DIDAKTIKA CHEMIE II pro SŠ. Opora pro kombinované navazující magisterské studium Učitelství chemie pro SŠ

Rozměr: px
Začít zobrazení ze stránky:

Download "DIDAKTIKA CHEMIE II pro SŠ. Opora pro kombinované navazující magisterské studium Učitelství chemie pro SŠ"

Transkript

1 UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PŘÍRODOVĚDECKÁ FAKULTA KATEDRA CHEMIE Opora pro kombinované navazující magisterské studium Učitelství chemie pro SŠ DIDAKTIKA CHEMIE II pro SŠ Doc. PaedDr. Markéta Pečivová, CSc. RNDr. Milan Šmídl, Ph.D. Ústí nad Labem

2 ÚVOD Předkládaná opora je určena pro posluchače kombinovaného studia oboru Učitelství chemie pro SŠ. Opora je koncipována jako osnova pro samostudium a společné konzultace a je sestavena tak, aby zahrnula nejpodstatnější tematické celky učiva chemie na střední škole. Témata nejsou rozdělena podle ročníků, neboť díky různým modelům výuky (ve třech nebo čtyřech ročnících) a rozdílným ŠVP mohou být probírána v různé době. U každého tematického celku je uveden přibližný počet vyučovacích hodin, které je vhodný danému celku věnovat, obsahová náplň, experimentální zázemí a případně i metodické zpracování jednotlivých vyučovacích hodin. Experimentální činnost je v textu podbarvena zeleně. Opora obsahuje následující tematické celky (jedná se o rámcový plán, který může být upraven podle požadavků a možností školy), které jsou rozděleny do tří bloků: Didaktika obecné a fyzikální chemie o Didaktika chemického názvosloví o Didaktika chemických výpočtů o Didaktika pojmů obecné chemie - složení látek o Didaktika struktury elektronového obalu o Didaktika periodického systému o Didaktika chemické vazby o Didaktika chemických reakcí o Didaktika redoxních dějů Didaktika anorganické chemie o Didaktika vodíku, kyslíku, kyselin a zásad o Didaktika p-prvků o Didaktika s-prvků o Didaktika d-prvků Didaktika organických a přírodních látek o Didaktika základů organické chemie o Didaktika uhlovodíků o Didaktika derivátů uhlovodíků o Didaktika karboxylových kyselin a jejich derivátů o Didaktika heterocyklických sloučenin o Didaktika alkaloidů a návykových látek o Didaktika lipidů a isoprenoidů o Didaktika sacharidů o Didaktika aminokyselin a bílkovin o Didaktika enzymů, vitaminů a hormonů o Didaktika metabolických procesů o Didaktika makromolekulárních látek --

3 LITERATURA: Povinná literatura: PACHMANN, E. A KOL. Speciální didaktika chemie. Praha: SPN, PACHMANN, E. HOFMANN Obecná didaktika chemie. Praha: SPN, VACÍK A KOL. Přehled středoškolské chemie. Praha: SPN KOTLÍK B. RŮŽIČKOVÁ K. Chemie II. v kostce. Praha: Fragment, VACÍK, J. ET AL. Přehled středoškolské chemie. Praha: SPN, BANÝR, J., BENEŠ, P., ET AL. Chemie pro střední školy. Praha: SPN, ČIPERA, J. Rozpravy o didaktice I a II. Praha: Karolinum, 000. a 001. Rámcové vzdělávací programy pro gymnázia a základní školy. Praha: VÚP, 007. Kartotéka školních chemických experimentů. Platné učebnice chemie pro střední školy. Doporučená literatura: Jakékoliv vhodné chemické tabulky PEČIVOVÁ, M., MACHAČNÝ, J. Školní chemické pokusy. Ústí nad Labem: PF UJEP, PEČIVOVÁ, M., BRŮHA, T. Školní pokusy z organické chemie. Ústí nad Labem: PF UJEP, ČTRNÁCTOVÁ, H., HALBYCH, J., HUDEČEK, J., ŠÍMOVÁ, J. Chemické pokusy pro školu a zájmovou činnost. Praha: Prospektum, 000. ČTRNÁCTOVÁ, H., HALBYCH, J. Didaktika a technika chemických pokusů. Praha: UK,

4 Didaktika obecné a fyzikální chemie -4-

5 Didaktika chemického názvosloví 5 vyučovacích hodin Cílem celku je zopakovat základní pojmy týkající se tvorby a čtení chemického názvosloví a správných českých a latinských názvů prvků. Tímto sjednotit různou vědomostní úroveň studentů přicházejících z různých základních škol. Stěžejní pojmy pojmy: oxidační číslo, anion, kation, křížové pravidlo, chemický vzorec, binární sloučenina Komentář [p1]: Komentář [p]: Očekávané výstupy žáka dle RVP definuje pojem oxidační číslo a dokáže určit oxidační číslo prvku v molekule sestaví vzorec anorganických sloučenin (oxidy, halogenidy, hydroxidy, kyseliny, soli) orientuje se v nejčastějších triviálních názvech anorganických sloučenin Rozvržení učiva: Opakování ZŠ - oxidační číslo, elektronegativita, značky prvků, typy názvů h Názvosloví oxidů, halogenidů 1h Názvosloví hydroxidů, kyselin, solí 1h Procvičování 1-h SEMINÁŘ: - hydridy (podle typů), komplexní sloučeniny, podvojné sloučeniny, peroxosloučeniny, organické názvosloví Motivace: chemické názvosloví je jako chemický jazyk, díky němuž se všichni chemici světa domluví Osnova 1. ZÁKLADNÍ POJMY: - pravidla chemického názvosloví jsou zaštiťuje Mezinárodní unie pro čistou a aplikovanou chemii IUPAC (International Union for Pure and Applied Chemistry) Elektronegativita - schopnost atomu přitahovat elektrony zúčastňující se vazby Pravidla pro práci s oxidačními čísly v molekule Definice oxidačnho číslo - formální elektrický náboj, který by byl přítomen na atomu prvku, kdybychom elektrony na každé vazbě tohoto atomu přidělili elektronegativnějším prvku - nabývá hodnot od -IV do VIII - pravidla pro oxidační čísla (fluor -I, volné atomy 0, ) Chemický vzorec - tvoří se ze systematického názvu, vyjadřuje složení molekuly (typy vzorců) počet atomů v molekule se vyjadřuje předponami, počet skupin pak násobnými předponami: sestavování chemického vzorce: podstatné jméno + přídavné jméno zakončeno -id (oxid, halogenid, hydroxid) anion, záporná (elneg) část molekuly koncovka odpovídající ox. číslu kation, kladná (elpoz) část molekuly koncovky ox. čísel (včetně solí) -5-

6 . NÁZVOSLOVI IONTŮ - náboj arabsky, oxidační číslo římsky - kationty obsahuji koncovku ox. čísla odpovídající náboji jednoatomové: K + kation draselný, Ca + kation vápenatý víceatomové: NH 4 + amonium (kation amonný), PH 4 + fosfonium - anionty zakončeny koncovkou -idový, -anový jednoatomové: Cl - anion chloridový, OH - anion hydroxidový víceatomové od oxokyselin: NO 3 - anion dusičnanový 3. NÁZVOSLOVI OXIDŮ oxid + přídavné jméno s koncovkou ox. čísla - vysvětlit sestavování chemických vzorce ze systematického názvu napsat značky prvků, určit ox. čísla, křížové pravidlo - vysvětlit určení systematického názvu z chem. vzorce podstatné jméno oxid, přídavné jméno název kationtu s koncovkou ox. čísla - sestavit tabulku ox. čísel s obecným vzorcem, koncovkou a příklady oxidů 4. NÁZVOSLOVI BEZKYSLÍKATÝCH KYSELIN - binární sloučeniny vodíku s nekovy: název el.neg. prvku + vodík (př. kyanovodík, chlorovodík) kyseliny: -ová kyselina (př. kyanovodíková kyselina) - hydridy s prvky 3-6 skupiny PSP: lat. kmen názvu + koncovka -an (př. H S sulfan, SiH 4 silan) 4. NÁZVOSLOVI OXOKYSELIN kyselina + název centr. atomu s koncovkou ox. č. - uvést zakončení kyselin (-ná, -natá, -itá, ) - sestavování vzorce z názvu kyseliny obsahují vždy H +I, X koncovka, O -II dopočítat počty atomů aby byl součet ox. čísel po vynásobení počty atomů roven nule H+X-O = 0 - sestavování názvu ze vzorce určení ox. čísel všech prvků, z X? určit koncovku sestavení názvu 5. NÁZVOSLOVÍ SOLÍ BEZKYSL. KYSELIN podst. jméno-id + kation-koncovka ox.č. Komentář [p3]: odvozují se náhradou H + kationtem soli (např. HCl => NaCl chlorid sodný, HCN => KCN kyanid draselný) 6. NÁZVOSLOVÍ SOLÍ OXOKYSELIN podle ox. čísla centrálního atomu koncovka (kyselina sírová síran, kyselina dusičná dusičnan) přídavné jméno tvoří název kationtu s koncovkou ox. čísla (draselný, železitý, ) křížové pravidlo uvést přehled aniontů kyselin Uvést principy tvorby hydrogensolí PROCVIČOVÁNÍ NA PŘÍKLADECH -6-

7 Didaktika chemických výpočtů 10 vyučovacích hodin Pojmy: molární hmotnost (M), hmotnostní zlomek (w), látková množství (n), molární objem (V m ), Avogadrova konstanta N A, látková a hmotnostní koncentrace (c m, c w ), výpočty z chemických rovnic Očekávané výstupy žáka dle RVP vypočítá jednoduché příklady na výpočet w, M, n, ovládá úpravu vzorců a převody správných jednotek veličin správně vypočítá složení roztoků a potřebná množství látek k jejich přípravě aplikuje poznatky o chemických výpočtech na příklady běžného života dokáže zapsat a upravit chemickou rovnici, vypočítat množství reaktantů a produktů Rozvržení učiva: základní pojmy látková množství, molární zlomek, objemový zlomek molární hmotnost, hmotnostní zlomek látková a hmotnostní koncentrace výpočty z chemických rovnic 1h h h h 3h Motivace: výpočty příkladů z běžného života (w alkoholu v nápojích, ) Základní pojmy 1. HMOTNOST ATOMŮ A MOLEKUL - hmotnosti částic velmi malé, přepočítávají se přes atomovou hmotnostní jednotku m u na relativní atomové a molekulové hmotnosti m(c) 4 m u 1, g 1 m( X ) m( Y ) relativní atomová a molekulová hmotnost: Ar ( X ) a M r ( Y ) m m u u Látkové množství - předpokládá se znalost zákona zachování hmotnosti a úpravy chemických rovnic - odvození pojmu látkového množství: 1. LÁTKOVÉ MNOŽSTVÍ Příklad: - reakce vodíku s dusíkem za vzniku amoniaku: N + H NH 3 vodík a dusík jsou dvouatomové molekuly, doplní se počty atomů na obou stranách -7-

