7 Kardinální informace o kritériích (část 1)

Rozměr: px
Začít zobrazení ze stránky:

Download "7 Kardinální informace o kritériích (část 1)"

Transkript

1 7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru v = (v 1,..., v k ), = 1, v j 0. Existují tři základní výpočetní principy pro práci s kardinálními informacemi: 1. Princip maximalizace užitku 2. Princip minimální vzdálenosti od ideální varianty 3. Princip vyhodnocování variant na základě preferenční relace 7.1 Maximalizace užitku Princip maximalizace užitku spočívá ve skutečnosti, že ke každé variantě určíme užitek z intervalu < 0, 1 >, který varianta přináší. Čím vhodnější varianta bude, tím vyšší bude mít hodnotu užitku. Seznámíme se se třemi metodami založenými na principu maximalizace užitku: 1. Metoda funkce užitku (UFA) 2. Metoda váženého součtu (WSA) 3. Metoda pro analýzu rozhodovacích problémů pomocí hierarchického znázornění (AHP) UFA Označme: a i obecná i-tá varianta f j obecné j-té kritérium f j (a i ) hodnota varianty a i podle kritéria f j (v předchozích cvičeních jsme tuto hodnotu označovali y ij ) u j (f j (a i )) nebo zjednodušeně u j (a i ) z intervalu < 0, 1 > dílčí funkce užitku 1

2 To, že určitá varianta a i dosáhla podle kritéria f j určité hodnoty f j (a i ) přináší uživateli určitý užitek, který měříme pomocí právě zmíněné dílčí funkce užitku. Pochopitelně, že čím vyšší je vhodnost varianty, tím vyšší dává uživateli užitek, a proto také má tím vyšší hodnotu dílčí funkce užitku u j (a i ). Pomocí funkce užitku lze modelovat preference uživatele. Označme: P j preferenční relace mezi variantami podle kritéria f j I j indiferenční relace mezi variantami podle kritéria f j H j nejvíce preferovaná varianta podle kritéria f j D j nejméně preferovaná varianta podle kritéria f j Pak pro dílčí funkci užitku platí: u j (a) > u j (b) ap j b u j (a) = u j (b) ai j b u j (H j ) = 1 u j (D j ) = 0 Rozeznáváme tři základní typy: 1. Lineární funkce užitku konstantní přírůstky užitku 2. Konvexní funkce užitku u D j jsou přírůstky užitku menší než v blízkosti H j 3. Konkávní funkce užitku u D j jsou přírůstky užitku větší než v blízkosti H j Konstrukce funkce užitku se provádí metodou dělících bodů. Na horizontální osu budeme vynášet hodnoty y j, na vertikální osu hodnoty dílčí funkce užitku u j (y j ). Uživatel určí na vodorovné ose yj 0.5 mezi hodnotami D j a H j tak, aby u j (yj 0.5 ) u j (D j ) = u j (H j ) u j (yj 0.5 ). Je zřejmé, že pro yj 0.5 bude u j (yj 0.5 ) = 0.5, neboť u j (H j ) = 1 a u j (D j ) = 0. Zcela stejným způsobem určí uživatel na vodorovné ose yj 0.25 mezi hodnotami D j a yj 0.5 tak, aby u j (yj 0.25 ) u j (D j ) = u j (yj 0.5 ) u j (yj 0.25 ). Je zřejmé, že pro yj 0.25 bude u j (yj 0.25 ) =

3 Dále uživatel určí na vodorovné ose yj 0.75 mezi hodnotami yj 0.5 a H j tak, aby u j (yj 0.75 ) u j (yj 0.5 ) = u j (H j ) u j (yj 0.75 ). Je zřejmé, že pro yj 0.75 bude u j (yj 0.75 ) = Tímto způsobem vytvoříme několik bodů a těmi pak proložíme (po částech lineární) křivku. Dílčí funkce užitku lze poté agregovat do jediné funkce, kterou budeme nazývat vícekriteriální funkcí užitku: u(a i ) = u{u 1 (f 1 (a i )),..., u k (f k (a i ))} = u{u 1 (a i ),..., u k (a i )}. V praxi se nejčastěji používá aditivní tvar funkce užitku: u(a i ) = v 1 u 1 (a i ) v k u k (a i ) = k v j u j (a i ), kde u j (a i ) jsou dílčí funkce užitku a v j jsou váhy jednotlivých kritérií. Jelikož váhy jsou normalizované, platí u(a i ) < 0, 1 >. Důležitou podmínkou je vzájemná preferenční nezávislost kritérií. Pozn.: Kromě aditivního tvaru funkce užitku existuje i multiplikativní tvar, podrobnosti v učebnicích, např. Fiala, Jablonský, Maňas: Vícekriteriální rozhodování, VŠE, 1994 nebo Fiala: Teorie rozhodování, VŠE, Pro nalezení kompromisní varianty pak maximalizujeme vícekriteriální funkci užitku na množině variant: max u(a i ) pro a i A = {a 1,..., a p }. Podle klesajících hodnot vícekriteriální funkce užitku lze varianty uspořádat. Nicméně podotkněme na závěr, že tato metoda je pro ruční počítání dost složitá a tak při jejím použití pracujeme s počítači. Příklad Upír Předpokládejme příklad s úpírem, který podle prvních tří kritérií hodnotí své 4 oběti. Hodnotíme tedy 4 varianty podle 3 kritérií, ktireriální hodnoty jsou v matici: 3

