2. Matice, soustavy lineárních rovnic

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "2. Matice, soustavy lineárních rovnic"

Transkript

1 Matice, soustavy lineárních rovnic Tento učební text byl podpořen z Operačního programu Praha- Adaptabilita Irena Sýkorová

2 Některé vlastnosti matic Uvažujmečtvercovoumatici A=(a ij ) n n Matice Asenazývásymetrická,jestližeplatí A=A, tj a ij = a ji pro i,j=1,,n Matice A se nazývá pozitivně definitní, jestliže všechny její hlavní minory jsou kladné, tj a 11 a 1 a 1i a D 1 >0,,D n >0, kde D i = 1 a a i a i1 a i Matice A se nazývá diagonálně dominantní, jestliže absolutní hodnota prvku na diagonále je větší nebo rovna součtu absolutních hodnot ostatních prvků buď pro všechny řádky nebo pro všechny sloupce, tj a ii a ij pro i=1,,n i j a ii Matice je ostře diagonálně dominantní, jsou-li nerovnosti ostré Příklad 1: Rozhodneme, zda matice A je symetrická, pozitivně definitní, diagonálně dominantní A= Řešení:Matice Anenísymetrická,protože a 1 a 1 Kověřenídefinitnostivypočítámepříslušné minory D 1 =4(>0), D = =14(>0), D = =6(>0) Všechny minory jsou kladné, matice A je pozitivně definitní Podmínku pro diagonální dominanci provedeme nejprve pro řádky: 4 > < + 3 > + 0 ve druhém řádku podmínka neplatí, zkusíme tedy sloupce: 4 > > + 0 Podmínka je splněná pro všechny sloupce, matice A je diagonálně dominantní, není však ostře diagonálně dominantí(ve druhém sloupci je neostrá nerovnost) MATLAB ověření,zdamatice Ajesymetrická,tedy A=A,neboli A A = O(nulovámatice): >> A-A nebo porovnáním výsledek: 1(A je symetrická), 0(A není symetrická) >> isequal(a,a ) ověření, zda matice A je pozitivně definitní všechny minory jsou kladné(pro malé matice)

3 >> A(1,1) >> det(a(1:,1:)) >> det(a(1:3,1:3)) >> >> det(a) Vlastní čísla matice Uvažujmečtvercovoumatici A=(a ij ) n n Jestližepročíslo λ(obecněkomplexní)anenulový vektor xplatí A x=λ x, (1) číslo λ se nazývá vlastní(charakteristické) číslo matice A a vektor x se nazývá vlastní(charakteristický) vektor matice A příslušný vlastnímu číslu λ Rovnici(1) můžeme upravit, J je jednotková matice řádu n A x=λ x, A x λ x=ō, (A λj) x=ō () Toto je maticový zápis homogenní soustavy n lineárních rovnic o n neznámých s maticí soustavy A λjhledámenenulovývektor x,tjnenulovéřešenísoustavy,atoexistuje,právěkdyžjematice soustavy singulární, tj det(a λj)=0 (3) Matice A λjsenazývácharakteristickámatice,polynom p(λ)=det(a λj)senazývácharakteristický polynom(stupně n) a rovnice(3) je charakteristická rovnice Hledáme kořeny polynomu n-tého stupně a tedy existuje n(reálných nebo komplexních, případně i násobných) vlastních čísel matice A Spektrální poloměr matice A je největší z absolutních hodnot vlastních čísel ρ(a)=max{ λ i,kde λ i jevlastníčíslomatice A} Poznámka:Známe-livlastníčíslo λ,pakpříslušnývlastnívektorjekaždénenulovérešenísoustavy() Příklad : Vypočítáme vlastní čísla a spektrální poloměr matice A= Řešení: Nejprve určíme chrakteristickou matici A λj= ( ) 1 3 ( ) 1 3 ( ) ( ) λ 0 1 λ =, 0 λ 3 λ pak charakteristický polynom, neboli det(a λj)= 1 λ 3 λ =(1 λ)( λ) 6=λ 3λ 4 Vlastní čísla matice jsou kořeny charakteristického polynomu, tj hledáme řešení charakteristické rovnice(kvadratické) λ 3λ 4=0,tedycharakteristickáčíslamatice Ajsou λ 1 =4, λ = 1 3

4 Spekrální poloměr je největší z absolutních hodnot vlastních čísel, tj Spekrálnípoloměrje ρ(a)=4 Platí: max{ λ 1, λ }=max{ 4, 1 }=max{4,1}=4 a) Je-li matice symetrická, všechna její vlastní čísla jsou reálná b) Matice je symetrická a pozitivně definitní, právě když všechna její vlastní čísla jsou kladná MATLAB vlastní čísla matice A: >> eig(a) spektrální poloměr matice A(největší z absolutních hodnot vlastních čísel): >> max(abs(eig(a))) Norma matice Podobným způsobem jako u vektorů můžeme definovat i normu matice Normamaticejetakovézobrazení R n n do R,kterésplňujetytopodmínky: (i) A >0prokaždounenulovoučtvercovoumaticia A =0pouzepro A=O, (ii) c A = c A prokaždéreálnéčíslo c, (iii) A+B A + B prokaždédvěčtvercovématicestejnéhořádu (iv) A B A B prokaždédvěčtvercovématicestejnéhořádu Je důležitá souvislost mezi normou vektoru a normou matice Řekneme, že norma vektoru a norma matice je konzistentní s normou vektoru, jestliže pro každou matici A a vektor x platí A x A x Normu matice můžeme také definovat pomocí normy vektoru Je-li dána norma vektoru, pak platí A x A =sup x ō x = sup A x (4) x =1 aříkáme,žetatonormamaticejegenerovanánormouvektoru Norma matice generovaná normou vektoru je s touto normou konzistentní Nejčastěji užívané normy matice jsou: n a) A = max 1 i n j=1 a ij,tzvřádkovánorma, n b) A 1 = max i=1 a ij,tzvsloupcovánorma, c) A F = 1 j n ( n i=1 n j=1 a ij )1, tzv Frobeniova norma, někdy též Schurova, d) A = ρ(a A),tzvspektrálnínorma,někdytéžeuklidovská 4