8 N + H NH 3 správné čtení: 1 molekula N reaguje s 3 molekulami H za vzniku molekul NH 3 N + 3 H NH 3 zvětším-li množství vstupujícího dusíku, změní se počty molekul: 10 N + 30 H 0 NH 3 poměr 1:3: v reálu je množství reagujících molekul mnohem větší, ale musí platit vždy jejich poměr zavádí se pojem látkové množství (n) s jednotkou 1 mol (1 mol obsahuje vždy stejný počet částic, udávaný Avogadrovou konstantou N A = 6, částic) 1.6, N + 3.6, H.6, NH 3,, 1 mol N reaguje s 3 moly H za vzniku molů NH 3 napsat na tabuli 60 a 0krát nulu. MOLÁRNÍ HMOTNOST - hmotnost 1 molu různých látek není stejná zavedení molární hmotnosti M(X) = m(x).n A tabelována M [g/mol] určování molární hmotnosti molekul (součet molárních hmotností atomů vynásobených jejich počtem) 3. VÝPOČET LÁTKOVÝCH MNOŽSTVÍ - použít příklad s hromadou písku: Máme k dispozici hromadu písku o hmotnosti m = 10tun a kbelík (zde jako 1 mol, počet zrnek písku), do kterého se vejde písek o hmotnosti 10 kg. Kolik kbelíků (molů) písku je v hromadě? m g odvození vztahu: n jednotky mol 1 M g. mol použít trojúhelník m nm procvičování příkladů Složení roztoků 1. HMOTNOSTNÍ ZLOMEK - je vhodné navázat výpočty (zadání příkladů) na běžný život - pozor na záměnu hmotnostní zlomek a hmotnostní procento - lze probírat v tematickém celku směsi (složení roztoků) a při probírání oxidů, halogenidů a dalších sloučenin na procentuální zastoupení prvku v molekule -8-

9 msložky mčásti w složky w části mcelku mcelku algoritmus řešení: a) Napsat zadání. b) Vypsat stručný zápis, co známe a co počítáme. c) Převést jednotky na potřebné rozměry. d) Napsat obecný vzorec spolu s významem a hodnotami všech symbolů. e) Dosadit dílčí výsledky do obecného vzorce, vypočítat, výsledek převést na % (x100) f) Odpověď.. ŘEDĚNÍ ROZTOKŮ - lze použít křížové pravidlo nebo směšovací rovnici Například: Připravte 3% roztok H O ze zásobního 30% roztoku H O. 30% H O 3 díly 3% H O 0% voda 7 dílů poměr 1:9 (1 díl H O, 9 dílů vody) m 1.w 1 + m.w = m.w c 1.V 1 = c.v 3. MOLÁRNÍ KONCENTRACE - začít pokusem (vizualizací), kdy se do 1l v litrové kádince nasype 1 mol NaCl (cvičně mohou žáci vypočítat jakou bude mít hmotnost - 58 g) odvodit látkovou koncentraci (počet molů v určitém objemu) n c M c m M. V mol/dm 3 žáci by měli umět i V i objemový zlomek [-] V ni molární zlomek: xb [-] n m hmotnostní koncentrace: c w [g/mol] V procvičování příkladů Výpočty z chemických rovnic modelový příklad: Vypočtěte hmotnost jódu, který vznikne reakcí g jodidu draselného s přebytkem chlorové vody. stejný bude: a) zápis, co je známé a co se počítá, sestavení a vyčíslení rovnice se známými a neznámými veličinami (co počítám má většinou index 1) KI + Cl KCl + I -9-

10 m(ki) = g n(ki) = υ(ki) = M(KI) = 166 g/mol m(i ) =? n(i ) = 1 υ(i ) = 1 M(I ) = 54 g/mol 1. POUŽÍT VZOREC: ( I ) M ( I ) napsat obecný vzorec: m ( I ) m( KI) ( KI) M ( KI) výpočet, jednotky, odpověď. ROVNOST LÁTKOVÝCH MNOŽSTVÍ rovnost látkových množství, s příslušnými koeficienty n( I ) n( KI) 1. m( I ) M ( I ) m( KI) M ( KI) m ( I ) m( KI). M ( I ). M ( KI) 3. TROJČLENKA přímá úměra, dnes spíš v pozadí ze.166 g KI. vznikne 1.54 g I ze g KI.... vznikne x g I x.54...g 33 procvičování příkladů -10-

11 Didaktika pojmů obecné chemie - složení látek 6 vyučovacích hodin Pojmy: hmota, atom, molekula, ion, chemický děj, chemicky čistá látka, sloučenina, roztok, směs, proton, neutron, Očekávané výstupy žáka dle RVP definuje základní chemické pojmy popíše stavbu atomového jádra, vyjmenuje které částice ji tvoří, dokáže zapsat značku chemického prvku uvede historii objevu radioaktivity, její definici, charakterizuje jednotlivé typy záření a poločas rozpadu Rozvržení učiva: Hmota, základní chemické zákony, směs, chemicky čistá látka, roztok Jádro atomu, protonové číslo, nukleonové číslo, izotopy, nuklidy Radioaktivita -3 hodiny 1- hodiny Základní pojmy HMOTA - 1.LÁTKY - tvořena částicemi s energií, mohou mít elektrický náboj, mají nenulovou klid. hm. - elektrony, protony, neutrony, tuhé látky, kapaliny,. POLE - mají nulovou klidovou hmotnost, vlnovou povahu - elektromagnetické, gravitační, elektrické pole apod. CHEMICKÝ DĚJ - mění se chemická povaha látek (složení molekul), oproti fyzikálnímu ději ATOM - jednojaderná základní strukturální elektroneutrální jednotka MOLEKULA - seskupení atomů spojených chemickými vazbami molekuly vystupují jako samostatné částice 1.) Homonukleární molekuly: - stejnojaderné, např. H, N, Cl,.) Heteronukleární molekuly: - různojaderné, např. H O, NH 3, HCl, ION - částice s nábojem (kation kladný, anion záporný) CHEMICKY ČISTÁ LÁTKA = chemické individuum, je to látka, která je tvořena stejnými částicemi (atomy, molekuly, skupiny iontů) patří sem prvky a sloučeniny - má stále charakteristické vlastnosti (bod varu, tání, hustotu, ) SLOUČENINA = je chemicky čistá látka tvořená stejnými molekulami složených ze dvou a více různých atomů ROZTOK - je homogenní disperzní soustava dvou nebo více chemicky čistých látek - dělíme je na plynné (např. vzduch), kapalné (např. roztok NaCl ve vodě), pevné (např. slitiny kovů) -11-

12 SMĚS - směs je soustava složená z několika různých chemicky čistých látek (vzduch je směs kyslíku, dusíku, oxidu uhličitého, vodní páry, ) Historie objevů atomu Demokritos z Abdér (4.-5. století př.n.l.) - atomy jsou nevznikající, neviditelná, nedělitelná, neměnná a nezničitelná tělíska (atomos = nedělitelný) John Dalton (1808) - vzkřísil Demokritovu myšlenku a dal ji do souvislosti se známými chemickými prvky - atomová teorie = každý z prvků je složen z malých, dále nedělitelných atomů J.J. Thomson ( ) - Brit, zkoumal vodivost plynů, objevil elektron - navrhl,,pudingový model atomu elektrony (rozinky) v kladné kouli (pudingu) Ernest Rutherford (1911) - objev atomového jádra (kladně nabitého protonu) při pokusu dopadajícího α záření na ZnS desku skrze zlatou folii - sestrojil,,planetární model atomu elektrony krouží kolem jádra Niels Bohr (1913) - elektrony by jako pohybující se částice vyzařovali energii tak dlouho, až by se přiblížily k jádru sestrojil,,bohrův model, kdy se elektrony pohybují bez vyzařování energie jen po určitých hladinách s určitou energií (rozdíl mezi hladinami odpovídá kvantu energie, které je pohlceno nebo vyzářeno) Arnold Sommerfeld ( ) - upravil Bohrův model e - nepohybují po kruhových, ale eliptických drahách Luis de Broglie (193) - dualistický charakter světla (povaha částice i vlnění) Heisenberg (193) - princip neurčitosti (nelze přesně určit polohu a zároveň hybnost částice) Schrödinger - určil vlnovou funkci, která určuje pravděpodobnost výskytu elektronu v tzv. atomových orbitalech (95% pravděpodobnosti) Jádro atomu - počet protonů a elektronů v atomu odpovídá jeho Z (pořadovému číslu prvku v periodické tabulce) PROTON (p) - protonové (atomové) číslo Z udává počet protonů v jádře a počet elektronů v obalu - udává pořadí v PSP, objeven Ernesten Rutherfordem NEUTRON (n) - neutronové číslo N udává počet neutronů v jádře, objeven 193 Chadwickem - součet počtu protonů a neutronů udává nukleonové číslo A (svou hodnotou je blízko relat. at. hmotnosti) A = nukleonové číslo - - oxidační číslo, iontové číslo Z = protonové číslo - procvičování na určování A, Z, N PRVEK: - složení z atomů o stejném protonovém čísle (mohou se lišit neutronovým číslem) - přirozená směs nuklidů 16 8O O O je prvek kyslík - jen jeden nuklid má Fe, Na, Al, Be, P, Co, Sc, F, NUKLIDY: - látky složené z atomů o stejném protonovém a neutronovém čísle -1-

13 - v přírodě se vyskytuje 39 nuklidů (z toho je 73 stabilních a 56 nestabilní) - např. nuklidem je 16 8O, další nuklid je 17 8O a další 18 8O IZOTOPY: - nuklidy téhož prvku se liší nukleonovým číslem - chemickými vlastnostmi se navzájem neliší, ale vlastnostmi fyzikálními ano - např O, 8 O, 8 O => izotopy kyslíku, 1 3 1H, 1 H, 1 H => izotopy vodíku IZOBARY: - atomy a jejich soubory o stejném nukleonovém čísle (např K, 40 9 Ca) IZOTONY: - nuklidy různých prvků lišící se nukleonovým a protonovým číslem, ale mají stejný počet neutronů v jádře (např Xe, 56 Ba) Radioaktivita = schopnost nestabilního nuklidu (atomového jádra) se přeměnit na jiné stabilnější za současného uvolnění radioaktivního záření - zjistil 1896 BECQUEREL, který použil prvek v blízkosti kovové folie a zjistil, že některé vysílají záření procházející skrz na fotografický papír, který zčernal => toto záření nazváno radioaktivita - manželé CURIEOVI (Piere Curie a Marie Sklodowska Curie) objevili, že záření nevysílají jen sloučeniny uranu ale i uranové rudy (smolinec) => tak objevili prvky Polonium a Radium - ve 30.letech 0.století zjištěno, že při bombardování atomů vznikají nová jádra vyzařující záření => v laboratoři byla vyvinuta umělá radioaktivita (samovolný rozpad uměle připravených nuklidů) - podstata 1909 RUTHERFORD - záření je způsobeno samovolnou přeměnou jádra, tyto prvky jsou radioaktivní => je to projev nestability nuklidů Typy záření 1. ZÁŘENÍ ALFA - rychle letící kladně nabitá jádra 4 He - ionizační účinky (ionizují vzduch) A Z X A Z 4 Y 4 He => posun v PSP o místa doleva. ZÁŘENÍ BETA - rychle letící volné elektrony - nese záp. náboj A Z X A Z 1Y e => posun v PSP o 1 místo doprava 3. ZÁŘENÍ GAMMA - doprovází záření α a β (elektromagnetické vlnění) - nemění se složení jádra - přechod částic z excitovaného stavu do základního je provázeno uvolněním rozdílu energie a projev energie je samotné γ-záření (foton, elektromagnetické záření) 4. ZÁŘENÍ RTG - atomové jádro se může přebytku energie zbavit i přenesením energie na některý elektron (hlavně v K sféře obalu) poločas přeměny (rozpadu): -13-