4 Předpokládejme, že máme následující informace o dílčích funkcích užitku: užitky ČES VUP KPR Funkce užitku je mezi jednotlivými body v tabulce po částech lineární. Pokud užitek pro 120 metrovou vzdálenost od česnekového pole je 0.25 a pro 150 metrovou vzdálenost je užitek 0.75, lze snadno, např. trojčlenkou, spočítat, že užitek 121 metrové vzdálenosti je u = = Podobně užitek 30 pro vzdálenost 107 metrů je u = = V tabulce jsou spočítány hodnoty dílčí funkce užitku pro údaje z výše uvedené matice: užitky ČES VUP KPR a a a a Navíc máme pro jednotlivá kritéria zadané váhy v = (0.1, 0.6, 0.3). Agregované užitky spočítáme jako násobek váhy a hodnoty dílčí funkce užitku nasčítané přes všechna kritéria: u(a i ) = v 1 u 1 (a i ) v k u k (a i ) = k v j u j (a i ), v našem případě u(a i ) = v 1 u 1 (a i ) + v 2 u 2 (a i ) + v 3 u 3 (a i ). Konkrétně tedy pro varianty: užitky UFA a = a = a = a = Vzhledem k tomu, že se jedná o funkci užitku a my chceme užitek maximalizovat, vybíráme variantu s maximální hodnotou ve sloupci UFA. Optimální variantou při použití metody UFA tedy bude a 4. Povšimněme si, že varianta a 3 je jako jediná dominována, proto je hodnota jejího užitku nejnižší. 4

5 7.1.2 WSA Metodu jsme si představili již v kap. 2.6, kdy jsme si její pomocí ukazovali práci s kriteriální maticí. Tato metoda také vychází z principu maximalizace užitku, předpokládá však pouze lineární funkci užitku. Jde vlastně o speciální případ metody UFA. Tuto metodu lze s úspěchem použít při ručních výpočtech. Nejprve je třeva sestavit tzv. normalizovanou kriteriální matici. Označme symbolem D j bazální (dolní) hodnotu pro kritérium j a symbolem H j ideální (horní) hodnotu pro kritérium j. Normalizovaná kriteriální matice (r ij ) vzniká transformací původní kriteriální matice (y ij ) podle vztahu: r ij = y ij D j H j D j. Normalizovaná kriteriální matice je v tomto případě maticí hodnot užitku z i-té varianty podle j-tého kritéria. Pro prvky této normalizované kriteriální matice platí: r ij < 0, 1 > pro všechna i, j r ij = 0 pro D j r ij = 1 pro H j Při užití metody WSA pracujeme s váhami jednotlivých kritérií, které jsou buď dány, nebo které jsme již nějakým vhodným způsobem odhadli (metodou pořadí, bodovací metodou, metodou párového srovnávání, metodou kvantitativního párového srovnávání). Máme tedy dány váhy v = (v 1, v 2,..., v k ) pro k maximalizačních kritérií. WSA pak maximalizuje vážený součet, tedy k v j r ij. Tento vážený součet je pak aditivním tvarem vícekriteriální funkce užitku: u(a i ) = k v j r ij Spočítáme proto hodnotu tohoto váženého součtu pro každou variantu a za kompromisní variantu vybereme tu, která bude mít vážený součet nejvyšší. 5

6 Podle klesající hodnoty funkce užitku můžeme varianty uspořádat. Opět si metodu předvedeme na příkladu s Upírem. Příklad Upír Máme kriteriální matici pro maximalizační kritéria, přidáme si řádky s ideální a bazální variantou (narozdíl od kap. 2.6 budeme ale nyní uvažovat všechny ideální a bazální hodnoty jako relativní nejnižší a nejvyšší hodnota budou vybrány z kriteriální matice) a podle výše uvedeného vztahu sestavíme normalizovanou kriteriální matici. Podle vztahu uvedeném v posledním řádku snadno sestavíme žádanou matici: var./krit a a a a a a a a a a H j D j H j D j r ij y i y i2 3 3 y i y i4 1 2 y i5 2 2 y i6 1 y i y i8 2 7 y i9 20 6