5 Příklad 3: Vypočítáme všechny normy matice A = ( ) Řešení: a) Při počítání řádkové normy sečteme absolutní hodnoty prvků v každém řádku a z těchto součtů vybereme maximální A =max{ 1 + 5, + 6 }=max{6,8}=8 b) Pro určení sloupcové normy sečteme absolutní hodnoty prvků v každém sloupci a z těchto součtů vybereme maximální A 1 =max{ 1 +, }=max{3,11}=11 c) Frobeniova norma je druhá odmocnina součtu druhých mocnin všech prvků matice A F = (1) +() +( 5) +(6) = = 66=8,14 d) K určení spektrální normy potřebujeme nalézt největší z absolutních hodnot vlastních čísel matice A A ( ) ( ) ( ) A A= =, pak kořeny chakteristického polynomu jsou (5 λ)(61 λ) 49=0 λ 66λ+56=0 λ 1 =61,8617, λ =4,1383 Spektrálnínormajeodmocninazespektrálníhopoloměrumatice A A ρ(a A)=61,8617 A = 61,8617=7,865 Výpočet spektrální normy pro větší matice je poměrně pracný MATLAB normymatice A: řádková: >> norm(a,inf) >> max(sum(abs(a ))) sloupcová: >> norm(a,1) >> max(sum(abs(a))) Frobeniova: >> norm(a, fro ) >> sqrt(sum(diag(a * A))) spektrální: >> norm(a,) >> norm(a) Poznámka:Frobeniovanormamaticenenígenerovanáeuklidovskounormouvektoru,protožepro jednotkovoumatici Jřádu nplatí J F = n,alepodle(4)je J F =1Euklidovskounormou vektoru je generovaná spektrální norma matice Pro každou normu matice, která je konzistentní s nějakou normou vektoru, platí ρ(a) A 5

6 Podmíněnost matic Dříve než se budeme věnovat studiu metod řešení soustav lineárních rovnic, je potřeba zmínit tzv podmíněnostmaticevpodstatějdeoto,jak citlivá jematicesoustavyvzhledemkchybámve vstupních datech i k zaokrouhlovacím chybám v průběhu výpočtu Příklad 4: Uvažujme soustavu lineárních rovnic x+6y=8 x+6,0001y=8,0001, jejímžřešenímje x=1, y=1pokudprovedemevkoeficientechmalouzměnu(řádově10 4 ),dostaneme soustavu x+6y=8 x+5,9999y=8,000 sřešenímje x=10, y= Tedymalézměnykoeficientůmaticeasložekvektorupravýchstran způsobí velké změny(řádově jednotky) v řešení Matice se nazývá dobře podmíněná, jestliže relativně malé změny v koeficientech způsobí relativně malé změny v řešení Matice se nazývá špatně podmíněná, jestliže relativně malé změny v koeficientech způsobí relativně velké změny v řešení Uvažujeme nyní soustavu lineárních rovnic A x= b (5) sregulárnímaticísoustavy AOznačíme-li x přesné(teoretické)řešenísoustavy A x= ba x c je přesnéřešeníporušenésoustavy(a+δa) x= b+δ b,pakodhadrelativníchybyřešení xc x x závisí přímo na součinu K(A)= A A 1, kde norma matice je generovaná normou vektoru Číslo K(A) se nazývá číslo podmíněnosti matice AČímjevětší,tímjematicehůřpodmíněnáatímjevětšíodhadrelativníchybyřešení ( ) 6 Poznámka: Matice A = z předchozího příkladu má číslo podmíněnosti velké 6,0001 K(A)= MATLAB číslo podmíněnosti matice A: >> cond(a) Přímé metody řešení soustav lineárních rovnic Nyní se budeme věnovat numerickému řešení soustavy lineárních rovnic A x= b, kdematicesoustavy A=(a ij )jereálnáregulárnímaticeřádu n, b=(b 1,b,,b n ) jesloupcový vektor pravých stran 6