14 - střední čas, za který se z počátečního množství radionuklidu přemění (rozpadne) přesná polovina 8 vyučovacích hodin Didaktika struktury elektronového obalu Rozvržení učiva: Elektronový obal, orbitaly Kvantová čísla Pravidla o zaplňování el. obalu Valenční elektrony, ionizační energie elektronová afinita Periodický zákon, periodická soustava prvků hodiny hodiny 1 - hodiny hodiny Elektronový obal, orbitaly - tvoří jej elementární částice elektrony (záporně nabité), zodpovědné za většinu vlastností atomu - vypočtené hodnoty E ( energie kinetická a potenciální) a ψ (vlnová funkce), charakterizují stav elektronu v atomu a současně vymezují jeho oblast výskytu tzv. atomové orbitaly (AO) ATOMOVÉ ORBITALY - popisují se kvantovými čísly, vyplývající ze Schrödingerovy rovnice 1) Hlavní kvantové číslo (n) - udává energii elektronu, nabývá hodnot 1-K, -L, 3-M, - s rostoucím n energie roste ) Vedlejší kvantové číslo (l) - určuje energii a tvar orbitalu (nabývá hodnot od 0-s, 1-p, -d, 3-d, 4-f) 3) Magnetické kvantové číslo (m) - určuje orientaci AO v prostoru, nabývá hodnot (-l do +l) 4) Spinové kvantové číslo (s) - určuje orientaci rotace elektronu (+½, -½) Elektronová konfigurace - zápis pomocí rámečků, elektrony se znázorňují šipkami - degenerované orbitaly mají stejné hlavní a vedlejší KČ, liší se v čísle magnetickém se zapisují u sebe hlavní kvantové číslo (n = ) ( Spinové kvantové číslo ½ nebo - ½ ) s 1 vedlejší kvantové číslo (l =1) -14-

15 PRAVIDLA: 1) Výstavbový princip - princip minimální energie elektrony obsazují AO postupně s rostoucí energií S P D F s s p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 3 např. 6 Fe (Železo): 1s s p 6 3s 3p 6 4s 3d 6 1 ) Hundovo pravidlo - v degenerovaných orbitalech se zaplňují AO nejprve po jednom elektronu se stejným spinem, po zaplnění se elektrony párují s opačným spinem 3) Pauliho princip výlučnosti - v jednom atomu nejsou elektrony se 4 kvantovými čísly stejnými,liší se minimálně o spinové číslo EXCITACE Ionizační energie - energie, která musí být dodána, aby došlo k odtržení elektronu (vznik K+) čím větší hodnota, tím je prvek elpoz a tím tvoří snáze kationty Elektronová afinita - energie, která se uvolní přijetím elektronu (vznik A-) čím vyšší hodnota, tím je prvek elneg a tím tvoří snáze anionty -15-

16 Didaktika periodického systému vyučovací hodiny Rozvržení učiva: periodická zákon periodická soustava prvků Pojmy a jejich vztahy struktura atomu chemická vazba chemický děj PERIODICKÝ ZÁKON Cíle: osvojení a pochopení periodického zákona a práce s PSP, s jeho pomocí dokáže určit některé vlastnosti prvků využívá veličin, které jsou v PSP uvedeny k praktické činnosti (výpočty) Podoba PSP - na začátek je vhodné navázat,co již o PSP a PZ vědí, co z ní již dokáží vyčíst Formální úpravy PSP Periodický řetěz - lineární úprava, prvky za sebou podle rostoucího Z, periody označeny čarami Prostorová spirála - vzniká z lineární vyjádřením některých společných vlastností (podobné prvky jsou ve spirále nad sebou) Plošné úpravy kruhové a spirální - plošná projekce spirály, různými řezy lze oddělit jednotlivé skupiny Plošné pravoúhlé velmi dlouhá tabulka - řez mezi vzácnými plyny a alkalickými kovy, vřazeny lanthanoidy a aktinoidy Tabulka pyramidální - prvky po periodách bez mezer, nad sebou Tabulka krátká - mezera u. až 5. periody se odstraní tak, že se pod osm prvků. a 3. periody řadí prvky 4. a dalších period podle nejvyššího ox. čísla Tabulka dlouhá - klasická, školní tabulka (tzv. dlouhá) Struktura PSP v rámečku u symbolu prvku v PSP by měl být český a latinský název, hodnota protonového čísla, atomová relativní hmotnost, elektronegativita, elektronová konfigurace, popř. vlastnosti (kov/polokov/nekov, skupenství, s/p/d/f prvky), oxidační čísla po stranách PSP označení 7. period (1-K, ) a 18. skupin (preferují se čísla 1-18, tolerují se římská označení pod sebou jsou prvky podobných vlastností a s analogickou stavbou valenčních elektronů hlavní skupiny (nepřechodné s,p-prvky) a vedlejší skupiny (přechodné d,f-prvky) vedlejší skupina A (prvkům chybí elektrony do vzácného plynu), skupině B přebývají valenční elektrony jsou nejvíce ve dvou orbitalech od nižšího vzácného plynu -16-

17 Periodický zákon HISTORIE: (1789) LAVOISIER - rozdělení prvků na kovy a nekovy (1818) BERZELIUS - uspořádání prvků podle reaktivnosti (začínal draslíkem, končil kyslíkem) (1817) DÖBEREINER - průměr hmotností dvou sousedních prvků triády je roven hmotnosti prostředního prvku (1863) NEWLANDS - seřadil prvky podle atomové váhy do řady, zjistil že každý 8. prvek má podobné vlastnosti (1864) MAYER - závislost objemu atomu na atomovém čísle prvku MENDĚLEJEV (1869) Fyzikální a chemické vlastnosti prvků a jejich chemických sloučenin jsou periodickou funkcí jejich atomových vah (dnes protonového čísla). předpověděl přítomnost dosud neznámých prvků (germanium), doplnil jej i český chemik Bohuslav Brauner (zařadil některé prvky vzácných zemin mezi Ce a Tl, předpověděl Pm). Sekundární periodicita PSP - podobnější svými vlastnostmi jsou si prvky umístěné vždy ob jeden řádek v řádcích PSP - např. Cl je podobnější I než Br => BrO 4 - se připravuje hůře, kdežto ClO 4 - a IO 4 - snadno 3. Diagonální periodicita PSP - podobné vlastnosti mají prvky umístěné v PSP po diagonále - např. Na podobné spíše Ca než K, Be podobné spíše Al než Mg, Vlastnosti prvků vyplývající z PSP - závislost mezi uspořádáním elektronů v obalu atomu a zařazením v periodickém systému (vlastnostmi) Velikost atomu (poloměr) - atomový poloměr je polovina mezijaderné vzdálenosti (určena počtem p + a e - ) velikost atomů v periodě se zmenšuje s rostoucím Z (kromě vzácných plynů), jelikož zvětšující se kladný náboj jádra více poutá elektrony ve stejné slupce velikost atomů v hlavní skupině se zvětšuje s rostoucím Z (roste počet slupek s elektrony) poloměr kationtu se zmenšuje s rostoucím nábojem a zvětšuje s klesajícím nábojem => vhodné použít modely (kuličky atomů, iontů) Charakter vazby závisí na poloze prvků v PSP (s + p => silně iontová (iontovost stoupá od 1. k 18. skupině) Elektronegativita a elektropozitivita elektronegativita stoupá doprava a nahoru, elektropozitivita dolů a doleva (s rostoucím Z a čím méně se liší od konfigurace předchozího vzácného plynu) nejelektropozitivnější francium, nejelektronegativnější fluor Ionizační energie a elektronová afinita ionizační energie ve skupině klesá (roste poloměr) a stoupá v periodě (klesá poloměr) čím je hodnota ionizační energie nižší, tím je prvek reaktivnější snadněji se tvoří kation do prvního, než do druhého stupně (přitažlivé síly) elektronová afinita ve skupině klesá, v periodě roste snadněji se tvoří anion do prvního, než do druhého stupně (odpudivé síly) -17-

18 Kovový charakter ve skupině roste, v periodě klesá Kyselý a zásaditý charakter u kyselin stoupá kyselost s rostoucí elektronegativitou kyselinotvorného prvku Teplota tání kovy a polokovy teplota tání nad 0 o C, plynné nekovy pod 0 o C nejvyšší C, Mo, Ta, W s1-prvky mají nižší teplotu tání než s-prvky (stabilnější el. konfigurace) Zn, Cd, Hg nižší teplota tání než ostatní kovy (stabilnější konfigurace) Hustota největší hustota u přechodných prvků (kovy) s malým poloměrem a krystalickým uspořádáním Index lomu světla - nekovy a vzácné plyny mají index lomu světla nízký, stoupá u polovodičových polokovů a je vysoký u kovů, které vykazují kovový lesk Vlastnosti sloučenin vyplývající z PSP Acidobazické vlastnosti oxidů větší bazicitu mají oxidy s elektropozitivními. prvky (alkalické kovy, ) ve vodě poskytují hydroxidy kyselý charakter mají oxidy s elektronegativními prvky ve vodě tvoří kyseliny u oxidů s vícero oxidačními je zásaditý ten s nižším, mezi amfoterní a kyselý s vyšším ox. číslem Rozpustnost rozpustné jsou silně kyselé a silně zásadité oxidy (s,p-prvky), nerozpustné s kovy, polokovy a Be, Mg stejnou oblast pokrývají i hydroxidy fosforečnany, uhličitany, sírany a siřičitany alkalických kovů jsou rozpustné, ostatní vesměs nerozpustné, kromě některých solí alkalických zemin halogenidy většinou jsou rozpustné (kromě např. fluoridu s-prvků) sulfidy jsou nerozpustné (kromě sulfidů s1-prvků) -18-

19 Didaktika chemické vazby 6 vyučovacích hodin Rozvržení učiva: Vznik vazby, vaznost, kovalentní vazba, vazba δ a π, elektronegativita, polarita vazby, iontová vazba Slabé vazebné interakce Struktura a vlastnosti sloučenin kovalentních, iontových a kovů hodiny Základní osnova probíraného učiva: vznik vazby typy vazeb o princip vzniku kovalentní vazby a koordinační vazby o jednoduchá, dvojná, trojná - příklady molekul o sigma, pí - příklady molekul o podle polarity vaznost pevnost vazby teorie hybridizace - sp, sp, sp3 tvary, úhly VSEPR (viz anorganika) => používat modely (AO, hao, vazeb) slabé vazebné interakce (H-můstky, vdá síly) Disociační energie o energie, kterou je nutné dodat pro rozštěpení vazby o molární energie = energie uvolněná rozštěpením 1 molu Q m [kj/mol] Příklad: Vypočítat energii uvolněnou při štěpení 1 g methanu, energie C-H je 414 kj/mol, M(CH 4 ) = 16,05 g/mol. vypočítat kolik molů je jeden gram methanu (0,065 mol) E= Qm. n = 414.0,065 = -19-