7 R = Použijeme váhy, které jsme dostali metodou párového srovnávání. v = (0, 0.17, 0.19, 0.11, 0.03, 0.19, 0.06, 0.17, 0.08) Vážený součet pro variantu a 1 je: = Podobně spočítáme vážený součet i pro zbývajících 9 variant: var. u(a i ) = k v j r ij pořadí a a a a a a a a a a AHP Znázornění rozhodovacího problému jako hierarchické struktury (hierarchie). Hierarchická struktura = lineární struktura obsahující s úrovní. Úrovně jsou uspořádány od obecného ke konkrétnímu. 7

8 Prvky na libovolné úrovni jsou bezprostředně řízeny či ovlivňovány prvky na předchozí úrovni. Intenzity jednotlivých prvků v hierarchii mohou být kvantifikovány. Nejvyšší úroveň obsahuje vždy pouze jeden prvek s definicí cíle vyhodnocování, tomuto prvku je přiřazena hodnota 1, která je rozdělena mezi prvky na druhé úrovni. Ohodnocení prvků na libovolné úrovni je rozděleno mezi prvky o úroveň níž. V teorii grafů lze takovou strukturu modelovat stromem, v němž by uzly tvořily prvky struktury a hrany by byly tvořeny vazbami mezi jednotlivými prvky. Tato metoda je vhodná pro: běžné úlohy vícekriteriálního hodnocení variant (VHV) úlohy lineárního cílového programování (LCP) analýzy portfólia rozsáhlé makroekonomické modely Pro typickou úlohu VHV má hierarchie 5 úrovní: 1. úroveň cíl vyhodnocování (1 prvek) 2. úroveň experti (r prvků) 3. úroveň kritéria (k prvků) 4. úroveň subkritéria (záleží na struktuře) 5. úroveň varianty (p prvků) Na druhé úrovni hodnotíme fundovanost expertů něčím jako jsou váhy, na třetí a čtvrté úrovni hodnotíme důležitost kritérií formou vah, na páté úrovni hodnotíme důležitost variant pomocí preferencí. Pro běžné rozhodování nám však stačí tři úrovně (cíl, kritéria a varianty). Jak tedy bude vypadat použití metody AHP v praxi? 8

9 Připomeňme si nejprve metodu kvantitativního párového srovnávání pro odhad vah (Saatyho metodu). Saatyho metoda patří mezi nejčastěji používané metody pro volbu vah, používá se např. v postupu AHP. Srovnávají se opět vždy páry kritérií (stejně jako v předchozím případě) a hodnocení se ukládá do tzv. Saatyho matice S = (s ij ) podle následujícího systému: 1 i a j jsou rovnocenná 3 i je slabě preferováno před j (s ij ) = 5 i je silně preferováno před j 7 i je velmi silně preferováno před j 9 i je absolutně preferováno před j Hodnoty 2,4,6 a 8 jsou ponechány pro hodnocení mezistupňů. Je zřejmé, že s ii = 1, neboť kritérium je rovnocenné samo se sebou. Navíc musí platit, že s ji = 1/s ij pro všechna i. Hodnota s ij představuje přibližný poměr vah kritéria i a j, v matematickém zápisu s ij v i /v j. Předpokládejme, že skutečný poměr vah je v i /v j, my tento poměr odhadujeme hodnotou s ij a chceme, aby se toto s ij co nejméně lišilo od v i /v j. Samotná metoda je velmi jednoduchá a zahrnuje následujících 5 kroků. Nejprve vyplníme Saatyho matici: 1. Na diagonále budou jedničky (s ii = 1). 2. s ij < 0, 9 >, pokud i je preferováno před j. 3. s ji = 1/s ij Pro každé i spočítáme hodnotu s i = k s ij. Pro každé i spočítáme hodnotu R i = (s i ) 1/k = k s i. Dále spočítáme k R i. i=1 Nakonec určíme váhy kritérií podle vztahu v i = R i k 9. R i i=1

