2. Matice, soustavy lineárních rovnic

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "2. Matice, soustavy lineárních rovnic"

Transkript

1 Matice, soustavy lineárních rovnic Tento učební text byl podpořen z Operačního programu Praha- Adaptabilita Irena Sýkorová

2 Některé vlastnosti matic Uvažujmečtvercovoumatici A=(a ij ) n n Matice Asenazývásymetrická,jestližeplatí A=A, tj a ij = a ji pro i,j=1,,n Matice A se nazývá pozitivně definitní, jestliže všechny její hlavní minory jsou kladné, tj a 11 a 1 a 1i a D 1 >0,,D n >0, kde D i = 1 a a i a i1 a i Matice A se nazývá diagonálně dominantní, jestliže absolutní hodnota prvku na diagonále je větší nebo rovna součtu absolutních hodnot ostatních prvků buď pro všechny řádky nebo pro všechny sloupce, tj a ii a ij pro i=1,,n i j a ii Matice je ostře diagonálně dominantní, jsou-li nerovnosti ostré Příklad 1: Rozhodneme, zda matice A je symetrická, pozitivně definitní, diagonálně dominantní A= Řešení:Matice Anenísymetrická,protože a 1 a 1 Kověřenídefinitnostivypočítámepříslušné minory D 1 =4(>0), D = =14(>0), D = =6(>0) Všechny minory jsou kladné, matice A je pozitivně definitní Podmínku pro diagonální dominanci provedeme nejprve pro řádky: 4 > < + 3 > + 0 ve druhém řádku podmínka neplatí, zkusíme tedy sloupce: 4 > > + 0 Podmínka je splněná pro všechny sloupce, matice A je diagonálně dominantní, není však ostře diagonálně dominantí(ve druhém sloupci je neostrá nerovnost) MATLAB ověření,zdamatice Ajesymetrická,tedy A=A,neboli A A = O(nulovámatice): >> A-A nebo porovnáním výsledek: 1(A je symetrická), 0(A není symetrická) >> isequal(a,a ) ověření, zda matice A je pozitivně definitní všechny minory jsou kladné(pro malé matice)

3 >> A(1,1) >> det(a(1:,1:)) >> det(a(1:3,1:3)) >> >> det(a) Vlastní čísla matice Uvažujmečtvercovoumatici A=(a ij ) n n Jestližepročíslo λ(obecněkomplexní)anenulový vektor xplatí A x=λ x, (1) číslo λ se nazývá vlastní(charakteristické) číslo matice A a vektor x se nazývá vlastní(charakteristický) vektor matice A příslušný vlastnímu číslu λ Rovnici(1) můžeme upravit, J je jednotková matice řádu n A x=λ x, A x λ x=ō, (A λj) x=ō () Toto je maticový zápis homogenní soustavy n lineárních rovnic o n neznámých s maticí soustavy A λjhledámenenulovývektor x,tjnenulovéřešenísoustavy,atoexistuje,právěkdyžjematice soustavy singulární, tj det(a λj)=0 (3) Matice A λjsenazývácharakteristickámatice,polynom p(λ)=det(a λj)senazývácharakteristický polynom(stupně n) a rovnice(3) je charakteristická rovnice Hledáme kořeny polynomu n-tého stupně a tedy existuje n(reálných nebo komplexních, případně i násobných) vlastních čísel matice A Spektrální poloměr matice A je největší z absolutních hodnot vlastních čísel ρ(a)=max{ λ i,kde λ i jevlastníčíslomatice A} Poznámka:Známe-livlastníčíslo λ,pakpříslušnývlastnívektorjekaždénenulovérešenísoustavy() Příklad : Vypočítáme vlastní čísla a spektrální poloměr matice A= Řešení: Nejprve určíme chrakteristickou matici A λj= ( ) 1 3 ( ) 1 3 ( ) ( ) λ 0 1 λ =, 0 λ 3 λ pak charakteristický polynom, neboli det(a λj)= 1 λ 3 λ =(1 λ)( λ) 6=λ 3λ 4 Vlastní čísla matice jsou kořeny charakteristického polynomu, tj hledáme řešení charakteristické rovnice(kvadratické) λ 3λ 4=0,tedycharakteristickáčíslamatice Ajsou λ 1 =4, λ = 1 3