20 Didaktika chemických reakcí 13 vyučovacích hodin Rozvržení učiva: Názvosloví anorganických sloučenin (zopakování, princip) Chemické reakce, chem. rovnice, úprava, rozdělení Průběh chemických reakcí Faktory ovlivňující rychlost chem. reakcí (chem. kinetika) Chemické rovnováhy Základy termochemie Redoxní reakce, jejich úprava hodiny hodiny hodiny hodiny hodiny hodiny Chemické reakce a rovnice Chemická reakce - chemický děj, při němž z výchozích látek (reaktantů) vznikají produkty, resp chemické vazby ve výchozích látkách zanikají a vznikají vazby v produktech - chemické děje (reakce) zapisujeme chemickými rovnicemi (1 a více) Chemická rovnice: - vyjadřuje základní reakční přeměny, udává poměr reaktantů a produktů a látková množství aa + bb cc + dd výchozí látky (reaktanty) reakční produkty obě složky zapisujeme pomocí značek a vzorců, mezi nimi se vyznačuje šipka (,<=>, = ) v rovnici uvádíme i stechiometrické koeficienty, které udávají nejmenší celistvé počty reaktantů, které musí reagovat, aby vznikly celistvé počty produktů mohou se uvádět stavové symboly u jednotlivých reakčních složek (s, l, g, aq) Podmínky: - musí splňovat Zákon zachování hmotnosti (druh atomů na obou stranách musí být stejný a ve stejném množství) a Z.Z. energie - náboje na obou stranách musí být stejné (elektroneutralita) - pro redox rovnice musí platit podmínka rovnosti vyměňovaných elektronů, pro iontový zápis rovnost nábojů na obou stranách - poměr látkových množství je roven poměru stechiometrických koeficientů DĚLENÍ REAKCÍ: A) PODLE TYPU ZÁPISU: o stechiometrický zápis - poměry látkového množství FeCl H S Fe S HCl o stavový zápis - skupenský stav látek FeCl 3 (aq) + 3 H S (g) Fe S 3 (s) + 6 HCl (aq) o iontový zápis (úplný, zkrácený) - podstata chemické reakce Fe HS - Fe S 3 + 3H + B) PŘENÁŠENÝCH ČÁSTIC o redoxní - přenos elektronů (mění se oxidační čísla) o proteolytické (acidobazické) - přenos H + o koordinační (komplexotvorné) - přenos skupin atomů, vznikají komplexy -0-

21 C) PODLE REAGUJÍCÍCH ČÁSTIC o molekulové o iontové o radikálové D) PODLE REAKČNÍHO MECHANISMU: o skladné reakce (slučování, syntéza, adice) - či více látek jednodušších se sloučí na 1 látku složitější,aniž se odloučí nějaká částice A + B C Fe + S FeS o rozkladné reakce (rozklad, analýza, eliminace) - jedna složitější látka se rozkládá na nebo více jednodušších A B + C CaCO 3 CaO + CO o vytěsňovací rekce (substituce, nahrazování) - atom nebo celá skupina atomů v molekule dané látky se vymění za jiný atom nebo skupinu atomů AX + Y AY + X Fe + CuSO 4 FeSO 4 + Cu o podvojné přeměny (konverze) - zdvojená substituce, kdy si složitější látky vzájemně vymění některé své atomy nebo skupiny atomů AX + BY AY + BX Na SO 4 + CaCl CaSO 4 + NaCl E) PODLE REAKČNÍ KINETIKY o izolované o simultánní (zvratné, bočné, následné) Průběh chemických reakcí Teorie aktivních srážek - mezi molekulami reaktantů dochází ke srážkám (částice musí mít dostatečnou kinetickou energii aktivační energii a vhodnou orientaci) Teorie aktivovaného komplexu - při uskutečnění účinné srážky soustava prochází stádiem aktivovaného komplexu přiblížením molekul se vazby oslabují (energie spotřebována) a vznik nových vazeb po rozpadu komplexu (energie se uvolňuje) potřebná E A je nižší než u srážkové teorie -1-

22 Reakční kinetika - rychlost reakce je dána změnou koncentrace látky za jednotku času - reaktanty ubývají, produkty přibývají v dca a.dt dcb b.dt dcy c.dt dcz d.dt 1) Vliv koncentrace reaktantů na reakční rychlost. čím větší je koncentrace reaktantů v soustavě, tím větší je počet srážek jejich strukturních jednotek (jedna z podmínek uskutečnění chemické reakce) a tím větší je reakční rychlost. a b v k.[ A].[ B] k rychlostní konstanta a,b řády reakce (určeny experimentálně, rovny stechiometrickým koeficientům) tři kádinky s roztokem thiosíranu sodného: 0,5M, 1M, M tři kádinky s roztoky kyseliny sírové o koncentracích: 0,5M, 1M, M smíchat vždy roztoky kyseliny s roztokem thiosíranu o stejné koncentraci, stopkami měřit rychlost reakce vyloučí s koloidní S (nejrychleji ve. kádince): Na S O 3 + H SO 4 Na S O 3 + H S O 3 H SO 3 + S H O + SO + S ) Vliv tlaku na reakční rychlost. zvýšením tlaku (zmenšení objemu soustavy) se zvětší koncentrace plynného reaktantu a tím také reakční rychlost 3 Vliv teploty na reakční rychlost. čím větší je teplota soustavy, tím rychleji se strukturní jednotky v soustavě pohybují a tím větší je také jejich energie (více srážek, více molekul s aktivační energií rychlejší reakce) teplota určuje hodnotu rychlostní konstanty smíchat roztok 4 M HNO 3 a roztok 0,5 M KI v poměru :1 (3 zkumavky) stopkami měřit rychlost reakce v jednotlivých zkumavkách: o laboratorní teplotě ponořené do horké vody ponořené do kádinky s ledovou vodou 4 HNO 3 + KI I + KNO + H O + O 4) Vliv povahy reaktantů chemická povaha a složení reaktantů určuje rychlost reakce POKUS: Ve větší kádince zahřívat tři zkumavky s následujícími látkami smíchanými v poměrech :1 8 M HNO 3 + 0,5 M KI 8 M HNO 3 + 0,5 M KBr 8 M HNO 3 + 0,5 M NaCl Měříme rychlost probíhající reakce při osvětlení unikají plyny, nejrychleji se oxiduje Cl - Cl, pak Br a pak I --

23 5) Vliv katalyzátorů na reakční rychlost snižují aktivační energii a tím urychlují (umožňují) chemickou reakci, přičemž se sami nespotřebovávají katalyzátor ve stejné fázi jako substrát (homogenní katalýza), v různé fázi (heterogenní katalýza) Ke směsi práškového Zn a Al přikápnout kapku teplé vody Rozklad peroxidu vodíku účinkem burelu Enzymy (krev, peroxidáza, ) Inhibitory - do U-trubice s HSO4 ponořím do jednoho konce Zn plech, do druhoho Zn plech omotaný Pt drátkem (inhibitor) na neomotaném plechu se bude vyvíjet vodík 6) Vliv mechanických zásahů (míchání, zvětšení povrchu) zvýšení vzájemného kontaktu strukturních jednotek reaktantů a tím i počet jejich srážek, způsobuje zvýšení reakční rychlosti Reakce kyseliny s kusovým vápencem a jeho práškem Zapálení hliníkového prachu a hliníkového drátu promítaný pokus v Petriho miskách Pokus č. Miska Kyselina Kov Čas Faktor První Druhá První Druhá První Druhá První Druhá První Druhá 0,5 M HCl M HCl M HCl (studená) M HCl (teplá) M HCl (urotropin) M HCl M HCl M HCl 5 M HCl 5 M HCl 0,5 cm Mg 0,5 cm Mg 0,5 cm Mg 0,5 cm Mg 0,5 cm Mg 0,5 cm Mg 0,5 cm Mg 0,5 cm Zn 5 cm Al 5 cm Al složený pomalejší rychlejší pomalejší rychlejší neprobíhá probíhá rychlejší pomalejší rychlejší pomalejší koncentrace teplota enzym / inhibitor povaha reaktantů povrch další možnost je CuSO4.5HO v teplé/studené vodě, krystal/prášek, míchat/nechat -3-

24 Chemická rovnováha Chemická rovnováha - stav soustavy, kdy se nemění její složení, i když v ní probíhají stále chemické děje - má dynamický charakter (běží tam i zpět) pokus: Rozklad CaCO 3 v evakuované nádobě neproběhne zcela, vznikne jen určitá část CaO, pak poběží reakce zpátky. => GULDBERG-WAAGEŮV ZÁKON (ROVNOVÁŽNÁ KONSTANTA) v1, v - u zvratných reakcí: N + 3H NH 3 v určitém okamžiku se rychlost reakce vzniku produktů rovná rychlosti zpětné přeměny produktů ve výchozí látky (stejně tolik látek kolik vzniká se zpátky přemění) z rovnosti k 1.[A] a.[b] b = k. [C] c.[d] d získáme vztah pro rovnovážnou konstantu: K k k 1 c [ C].[ D] a [ A].[ B] d b Gouldberg-Waagův zákon chem. dynamické rovnováhy (rychlosti obou reakcí jsou stejné, vzniká stejný počet částic jako se přemění zpět na výchozí látky, poměr součinů koncentrací je konstantní) konstanty k jsou závislé na teplotě, ne na koncentraci, hodnota K je pro danou reakci konstantní velikost K určuje směr reakce: K = 1 reakce zdánlivě neprobíhá (rovnováha) K > 1 reakce běží směrem k produktům (probíhá, doprava) K < 1 reakce běží zpět k výchozím látkám (neprobíhá) výpočty: Při rovnováze byly stanoveny tyto koncentrace [A], [B] a [C], vypočítejte K. => LE-CHATELIERŮV PRINCIP,, Porušení rovnováhy vnějším zásahem (akcí) vyvolá děj (reakci) směřující k potlačení či zrušení účinku tohoto vnějšího zásahu, a tudíž vždy směřuje k rovnováze - ovlivnění rovnováhy: a) snížení koncentrace produktů b) zvýšení koncentrace výchozích látek c) změna tlaku v reakční soustavě - uvedení praxe například výroba amoniaku (vysoké teploty, tlaky), odsávání produktů -4-

25 Energetika chemických reakcí termodynamika (definice) druhy soustav (izolovaná, uzavřená, otevřená) termodynamický děj (vratný, nevratný) hl. veličiny molární reakční teplo exotermické, endotermické děje určit podle Qm (u rovnice) a nebo H (1 mol) uvolněné/spotřebované Q určit EXO, ENDO podle reakční koordináty standardní reakční teplo (vazebná energie produktů a reaktantů) výpočty (vzorce) slučovací teplo spalné teplo SEMINÁŘ 1. termodynamický zákon (vnitřní energie U) termochemické zákony (Laplace-Lavoisier, Hess) POKUSY: viz školní pokusy (rozpouštění NaOH, NH 4 Cl), rozpouštění Ba(OH) a NH 4 SCN (M. Uhlíř) -5-