10 Přesně takto metodu kvantitativního párového srovnávání použijeme a to opakovaně dvakrát. Metodu kvantitativního párového srovnávání nejprve aplikujeme na kritéria a získáme tak odhad vah jednotlivých kritérií. Získáme váhový vektor v = (v 1, v 2,... v k ). Po té vezmeme první kritérium a jednotlivé varianty metodou kvantitativního párového srovnávání srovnáme podle tohoto prvního kritéria. Řekneme si tedy, jak důležitá je podle prvního kritéria každá varianta vůči ostatním a vyplníme Saatyho matici. Metodou kvantitativního párového srovnávání dostaneme odhadnuté váhy pro jednotlivé varianty. Tento váhový vektor pak bude tvořit první sloupec matice vah W. Pak provedeme totéž podle druhého kritéria a výsledné váhy budou tvořit druhý sloupec matice W, atd. až kvantitativním srovnáváním variant podle posledního kritéria získáme poslední (k-tý) sloupec matice W. Máme tedy váhový vektor v pro kritéria a matici vah W pro varianty v závislosti na kritériích. Spočítáme nyní agregovanou váhu pro každou variantu: w i = Jedná se v podstatě o vážený součet v jednotlivých řádcích. k v j w ij. Neboť i metoda AHP je v principu metoda maximalizující užitek, vybíráme opět variantu, která má nejvyšší vypočtenou hodnotu agregované váhy. Tato metoda v této základní podobě není určena pro příliš rozsáhlé úlohy, běžně se používá pro problémy, které mají na každé úrovni hierarchie nejvýše 7 prvků (variant, kritérií,... ), pro úlohy s větším počtem variant používáme jakási subkritéria, čímž sice zvýšíme počet úrovní, ale snížíme počet porovnávání při vyplňování Saatyho matice. Uvědomme si totiž, že při řešení takovéto úlohy provedeme N = ( ( ) k 2) + k p 2 porovnání, což je pro p = 10, k = 9 (jak je v příkladě s upírem) 441 porovnání. Příklad Upír Předpokládejme, že máme opět příklad s upírem a uvažujeme prvních 5 kritérií a první 4 varianty. 10

11 Metodou kvantitativního párového srovnávání určíme váhy kro kritéria: v = (0.0545, , , , ). Pak vezmeme první kritérium a metodou kvantitativního párového srovnávání variant získáme vektor odhadu vah w i1 = (0.121, 0.341, 0.054, 0.483). Totéž provedeme pro druhé kritérium a metodou kvantitativního párového srovnávání variant získáme vektor odhadu vah w i2 = (0.167, 0.394, 0.045, 0.394). Postup opakujeme pro třetí kritérium a metodou kvantitativního párového srovnávání variant získáme vektor odhadu vah w i3 = (0.208, 0.061, 0.096, 0.635). Pro čtvrté kritérium metodou kvantitativního párového srovnávání variant získáme vektor odhadu vah w i4 = (0.308, 0.308, 0.308, 0.077). A pro poslední kritérium metodou kvantitativního párového srovnávání variant získáme vektor odhadu vah w i5 = (0.571, 0.143, 0.143, 0.143). Vektory seřadíme do sloupců matice W : W = Spočítáme nyní agregovanou váhu pro každou variantu: w i = k v j w ij, v = (0.0545, , , , ). Jedná se v podstatě o vážený součet v jednotlivých řádcích. w 1 = = w 2 = w 3 = w 4 =

12 Neboť metoda maximalizuje užitek, vybíráme variantu, která má nejvyšší vypočtenou hodnotu agregované váhy. Optimální variantou tedy bude a 4. 12

4 Kriteriální matice a hodnocení variant

4 Kriteriální matice a hodnocení variant 4 Kriteriální matice a hodnocení variant V teorii vícekriteriálního rozhodování pracujeme s kritérii, kterých je obecně k, a s variantami, kterých je obecně p. Hodnotu, které dosahuje varianta i pro j-té

Více

6 Ordinální informace o kritériích

6 Ordinální informace o kritériích 6 Ordinální informace o kritériích Ordinální informací o kritériích se rozumí jejich uspořádání podle důležitosti. Předpokládejme dále standardní značení jako v předchozích cvičeních. Existují tři základní

Více

5 Informace o aspiračních úrovních kritérií

5 Informace o aspiračních úrovních kritérií 5 Informace o aspiračních úrovních kritérií Aspirační úroveň kritérií je minimální (maximální) hodnota, které musí varianta pro dané maximalizační (minimalizační) kritérium dosáhnout, aby byla akceptovatelná.

Více

Vícekriteriální hodnocení variant VHV

Vícekriteriální hodnocení variant VHV Vícekriteriální hodnocení variant VHV V lineárním programování jsme se naučili hledat optimální řešení pro úlohy s jedním (maximalizačním nebo minimalizačním) kritériem za předpokladu, že podmínky i účelová

Více

Vícekriteriální rozhodování za jistoty

Vícekriteriální rozhodování za jistoty Kapitola 1 Vícekriteriální rozhodování za jistoty Při řešení rozhodovacích problémů se často setkáváme s případy, kdy optimální rozhodnutí musí vyhovovat více než jednomu kritériu. Zadaná kritéria mohou

Více

Vícekriteriální programování příklad

Vícekriteriální programování příklad Vícekriteriální programování příklad Pražírny kávy vyrábějí dva druhy kávy (Super a Standard) ze dvou druhů kávových bobů KB1 a KB2, které mají smluvně zajištěny v množství 4 t a 6 t. Složení kávy (v procentech)

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Vícekriteriální rozhodování za jistoty

Vícekriteriální rozhodování za jistoty 1 Část I Vícekriteriální rozhodování za jistoty Při řešení rozhodovacích problémů se často setkáváme s případy, kdy optimální rozhodnutí musí vyhovovat více než jednomu kritériu. Zadaná kritéria mohou

Více

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování.