4 Spekrální poloměr je největší z absolutních hodnot vlastních čísel, tj Spekrálnípoloměrje ρ(a)=4 Platí: max{ λ 1, λ }=max{ 4, 1 }=max{4,1}=4 a) Je-li matice symetrická, všechna její vlastní čísla jsou reálná b) Matice je symetrická a pozitivně definitní, právě když všechna její vlastní čísla jsou kladná MATLAB vlastní čísla matice A: >> eig(a) spektrální poloměr matice A(největší z absolutních hodnot vlastních čísel): >> max(abs(eig(a))) Norma matice Podobným způsobem jako u vektorů můžeme definovat i normu matice Normamaticejetakovézobrazení R n n do R,kterésplňujetytopodmínky: (i) A >0prokaždounenulovoučtvercovoumaticia A =0pouzepro A=O, (ii) c A = c A prokaždéreálnéčíslo c, (iii) A+B A + B prokaždédvěčtvercovématicestejnéhořádu (iv) A B A B prokaždédvěčtvercovématicestejnéhořádu Je důležitá souvislost mezi normou vektoru a normou matice Řekneme, že norma vektoru a norma matice je konzistentní s normou vektoru, jestliže pro každou matici A a vektor x platí A x A x Normu matice můžeme také definovat pomocí normy vektoru Je-li dána norma vektoru, pak platí A x A =sup x ō x = sup A x (4) x =1 aříkáme,žetatonormamaticejegenerovanánormouvektoru Norma matice generovaná normou vektoru je s touto normou konzistentní Nejčastěji užívané normy matice jsou: n a) A = max 1 i n j=1 a ij,tzvřádkovánorma, n b) A 1 = max i=1 a ij,tzvsloupcovánorma, c) A F = 1 j n ( n i=1 n j=1 a ij )1, tzv Frobeniova norma, někdy též Schurova, d) A = ρ(a A),tzvspektrálnínorma,někdytéžeuklidovská 4

5 Příklad 3: Vypočítáme všechny normy matice A = ( ) Řešení: a) Při počítání řádkové normy sečteme absolutní hodnoty prvků v každém řádku a z těchto součtů vybereme maximální A =max{ 1 + 5, + 6 }=max{6,8}=8 b) Pro určení sloupcové normy sečteme absolutní hodnoty prvků v každém sloupci a z těchto součtů vybereme maximální A 1 =max{ 1 +, }=max{3,11}=11 c) Frobeniova norma je druhá odmocnina součtu druhých mocnin všech prvků matice A F = (1) +() +( 5) +(6) = = 66=8,14 d) K určení spektrální normy potřebujeme nalézt největší z absolutních hodnot vlastních čísel matice A A ( ) ( ) ( ) A A= =, pak kořeny chakteristického polynomu jsou (5 λ)(61 λ) 49=0 λ 66λ+56=0 λ 1 =61,8617, λ =4,1383 Spektrálnínormajeodmocninazespektrálníhopoloměrumatice A A ρ(a A)=61,8617 A = 61,8617=7,865 Výpočet spektrální normy pro větší matice je poměrně pracný MATLAB normymatice A: řádková: >> norm(a,inf) >> max(sum(abs(a ))) sloupcová: >> norm(a,1) >> max(sum(abs(a))) Frobeniova: >> norm(a, fro ) >> sqrt(sum(diag(a * A))) spektrální: >> norm(a,) >> norm(a) Poznámka:Frobeniovanormamaticenenígenerovanáeuklidovskounormouvektoru,protožepro jednotkovoumatici Jřádu nplatí J F = n,alepodle(4)je J F =1Euklidovskounormou vektoru je generovaná spektrální norma matice Pro každou normu matice, která je konzistentní s nějakou normou vektoru, platí ρ(a) A 5

6 Podmíněnost matic Dříve než se budeme věnovat studiu metod řešení soustav lineárních rovnic, je potřeba zmínit tzv podmíněnostmaticevpodstatějdeoto,jak citlivá jematicesoustavyvzhledemkchybámve vstupních datech i k zaokrouhlovacím chybám v průběhu výpočtu Příklad 4: Uvažujme soustavu lineárních rovnic x+6y=8 x+6,0001y=8,0001, jejímžřešenímje x=1, y=1pokudprovedemevkoeficientechmalouzměnu(řádově10 4 ),dostaneme soustavu x+6y=8 x+5,9999y=8,000 sřešenímje x=10, y= Tedymalézměnykoeficientůmaticeasložekvektorupravýchstran způsobí velké změny(řádově jednotky) v řešení Matice se nazývá dobře podmíněná, jestliže relativně malé změny v koeficientech způsobí relativně malé změny v řešení Matice se nazývá špatně podmíněná, jestliže relativně malé změny v koeficientech způsobí relativně velké změny v řešení Uvažujeme nyní soustavu lineárních rovnic A x= b (5) sregulárnímaticísoustavy AOznačíme-li x přesné(teoretické)řešenísoustavy A x= ba x c je přesnéřešeníporušenésoustavy(a+δa) x= b+δ b,pakodhadrelativníchybyřešení xc x x závisí přímo na součinu K(A)= A A 1, kde norma matice je generovaná normou vektoru Číslo K(A) se nazývá číslo podmíněnosti matice AČímjevětší,tímjematicehůřpodmíněnáatímjevětšíodhadrelativníchybyřešení ( ) 6 Poznámka: Matice A = z předchozího příkladu má číslo podmíněnosti velké 6,0001 K(A)= MATLAB číslo podmíněnosti matice A: >> cond(a) Přímé metody řešení soustav lineárních rovnic Nyní se budeme věnovat numerickému řešení soustavy lineárních rovnic A x= b, kdematicesoustavy A=(a ij )jereálnáregulárnímaticeřádu n, b=(b 1,b,,b n ) jesloupcový vektor pravých stran 6