7 Metody řešení soustav lineárních rovnic můžeme rozdělit do dvou skupin: metody přímé a metody iterační Pomocí přímých metod dostaneme po konečném počtu kroků přesné řešení soustavy, metodami iteračními získáme posloupnost vektorů, která konverguje k přesnému řešení Ve skutečnosti ale vždy dostaneme pouze určitou aproximaci řešení; u přímých metod je to způsobeno zaokrouhlovacími chybami, u metod iteračních tím, že můžeme provést vždy jen konečný počet kroků Volba metody závisí na konkrétní soustavě, musíme vzít v úvahu, zda je matice soustavy malá nebo velká, zda obsahuje hodně nulových prvků, tzn je řídká nebo zda má nějaké speciální vlastnosti např je třídiagonální Mezi přímé metody patří Gaussova eliminační metoda, Jordanova eliminační metoda, metoda využívajícíinverznímaticiznáme-liinverznímatici A 1,můžemepočítatřešenízevztahu x=a 1 b, alevlastnívýpočetmatice A 1 nenípřílišvýhodný Gaussova eliminační metoda spočívá v tom, že nejprve rozšířenou matici soustavy(a b) převedeme pomocí ekvivalentních úprav do tvaru(u y), kde U je horní trojúhelníková matice tzv přímý chod Místo původní soustavy pak řešíme soustavu U x=ȳ, ze které se zdola snadno dopočítají složky neznámého vektoru x tzv zpětný chod V přímém chodu provádíme v(n 1) krocích nulování prvků pod diagonálou v 1 až(n 1) sloupci Používáme pouze takovou úpravu, že v k-tém kroku násobíme k-tý řádek vhodnou konstantou a tento násobekpřičtemekostatnímřádkůmoznačíme-li A (0) = A, b (0) = b,počítánímpodlevzorce(pro k=1,,n-1,i=k+1,,n,j=k,,n) a (k) ij = a (k 1) ij a (k 1) a (k 1) kj ik a (k 1) kk spodmínkou a (k 1) kk 0 Je-li příslušný diagonální prvek nulový, musíme tento řádek vyměnit s některým ze zbývejících, tak aby na diagonále bylo nenulové číslo Případně, kvůli omezení šíření zaokrouhlovacích chyb, je možné provést pivotaci výběr prvku v absolutní hodnotě největšího v daném sloupci, který výměnou řádků přemístíme na diagonální pozici Ve zpětném chodu se neznámé počítají odzadu podle vzorců x n = y n u nn x i = 1 u ii y i n j=i+1 u ij x j pro i=n 1,,1 Příklad 5: Gausovou eliminační metodou vyřešíme soustavu x 1 +x +x 3 = x 1 +x +3x 3 = 5 x 1 x = 1 (6) Řešení: Koeficienty a pravé strany zapíšeme do rozšířené matice soustavy, kterou převedeme do horního trojúhelníkového tvaru Provádíme takové úpravy, že v k-tém kroku násobíme vždy k-tý řádek vhodnou konstantou a tento násobek přičteme k ostatním řádkům tak, abychom vynulovali prvky pod diagonálou(konstanty jsou zapsané vpravo vedle příslušného řádku) ( ) (1) ( 1 )

8 Odtudsnadnodopočítáme x 3 =1, x = 1, x 1 = Podobná je Jordanova eliminační metoda, kde se matice soustavy A převádí ma matici jednotkovou, řešení pak je ve sloupci pravých stran Z Gaussovy eliminace můžeme odvodit i tzv LU rozklad matice Dříve než popíšeme princip LU rozkladu, ukážeme, že některé elementární úpravy matice lze provádět násobením dané matice zleva speciálními regulárními maticemi Poznámka:Jestliževdanématici M chceme mnásobek i-téhořádkupřičístkj-témuřádku, můžeme tuto úpravu vyjádřit jako součin matic; matici M nádobíme zleva maticí V, která vznikne zjednotkovématicepřidánímkonstanty mnapozici v ji Pokudje j > i,jematice V dolnítrojúhelníková Příklad6:Matici Mupravímetak,žečtyřnásobekprvníhořádkupřičtemeketřetímu(i=1, j=3, m=4) M= V = V M= = Poznámka:Jestliževdanématici M chcemevyměnit i-týaj-týřádek,můžemetutoúpravu vyjádřit jako součin matic; matici M nádobíme zleva maticí P, která vznikne z jednotkové matice záměnou i-tého a j-tého řádku Matice P se nazývá permutační matice Příklad6:Vmatici Mvyměnímeprvníadruhýřádek(i=1, j=) M= P= P M= = Budeme-li používat LU rozklad matice, znamená to, že matici soustavy A chceme vyjádřit jako součin A=LU, kde L je dolní trojúhelníková matice s jedničkami na diagonále a U je horní trojúhelníková matice Soustavu(5) pak řešíme jako dvě soustavy s trojúhelníkovými maticemi Lȳ= b U x=ȳ Trojúhelníkové matice L a U můžeme získat postupnými úpravami matice A, což můžeme symbolicky vyjádřit jako (A J) (U L ), kde L jedolnítrojúhelníkováaplatí L A=UPřitomtozpůsobuvýpočtuvšaksmímepoužítjen takovou elementární úpravu, kdy přičítáme násobek určitého řádku k řádku, který je pod ním Ze vztahu L A=Usnadnoodvodíme A=(L ) 1 U= LU Provedenýmúpravámodpovídápostupnénásobenímatice Amaticemi V k L A=V k V 1 A=U A=(L ) 1 U=(V k V 1 ) 1 U=(V1 1 V 1 k )U= LU Každá matice L má na diagonále jedničky a pod diagonálou příslušné koeficienty z úprav při Gaussově eliminaci, ale s opačnými znaménky 8