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační výzkum Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu

Více

Výběr lokality pro bydlení v Brně

Výběr lokality pro bydlení v Brně Mendelova univerzita v Brně Provozně ekonomická fakulta Výběr lokality pro bydlení v Brně Projekt do předmětu Optimalizační metody Martin Horák Brno 5 Mendelova univerzita v Brně Provozně ekonomická fakulta

Více

Socio-ekonomická evaluace aglomerace z hlediska potřeb a aktivit investorů

Socio-ekonomická evaluace aglomerace z hlediska potřeb a aktivit investorů Klub regionalistů 11.11.2010 Projekt SGS SP/2010 Socio-ekonomická evaluace aglomerace z hlediska potřeb a aktivit investorů Jiří Adamovský Lucie Holešinská Katedra regionální a environmentální ekonomiky

Více

Přiřazovací problém. Přednáška č. 7

Přiřazovací problém. Přednáška č. 7 Přiřazovací problém Přednáška č. 7 Přiřazovací problém je jednou podtřídou logistických úloh. Typickým problémem může být nejkratší převoz materiálu od dodavatelů ke spotřebitelům. spotřebitelé a i dodavatelé

Více

7. přednáška Systémová analýza a modelování. Přiřazovací problém

7. přednáška Systémová analýza a modelování. Přiřazovací problém Přiřazovací problém Přiřazovací problémy jsou podtřídou logistických úloh, kde lze obecně říci, že m dodavatelů zásobuje m spotřebitelů. Dalším specifikem je, že kapacity dodavatelů (ai) i požadavky spotřebitelů

Více

minimalizaci vzdálenosti od ideální varianty

minimalizaci vzdálenosti od ideální varianty UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Metody vícekriteriálního rozhodování založené na minimalizaci vzdálenosti od ideální

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

Diplomová práce. Heuristické metody pro vícekriteriální analýzu

Diplomová práce. Heuristické metody pro vícekriteriální analýzu Diplomová práce Heuristické metody pro vícekriteriální analýzu vypracoval: Jaroslav Smrž vedoucí práce: doc. RNDr. Jindřich Klapka, CSc. obor: Inženýrská informatika a automatizace specializace: Informatika

Více

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů? Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti

Více

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

Číselné vektory, matice, determinanty

Číselné vektory, matice, determinanty Číselné vektory, matice, determinanty Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny

Více

Simplexová metoda. Simplexová tabulka: Záhlaví (účelová funkce) A ~ b r βi. z j c j. z r

Simplexová metoda. Simplexová tabulka: Záhlaví (účelová funkce) A ~ b r βi. z j c j. z r Simplexová metoda Simplexová metoda, je jedním ze způsobů, jak řešit úlohy lineárního programování. Tato metoda vede k cíly, nelezení optimálního řešení, během konečného počtu kroků, pokud se při prvním

Více

BAKALÁŘSKÁ PRÁCE. Realizace metody AHP v prostředí tabulkového kalkulátoru. Univerzita Pardubice Fakulta ekonomicko-správní

BAKALÁŘSKÁ PRÁCE. Realizace metody AHP v prostředí tabulkového kalkulátoru. Univerzita Pardubice Fakulta ekonomicko-správní Univerzita Pardubice Fakulta ekonomicko-správní Ústav systémového inženýrství a informatiky BAKALÁŘSKÁ PRÁCE Realizace metody AHP v prostředí tabulkového kalkulátoru Autor: Jaroslav Shejbal Vedoucí práce:

Více

2 Spojité modely rozhodování

2 Spojité modely rozhodování 2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A

Více

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

Operační výzkum. Přiřazovací problém.

Operační výzkum. Přiřazovací problém. Operační výzkum Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ..7/2.2./28.326

Více

Otázky ke státní závěrečné zkoušce

Otázky ke státní závěrečné zkoušce Otázky ke státní závěrečné zkoušce obor Ekonometrie a operační výzkum a) Diskrétní modely, Simulace, Nelineární programování. b) Teorie rozhodování, Teorie her. c) Ekonometrie. Otázka č. 1 a) Úlohy konvexního

Více

V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech:

V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech: Příklad 1 V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech: Skupina Počet ženichů Počet nevěst 15-19 let 11 30 20-24 let 166 272 25-29 let 191

Více

Z X 5 0 4 H o d n o c e n í v l i v ů n a ž i v o t n í p r o s t ř e d í. Vybrané metody posuzování dopadu záměrů na životní

Z X 5 0 4 H o d n o c e n í v l i v ů n a ž i v o t n í p r o s t ř e d í. Vybrané metody posuzování dopadu záměrů na životní Z X 5 0 4 H o d n o c e n í v l i v ů n a ž i v o t n í p r o s t ř e d í Vybrané metody posuzování dopadu záměrů na životní prostředí. ř Posuzování dopadu (impaktu) posuzované činnosti na životní prostředí