26 Didaktika redoxních dějů 8 vyučovacích hodin Rozvržení učiva: oxidační číslo (opakování) a názvosloví (opakování) zavedení pojmu oxidace a redukce na základě změny oxidačního čísla úprava redoxních rovnic (redoxní děje s přímým přenosem elektronů) zavedení pojmu oxidace, redukce na základě změny nábojového čísla, činidlo oxidační a redukční elektrochemické děje (redoxní děje s nepřímým přenosem elektronů) 3 hodiny Oxidační číslo, názvosloví - opakování zopakovat definici oxidačního čísla (zdůraznit, že nábojové číslo se píše arabsky, ox. číslo římsky) opakování názvosloví anorganických sloučenin (procvičování) Redoxní děje 1. NA ZÁKLADĚ ZMĚNY OX. ČÍSLA na ZŠ probírají redoxní děje ve vztahu k elektrolýze POKUS (reálný, myšlený): - napsat rovnice reakcí předvedených pokusů v průběhu jejich provádění, anebo jejich připomenutí. 1. Mg (s) + O (g) MgO (s) zapálit hořčík. HgO (s) Hg (l) + O (g) žíhat HgO v křivuli s vatou, Hg na stěnách tvoří zrcátko, O důkaz špejlí 3. Zn (s) + H SO 4 (aq) H (g) + ZnSO 4 (aq) V Petriho misce 4. Cu(s) + AgNO 3 (aq) Ag (s) + Cu(NO 3 ) (aq) na meotaru prosvětlená kádinka s AgNO 3, do něj ponořena Cu spirála očištěná v HNO 3 na spirále strom Ag, roztok do modra = Cu(NO 3 ) 5. NaOH (aq) + HCl (aq) NaCl(aq) + H O (l) neredox napsat oxidační čísla atomů v rovnicích podtrhnout různobarevně ty atomy prvků, u kterých dochází během reakce ke změně oxidačního čísla zjistit, zda u všech reakcí dochází ke změně oxidačního čísla, vypsat je na tabuli, odděleně do sloupců Mg O Mg II 0 O O -II O -II O O Hg II Hg 0 Zn O Zn II H I 0 H Cu O Cu II Ag I Ag 0 zvyšování ox. čísla snižování oxidačního čísla -6-

27 zavedení pojmů: Oxidace název podle slučování s kyslíkem, děj při kterém dochází ke zvyšování oxidačního čísla atomů Redukce, děj při kterém dochází ke snižování oxidačního čísla atomů V jedné reakci dochází vždy k redukci a oxidaci současně (počet jednotek, o které se oxidační čísla atomů zvýší jsou rovna počtu jednotek, o který se u jiných atomů téže reakce sníží) 3. ÚPRAVY REDOXNÍCH ROVNIC Příklad: Likvidace fosforu rozpouštěním v kyselině dusičné. a) napsat rovnici s oxidačními čísly všech prvků: 0 I V II I V II P H N O3 H 3 P O4 N II O II b) napsat poloreakce prvků, které mění ox. číslo: 0 P 5e V N 3 e V P N II 0 c) upravit podle počtu elektronů na společného jmenovatele: P 5e V P /.3 V N 3 e II N /.5 d) doplnit koeficienty do rovnice: P 5HNO 3H PO 5NO e) kontrola počtu O, H doplnit vodu f) konečný výsledek: P 5HNO H O 3H PO 5NO NA ZÁKLADĚ ZMĚNY NÁBOJOVÉHO ČÍSLA - napsat iontové rovnice reakcí uvedených pokusů z předchozí hodiny. - podtrhnout různobarevně ty ionty a atomy, u kterých dochází během reakce ke změně náboje (zvýšení červeně, snížení modře) 1. Mg (s) + O (g) MgO (s). HgO (s) Hg (l) + O (g) 3. Zn (s) + H SO 4 (aq) H (g) + ZnSO 4 (aq) 4. Cu(s) + AgNO 3 (aq) Ag (s) + Cu(NO 3 ) (aq) 5. NaOH (aq) + HCl (aq) NaCl(aq) + H O (l) Mg O Mg + 0 O O - O - O O Hg + Hg 0 Zn O Zn + H 1+ 0 H Cu O Cu + Ag 1+ Ag 0 zvyšování náboje snižování náboje zavedení pojmů: Oxidace název podle slučování s kyslíkem, děj při kterém dochází ke zvyšování nábojového čísla atomů (uvolňují se elektrony) Redukce, děj při kterém dochází ke snižování nábojového čísla atomů (přijímají se e - ) Počet přijatých a uvolněných elektronů v jedné reakci je vždy stejný. -7-

28 OXIDAČNÍ ČINIDLO - druhou částici oxiduje tím, že jí odebírá elektrony (oxiduje), oxidační činidlo se samo redukuje přibranými elektrony - např. kyslík, kovy, manganistany, chlorečnany, REDUKČNÍ ČINIDLO - druhou částici redukuje tím, že jí odevzdává elektrony (redukuje), redukční činidlo se samo oxiduje odevzdanými elektrony - uhlí, koks, kovy, vodík, přijímá elektrony (snižuje se ox. číslo) odevzdává elektrony (zvyšuje se ox. číslo) redukuje OXIDAČNÍ ČINIDLO REDUKČNÍ ČINIDLO samo se redukuje oxiduje samo se oxiduje SEMINÁŘ:.- lze po žácích vyžadovat, aby odvodili výsledek reakce podle redoxpotenciálu Např. Sestavte rovnici ve správném směru podle redox potenciálů: Cr O 7 - /Cr 3+ = 1,33; SO 4 - /SO 3 - = -0,93 algoritmus: soustava s vyšším redoxpotenciálem běží ve směru redukce, s nižším ve směru oxidace. a) napsat rovnici: Cr 3 O7 SO3 Cr SO4 b) vypsat poloreakce, upravit druh a počet atomů na obou stranách (přidání H O, H + ): 3 CrO7 14 H Cr 7H O SO H O SO H 3 c) vyrovnat náboje na obou stranách rovnice (přidáním elektronů) 4 3 CrO7 14 H 6e Cr 7H O /.1 SO3 H O SO4 H e /.3 d) počet vyměněných elektronů musí být stejný,upravit na společného jmenovatele: 3 CrO7 14 H 6e Cr 7H O e) spojit obě rovnice, vykrátit a proškrtat: 3SO 3H O 3SO 6H 6e 3 3 Cr O 14H 6e 3SO 3H O Cr 7H O 3SO 6H 6e 7 Cr 3 3 O7 H 3SO3 Cr 4H O 3 8 SO

29 Elektrochemie - redoxní děje s nepřímým přenosem elektronů - elektrolýza = volné ionty v roztoku (elektrolytu) jsou schopny vést elektrický proud a vyvolvávat tak elektrochemické děje (anodická oxidace a katodická redukce) - galvanický článek přeměňuje je schopen přeměnit energii chemickou na energii elektrickou ELEKTROLÝZA GALVANICKÝ ČLÁNEK napětí vkládáno získáváno anoda kladná, oxidace záporná, oxidace katoda záporná, redukce kladná, redukce ELEKTROLÝZA: Elektrolýza CuCl : A(+, Cu) Cl - Cl (oxidace), důkaz jodidoškrobovým papírkem (Cl + KI I + KCl) jód barví škrob do modra K(, Zn) Cu + Cu (redukce), vylučování na Zn elektrodě Elektrolýza NaCl: A(+, tuha) Cl - Cl (oxidace), důkaz jodidoškrobovým papírkem K(, Fe) H + H (redukce) FFT v roztoku zbarven do fialova (zůstává roztok NaOH) Elektrolýza H O: A(+) uniká kyslík => OH - + OH - H O + O K( ) uniká vodík, větší množství => H + + e - H Elektrolýza Al O 3 (výroba hliníku): A(+) Al e - 3Al K(, C) vznikající kyslík se slučuje s C na CO a CO GALVANICKÝ ČLÁNEK: Danielův článek: Zn elektroda (anoda, záporná, oxidace) snadněji uvolňuje elektrony, oxiduje se (nižší redoxpotenciál) rozpouští se Cu elektroda (katoda, kladná, redukce) snadněji elektrony přijímá, redukuje se (vyšší redoxpotenciál) vylučuje se na ní měď -9-

DOUČOVÁNÍ KVINTA CHEMIE

DOUČOVÁNÍ KVINTA CHEMIE 1. ÚVOD DO STUDIA CHEMIE 1) Co studuje chemie? 2) Rozděl chemii na tři důležité obory. DOUČOVÁNÍ KVINTA CHEMIE 2. NÁZVOSLOVÍ ANORGANICKÝCH SLOUČENIN 1) Pojmenuj: BaO, N 2 0, P 4 O 10, H 2 SO 4, HMnO 4,

Více

Gymnázium Jiřího Ortena, Kutná Hora. Pojmy Metody a formy Poznámky

Gymnázium Jiřího Ortena, Kutná Hora. Pojmy Metody a formy Poznámky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Chemie (CHE) Obecná chemie, anorganická chemie 2. ročník a sexta 2 hodiny týdně Školní tabule, interaktivní tabule, tyčinkové a kalotové modely molekul, zpětný

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Chemie (CHE) Obecná chemie 1. ročník a kvinta 2 hodiny týdně Školní tabule, interaktivní tabule, tyčinkové a kalotové modely molekul, zpětný projektor, transparenty,

Více

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější.

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Nejjednodušší prvek. Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Vodík tvoří dvouatomové molekuly, je lehčí než

Více

ANODA KATODA elektrolyt:

ANODA KATODA elektrolyt: Ukázky z pracovních listů 1) Naznač pomocí šipek, které částice putují k anodě a které ke katodě. Co je elektrolytem? ANODA KATODA elektrolyt: Zn 2+ Cl - Zn 2+ Zn 2+ Cl - Cl - Cl - Cl - Cl - Zn 2+ Cl -

Více

MATURITNÍ OTÁZKY Z CHEMIE

MATURITNÍ OTÁZKY Z CHEMIE MATURITNÍ OTÁZKY Z CHEMIE 1 Složení a struktura atomu Vývoj představ o složení a struktuře atomu, elektronový obal atomu, modely atomu, pojem orbital, typy orbitalů, jejich znázorňování a pravidla pro

Více

Do této skupiny patří dusík, fosfor, arsen, antimon a bismut. Společnou vlastností těchto prvků je pět valenčních elektronů v orbitalech ns a np:

Do této skupiny patří dusík, fosfor, arsen, antimon a bismut. Společnou vlastností těchto prvků je pět valenčních elektronů v orbitalech ns a np: PRVKY PÁTÉ SKUPINY Do této skupiny patří dusík, fosfor, arsen, antimon a bismut. Společnou vlastností těchto prvků je pět valenčních elektronů v orbitalech ns a np: Obecná konfigurace: ns np Nejvyšší kladné

Více

Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch

Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch Atom, složení a struktura Chemické prvky-názvosloví, slučivost Chemické sloučeniny, molekuly Chemická vazba

Více

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : CHEMIE Ročník: 1.ročník a kvinta Obecná Bezpečnost práce Názvosloví anorganických sloučenin Zná pravidla bezpečnosti práce a dodržuje je.