7 Metody řešení soustav lineárních rovnic můžeme rozdělit do dvou skupin: metody přímé a metody iterační Pomocí přímých metod dostaneme po konečném počtu kroků přesné řešení soustavy, metodami iteračními získáme posloupnost vektorů, která konverguje k přesnému řešení Ve skutečnosti ale vždy dostaneme pouze určitou aproximaci řešení; u přímých metod je to způsobeno zaokrouhlovacími chybami, u metod iteračních tím, že můžeme provést vždy jen konečný počet kroků Volba metody závisí na konkrétní soustavě, musíme vzít v úvahu, zda je matice soustavy malá nebo velká, zda obsahuje hodně nulových prvků, tzn je řídká nebo zda má nějaké speciální vlastnosti např je třídiagonální Mezi přímé metody patří Gaussova eliminační metoda, Jordanova eliminační metoda, metoda využívajícíinverznímaticiznáme-liinverznímatici A 1,můžemepočítatřešenízevztahu x=a 1 b, alevlastnívýpočetmatice A 1 nenípřílišvýhodný Gaussova eliminační metoda spočívá v tom, že nejprve rozšířenou matici soustavy(a b) převedeme pomocí ekvivalentních úprav do tvaru(u y), kde U je horní trojúhelníková matice tzv přímý chod Místo původní soustavy pak řešíme soustavu U x=ȳ, ze které se zdola snadno dopočítají složky neznámého vektoru x tzv zpětný chod V přímém chodu provádíme v(n 1) krocích nulování prvků pod diagonálou v 1 až(n 1) sloupci Používáme pouze takovou úpravu, že v k-tém kroku násobíme k-tý řádek vhodnou konstantou a tento násobekpřičtemekostatnímřádkůmoznačíme-li A (0) = A, b (0) = b,počítánímpodlevzorce(pro k=1,,n-1,i=k+1,,n,j=k,,n) a (k) ij = a (k 1) ij a (k 1) a (k 1) kj ik a (k 1) kk spodmínkou a (k 1) kk 0 Je-li příslušný diagonální prvek nulový, musíme tento řádek vyměnit s některým ze zbývejících, tak aby na diagonále bylo nenulové číslo Případně, kvůli omezení šíření zaokrouhlovacích chyb, je možné provést pivotaci výběr prvku v absolutní hodnotě největšího v daném sloupci, který výměnou řádků přemístíme na diagonální pozici Ve zpětném chodu se neznámé počítají odzadu podle vzorců x n = y n u nn x i = 1 u ii y i n j=i+1 u ij x j pro i=n 1,,1 Příklad 5: Gausovou eliminační metodou vyřešíme soustavu x 1 +x +x 3 = x 1 +x +3x 3 = 5 x 1 x = 1 (6) Řešení: Koeficienty a pravé strany zapíšeme do rozšířené matice soustavy, kterou převedeme do horního trojúhelníkového tvaru Provádíme takové úpravy, že v k-tém kroku násobíme vždy k-tý řádek vhodnou konstantou a tento násobek přičteme k ostatním řádkům tak, abychom vynulovali prvky pod diagonálou(konstanty jsou zapsané vpravo vedle příslušného řádku) ( ) (1) ( 1 )

8 Odtudsnadnodopočítáme x 3 =1, x = 1, x 1 = Podobná je Jordanova eliminační metoda, kde se matice soustavy A převádí ma matici jednotkovou, řešení pak je ve sloupci pravých stran Z Gaussovy eliminace můžeme odvodit i tzv LU rozklad matice Dříve než popíšeme princip LU rozkladu, ukážeme, že některé elementární úpravy matice lze provádět násobením dané matice zleva speciálními regulárními maticemi Poznámka:Jestliževdanématici M chceme mnásobek i-téhořádkupřičístkj-témuřádku, můžeme tuto úpravu vyjádřit jako součin matic; matici M nádobíme zleva maticí V, která vznikne zjednotkovématicepřidánímkonstanty mnapozici v ji Pokudje j > i,jematice V dolnítrojúhelníková Příklad6:Matici Mupravímetak,žečtyřnásobekprvníhořádkupřičtemeketřetímu(i=1, j=3, m=4) M= V = V M= = Poznámka:Jestliževdanématici M chcemevyměnit i-týaj-týřádek,můžemetutoúpravu vyjádřit jako součin matic; matici M nádobíme zleva maticí P, která vznikne z jednotkové matice záměnou i-tého a j-tého řádku Matice P se nazývá permutační matice Příklad6:Vmatici Mvyměnímeprvníadruhýřádek(i=1, j=) M= P= P M= = Budeme-li používat LU rozklad matice, znamená to, že matici soustavy A chceme vyjádřit jako součin A=LU, kde L je dolní trojúhelníková matice s jedničkami na diagonále a U je horní trojúhelníková matice Soustavu(5) pak řešíme jako dvě soustavy s trojúhelníkovými maticemi Lȳ= b U x=ȳ Trojúhelníkové matice L a U můžeme získat postupnými úpravami matice A, což můžeme symbolicky vyjádřit jako (A J) (U L ), kde L jedolnítrojúhelníkováaplatí L A=UPřitomtozpůsobuvýpočtuvšaksmímepoužítjen takovou elementární úpravu, kdy přičítáme násobek určitého řádku k řádku, který je pod ním Ze vztahu L A=Usnadnoodvodíme A=(L ) 1 U= LU Provedenýmúpravámodpovídápostupnénásobenímatice Amaticemi V k L A=V k V 1 A=U A=(L ) 1 U=(V k V 1 ) 1 U=(V1 1 V 1 k )U= LU Každá matice L má na diagonále jedničky a pod diagonálou příslušné koeficienty z úprav při Gaussově eliminaci, ale s opačnými znaménky 8