Více

Obr. P1.1 Zadání úlohy v MS Excel

Obr. P1.1 Zadání úlohy v MS Excel Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel. Výpočet budeme demonstrovat

Více

a se nazývá aritmetická právě tehdy, když existuje takové číslo d R

a se nazývá aritmetická právě tehdy, když existuje takové číslo d R Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ Mgr. Tomáš MAŇÁK. březen 014 Název zpracovaného celku: ARITMETICKÁ POSLOUPNOST A JEJÍ UŽITÍ ARITMETICKÁ POSLOUPNOST Teorie: Posloupnost každé ( ) n n1

Více

Téma 14 Multikriteriální metody hodnocení variant

Téma 14 Multikriteriální metody hodnocení variant Téma 14 Multikriteriální metody hodnocení variant Ing. Vlastimil Vala, CSc. Předmět : Ekonomická efektivnost LH Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio

Více

Připomenutí co je to soustava lineárních rovnic

Připomenutí co je to soustava lineárních rovnic Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a

Více

Matematické modelování dopravního proudu

Matematické modelování dopravního proudu Matematické modelování dopravního proudu Ondřej Lanč, Alena Girglová, Kateřina Papežová, Lucie Obšilová Gymnázium Otokara Březiny a SOŠ Telč lancondrej@centrum.cz Abstrakt: Cílem projektu bylo seznámení

Více

Příklady modelů lineárního programování

Příklady modelů lineárního programování Příklady modelů lineárního programování Příklad 1 Optimalizace výroby konzerv. Podnik vyrábí nějaký výrobek, který prodává v 1 kg a 2 kg konzervách, přičemž se řídí podle následujících velmi zjednodušených

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Využití metod vícekriteriálního hodnocení variant ve veřejném sektoru

Využití metod vícekriteriálního hodnocení variant ve veřejném sektoru JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH Ekonomická fakulta Katedra aplikované matematiky a informatiky Studijní program: 6208 N Ekonomika a management Studijní obor: Strukturální politika EU a rozvoj

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

Soustava m lineárních rovnic o n neznámých je systém

Soustava m lineárních rovnic o n neznámých je systém 1 1.2. Soustavy lineárních rovnic Soustava lineárních rovnic Soustava m lineárních rovnic o n neznámých je systém a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2...

Více

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel 2007. Výpočet budeme demonstrovat

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)

Více

Přehled matematického aparátu

Přehled matematického aparátu Přehled matematického aparátu Ekonomie je směsí historie, filozofie, etiky, psychologie, sociologie a dalších oborů je tak příslovečným tavicím kotlem ostatních společenských věd. Ekonomie však často staví

Více

HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO

HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO Heuristické algoritmy jsou speciálními algoritmy, které byly vyvinuty pro obtížné úlohy, jejichž řešení je obtížné získat v rozumném čase. Mezi

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

Vícekriteriální hodnocení variant metody

Vícekriteriální hodnocení variant metody Katedra aplikované matematiky a informatiky Jihočeská Univerzita v Českých Budějovicích, Ekonomická fakulta 2010 Metody vícekriteriální hodnocení variant (VHV) Jak jsme již zmiňovali, VHV obecně neposkytuje

Více

Matematické metody rozhodování

Matematické metody rozhodování Matematické metody rozhodování Roman Hájek, Klára Hrůzová, Tomáš Konečný, Markéta Krmelová, Martin Trnečka 20. března 2010 Rozhodovacíproblém: Výběrideálníhonotebooku. ID Notebook Váha Design Baterie Procesor

Více

Řešení slovních úloh pomocí lineárních rovnic

Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh představuje spojení tří, dnes bohužel nelehkých, úloh porozumění čtenému textu (pochopení zadání), jeho matematizaci (převedení na rovnici)

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru 1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).

Více

DIPLOMOVÁ PRÁCE. AHP - její silné a slabé stránky

DIPLOMOVÁ PRÁCE. AHP - její silné a slabé stránky UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY DIPLOMOVÁ PRÁCE AHP - její silné a slabé stránky Vedoucí diplomové práce: Doc. RNDr. Jana Talašová,

Více

Metoda analýzy datových obalů (DEA)

Metoda analýzy datových obalů (DEA) Kapitola 1 Metoda analýzy datových obalů (DEA) Modely datových obalů slouží pro hodnocení technické efektivity produkčních jednotek na základě velikosti vstupů a výstupů. Hodnocenými jednotkami mohou být

Více

Teorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry)

Teorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry) Teorie her a ekonomické rozhodování 3. Dvoumaticové hry (Bimaticové hry) 3.1 Neantagonistický konflikt Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada

Více

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116.