Více

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO Seznam výukových materiálů III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast: Předmět: Vytvořil: Obecná chemie Chemie Mgr. Soňa Krampolová 01 - Látkové množství, molární hmotnost VY_32_INOVACE_01.pdf

Více

Průvodka. CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pořadí DUMu v sadě 07

Průvodka. CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pořadí DUMu v sadě 07 Průvodka Číslo projektu Název projektu Číslo a název šablony klíčové aktivity CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.2939. Název projektu: Investice do vzdělání - příslib do budoucnosti

Registrační číslo projektu: CZ.1.07/1.4.00/21.2939. Název projektu: Investice do vzdělání - příslib do budoucnosti Registrační číslo projektu: CZ.1.07/1.4.00/21.2939 Název projektu: Investice do vzdělání - příslib do budoucnosti Číslo přílohy: VY_číslo šablony_inovace_číslo přílohy Autor Datum vytvoření vzdělávacího

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná chemie Top-Hit Analytická chemie Analýza anorganických látek Důkaz aniontů Důkaz kationtů Důkaz kyslíku Důkaz vody Gravimetrická analýza Hmotnostní spektroskopie Chemická analýza Nukleární magnetická

Více

Složení soustav (roztoky, koncentrace látkového množství)

Složení soustav (roztoky, koncentrace látkového množství) VZOROVÉ PŘÍKLADY Z CHEMIE A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava Doporučená literatura z chemie: Prakticky jakákoliv celostátní učebnice

Více

Otázka: Vodík. Předmět: Chemie. Přidal(a): Anonym. Základní charakteristika

Otázka: Vodík. Předmět: Chemie. Přidal(a): Anonym. Základní charakteristika Otázka: Vodík Předmět: Chemie Přidal(a): Anonym Základní charakteristika Mezinárodní název: hydrogenium První člen periodické soustavy prvků Tvoří základ veškeré živé hmoty Izotopy vodíku Lehký vodík (protium)

Více

Učební osnovy Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemický kroužek ročník 6.-9.

Učební osnovy Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemický kroužek ročník 6.-9. Učební osnovy Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemický kroužek ročník 6.-9. Školní rok 0/03, 03/04 Kapitola Téma (Učivo) Znalosti a dovednosti (výstup) Počet hodin pro kapitolu Úvod

Více

Ukázky z pracovních listů 1) Vyber, který ion je: a) ve vodném roztoku barevný b) nejstabilnější c) nejlépe oxidovatelný

Ukázky z pracovních listů 1) Vyber, který ion je: a) ve vodném roztoku barevný b) nejstabilnější c) nejlépe oxidovatelný Ukázky z pracovních listů 1) Vyber, který ion je: a) ve vodném roztoku barevný b) nejstabilnější c) nejlépe oxidovatelný Fe 3+ Fe 3+ Fe 3+ Fe 2+ Fe 6+ Fe 2+ Fe 6+ Fe 2+ Fe 6+ 2) Vyber správné o rtuti:

Více

16.5.2010 Halogeny 1

16.5.2010 Halogeny 1 16.5.010 Halogeny 1 16.5.010 Halogeny Prvky VII.A skupiny: F, Cl, Br, I,(At) Obecnávalenčníkonfigurace:ns np 5 Pro plné zaplnění valenční vrstvy potřebují 1 e - - nejčastější sloučeniny s oxidačním číslem

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Chemie (CHE) Obecná chemie 1. ročník a kvinta 2 hodiny týdně Školní tabule, interaktivní tabule, tyčinkové a kalotové modely molekul, zpětný projektor, transparenty,

Více

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL.

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. Látkové množství Značka: n Jednotka: mol Definice: Jeden mol je množina, která má stejný počet prvků, jako je atomů ve 12 g nuklidu

Více

Obecná a anorganická chemie

Obecná a anorganická chemie Učební osnova předmětu Obecná a anorganická chemie Studijní obor: Aplikovaná chemie Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích

Více

Chemie - 1. ročník. očekávané výstupy ŠVP. Žák:

Chemie - 1. ročník. očekávané výstupy ŠVP. Žák: očekávané výstupy RVP témata / učivo Chemie - 1. ročník Žák: očekávané výstupy ŠVP přesahy, vazby, mezipředmětové vztahy průřezová témata 1.1., 1.2., 1.3., 7.3. 1. Chemie a její význam charakteristika

Více

Ročník VIII. Chemie. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed.

Ročník VIII. Chemie. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed. Úvod IX. -ukázka chem.skla přírodní věda, poznat chemické sklo a pomůcky, zásady bezpečné práce-práce s dostupnými a běžně používanými látkami, hodnocení jejich rizikovosti, posoudí bezpečnost vybraných

Více

Energie v chemických reakcích

Energie v chemických reakcích Energie v chemických reakcích Energetická bilance reakce CH 4 + Cl 2 = CH 3 Cl + HCl rozštěpení vazeb vznik nových vazeb V chemických reakcích dochází ke změně vazeb mezi atomy. Vazebná energie uvolnění

Více

Ukázky z pracovních listů B

Ukázky z pracovních listů B Ukázky z pracovních listů B 1) Označ každou z uvedených rovnic správným názvem z nabídky. nabídka: termochemická, kinetická, termodynamická, Arrheniova, 2 HgO(s) 2Hg(g) + O 2 (g) H = 18,9kJ/mol v = k.

Více

atomová hmotnost S + O 2 -> SO 2 Fe + S -> FeS

atomová hmotnost S + O 2 -> SO 2 Fe + S -> FeS PRVKY ŠESTÉ SKUPINY - CHALKOGENY Mezi chalkogeny (nepřechodné prvky 6.skupiny) zařazujeme kyslík, síru, selen, tellur a radioaktivní polonium. Společnou vlastností těchto prvků je šest valenčních elektronů

Více

7) Uveď příklad chemické reakce, při níž se sloučí dva prvky za vzniku sloučeniny. (3) hoření vodíku s kyslíkem a vzniká voda

7) Uveď příklad chemické reakce, při níž se sloučí dva prvky za vzniku sloučeniny. (3) hoření vodíku s kyslíkem a vzniká voda Chemické reakce a děje Chemické reakce 1) Jak se chemické reakce odlišují od fyzikálních dějů? (2) změna vlastností látek, změna vazeb mezi atomy 2) Co označujeme v chemických reakcích jako reaktanty a

Více

Modul 02 - Přírodovědné předměty

Modul 02 - Přírodovědné předměty Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 - Přírodovědné předměty Hana Gajdušková Výskyt

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í CHEMICKÉ REAKCE

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í CHEMICKÉ REAKCE Chemické reakce = proces, během kterého se výchozí sloučeniny mění na nové, reaktanty se přeměňují na... Vazby reaktantů...a nové vazby... Klasifikace reakcí: 1. Podle reakčního tepla endotermické teplo

Více

1H 1s. 8O 1s 2s 2p - - - - - - H O H

1H 1s. 8O 1s 2s 2p - - - - - - H O H OXIDAČNÍ ČÍSLO 1H 1s 8O 1s 2s 2p 1H 1s - - - - + - - + - - + - - H O H +I -II +I H O H - - - - Elektronegativita: Oxidační číslo vodíku: H +I Oxidační číslo kyslíku: O -II Platí téměř ve všech sloučeninách.

Více

OBECNÁ CHEMIE František Zachoval CHEMICKÉ ROVNOVÁHY 1. Rovnovážný stav, rovnovážná konstanta a její odvození Dlouhou dobu se chemici domnívali, že jakákoliv chem.

Více

PERIODICKÁ TABULKA. Všechny prvky v tabulce můžeme rozdělit na kovy, nekovy a polokovy.

PERIODICKÁ TABULKA. Všechny prvky v tabulce můžeme rozdělit na kovy, nekovy a polokovy. PERIODICKÁ TABULKA Je známo více než 100 prvků 90 je přirozených (jsou v přírodě) 11 plynů 2 kapaliny (brom, rtuť) Ostatní byly připraveny uměle. Dmitrij Ivanovič Mendělejev uspořádal 63 tehdy známých

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo šablony: 31 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek: Anotace: CZ.1.07/1.5.00/3.0

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: CZ.1.07/1.5.00/34.0410 Číslo šablony: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Název materiálu: Opakovací test

Více

Seminář z anorganické chemie

Seminář z anorganické chemie Univerzita Jana Evangelisty Purkyně v Ústí nad Labem Přírodovědecká fakulta Studijní opora pro dvouoborové kombinované bakalářské studium Seminář z anorganické chemie Ing.Fišerová Cílem kurzu je seznámit

Více

ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU

ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 20. říjen 202 Název zpracovaného celku: ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU Leukippos, Démokritos (5. st. př. n. l.; Řecko).

Více

Složení a struktura atomu Charakteristika elementárních částic. Modely atomu. Izotopy a nuklidy. Atomové jádro -

Složení a struktura atomu Charakteristika elementárních částic. Modely atomu. Izotopy a nuklidy. Atomové jádro - MATURITNÍ OKRUHY Z CHEMIE Obecná chemie Složení a struktura atomu Charakteristika elementárních částic. Modely atomu. Izotopy a nuklidy. Atomové jádro - hmotnostní úbytek, vazebná energie jádra, jaderné

Více

Střední průmyslová škola strojnická Vsetín Číslo projektu. Druh učebního materiálu prezentace Pravidla pro tvorbu vzorců a názvů kyselin a solí

Střední průmyslová škola strojnická Vsetín Číslo projektu. Druh učebního materiálu prezentace Pravidla pro tvorbu vzorců a názvů kyselin a solí Název školy Střední průmyslová škola strojnická Vsetín Číslo projektu CZ.1.07/1.5.00/34.0483 Autor RNDr. Miroslava Pospíšilíková Název šablony III/2 Název DUMu 10.3 Názvosloví kyselin a solí Tematická

Více

Chemie - 3. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. očekávané výstupy RVP. témata / učivo. očekávané výstupy ŠVP.