9 Příklad 7: Vyřešíme soustavu(6) pomocí LU rozkladu Řešení: Matici soustavy(6) rozložíme A=LU= = Pakhledámeřešenísoustavy Lȳ= b y 1 y = 5, y 3 1 kterousnadnovyřešíme:zprvnírovniceje y 1 =,dosazenímdodruhédostaneme y =1,zetřetí y 3 = 3,tedy ȳ= 1 3 Nynízbývávyřešitsoustavu U x=ȳ,cožjezpětnýchodgaussovyeliminace x 1 x = x 3 x 1 x = 1 x 3 1 Ikdyžmatice Ajeregulární,můžesestát,žeseběhemúpravobjevínulovýdiagonálníprvekPak je potřeba vyměnit řádky, což v tomto případě není povolená úprava Je tedy třeba prohodit řádky původnímatice Atak,abysenovámatice PAdalaserozložitnasoučin LU,tj Řešení původní soustavy pak probíhá takto: PA=LU Lȳ= P b U x=ȳ Výhoda LU rozkladu se projeví, pokud řešíme více soustav se stejnou maticí Pak se nejpracnější částvýpočtu,tjvýpočetmatic LaU,provádípouzejednou MATLAB přímé metody řešení soustav lineárních rovnic (A matice soustavy, b sloupcový vektor pravých stran): příkazem Matlabu: >> x = A \ b pomocí inverzní matice: >> A1 = inv(a) >> x = A1 * b pomocílurozkladu(řešíme Ly= Pb, Ux=y,kde Pjepermutačnímatice): >> [L, U, P] = lu(a) >> x = U \ ( L \ (P*b)) 9

10 Dodatky Je-li matice A symetrická a pozitivně definitní, pak existuje horní trojúhelníková metice U tak, že platí A=U U (7) TomutovyjádřeníseříkáCholeskéhorozkladVztah(7)býváněkdyzapsántakévetvaru A=LL, kde L je dolní trojúhelníková matice MATLAB Choleského rozklad matice A(funkce vrací horní trojúhelníkovou matici): >> chol(a) řešení soustav lineárních rovnic: >> x = U \ ( U \ b) V některých případech potřebujeme vyřešit soustavu s maticí ve speciálním tvaru, maticí třídiagonální, tj maticí ve tvaru a 11 a a 1 a a a 3 a 33 a a n,n 3 a n,n a n,n a n 1,n a n 1,n 1 a n 1,n a n,n 1 a n,n Taková matice je řídká, má málo nenulových prvků a hodně nulových(pro velká n) Při numerickém řešení se používá speciální postup, který umožňuje uložit do paměti pouze nenulové prvky 10

Operace s maticemi Sčítání matic: u matic stejného typu sečteme prvky na stejných pozicích: A+B=(a ij ) m n +(b ij ) m n =(a ij +b ij ) m n.

Operace s maticemi Sčítání matic: u matic stejného typu sečteme prvky na stejných pozicích: A+B=(a ij ) m n +(b ij ) m n =(a ij +b ij ) m n. 1 Sylvestrova věta Platí: Nechť A je symetrická matice řádu n, označme a 11 a 12... a 1i a D i = 21 a 22... a 2i.... a i1 a i2... a ii Pak A(a příslušná KF) je pozitivně definitní, právěkdyž D i >0provšechna

Více

y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Řádková norma (po řádcích sečteme absolutní hodnoty prvků matice a z nich

y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Řádková norma (po řádcích sečteme absolutní hodnoty prvků matice a z nich Normy matic Příklad 1 Je dána matice A a vektor y: A = 2 0 3 4 3 2 y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Ověřte, že platí Ay A y (1) Ay = (4, 14, 2) T 2 2 Frobeniova norma

Více

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice.

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice. [] Definice determinantu BI-LIN, determinant, 9, P Olšák [2] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A 0 pro singulární matici, det A 0 pro regulární matici používá

Více

5. Maticová algebra, typy matic, inverzní matice, determinant.

5. Maticová algebra, typy matic, inverzní matice, determinant. 5. Maticová algebra, typy matic, inverzní matice, determinant. Matice Matice typu m,n je matice složená z n*m (m >= 1, n >= 1) reálných (komplexních) čísel uspořádaných do m řádků a n sloupců: R m,n (resp.

Více

Matice se v některých publikacích uvádějí v hranatých závorkách, v jiných v kulatých závorkách. My se budeme držet zápisu s kulatými závorkami.

Matice se v některých publikacích uvádějí v hranatých závorkách, v jiných v kulatých závorkách. My se budeme držet zápisu s kulatými závorkami. Maticové operace Definice Skalár Představme si nějakou množinu, jejíž prvky lze sčítat a násobit. Pěkným vzorem jsou čísla, která už známe od mala. Prvky takové množiny nazýváme skaláry. Matice Matice

Více

MATrixLABoratory letný semester 2004/2005

MATrixLABoratory letný semester 2004/2005 1Prostedie, stručný popis okien Command Window příkazové okno pro zadávání příkazů v jazyku Matlabu. Workspace zde se zobrazuje obsah paměti; je možné jednotlivé proměnné editovat. Command History dříve

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Jiří Kolafa Vektory. Vektorový prostor Vektor je často zaveden jako n-tice čísel, (v,..., v n ), v i R (pro reálný vektorový prostor);

Více

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j. Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak

Více

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. Přednáška MATEMATIKA č. 2 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 13. 10. 2010 Uspořádané schéma vytvořené z m n reálných čísel, kde m, n N a 11 a 12 a

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic 7 Matice. Determinant Soustavy lineárních rovnic 7.1 Matice Definice 1. Matice typu (m, n) jesoustavam n reálných čísel uspořádaných do m řádků a n sloupců a 11, a 12, a 13,..., a 1n a 21, a 22, a 23,...,

Více

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) LINEÁRNÍ ALGEBRA Úvod vektor Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) Kartézský souřadnicový systém -je taková soustava