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. Cykly a pole Tato část sbírky je tvořena dalšími úlohami na práci s cykly. Na rozdíl od předchozího oddílu se zde již v řešeních úloh objevuje více cyklů, ať už prováděných po sobě nebo vnořených do sebe.

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

1 Duální simplexová metoda

1 Duální simplexová metoda 1 Duální simplexová metoda Autor: Markéta Popelová Datum: 8.5.2011 Předmět: Základy spojité optimalizace Zadání Mějme matici A R m n a primární úlohu lineárního programování v normálním tvaru (P) a k ní

Více

3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem

3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem ČVUT FEL X36PAA - Problémy a algoritmy 3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem Jméno: Marek Handl Datum: 1. 1. 2009 Cvičení: Pondělí 9:00 Zadání Naprogramujte

Více

Lineární programování

Lineární programování 24.9.205 Lineární programování Radim Farana Podklady pro výuku pro akademický rok 203/204 Obsah Úloha lineárního programování. Formulace úlohy lineárního programování. Typické úlohy lineárního programování.

Více

STATISTICA Téma 1. Práce s datovým souborem

STATISTICA Téma 1. Práce s datovým souborem STATISTICA Téma 1. Práce s datovým souborem 1) Otevření datového souboru Program Statistika.cz otevíráme z ikony Start, nabídka Programy, podnabídka Statistika Cz 6. Ze dvou nabídnutých možností vybereme

Více

Cvičení 5 - Inverzní matice

Cvičení 5 - Inverzní matice Cvičení 5 - Inverzní matice Pojem Inverzní matice Buď A R n n. A je inverzní maticí k A, pokud platí, AA = A A = I n. Matice A, pokud existuje, je jednoznačná. A stačí nám jen jedna rovnost, aby platilo,

Více

Kapitola 11: Vektory a matice:

Kapitola 11: Vektory a matice: Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i

Více

Ekonomická formulace. Matematický model

Ekonomická formulace. Matematický model Ekonomická formulace Firma balící bonboniéry má k dispozici 60 čokoládových, 60 oříškových a 85 karamelových bonbónů. Může vyrábět dva druhy bonboniér. Do první bonboniéry se dávají dva čokoládové, šest

Více

Numerická matematika 1

Numerická matematika 1 Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................

Více

František Batysta batysfra@fjfi.cvut.cz 19. listopadu 2009. Abstrakt

František Batysta batysfra@fjfi.cvut.cz 19. listopadu 2009. Abstrakt Automatický výpočet chyby nepřímého měření František Batysta batysfra@fjfi.cvut.cz 19. listopadu 2009 Abstrakt Pro správné vyhodnocení naměřených dat je třeba také vypočítat chybu měření. Pokud je neznámá

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

VÝBĚR NEJVHODNĚJŠÍ HOSPODY

VÝBĚR NEJVHODNĚJŠÍ HOSPODY VÝBĚR NEJVHODNĚJŠÍ HOSPODY Matematická teorie rozhodování Vypracovali: Michal Hausner Lukáš Héža Daniel Koryčanský Petr Kovalčík Tomáš Talášek I. Přípravné práce V 18:00 chceme z kolejí Bedřicha Václavka

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

1.1 Posoudit varianty aplikace kompostu na snížení povrchového odtoku při intenzivních dešťových srážkách (metoda WSA metoda váženého součtu)

1.1 Posoudit varianty aplikace kompostu na snížení povrchového odtoku při intenzivních dešťových srážkách (metoda WSA metoda váženého součtu) Příklady využití aplikace OKS (Optimalizace krajinné struktury) Obsah 1. Použití multikriteriální analýzy 1.1 Posoudit varianty aplikace kompostu na snížení povrchového odtoku při intenzivních dešťových

Více

VHODNOST A DOSTUPNOST TECHNOLOGIE PŘEPRAVY SILNIČNÍCH NÁVĚSŮ V TERMINÁLU KP

VHODNOST A DOSTUPNOST TECHNOLOGIE PŘEPRAVY SILNIČNÍCH NÁVĚSŮ V TERMINÁLU KP VHODNOST A DOSTUPNOST TECHNOLOGIE PŘEPRAVY SILNIČNÍCH NÁVĚSŮ V TERMINÁLU KP SUITABILITY AND AVAILABILITY OF ROAD TRAILERS TRANSPORT TECHNOLOGIES IN THE INTERMODAL TERMINAL Jaromír Široký 1, Martin Závojko

Více

1 Soustavy lineárních rovnic

1 Soustavy lineárních rovnic 1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

PR5 Poptávka na trhu výrobků a služeb

PR5 Poptávka na trhu výrobků a služeb PR5 Poptávka na trhu výrobků a služeb 5.1. Rovnováha spotřebitele 5.2. Indiferenční analýza od kardinalismu k ordinalismu 5.3. Poptávka, poptávané množství a jejich změny 5.4. Pružnost tržní poptávky Poptávka