Chemie - 3. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. očekávané výstupy RVP. témata / učivo. očekávané výstupy ŠVP. očekávané výstupy RVP témata / učivo Chemie - 3. ročník Žák: očekávané výstupy ŠVP přesahy, vazby, mezipředmětové vztahy průřezová témata 1.1., 1.2., 1.3., 1.4., 2.1. 1. Látky přírodní nebo syntetické

Více

Otázky a jejich autorské řešení

Otázky a jejich autorské řešení Otázky a jejich autorské řešení Otázky: 1a Co jsou to amfoterní látky? a. látky krystalizující v krychlové soustavě b. látky beztvaré c. látky, které se chovají jako kyselina nebo jako zásada podle podmínek

Více

III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN prostřednictvím ICT

III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN prostřednictvím ICT Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: Název projektu: Číslo projektu: Autor: Tematická oblast: Název DUMu: Kód: III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN

Více

11. Chemické reakce v roztocích

11. Chemické reakce v roztocích Roztok - simila similimbus solventur Typy reakcí elektrolytů Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti roztok - simila similimbus solventur rozpouštědla (nečistoty vůči rozpuštěným

Více

MO 1 - Základní chemické pojmy

MO 1 - Základní chemické pojmy MO 1 - Základní chemické pojmy Hmota, látka, atom, prvek, molekula, makromolekula, sloučenina, chemicky čistá látka, směs. Hmota Filozofická kategorie, která se používá k označení objektivní reality v

Více

Ing. Jana Vápeníková: Látkové množství, chemické reakce, chemické rovnice

Ing. Jana Vápeníková: Látkové množství, chemické reakce, chemické rovnice Látkové množství Symbol: n veličina, která udává velikost chemické látky pomocí počtu základních elementárních částic, které látku tvoří (atomy, ionty, molekuly základní jednotkou: 1 mol 1 mol kterékoliv

Více

DUM VY_52_INOVACE_12CH19

DUM VY_52_INOVACE_12CH19 Základní škola Kaplice, Školní 226 DUM VY_52_INOVACE_12CH19 autor: Kristýna Anna Rolníková období vytvoření: říjen 2011 duben 2012 ročník, pro který je vytvořen: 8. a 9. vzdělávací oblast: vzdělávací obor:

Více

IV. Chemické rovnice A. Výpočty z chemických rovnic 1

IV. Chemické rovnice A. Výpočty z chemických rovnic 1 A. Výpočty z chemických rovnic 1 4. CHEMICKÉ ROVNICE A. Výpočty z chemických rovnic a. Výpočty hmotností reaktantů a produktů b. Výpočty objemů reaktantů a produktů c. Reakce látek o různých koncentracích

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 5 Číslo projektu: CZ..07/.5.00/34.040 Číslo šablony: 7 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek: Atom

Více

CHEMICKÉ VÝPOČTY HMOTNOST REAKTANTŮ A PRODUKTŮ PŘI CHEMICKÉ REAKCI PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

CHEMICKÉ VÝPOČTY HMOTNOST REAKTANTŮ A PRODUKTŮ PŘI CHEMICKÉ REAKCI PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST CHEMICKÉ VÝPOČTY HMOTNOST REAKTANTŮ A PRODUKTŮ PŘI CHEMICKÉ REAKCI PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST VÝPOČET HMOTNOSTI REAKTANTŮ A PRODUKTŮ PŘI CHEMICKÉ REAKCI

Více

1) BEZKYSLÍKATÉ KYSELINY:

1) BEZKYSLÍKATÉ KYSELINY: KYSELINY Jsou to látky, které se ve vodě štěpí na kationty H + a anionty (radikály) kyseliny (např. Cl -, NO 3-, SO 4 2- ). 1) BEZKYSLÍKATÉ KYSELINY: (koncovka -vodíková) Kyselina fluorovod vodíková chlorovod

Více

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO Seznam výukových materiálů III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast: Předmět: Vytvořil: Anorganická chemie Chemie Mgr. Soňa Krampolová 01 - Vlastnosti přechodných prvků -

Více

Iontové reakce. Iontové reakce. Protolytické reakce. Teorie kyselin a zásad. Kyseliny dle Brønstedovy. nstedovy-lowryho teorie. Sytnost (proticita(

Iontové reakce. Iontové reakce. Protolytické reakce. Teorie kyselin a zásad. Kyseliny dle Brønstedovy. nstedovy-lowryho teorie. Sytnost (proticita( Iontové reakce Iontové reakce Reakce v roztocích elektrolytů Protolytické (acidobazické) reakce reaktanty si vyměňují Redoxní (oxidačně redukční) reakce reaktanty si vyměňují e Srážecí reakce ionty tvoří

Více

N A = 6,023 10 23 mol -1

N A = 6,023 10 23 mol -1 Pro vyjadřování množství látky se v chemii zavádí veličina látkové množství. Značí se n, jednotkou je 1 mol. Látkové množství je jednou ze základních veličin soustavy SI. Jeden mol je takové množství látky,

Více

Laboratorní cvičení z kinetiky chemických reakcí

Laboratorní cvičení z kinetiky chemických reakcí Laboratorní cvičení z kinetiky chemických reakcí LABORATORNÍ CVIČENÍ 1. Téma: Ovlivňování průběhu reakce změnou koncentrace látek. podmínek průběhu reakce. Jednou z nich je změna koncentrace výchozích

Více

CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST AMEDEO AVOGADRO AVOGADROVA KONSTANTA 2 N 2 MOLY ATOMŮ DUSÍKU 2 ATOMY DUSÍKU

Více

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1 DUM Základy přírodních věd DUM III/2-T3-2-20 Téma: Test obecná chemie Střední škola Rok: 2012 2013 Varianta: A Test obecná chemie Zpracoval: Mgr. Pavel Hrubý Mgr. Josef Kormaník TEST Otázka 1 OsO 4 je

Více

HOŘČÍK KOVY ALKALICKÝCH ZEMIN. Pozn. Elektronová konfigurace valenční vrstvy ns 2

HOŘČÍK KOVY ALKALICKÝCH ZEMIN. Pozn. Elektronová konfigurace valenční vrstvy ns 2 HOŘČÍK KOVY ALKALICKÝCH ZEMIN Pozn. Elektronová konfigurace valenční vrstvy ns 2 Hořčík Vlastnosti: - stříbrolesklý, měkký, kujný kov s nízkou hustotou (1,74 g.cm -3 ) - diagonální podobnost s lithiem

Více

1. Jeden elementární záporný náboj 1,602.10-19 C nese částice: a) neutron b) elektron c) proton d) foton

1. Jeden elementární záporný náboj 1,602.10-19 C nese částice: a) neutron b) elektron c) proton d) foton varianta A řešení (správné odpovědi jsou podtrženy) 1. Jeden elementární záporný náboj 1,602.10-19 C nese částice: a) neutron b) elektron c) proton d) foton 2. Sodný kation Na + vznikne, jestliže atom

Více

Test pro 8. třídy A. 3) Vypočítej kolik potřebuješ gramů soli na přípravu 600 g 5 % roztoku.

Test pro 8. třídy A. 3) Vypočítej kolik potřebuješ gramů soli na přípravu 600 g 5 % roztoku. Test pro 8. třídy A 1) Rozhodni, zda je správné tvrzení: Vzduch je homogenní směs. a) ano b) ne 2) Přiřaď k sobě: a) voda-olej A) suspenze b) křída ve vodě B) emulze c) vzduch C) aerosol 3) Vypočítej kolik

Více

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VÝPOČTY Z CHEMICKÝCH ROVNIC VY_32_INOVACE_03_3_18_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VÝPOČTY Z CHEMICKÝCH

Více

Oborový workshop pro ZŠ CHEMIE

Oborový workshop pro ZŠ CHEMIE PRAKTICKÁ VÝUKA PŘÍRODOVĚDNÝCH PŘEDMĚTŮ NA ZŠ A SŠ CZ.1.07/1.1.30/02.0024 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Oborový workshop pro ZŠ CHEMIE

Více

Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 29. květen 2013. Název zpracovaného celku: REDOXNÍ REAKCE REDOXNÍ REAKCE

Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 29. květen 2013. Název zpracovaného celku: REDOXNÍ REAKCE REDOXNÍ REAKCE Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 29. květen 2013 Název zpracovaného celku: REDOXNÍ REAKCE REDOXNÍ REAKCE Oxidačně redukční neboli redoxní reakce jsou všechny chemické reakce,

Více

Typy chemických reakcí prezentace VY_52_INOVACE_213 Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemie Ročník: 8, 9 Projekt EU peníze školám Operačního programu Vzdělávání pro konkurenceschopnost

Více

Termochemie se zabývá tepelným zabarvením chemických reakcí Vychází z 1. termodynamického zákona. U změna vnitřní energie Q teplo W práce

Termochemie se zabývá tepelným zabarvením chemických reakcí Vychází z 1. termodynamického zákona. U změna vnitřní energie Q teplo W práce Termochemie Termochemie se zabývá tepelným zabarvením chemických reakcí Vychází z 1. termodynamického zákona U = Q + W U změna vnitřní energie Q teplo W práce Teplo a práce dodané soustavě zvyšují její

Více

Název školy: Číslo a název sady: klíčové aktivity: VY_32_INOVACE_131_Elektrochemická řada napětí kovů_pwp

Název školy: Číslo a název sady: klíčové aktivity: VY_32_INOVACE_131_Elektrochemická řada napětí kovů_pwp Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: STŘEDNÍ ODBORNÁ

Více

Vzdělávací oblast: ČLOVĚK A PŘÍRODA Vyučovací předmět: Chemie Ročník: 8.

Vzdělávací oblast: ČLOVĚK A PŘÍRODA Vyučovací předmět: Chemie Ročník: 8. Vzdělávací oblast: ČLOVĚK A PŘÍRODA Vyučovací předmět: Chemie Ročník: 8. Žák : 1.Pozorování, pokus, bezpečnost Zhodnotí význam chemie pro člověka Dokáže vysvětlit,co chemie zkoumá, jaké metody Chemie jako

Více

Očekávané ročníkové výstupy z chemie 8. ročník

Očekávané ročníkové výstupy z chemie 8. ročník Očekávané ročníkové výstupy z chemie 8. ročník Pomůcky: kalkulačka, tabulky, periodická tabulka prvků Témata ke srovnávací písemné práci z chemie (otázky jsou pouze orientační, v testu může být zadání

Více

Chemie. žák: F látka, těleso; hustota, teplota tání a varu a faktory, které je ovlivňují. Pozorování, pokus, bezpečnost práce

Chemie. žák: F látka, těleso; hustota, teplota tání a varu a faktory, které je ovlivňují. Pozorování, pokus, bezpečnost práce sekunda Pozorování, pokus, bezpečnost práce Směsi Částicové složení látek a chemické prvky určí společné a rozdílné vlastnosti látek předmět a historie chemie rozpozná skupenské přeměny látek vlastnosti

Více

Oxidační číslo je rovno náboji, který by atom získal po p idělení všech vazebných elektronových párů atomům s větší elektronegativitou.

Oxidační číslo je rovno náboji, který by atom získal po p idělení všech vazebných elektronových párů atomům s větší elektronegativitou. NÁZVOSLOVÍ Oxidační číslo je rovno náboji, který by atom získal po p idělení všech vazebných elektronových párů atomům s větší elektronegativitou. -II +III -II +I O N O H Oxidační čísla se značí ímskými

Více

KONTROLNÍ TEST ŠKOLNÍHO KOLA (70 BODŮ)

KONTROLNÍ TEST ŠKOLNÍHO KOLA (70 BODŮ) KONTROLNÍ TEST ŠKOLNÍHO KOLA (70 BODŮ) Úloha 1 Ic), IIa), IIId), IVb) za každé správné přiřazení po 1 bodu; celkem Úloha 2 8 bodů 1. Sodík reaguje s vodou za vzniku hydroxidu sodného a dalšího produktu.