Více

Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11

Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11 Gymnázium, Brno Matice Závěrečná maturitní práce Jakub Juránek 4.A Školní rok 2010/11 Konzultant: Mgr. Aleš Kobza Ph.D. Brno, 2011 Prohlášení Prohlašuji, že jsem předloženou práci zpracoval samostatně

Více

0. Lineární rekurence Martin Mareš, 2010-07-04

0. Lineární rekurence Martin Mareš, 2010-07-04 0 Lineární rekurence Martin Mareš, 2010-07-04 V tomto krátkém textu se budeme zabývat lineárními rekurencemi, tj posloupnostmi definovanými rekurentní rovnicí typu A n+k = c 0 A n + c 1 A n+1 + + c k 1

Více

3. Matice a determinanty

3. Matice a determinanty . Matice a determinanty Teorie matic a determinantů představuje úvod do lineární algebry. Nejrozsáhlejší aplikace mají matice a determinanty při řešení systémů lineárních rovnic. Pojem determinantu zavedl

Více

Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Matice študenti MFF 15. augusta 2008 1 12 Matice Požadavky Matice a jejich hodnost Operace s maticemi a jejich vlastnosti Inversní matice Regulární matice,

Více

Jak pracovat s absolutními hodnotami

Jak pracovat s absolutními hodnotami Jak pracovat s absolutními hodnotami Petr Matyáš 1 Co to je absolutní hodnota Absolutní hodnota čísla a, dále ji budeme označovat výrazem a, je jeho vzdálenost od nuly na ose x, tedy je to vždy číslo kladné.

Více

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Více

Lineární algebra a analytická geometrie sbírka úloh a ř ešených př íkladů

Lineární algebra a analytická geometrie sbírka úloh a ř ešených př íkladů Lineární algebra a analytická geometrie sbírka úloh a ř ešených př íkladů Linear algebra and analytic geometry problems and solved examples Klára Javornická Bakalářská práce 2010 UTB ve Zlíně, Fakulta

Více

Maticový a tenzorový počet

Maticový a tenzorový počet Maticový a tenzorový počet Doc. RNDr. Martin Kovár, Ph.D. Ústav matematiky Fakulta elektrotechniky a komunikačních technologií VUT v Brně Obsah. Test vstupních znalostí............................. 5 Matice

Více

Vybrané problémy lineární algebry v programu Maple

Vybrané problémy lineární algebry v programu Maple UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA Katedra matematické analýzy a aplikací matematiky BAKALÁŘSKÁ PRÁCE Vybrané problémy lineární algebry v programu Maple Vedoucí bakalářské práce: RNDr.

Více

Lineární algebra II. Adam Liška. 9. února 2015. Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak. rok 2007/2008

Lineární algebra II. Adam Liška. 9. února 2015. Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak. rok 2007/2008 Lineární algebra II Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak rok 2007/2008 Adam Liška 9 února 2015 http://kammffcunicz/~fiala http://wwwadliskacom 1 Obsah 10 Permutace 3 11 Determinant

Více

TEORIE MATIC. Tomáš Vondra

TEORIE MATIC. Tomáš Vondra TEORIE MATIC Tomáš Vondra 2 Obsah 1 Opakování 5 1.1 Základní operace s maticemi..................... 5 1.2 Determinant matice......................... 7 1.2.1 Cauchyův-Binedův vzorec..................

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Edita Kolářová ÚSTAV MATEMATIKY

Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik 1 Obsah 1 Přehled použité smbolik 3 Základní pojm matematické logik a teorie množin 4.1 Element matematické logik.........................

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly Matice Matice typu (m, n) je uspořádaná m-tice prvků z řádky matice.. Jednotlivé složky této m-tice nazýváme Matice se zapisují Speciální typy matic Nulová matice všechny prvky matice jsou nulové Jednotková

Více

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Lineární algebra 10. přednáška: Ortogonalita II Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text byl vytvořen

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada (Auto)korelační funkce 1 Náhodné procesy Korelace mezi náhodnými proměnnými má široké uplatnění v elektrotechnické praxi, kde se snažíme o porovnávání dvou signálů, které by měly být stejné. Příkladem

Více

Poznámky z matematiky

Poznámky z matematiky Poznámky z matematiky Verze: 14. dubna 2015 Petr Hasil hasil@mendelu.cz http://user.mendelu.cz/hasil/ Ústav matematiky Lesnická a dřevařská fakulta Mendelova univerzita v Brně Vytvořeno s podporou projektu

Více

Kapitola 1. Tenzorový součin matic

Kapitola 1. Tenzorový součin matic Kapitola 1 Tenzorový součin matic Definice 1.1. Buď F komutativní těleso. Pro matice A F m n a B F r s definujeme tenzorový součin A B jako matici o rozměru mr ns zapsanou blokově: A 11 B A 12 B A 1n B

Více

Vektory a matice. Matice a operace s nimi. Hodnost matice. Determinanty. . p.1/12

Vektory a matice. Matice a operace s nimi. Hodnost matice. Determinanty. . p.1/12 Vektory a matice Lineární (ne-)závislost vektorů n zê Matice a operace s nimi Hodnost matice Determinanty. p.1/12 Lineární (ne-)závislost vektorů zê n Příklad 9.1.1 Rozhodněte, zda jsou uvedené vektory

Více

Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu

Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 1 Tutoriál č. 3 Exponenciála matice a její užití řešení Cauchyovy úlohy pro lineární systémy užitím fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 0.1 Exponenciála matice a její užití