Více

Konkurzní řízení ve společnosti SpenglerFox

Konkurzní řízení ve společnosti SpenglerFox Konkurzní řízení ve společnosti SpenglerFox Velká případová studie projektu ZIP ESF napomáhá rozvoji zaměstnanosti podporou zaměstnatelnosti, podnikatelského ducha, rovných příležitostí a investicemi do

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

3 Lineární kombinace vektorů. Lineární závislost a nezávislost 3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární

Více

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29 Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010

Více

Layout pracoviště a řízení Rozvrhování pracovníků

Layout pracoviště a řízení Rozvrhování pracovníků Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Layout pracoviště a řízení Rozvrhování pracovníků Jan Vavruška Technická univerzita

Více

Časové řady - Cvičení

Časové řady - Cvičení Časové řady - Cvičení Příklad 2: Zobrazte měsíční časovou řadu míry nezaměstnanosti v obci Rybitví za roky 2005-2010. Příslušná data naleznete v souboru cas_rada.xlsx. Řešení: 1. Pro transformaci dat do

Více

1.1 Příklad z ekonomického prostředí 1

1.1 Příklad z ekonomického prostředí 1 1.1 Příklad z ekonomického prostředí 1 Smysl solidního zvládnutí matematiky v bakalářských oborech na Fakultě podnikatelské VUT v Brně je především v aplikační síle matematiky v odborných předmětech a

Více

f ( x) = 5x 1 + 8x 2 MAX, 3x x ,

f ( x) = 5x 1 + 8x 2 MAX, 3x x , 4. okruh z bloku KM1 - řídicí technika Zpracoval: Ondřej Nývlt (o.nyvlt@post.cz) Zadání: Lineární programování (LP), simplexová metoda, dualita v LP. Nelineární programování. Vázaný extrém. Karush-Kuhn-Tuckerova

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

4.5 Stanovení hodnoticích kritérií a požadavky na jejich obsah

4.5 Stanovení hodnoticích kritérií a požadavky na jejich obsah nadhodnocením ukazatele výkonu). Současně se objektivností rozumí, že technické podmínky nebyly nastaveny diskriminačně, tedy tak, aby poskytovaly některému uchazeči konkurenční výhodu či mu bránily v

Více

3.1.6 Přiřazení kritických faktorů úspěchu podnikovým procesům

3.1.6 Přiřazení kritických faktorů úspěchu podnikovým procesům 3.1.6 Přiřazení kritických faktorů úspěchu podnikovým procesům Z předešlého přímo vyplývá nutnost provázat podnikové procesy s kritickými faktory, k čemuž nám nejlépe poslouží jejich vynesení do tabulky

Více

Máte 1000 Kč a jdete si koupit svoji oblíbenou knihu?

Máte 1000 Kč a jdete si koupit svoji oblíbenou knihu? Volba a projevené preference Varian, Mikroekonomie: moderní přístup, kapitola 5 a oddíly 7.1 7.7 Varian, Intermediate Microeconomics, Chapter 5 and Sections 7.1 7.7 () 1 / 1 EXPERIMENT: Neúspěšný nákup

Více

Aplikace metod vícekriteriálního rozhodování v lázeňském hotelu

Aplikace metod vícekriteriálního rozhodování v lázeňském hotelu Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Vyšší odborná škola informačních služeb v Praze Tatyana Shevtsova Aplikace metod vícekriteriálního rozhodování v lázeňském hotelu Bakalářská

Více

STROMY. v 7 v 8. v 5. v 2. v 3. Základní pojmy. Řešené příklady 1. příklad. Stromy

STROMY. v 7 v 8. v 5. v 2. v 3. Základní pojmy. Řešené příklady 1. příklad. Stromy STROMY Základní pojmy Strom T je souvislý graf, který neobsahuje jako podgraf kružnici. Strom dále budeme značit T = (V, X). Pro graf, který je stromem platí q = n -, kde q = X a n = V. Pro T mezi každou

Více

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k,

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k, Řešení 1. série Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy h = 1 2 v d, h = 1 2 s k, kde h je počet hran, v je počet vrcholů, d je stupeň vrcholu, s je počet stěn a k je počet úhlů

Více

4 Stromy a les. Definice a základní vlastnosti stromů. Kostry grafů a jejich počet.

4 Stromy a les. Definice a základní vlastnosti stromů. Kostry grafů a jejich počet. 4 Stromy a les Jedním ze základních, a patrně nejjednodušším, typem grafů jsou takzvané stromy. Jedná se o souvislé grafy bez kružnic. Přes svou (zdánlivou) jednoduchost mají stromy bohatou strukturu a

Více

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH 1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH V minulém semestru jsme studovali vlastnosti unkcí jedné nezávislé proměnné. K popisu mnoha reálných situací obvkle s jednou proměnnou nevstačíme. FUNKCE DVOU

Více