9 Příklad 7: Vyřešíme soustavu(6) pomocí LU rozkladu Řešení: Matici soustavy(6) rozložíme A=LU= = Pakhledámeřešenísoustavy Lȳ= b y 1 y = 5, y 3 1 kterousnadnovyřešíme:zprvnírovniceje y 1 =,dosazenímdodruhédostaneme y =1,zetřetí y 3 = 3,tedy ȳ= 1 3 Nynízbývávyřešitsoustavu U x=ȳ,cožjezpětnýchodgaussovyeliminace x 1 x = x 3 x 1 x = 1 x 3 1 Ikdyžmatice Ajeregulární,můžesestát,žeseběhemúpravobjevínulovýdiagonálníprvekPak je potřeba vyměnit řádky, což v tomto případě není povolená úprava Je tedy třeba prohodit řádky původnímatice Atak,abysenovámatice PAdalaserozložitnasoučin LU,tj Řešení původní soustavy pak probíhá takto: PA=LU Lȳ= P b U x=ȳ Výhoda LU rozkladu se projeví, pokud řešíme více soustav se stejnou maticí Pak se nejpracnější částvýpočtu,tjvýpočetmatic LaU,provádípouzejednou MATLAB přímé metody řešení soustav lineárních rovnic (A matice soustavy, b sloupcový vektor pravých stran): příkazem Matlabu: >> x = A \ b pomocí inverzní matice: >> A1 = inv(a) >> x = A1 * b pomocílurozkladu(řešíme Ly= Pb, Ux=y,kde Pjepermutačnímatice): >> [L, U, P] = lu(a) >> x = U \ ( L \ (P*b)) 9

10 Dodatky Je-li matice A symetrická a pozitivně definitní, pak existuje horní trojúhelníková metice U tak, že platí A=U U (7) TomutovyjádřeníseříkáCholeskéhorozkladVztah(7)býváněkdyzapsántakévetvaru A=LL, kde L je dolní trojúhelníková matice MATLAB Choleského rozklad matice A(funkce vrací horní trojúhelníkovou matici): >> chol(a) řešení soustav lineárních rovnic: >> x = U \ ( U \ b) V některých případech potřebujeme vyřešit soustavu s maticí ve speciálním tvaru, maticí třídiagonální, tj maticí ve tvaru a 11 a a 1 a a a 3 a 33 a a n,n 3 a n,n a n,n a n 1,n a n 1,n 1 a n 1,n a n,n 1 a n,n Taková matice je řídká, má málo nenulových prvků a hodně nulových(pro velká n) Při numerickém řešení se používá speciální postup, který umožňuje uložit do paměti pouze nenulové prvky 10

Operace s maticemi Sčítání matic: u matic stejného typu sečteme prvky na stejných pozicích: A+B=(a ij ) m n +(b ij ) m n =(a ij +b ij ) m n.

Operace s maticemi Sčítání matic: u matic stejného typu sečteme prvky na stejných pozicích: A+B=(a ij ) m n +(b ij ) m n =(a ij +b ij ) m n. 1 Sylvestrova věta Platí: Nechť A je symetrická matice řádu n, označme a 11 a 12... a 1i a D i = 21 a 22... a 2i.... a i1 a i2... a ii Pak A(a příslušná KF) je pozitivně definitní, právěkdyž D i >0provšechna

Více

y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Řádková norma (po řádcích sečteme absolutní hodnoty prvků matice a z nich

y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Řádková norma (po řádcích sečteme absolutní hodnoty prvků matice a z nich Normy matic Příklad 1 Je dána matice A a vektor y: A = 2 0 3 4 3 2 y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Ověřte, že platí Ay A y (1) Ay = (4, 14, 2) T 2 2 Frobeniova norma

Více

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice.

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice. [] Definice determinantu BI-LIN, determinant, 9, P Olšák [2] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A 0 pro singulární matici, det A 0 pro regulární matici používá

Více

Matice se v některých publikacích uvádějí v hranatých závorkách, v jiných v kulatých závorkách. My se budeme držet zápisu s kulatými závorkami.