Více

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ. Matematika 3. RNDr. Břetislav Fajmon, PhD. Autoři textu:

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ. Matematika 3. RNDr. Břetislav Fajmon, PhD. Autoři textu: FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Matematika 3 Garant předmětu: RNDr. Břetislav Fajmon, PhD Autoři textu: Mgr. Irena Růžičková RNDr. Břetislav Fajmon, PhD

Více

2 Spojité modely rozhodování

2 Spojité modely rozhodování 2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A

Více

1. Základy logiky a teorie množin

1. Základy logiky a teorie množin . Základy logiky a teorie množin Studijní text. Základy logiky a teorie množin A. Logika Matematická logika vznikla v 9. století. Jejím zakladatelem byl anglický matematik G. Boole (85 864). Boole prosadil

Více

Přímé metody výpočtu charakteristických čísel matic

Přímé metody výpočtu charakteristických čísel matic Masarykova Univerzita v Brně Přírodovědecká fakulta Přímé metody výpočtu charakteristických čísel matic Bakalářská práce Vedoucí bakalářské práce RNDr. Ladislav Adamec, CSc. Brno 2007 Roman Melichar Prohlašuji,

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Euklidovský prostor Stručnější verze

Euklidovský prostor Stručnější verze [1] Euklidovský prostor Stručnější verze definice Eulidovského prostoru kartézský souřadnicový systém vektorový součin v E 3 vlastnosti přímek a rovin v E 3 a) eprostor-v2, 16, b) P. Olšák, FEL ČVUT, c)

Více

Základy matematiky kombinované studium 714 0365/06

Základy matematiky kombinované studium 714 0365/06 Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické

Více

Zlatý řez nejen v matematice

Zlatý řez nejen v matematice Zlatý řez nejen v matematice Zlaté číslo a jeho vlastnosti In: Vlasta Chmelíková author): Zlatý řez nejen v matematice Czech) Praha: Katedra didaktiky matematiky MFF UK, 009 pp 7 Persistent URL: http://dmlcz/dmlcz/40079

Více

Předmluva. Publikace obsahuje množství řešených i neřešených příkladů s výsledky k samostatnému studiu.

Předmluva. Publikace obsahuje množství řešených i neřešených příkladů s výsledky k samostatnému studiu. MATICE, DETERMINANTY A JEJICH VYUŽITÍ V PRAXI Mgr Eva Valentová autorka prof RNDr Jan Pelikán, CSc recenzenti Mgr Eva Pelikánová 04 Obsah Vektory 5 Aritmetické vektory 5 Maticová algebra I 8 Matice a

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní

Více

Lineární algebra I. látka z. I. semestru informatiky MFF UK. Obsah. Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina

Lineární algebra I. látka z. I. semestru informatiky MFF UK. Obsah. Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina 1 Lineární algebra I látka z I semestru informatiky MFF UK Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina Obsah Matice2 Grupy4 Grupa permutací4 Znaménko, inverze a transpozice grup5 Podgrupy5 Tělesa6

Více

Numerické metody a programování

Numerické metody a programování Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským

Více

Reference 10. Předpokládejme stavový popis spojitého, respektive diskrétního systému

Reference 10. Předpokládejme stavový popis spojitého, respektive diskrétního systému Módy systému Teorie dynamických systémů Obsah Úvod 2 Příklady 2 3 Domácí úlohy 8 Reference Úvod Řešení stavových rovnic Předpokládejme stavový popis spojitého, respektive diskrétního systému ẋ(t)=ax(t)+bu(t)

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

Matematické symboly a značky

Matematické symboly a značky Matematické symboly a značky Z Wikipedie, otevřené encyklopedie Matematický symbol je libovolný znak, používaný v. Může to být znaménko pro označení operace s množinami, jejich prvky, čísly či jinými objekty,

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

Stochastické modely: prezentace k přednášce

Stochastické modely: prezentace k přednášce Stochastické modely: prezentace k přednášce Jan Zouhar Katedra ekonometrie FIS VŠE v Praze 27. října 2015 Obsah 1 Úvod do náhodných procesů 2 MŘ s diskrétním časem a konečným počtem stavů Základní pojmy

Více

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 29. srpna 2005 verze 1.0 Předmluva

Více

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem.

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem. 1 Matice Definice 1 Matice A typu (m, n) je zobrazení z kartézského součinu {1, 2,,m} {1, 2,,n} do množiny R Matici A obvykle zapisujeme takto: a 1n a 21 a 22 a 2n A =, a m1 a m2 a mn kde a ij R jsou její

Více

6. Matice. Algebraické vlastnosti

6. Matice. Algebraické vlastnosti Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 6 Matice Algebraické vlastnosti 1 Algebraické operace s maticemi Definice Bud te A,

Více

Ing. Petr BLAHA, PhD. Prof. Ing. Petr VAVŘÍN, DrSc.