Více

ŘADA KOVŮ, LP č. 1 REAKCE KOVŮ

ŘADA KOVŮ, LP č. 1 REAKCE KOVŮ ŘADA KOVŮ, LP č. 1 REAKCE KOVŮ Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 27. 2. 2012 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Částicové složení látek a chemické prvky; chemické

Více

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně Přípravný kurz k přijímacím zkouškám Obecná a anorganická chemie RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně část III. - 23. 3. 2013 Hmotnostní koncentrace udává se jako

Více

Acidobazické reakce. 1. Arrheniova teorie. 2. Neutralizace

Acidobazické reakce. 1. Arrheniova teorie. 2. Neutralizace Acidobazické reakce 1. Arrheniova teorie Kyseliny látky schopné ve vodných roztocích odštěpit H + např: HCl H + + Cl -, obecně HB H + + B - Zásady látky schopné ve vodných roztocích poskytovat OH - např.

Více

U 218 - Ústav procesní a zpracovatelské techniky FS ČVUT

U 218 - Ústav procesní a zpracovatelské techniky FS ČVUT Sloučeniny, jejichž stavební částice (molekuly, ionty) jsou tvořeny atomy dvou různých chemických prvků. Obecný vzorec: M m X n M - prvek s kladným oxidačním číslem OM X - prvek se záporným oxidačním číslem

Více

CZ.1.07/1.5.00/34.0880. pracovní list. Anorganická chemie. Síra. Mgr. Alexandra Šlegrová

CZ.1.07/1.5.00/34.0880. pracovní list. Anorganická chemie. Síra. Mgr. Alexandra Šlegrová Název školy Číslo projektu STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace CZ.1.07/1.5.00/34.0880 Název projektu Klíčová aktivita Digitální učební materiály

Více

H - -I (hydridy kovů) vlastnosti: plyn - nekov 14x lehčí než vzduch bez barvy, chuti, zápachu se vzduchem tvoří výbušnou směs redukční činidlo

H - -I (hydridy kovů) vlastnosti: plyn - nekov 14x lehčí než vzduch bez barvy, chuti, zápachu se vzduchem tvoří výbušnou směs redukční činidlo Otázka: Vodík, kyslík Předmět: Chemie Přidal(a): Prang Vodík 1. Charakteristika 1 1 H 1s 1 ; 1 proton, jeden elektron nejlehčí prvek výskyt: volný horní vrstva atmosféry, vesmír - elementární vázaný- anorganické,

Více

Střední škola obchodu, řemesel a služeb Žamberk

Střední škola obchodu, řemesel a služeb Žamberk Střední škola obchodu, řemesel a služeb Žamberk Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Registrační číslo projektu: CZ.1.07/1.5.00/34.0130 Šablona: III/2 Ověřeno ve výuce dne: 11.2.2013

Více

ATOM. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 7. 2012. Ročník: osmý

ATOM. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 7. 2012. Ročník: osmý ATOM Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 25. 7. 2012 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Částicové složení látek a chemické prvky 1 Anotace: Žáci se seznámí se

Více

Pracovní list: Opakování učiva 8. ročníku

Pracovní list: Opakování učiva 8. ročníku Pracovní list: Opakování učiva 8. ročníku Komentář ke hře: 1. Třída se rozdělí do čtyř skupin. Vždy spolu soupeří dvě skupiny a vítězné skupiny se pak utkají ve finále. 2. Každé z čísel skrývá otázku.

Více

anorganických sloučenin Iontové rovnice MUDr.Jan Pláteník, PhD Stavba hmoty: Atom Molekula Ion Sloučenina

anorganických sloučenin Iontové rovnice MUDr.Jan Pláteník, PhD Stavba hmoty: Atom Molekula Ion Sloučenina Opakování názvosloví anorganických sloučenin Iontové rovnice MUDr.Jan Pláteník, PhD Stavba hmoty: Atom Molekula Ion Sloučenina Směs (dispersní soustava) 1 Atom Nejmenšíčástice prvku, která vykazuje jeho

Více

CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT. Protolytické děje VY_32_INOVACE_18_15. Mgr. Věra Grimmerová. grimmerova@gymjev.

CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT. Protolytické děje VY_32_INOVACE_18_15. Mgr. Věra Grimmerová. grimmerova@gymjev. Průvodka Číslo projektu Název projektu Číslo a název šablony klíčové aktivity CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce

Více

Název školy: Číslo a název sady: klíčové aktivity: Jméno a příjmení autora: Mgr. Alexandra Šlegrová

Název školy: Číslo a název sady: klíčové aktivity: Jméno a příjmení autora: Mgr. Alexandra Šlegrová Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: STŘEDNÍ ODBORNÁ

Více

Základy chemického názvosloví

Základy chemického názvosloví Základy chemického názvosloví Oxidační číslo O. č. je počet elementárních nábojů částice Elementární náboj je nejmenší možný Hodnota 1,602. 10-19 C e - má jeden záporný elementární náboj P + má jeden kladný

Více

III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN prostřednictvím ICT

III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN prostřednictvím ICT Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: Název projektu: Číslo projektu: Autor: Tematická oblast: Název DUMu: Kód: III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN

Více

NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV:VY_32_INOVACE_102_Soli AUTOR: Igor Dubovan ROČNÍK, DATUM: 9., 15. 9.

NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV:VY_32_INOVACE_102_Soli AUTOR: Igor Dubovan ROČNÍK, DATUM: 9., 15. 9. NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV:VY_32_INOVACE_102_Soli AUTOR: Igor Dubovan ROČNÍK, DATUM: 9., 15. 9. 2011 VZDĚL. OBOR, TÉMA: Chemie, Soli ČÍSLO PROJEKTU: OPVK

Více

PŘEHLED PRVKŮ. Anorganická chemie

PŘEHLED PRVKŮ. Anorganická chemie 1 PŘEHLED PRVKŮ Anorganická chemie 2 PRKVY I.A SKUPINY H - plyn Li - kov El. konfigurace ns 1 Na - kov K - kov Rb - kov Cs - kov Alkalické kovy Fr - kov 3 Vodík (Hydrogenium) Historický vývoj Vodík objevil

Více

Názvosloví anorganických sloučenin

Názvosloví anorganických sloučenin Chemické názvosloví Chemické prvky jsou látky složené z atomů o stejném protonovém čísle (počet protonů v jádře atomu. Každému prvku přísluší určitý mezinárodní název a od něho odvozený symbol (značka).

Více

CHEMICKÉ REAKCE A HMOTNOSTI A OBJEMY REAGUJÍCÍCH LÁTEK

CHEMICKÉ REAKCE A HMOTNOSTI A OBJEMY REAGUJÍCÍCH LÁTEK CHEMICKÉ REAKCE A HMOTNOSTI A OBJEMY REAGUJÍCÍCH LÁTEK Význam stechiometrických koeficientů 2 H 2 (g) + O 2 (g) 2 H 2 O(l) Počet reagujících částic 2 molekuly vodíku reagují s 1 molekulou kyslíku za vzniku

Více

Atomové jádro Elektronový obal elektron (e) záporně proton (p) kladně neutron (n) elektroneutrální

Atomové jádro Elektronový obal elektron (e) záporně proton (p) kladně neutron (n) elektroneutrální STAVBA ATOMU Výukový materiál pro základní školy (prezentace). Zpracováno v rámci projektu Snížení rizik ohrožení zdraví člověka a životního prostředí podporou výuky chemie na ZŠ. Číslo projektu: CZ.1.07/1.1.16/02.0018

Více

Chemie 8.ročník. Rozpracované očekávané výstupy žáka Učivo Přesuny, OV a PT. Pozorování, pokus a bezpečnost práce předmět chemie,význam

Chemie 8.ročník. Rozpracované očekávané výstupy žáka Učivo Přesuny, OV a PT. Pozorování, pokus a bezpečnost práce předmět chemie,význam Chemie 8.ročník Zařadí chemii mezi přírodní vědy. Pozorování, pokus a bezpečnost práce předmět chemie,význam Popisuje vlastnosti látek na základě pozorování, měření a pokusů. těleso,látka (vlastnosti látek)

Více

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN prostřednictvím ICT

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN prostřednictvím ICT Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: Název projektu: Číslo projektu: Autor: Tematická oblast: Název DUMu: Kód: III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN

Více

Inovace profesní přípravy budoucích učitelů chemie

Inovace profesní přípravy budoucích učitelů chemie Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Reálné gymnázium a základní škola města Prostějova Školní vzdělávací program pro ZV Ruku v ruce

Reálné gymnázium a základní škola města Prostějova Školní vzdělávací program pro ZV Ruku v ruce 6 ČLOVĚK A PŘÍRODA UČEBNÍ OSNOVY 6. 2 Chemie Časová dotace 8. ročník 2 hodiny 9. ročník 2 hodiny Celková dotace na 2. stupni je 4 hodiny. Charakteristika: Vyučovací předmět chemie vede k poznávání chemických

Více

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte:

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte: Doplňte: Protonové číslo: Relativní atomová hmotnost: Elektronegativita: Značka prvku: Latinský název prvku: Český název prvku: Nukleonové číslo: Prvek je chemická látka tvořena z atomů o stejném... čísle.

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Chemie 8. ročník Zpracovala: Mgr. Michaela Krůtová POZOROVÁNÍ, POKUS, BEZPEČNOST PRÁCE určí společné a rozdílné vlastnosti látek orientuje se v chemické laboratoři

Více

10 CHEMIE. 10.1 Charakteristika vyučovacího předmětu. 10.2 Vzdělávací obsah

10 CHEMIE. 10.1 Charakteristika vyučovacího předmětu. 10.2 Vzdělávací obsah 10 CHEMIE 10.1 Charakteristika vyučovacího předmětu Obsahové vymezení Vyučovací předmět Chemie zpracovává vzdělávací obsah oboru Chemie vzdělávací oblasti Člověk a příroda. Vzdělávání v předmětu chemie

Více

4. CHEMICKÉ ROVNICE. A. Vyčíslování chemických rovnic

4. CHEMICKÉ ROVNICE. A. Vyčíslování chemických rovnic 4. CHEMICKÉ ROVNICE A. Vyčíslování chemických rovnic Klíčová slova kapitoly B: Zachování druhu atomu, zachování náboje, stechiometrický koeficient, rdoxní děj Čas potřebný k prostudování učiva kapitoly

Více

Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby

Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby Předmět: CHEMIE Ročník: 8. Časová dotace: 2 hodiny týdně Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby Konkretizované tematické okruhy realizovaného průřezového tématu září orientuje se

Více

bezpečnost práce v laboratoři a při pokusech chemické nádobí látky, jejich vlastnosti, skupenství, rozpustnost

bezpečnost práce v laboratoři a při pokusech chemické nádobí látky, jejich vlastnosti, skupenství, rozpustnost bezpečnost práce v laboratoři a při pokusech EV voda, ovzduší (Základní podmínky života) - zná zásady bezpečné práce v laboratoři, poskytne a přivolá první pomoc při úrazech - dokáže poznat a pojmenovat

Více