Matice se v některých publikacích uvádějí v hranatých závorkách, v jiných v kulatých závorkách. My se budeme držet zápisu s kulatými závorkami. Maticové operace Definice Skalár Představme si nějakou množinu, jejíž prvky lze sčítat a násobit. Pěkným vzorem jsou čísla, která už známe od mala. Prvky takové množiny nazýváme skaláry. Matice Matice

Více

5. Maticová algebra, typy matic, inverzní matice, determinant.

5. Maticová algebra, typy matic, inverzní matice, determinant. 5. Maticová algebra, typy matic, inverzní matice, determinant. Matice Matice typu m,n je matice složená z n*m (m >= 1, n >= 1) reálných (komplexních) čísel uspořádaných do m řádků a n sloupců: R m,n (resp.

Více

MATrixLABoratory letný semester 2004/2005

MATrixLABoratory letný semester 2004/2005 1Prostedie, stručný popis okien Command Window příkazové okno pro zadávání příkazů v jazyku Matlabu. Workspace zde se zobrazuje obsah paměti; je možné jednotlivé proměnné editovat. Command History dříve

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j. Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Jiří Kolafa Vektory. Vektorový prostor Vektor je často zaveden jako n-tice čísel, (v,..., v n ), v i R (pro reálný vektorový prostor);

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic 7 Matice. Determinant Soustavy lineárních rovnic 7.1 Matice Definice 1. Matice typu (m, n) jesoustavam n reálných čísel uspořádaných do m řádků a n sloupců a 11, a 12, a 13,..., a 1n a 21, a 22, a 23,...,

Více

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) LINEÁRNÍ ALGEBRA Úvod vektor Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) Kartézský souřadnicový systém -je taková soustava

Více

Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11

Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11 Gymnázium, Brno Matice Závěrečná maturitní práce Jakub Juránek 4.A Školní rok 2010/11 Konzultant: Mgr. Aleš Kobza Ph.D. Brno, 2011 Prohlášení Prohlašuji, že jsem předloženou práci zpracoval samostatně

Více

3. Matice a determinanty

3. Matice a determinanty . Matice a determinanty Teorie matic a determinantů představuje úvod do lineární algebry. Nejrozsáhlejší aplikace mají matice a determinanty při řešení systémů lineárních rovnic. Pojem determinantu zavedl

Více

Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Matice študenti MFF 15. augusta 2008 1 12 Matice Požadavky Matice a jejich hodnost Operace s maticemi a jejich vlastnosti Inversní matice Regulární matice,

Více

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. Přednáška MATEMATIKA č. 2 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 13. 10. 2010 Uspořádané schéma vytvořené z m n reálných čísel, kde m, n N a 11 a 12 a

Více

0. Lineární rekurence Martin Mareš, 2010-07-04

0. Lineární rekurence Martin Mareš, 2010-07-04 0 Lineární rekurence Martin Mareš, 2010-07-04 V tomto krátkém textu se budeme zabývat lineárními rekurencemi, tj posloupnostmi definovanými rekurentní rovnicí typu A n+k = c 0 A n + c 1 A n+1 + + c k 1

Více

Jak pracovat s absolutními hodnotami

Jak pracovat s absolutními hodnotami Jak pracovat s absolutními hodnotami Petr Matyáš 1 Co to je absolutní hodnota Absolutní hodnota čísla a, dále ji budeme označovat výrazem a, je jeho vzdálenost od nuly na ose x, tedy je to vždy číslo kladné.

Více

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Více

Maticový a tenzorový počet

Maticový a tenzorový počet Maticový a tenzorový počet Doc. RNDr. Martin Kovár, Ph.D. Ústav matematiky Fakulta elektrotechniky a komunikačních technologií VUT v Brně Obsah. Test vstupních znalostí............................. 5 Matice

Více

Lineární algebra a analytická geometrie sbírka úloh a ř ešených př íkladů

Lineární algebra a analytická geometrie sbírka úloh a ř ešených př íkladů Lineární algebra a analytická geometrie sbírka úloh a ř ešených př íkladů Linear algebra and analytic geometry problems and solved examples Klára Javornická Bakalářská práce 2010 UTB ve Zlíně, Fakulta

Více

Numerické metódy matematiky I

Numerické metódy matematiky I Prednáška 3 Numerické metódy matematiky I Riešenie sústav lineárnych rovníc prevzaté z Numerické metody Doc RNDr Libor Čermák, CSc RNDr Rudolf Hlavička, CSc Ústav matematiky Fakulta strojního inženýrství

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

Lineární algebra II. Adam Liška. 9. února 2015. Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak. rok 2007/2008

Lineární algebra II. Adam Liška. 9. února 2015. Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak. rok 2007/2008 Lineární algebra II Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak rok 2007/2008 Adam Liška 9 února 2015 http://kammffcunicz/~fiala http://wwwadliskacom 1 Obsah 10 Permutace 3 11 Determinant

Více

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly Matice Matice typu (m, n) je uspořádaná m-tice prvků z řádky matice.. Jednotlivé složky této m-tice nazýváme Matice se zapisují Speciální typy matic Nulová matice všechny prvky matice jsou nulové Jednotková

Více

Vybrané problémy lineární algebry v programu Maple

Vybrané problémy lineární algebry v programu Maple UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA Katedra matematické analýzy a aplikací matematiky BAKALÁŘSKÁ PRÁCE Vybrané problémy lineární algebry v programu Maple Vedoucí bakalářské práce: RNDr.