Ing. Petr BLAHA, PhD. Prof. Ing. Petr VAVŘÍN, DrSc. Řízení a regulace I Základy regulace lineárních systémů - spojité a diskrétní Ing. Petr BLAHA, PhD. Prof. Ing. Petr VAVŘÍN, DrSc. ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY Fakulta elektrotechniky a komunikačních

Více

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Numerické metody jednorozměrné minimalizace Vedoucí bakalářské práce: RNDr. Horymír

Více

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z PŘEDNÁŠEK JAN MALÝ Obsah 1. Parciální diferenciální rovnice obecně 1. Kvaazilineární rovnice prvního řádu 1 3. Lineární rovnice druhého řádu

Více

2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC

2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC 22 SČÍTÁNÍ A NÁSOBENÍ MATIC V této kapitole se dozvíte: jak je definováno sčítání matic a jaké má základní vlastnosti jak je definováno násobení matic číslem a jaké má základní vlastnosti zda a proč se

Více

8. Posloupnosti, vektory a matice

8. Posloupnosti, vektory a matice . jsou užitečné matematické nástroje. V Mathcadu je často používáme například k rychlému zápisu velkého počtu vztahů s proměnnými parametry, ke zpracování naměřených hodnot, k výpočtům lineárních soustav

Více

předmětu MATEMATIKA B 1

předmětu MATEMATIKA B 1 Metodický list pro první soustředění kombinovaného studia předmětu MATEMATIKA B 1 Název tématického celku: Vektorový prostor Cíl: Základním cílem tohoto tematického celku je pochopit, co jsou to vektory

Více

Matematika pro studenty ekonomie

Matematika pro studenty ekonomie w w w g r a d a c z vydání upravené a doplněné vydání Armstrong Grada Publishing as U Průhonu 7 Praha 7 tel: + fax: + e-mail: obchod@gradacz wwwgradacz Matematika pro studenty ekonomie MATEMATIKA PRO STUDENTY

Více

M - Příprava na čtvrtletní písemnou práci

M - Příprava na čtvrtletní písemnou práci M - Příprava na čtvrtletní písemnou práci Určeno pro třídu 1ODK. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

Matematika 4: Verze ze dne 29. listopadu 2015. Jan Chleboun. Úvod... 2. 2 Lineární algebra... 4

Matematika 4: Verze ze dne 29. listopadu 2015. Jan Chleboun. Úvod... 2. 2 Lineární algebra... 4 Matematika 4: Příručka pro přežití Verze ze dne 29. listopadu 2015 Jan Chleboun Obsah Úvod... 2 1 Komplexní čísla... 2 2 Lineární algebra... 4 2.1 Vlastní čísla, vlastní vektory... 4 2.2 Geršgorinova věta...

Více

skladbu obou směsí ( v tunách komponenty na 1 tunu směsi):

skladbu obou směsí ( v tunách komponenty na 1 tunu směsi): Klíčová slova: simplexová metoda 1 Simplexová metoda Postup výpočtu: 1. Nalezení výchozího řešení. 2. Test optima: pokud je řešení optimální výpočet končí, jinak krok 3. 3. Iterační krok, poté opět test

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Vedení tepla v MKP. Konstantní tepelné toky. Analogické úlohám statiky v mechanice kontinua

Vedení tepla v MKP. Konstantní tepelné toky. Analogické úlohám statiky v mechanice kontinua Vedení tepla v MKP Stacionární úlohy (viz dále) Konstantní tepelné toky Analogické úlohám statiky v mechanice kontinua Nestacionární úlohy (analogické dynamice stavebních konstrukcí) 1 Základní rovnice

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální

Více

2. RBF neuronové sítě

2. RBF neuronové sítě 2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

11 Soustavy rovnic a nerovnic, Determinanty a Matice

11 Soustavy rovnic a nerovnic, Determinanty a Matice 11 Soustavy rovnic a nerovnic, Determinanty a Matice (r zné typy soustav rovnic a nerovnic, matice druhy matic, operace s maticemi, hodnost matice, inverzní matice, Gaussova elimina ní metoda, determinanty

Více

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012 Algebra - třetí díl Lenka Zalabová Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita v Českých Budějovicích zima 2012 Obsah 1 Dělitelnost 2 Grupy zbytkových tříd 3 Jedna z

Více

a n (z z 0 ) n, z C, (1) n=0

a n (z z 0 ) n, z C, (1) n=0 Mocniné řady Nechť 0, a 0, a, a 2,... jsou konečná komplexní čísla. Pak řadu funkcí a n ( 0 ) n, C, () naýváme mocninou řadou. Číslo 0 koeficienty mocniné řady. Onačme dále: se naývá střed mocniné řady,

Více

Geometrie pro FST 2. Plzeň, 28. srpna 2013, verze 6.0

Geometrie pro FST 2. Plzeň, 28. srpna 2013, verze 6.0 Geometrie pro FST 2 Pomocný učební text František Ježek, Světlana Tomiczková Plzeň, 28. srpna 2013, verze 6.0 Předmluva Tento pomocný text vznikl pro potřeby předmětu Geometrie pro FST 2, který vyučujeme

Více

Teorie informace a kódování (KMI/TIK)

Teorie informace a kódování (KMI/TIK) Teorie informace a kódování (KMI/TIK) Bezpečnostní kódy Lukáš Havrlant Univerzita Palackého 13. listopadu 2012 Konzultace V pracovně 5.076. Každý čtvrtek 9.00 11.00. Emaily: lukas@havrlant.cz lukas.havrlant@upol.cz

Více

Numerické metody lineární algebry

Numerické metody lineární algebry Numerické metody lineární algebry 1 Úvod 11 Úlohy lineární algebry 1 Řešení soustav lineárních rovnic A x = b Řešení soustavy s regulární čtvercovou maticí A řádu n n pro jednu nebo více pravých stran

Více

MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET MPV, LADP TUL, ZS 2009/10

MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET MPV, LADP TUL, ZS 2009/10 1 MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET 2 koncepce/slides: Jan Picek přednášející: Jiří Veselý KAP, tel. 485352290, budova H konzul. hodiny: dle úmluvy e-mail: jvesely@karlin.mff.cuni.cz

Více

Obsah. 1. Komplexní čísla

Obsah. 1. Komplexní čísla KOMPLEXNÍ ANALÝZA - ZÁPISKY Z PŘEDNÁŠEK JAN MALÝ Obsah 1. Komplexní čísla 1 2. Holomorfní funkce 3 3. Elementární funkce komplexní proměnné 4 4. Křivkový integrál 7 5. Index bodu vzhledem ke křivce 9 6.

