika Mechanické kmitání Opakování

Více

SBORNÍK PŘÍKLADŮ Z FYZIKY

SBORNÍK PŘÍKLADŮ Z FYZIKY SBORNÍK PŘÍKLADŮ Z FYZIKY 1 OBSAH MECHANIKA...4 Jednotky, převody a základní vztahy...4 Pohyb rovnoměrný a rovnoměrně zrychlený...7 Pády, vrhy... 1 Pohyb otáčivý... 16 Hybnost... 18 Energie, práce výkon...

Více

MECHANIKA KAPALIN A PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

MECHANIKA KAPALIN A PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D07_Z_OPAK_M_Mechanika_kapalin_a_plynu_T Člověk a příroda Fyzika Mechanika kapalin

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Elektrická

Více

F - Elektrická práce, elektrický výkon, účinnost

F - Elektrická práce, elektrický výkon, účinnost F - Elektrická práce, elektrický výkon, účinnost rčeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VAIACE Tento dokument byl kompletně vytvořen, sestaven

Více

ÚVODNÍ POJMY, VNITŘNÍ ENERGIE, PRÁCE A TEPLO POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

ÚVODNÍ POJMY, VNITŘNÍ ENERGIE, PRÁCE A TEPLO POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D08_Z_OPAK_T_Uvodni_pojmy_vnitrni_energie _prace_teplo_t Člověk a příroda Fyzika

Více

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 3. Newtonovy zákony 1 Autor: Jazyk: Aleš Trojánek čeština

Více

PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA

PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S2_D16_Z_MECH_Proudeni_kapalin_bernoulliho_ rovnice_realna_kapalina_aerodynamika_kridlo_pl

Více

V 1 = 0,50 m 3. ΔV = 50 l = 0,05 m 3. ρ s = 1500 kg/m 3. n = 6

V 1 = 0,50 m 3. ΔV = 50 l = 0,05 m 3. ρ s = 1500 kg/m 3. n = 6 ÚLOHY - ŘEŠENÍ F1: Objem jedné dávky písku u nakládače je 0,50 m 3 a dávky se od této hodnoty mohou lišit až o 50 litrů podle toho, jak se nabírání písku zdaří. Suchý písek má hustotu 1500 kg/m 3. Na valník

Více