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

TEORIE MATIC. Tomáš Vondra

TEORIE MATIC. Tomáš Vondra TEORIE MATIC Tomáš Vondra 2 Obsah 1 Opakování 5 1.1 Základní operace s maticemi..................... 5 1.2 Determinant matice......................... 7 1.2.1 Cauchyův-Binedův vzorec..................

Více

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Lineární algebra 10. přednáška: Ortogonalita II Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text byl vytvořen

Více

Edita Kolářová ÚSTAV MATEMATIKY

Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik 1 Obsah 1 Přehled použité smbolik 3 Základní pojm matematické logik a teorie množin 4.1 Element matematické logik.........................

Více

SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC

SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC Pojm: Algebraická rovnice... rovnice obsahující pouze celé nezáporné mocnin neznámé, tj. a n n + a n 1 n 1 +... + a 2 2 + a 1 + a 0 = 0, kde n je přirozené číslo.

Více

Připomenutí co je to soustava lineárních rovnic

Připomenutí co je to soustava lineárních rovnic Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

Numerické řešení soustav lineárních rovnic

Numerické řešení soustav lineárních rovnic Numerické řešení soustav lineárních rovnic irko Navara Centrum strojového vnímání, katedra kybernetiky elektrotechnická fakulta ČVUT, Praha http://cmpfelkcvutcz/~navara 30 11 2016 Úloha: Hledáme řešení

Více

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada (Auto)korelační funkce 1 Náhodné procesy Korelace mezi náhodnými proměnnými má široké uplatnění v elektrotechnické praxi, kde se snažíme o porovnávání dvou signálů, které by měly být stejné. Příkladem

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

Kapitola 1. Tenzorový součin matic

Kapitola 1. Tenzorový součin matic Kapitola 1 Tenzorový součin matic Definice 1.1. Buď F komutativní těleso. Pro matice A F m n a B F r s definujeme tenzorový součin A B jako matici o rozměru mr ns zapsanou blokově: A 11 B A 12 B A 1n B

Více

Vektory a matice. Matice a operace s nimi. Hodnost matice. Determinanty. . p.1/12

Vektory a matice. Matice a operace s nimi. Hodnost matice. Determinanty. . p.1/12 Vektory a matice Lineární (ne-)závislost vektorů n zê Matice a operace s nimi Hodnost matice Determinanty. p.1/12 Lineární (ne-)závislost vektorů zê n Příklad 9.1.1 Rozhodněte, zda jsou uvedené vektory

Více

Poznámky z matematiky

Poznámky z matematiky Poznámky z matematiky Verze: 14. dubna 2015 Petr Hasil hasil@mendelu.cz http://user.mendelu.cz/hasil/ Ústav matematiky Lesnická a dřevařská fakulta Mendelova univerzita v Brně Vytvořeno s podporou projektu

Více

2 Spojité modely rozhodování

2 Spojité modely rozhodování 2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu

Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 1 Tutoriál č. 3 Exponenciála matice a její užití řešení Cauchyovy úlohy pro lineární systémy užitím fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 0.1 Exponenciála matice a její užití

Více

Základy matematiky kombinované studium 714 0365/06

Základy matematiky kombinované studium 714 0365/06 Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické

Více

Mgr. Karel Pazourek. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

Mgr. Karel Pazourek. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. Mnohočleny z různých stran Mgr. Karel Pazourek Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím online prostředí,

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29 Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010

Více

Euklidovský prostor Stručnější verze

Euklidovský prostor Stručnější verze [1] Euklidovský prostor Stručnější verze definice Eulidovského prostoru kartézský souřadnicový systém vektorový součin v E 3 vlastnosti přímek a rovin v E 3 a) eprostor-v2, 16, b) P. Olšák, FEL ČVUT, c)

Více

1. Základy logiky a teorie množin

1. Základy logiky a teorie množin . Základy logiky a teorie množin Studijní text. Základy logiky a teorie množin A. Logika Matematická logika vznikla v 9. století. Jejím zakladatelem byl anglický matematik G. Boole (85 864). Boole prosadil

Více

Číselné vektory, matice, determinanty

Číselné vektory, matice, determinanty Číselné vektory, matice, determinanty Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny

Více

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ. Matematika 3. RNDr. Břetislav Fajmon, PhD. Autoři textu:

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ. Matematika 3. RNDr. Břetislav Fajmon, PhD. Autoři textu: FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Matematika 3 Garant předmětu: RNDr. Břetislav Fajmon, PhD Autoři textu: Mgr. Irena Růžičková RNDr. Břetislav Fajmon, PhD

Více

Zlatý řez nejen v matematice

Zlatý řez nejen v matematice Zlatý řez nejen v matematice Zlaté číslo a jeho vlastnosti In: Vlasta Chmelíková author): Zlatý řez nejen v matematice Czech) Praha: Katedra didaktiky matematiky MFF UK, 009 pp 7 Persistent URL: http://dmlcz/dmlcz/40079

Více

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní

Více

Lineární algebra I. látka z. I. semestru informatiky MFF UK. Obsah. Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina

Lineární algebra I. látka z. I. semestru informatiky MFF UK. Obsah. Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina 1 Lineární algebra I látka z I semestru informatiky MFF UK Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina Obsah Matice2 Grupy4 Grupa permutací4 Znaménko, inverze a transpozice grup5 Podgrupy5 Tělesa6

Více

Reference 10. Předpokládejme stavový popis spojitého, respektive diskrétního systému

Reference 10. Předpokládejme stavový popis spojitého, respektive diskrétního systému Módy systému Teorie dynamických systémů Obsah Úvod 2 Příklady 2 3 Domácí úlohy 8 Reference Úvod Řešení stavových rovnic Předpokládejme stavový popis spojitého, respektive diskrétního systému ẋ(t)=ax(t)+bu(t)

Více

Matematické symboly a značky

Matematické symboly a značky Matematické symboly a značky Z Wikipedie, otevřené encyklopedie Matematický symbol je libovolný znak, používaný v. Může to být znaménko pro označení operace s množinami, jejich prvky, čísly či jinými objekty,

Více

VĚTY Z LINEÁRNÍ ALGEBRY

VĚTY Z LINEÁRNÍ ALGEBRY VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru

Více

Předmluva. Publikace obsahuje množství řešených i neřešených příkladů s výsledky k samostatnému studiu.

Předmluva. Publikace obsahuje množství řešených i neřešených příkladů s výsledky k samostatnému studiu. MATICE, DETERMINANTY A JEJICH VYUŽITÍ V PRAXI Mgr Eva Valentová autorka prof RNDr Jan Pelikán, CSc recenzenti Mgr Eva Pelikánová 04 Obsah Vektory 5 Aritmetické vektory 5 Maticová algebra I 8 Matice a

Více

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem.

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem. 1 Matice Definice 1 Matice A typu (m, n) je zobrazení z kartézského součinu {1, 2,,m} {1, 2,,n} do množiny R Matici A obvykle zapisujeme takto: a 1n a 21 a 22 a 2n A =, a m1 a m2 a mn kde a ij R jsou její

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Numerická matematika Banka řešených příkladů

Numerická matematika Banka řešených příkladů Numerická matematika Banka řešených příkladů Radek Kučera, Pavel Ludvík, Zuzana Morávková Katedra matematiky a deskriptivní geometrie Vysoká škola báňská Technická Univerzita Ostrava K D M G ISBN 978-80-48-894-6

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

M - Příprava na čtvrtletní písemnou práci

M - Příprava na čtvrtletní písemnou práci M - Příprava na čtvrtletní písemnou práci Určeno pro třídu 1ODK. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 29. srpna 2005 verze 1.0 Předmluva

Více

6. Matice. Algebraické vlastnosti

6. Matice. Algebraické vlastnosti Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 6 Matice Algebraické vlastnosti 1 Algebraické operace s maticemi Definice Bud te A,

Více

Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer

Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer Přednáška MATEMATIKA č. 3 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 21. 10. 2010 Uvažujme neprázdnou množinu přirozených čísel M = {1, 2,..., n}. Z kombinatoriky

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

Stochastické modely: prezentace k přednášce

Stochastické modely: prezentace k přednášce Stochastické modely: prezentace k přednášce Jan Zouhar Katedra ekonometrie FIS VŠE v Praze 27. října 2015 Obsah 1 Úvod do náhodných procesů 2 MŘ s diskrétním časem a konečným počtem stavů Základní pojmy

Více

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z PŘEDNÁŠEK JAN MALÝ Obsah 1. Parciální diferenciální rovnice obecně 1. Kvaazilineární rovnice prvního řádu 1 3. Lineární rovnice druhého řádu

Více

8 Matice a determinanty

8 Matice a determinanty M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou

Více

2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC

2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC 22 SČÍTÁNÍ A NÁSOBENÍ MATIC V této kapitole se dozvíte: jak je definováno sčítání matic a jaké má základní vlastnosti jak je definováno násobení matic číslem a jaké má základní vlastnosti zda a proč se

Více

Soustavy lineárních rovnic-numerické řešení. October 2, 2008

Soustavy lineárních rovnic-numerické řešení. October 2, 2008 Soustavy lineárních rovnic-numerické řešení October 2, 2008 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2... a n1 x 1 + a n2 x 2 + + a

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

Přímé metody výpočtu charakteristických čísel matic

Přímé metody výpočtu charakteristických čísel matic Masarykova Univerzita v Brně Přírodovědecká fakulta Přímé metody výpočtu charakteristických čísel matic Bakalářská práce Vedoucí bakalářské práce RNDr. Ladislav Adamec, CSc. Brno 2007 Roman Melichar Prohlašuji,

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

Cvičení z Numerických metod I - 12.týden

Cvičení z Numerických metod I - 12.týden Máme systém lineárních rovnic Cvičení z Numerických metod I - týden Přímé metody řešení systému lineárních rovnic Ax = b, A = a a n a n a nn Budeme hledat přesné řešení soustavy x = x x n, b = b b n, x