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry.

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry. Kapitola Ohodnocené grafy V praktických aplikacích teorie grafů zpravidla graf slouží jako nástroj k popisu nějaké struktury. Jednotlivé prvky této struktury mají často přiřazeny nějaké hodnoty (může jít

Více

5.2.4 Rayleighova Taylorova nestabilita

5.2.4 Rayleighova Taylorova nestabilita 74 Nestability v plazmatu 5..4 Rayleighova Taylorova nestabilita Rayleighova Taylorova nestabilita (RT nestabilita) vzniká na rozhraní dvou tekutin různých hustot (například je-li v gravitačním poli hustší

Více

SBORNÍK ODBORNÝ PŘÍRODOVĚDNÝ KEMP

SBORNÍK ODBORNÝ PŘÍRODOVĚDNÝ KEMP Reg. č. SBORNÍK ODBORNÝ PŘÍRODOVĚDNÝ KEMP MATEMATIKA, FYZIKA 2. - 6. ZÁŘÍ 2013 WWW.PODPORATALENTU.CZ MATEMATICKÝ KEMP... 5 Diofantovské rovnice... 5 Diofantovské rovnice I... 7 Diofantovské rovnice II...

Více

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Y36BEZ Bezpečnost přenosu a zpracování dat Róbert Lórencz 1. přednáška Úvod http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Róbert Lórencz (ČVUT FEL, 2007) Y36BEZ Bezpečnost přenosu a zpracování

Více

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný

Více

Intervalové stromy. Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme. 1. Změna jednoho čísla v posloupnosti.

Intervalové stromy. Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme. 1. Změna jednoho čísla v posloupnosti. Intervalové stromy Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme průběžně provádět tyto dvě operace: 1. Změna jednoho čísla v posloupnosti. 2. Zjištění součtu čísel

Více

Komplexní číslo. Klíčové pojmy: Komplexní číslo, reálná část, imaginární část, algebraické počty s komplexním číslem

Komplexní číslo. Klíčové pojmy: Komplexní číslo, reálná část, imaginární část, algebraické počty s komplexním číslem Komplexní číslo Cíl kapitoly: seznámení s použitím komplexního čísla v pythonu Klíčové pojmy: Komplexní číslo, reálná část, imaginární část, algebraické počty s komplexním číslem Komplexní číslo Opakování

Více

Přehled učiva matematiky 7. ročník ZŠ

Přehled učiva matematiky 7. ročník ZŠ Přehled učiva matematiky 7. ročník ZŠ I. ARITMETIKA 1. Zlomky a racionální čísla Jestliže rozdělíme něco (= celek) na několik stejných dílů, nazývá se každá část celku zlomkem. Zlomek tři čtvrtiny = tři

Více

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE Testy dobré shody Vedoucí diplomové práce: RNDr. PhDr. Ivo

Více

Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL.

Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL. Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL. Jméno a příjmení(čitelně): varianta č. 90 Přezdívka(nepovinné): Zde pište své výsledky Napište rovnici přímky procházející

Více

Implementace numerických metod v jazyce C a Python

Implementace numerických metod v jazyce C a Python Fakulta elektrotechnická Katedra matematiky Dokumentace k semestrální práci Implementace numerických metod v jazyce C a Python 2013/14 Michal Horáček a Petr Zemek Vyučující: Mgr. Zbyněk Vastl Předmět:

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT1

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT1 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT1 1. Porovnejte mezi sebou normy zadaných vektorů p =(1,-3), q =(2,-2,2), r =(0,1,2,2). (A) p

Více

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1.

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1. 2. Některá důležitá rozdělení Diskrétní rozdělení. Alternativní rozdělení Ap) Bernoulli) je diskrétní rozdělení, kdy náhodná veličina X nabývá pouze dvou hodnot a a pro její pravděpodobnostní funkci platí:

Více

Kód uchazeče ID:... Varianta: 14

Kód uchazeče ID:... Varianta: 14 Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2013 Kód uchazeče ID:.................. Varianta: 14 1. V lednu byla zaměstnancům zvýšena mzda o 16 % prosincové mzdy. Následně

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

2.8 ZÁKLADY VYTVÁŘENÍ TESTOVÝCH SYSTÉMŮ

2.8 ZÁKLADY VYTVÁŘENÍ TESTOVÝCH SYSTÉMŮ 2.8 ZÁKLADY VYTVÁŘENÍ TESTOVÝCH SYSTÉMŮ Vytváření testových systémů pro jednotlivé potřeby tělovýchovné praxe patří mezi hlavní otázky teorie konstrukce testů. Protože však v testové baterii nebo profilu

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

13. Třídící algoritmy a násobení matic

13. Třídící algoritmy a násobení matic 13. Třídící algoritmy a násobení matic Minulou přednášku jsme probírali QuickSort, jeden z historicky prvních třídících algoritmů, které překonaly kvadratickou složitost aspoň v průměrném případě. Proč

Více