Více

předmětu MATEMATIKA B 1

předmětu MATEMATIKA B 1 Metodický list pro první soustředění kombinovaného studia předmětu MATEMATIKA B 1 Název tématického celku: Vektorový prostor Cíl: Základním cílem tohoto tematického celku je pochopit, co jsou to vektory

Více

Numerické metody a programování

Numerické metody a programování Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

Téma je podrobně zpracováno ve skriptech [1], kapitola

Téma je podrobně zpracováno ve skriptech [1], kapitola Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 6. Základní aproximační úlohu lze popsat následovně: Jsou dány body [x 0, y 0 ], [x 1, y 1 ],..., [x n, y n

Více

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE. Optimalizace trasy při revizích elektrospotřebičů

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE. Optimalizace trasy při revizích elektrospotřebičů VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Hlavní specializace: Ekonometrie a operační výzkum Název diplomové práce Optimalizace trasy při revizích elektrospotřebičů Diplomant: Vedoucí

Více

KTE / PPEL Počítačová podpora v elektrotechnice

KTE / PPEL Počítačová podpora v elektrotechnice KTE / PPEL Počítačová podpora v elektrotechnice Ing. Lenka Šroubová, Ph.D. email: lsroubov@kte.zcu.cz http://home.zcu.cz/~lsroubov 3. 10. 2012 Základy práce s výpočetními systémy opakování a pokračování

Více

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Numerické metody jednorozměrné minimalizace Vedoucí bakalářské práce: RNDr. Horymír

Více

skladbu obou směsí ( v tunách komponenty na 1 tunu směsi):

skladbu obou směsí ( v tunách komponenty na 1 tunu směsi): Klíčová slova: simplexová metoda 1 Simplexová metoda Postup výpočtu: 1. Nalezení výchozího řešení. 2. Test optima: pokud je řešení optimální výpočet končí, jinak krok 3. 3. Iterační krok, poté opět test

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Soustavy lineárních rovnic-numerické řešení

Soustavy lineárních rovnic-numerické řešení Soustavy lineárních rovnic-numerické řešení November 9, 2008 Soustavy lineárních rovnic-numerické řešení 1 / 52 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22

Více

Základy algoritmizace a programování

Základy algoritmizace a programování Základy algoritmizace a programování Příklady v MATLABu Přednáška 10 30. listopadu 2009 Řídící instrukce if else C Matlab if ( podmínka ) { } else { } Podmíněný příkaz if podmínka elseif podmínka2... else

Více

8. Posloupnosti, vektory a matice

8. Posloupnosti, vektory a matice . jsou užitečné matematické nástroje. V Mathcadu je často používáme například k rychlému zápisu velkého počtu vztahů s proměnnými parametry, ke zpracování naměřených hodnot, k výpočtům lineárních soustav

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

Matematika pro studenty ekonomie

Matematika pro studenty ekonomie w w w g r a d a c z vydání upravené a doplněné vydání Armstrong Grada Publishing as U Průhonu 7 Praha 7 tel: + fax: + e-mail: obchod@gradacz wwwgradacz Matematika pro studenty ekonomie MATEMATIKA PRO STUDENTY

Více

Vedení tepla v MKP. Konstantní tepelné toky. Analogické úlohám statiky v mechanice kontinua

Vedení tepla v MKP. Konstantní tepelné toky. Analogické úlohám statiky v mechanice kontinua Vedení tepla v MKP Stacionární úlohy (viz dále) Konstantní tepelné toky Analogické úlohám statiky v mechanice kontinua Nestacionární úlohy (analogické dynamice stavebních konstrukcí) 1 Základní rovnice

Více

3. Iterační metody řešení soustav

3. Iterační metody řešení soustav 3 Iterační metody řešení soustav Tento učební text byl podpořen z Operačního programu Praha- Adaptabilita Irena Sýkorová Soustavy lineárních rovnic Uvažujeme soustavu lineárních rovnic A x= b, ( kdematicesoustavy

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

11 Soustavy rovnic a nerovnic, Determinanty a Matice

11 Soustavy rovnic a nerovnic, Determinanty a Matice 11 Soustavy rovnic a nerovnic, Determinanty a Matice (r zné typy soustav rovnic a nerovnic, matice druhy matic, operace s maticemi, hodnost matice, inverzní matice, Gaussova elimina ní metoda, determinanty

Více

Ing. Petr BLAHA, PhD. Prof. Ing. Petr VAVŘÍN, DrSc.

Ing. Petr BLAHA, PhD. Prof. Ing. Petr VAVŘÍN, DrSc. Řízení a regulace I Základy regulace lineárních systémů - spojité a diskrétní Ing. Petr BLAHA, PhD. Prof. Ing. Petr VAVŘÍN, DrSc. ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY Fakulta elektrotechniky a komunikačních

Více

2. RBF neuronové sítě

2. RBF neuronové sítě 2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně

Více

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012 Algebra - třetí díl Lenka Zalabová Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita v Českých Budějovicích zima 2012 Obsah 1 Dělitelnost 2 Grupy zbytkových tříd 3 Jedna z

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více