Seminární práce z fyziky

Rozměr: px
Začít zobrazení ze stránky:

Download "Seminární práce z fyziky"

Transkript

1 Seminání páce z fyziky školní ok 005/006 Jakub Dundálek 3.A Jiáskovo gymnázium v Náchodě Přeměny mechanické enegie Přeměna mechanické enegie na ovnoamenné houpačce Název: Přeměna mechanické enegie na ovnoamenné houpačce zpacoval: Jakub Dundálek, 3.A v Náchodě posinec 005 ozsah páce: 10 stan 6 obázků gafy 005 Jakub Dundálek Nekomeční využití je po studijní účely povoleno v plném ozsahu.

2 Obsah Seminání páce z fyziky...1 Přeměny mechanické enegie...1 Obsah... Úvod do poblému... Zadání... Teoie...3 Paktické ověření...4 Houpačka...4 Zjištění momentu setvačnosti houpačky...5 Postup při měření...5 Postup...5 Pomůcky...5 Softwaová výbava...5 Ukázka měření výšky...6 Měření...7 Použítá tělesa...7 Moment setvačnosti houpačky...7 Tabulka hodnot...7 Zjištěné poznatky...8 Závě...8 Dodatek...9 Malý vtípek na závě...10 Úvod do poblému Zadání Nechť je dána houpačka o délce l v polovině své délky volně otáčivě uchycena ve výšce t nad okolní ovinou. Houpačka má moment setvačnosti J. Na konci jednoho amene je těleso o hmotnosti m, těleso o hmotnosti m1 je nad koncem duhého amene ve výšce H. Do jaké výšky h nad vchol houpačky vyletí těleso m1, dopadne-li těleso m ze zadané výšky na houpačku? v l m t H m1

3 Teoie Těleso m má tíhovou potenciální enegii E p =m g H. Ta se při pádu přemění na kinetickou 1 enegii E k = m v. Těleso bude mít ychlost v = g H a hybnost p=m v. Učitá část kinetické enegie se přemění v důsledku defomačních sil při náazu a poto nemůžeme úlohu řešit pomocí ZZE (zákon zachování enegie). Budeme předpokládat nepužný áz, kdy se po náazu padající těleso spojí s houpačkou. Uvažujme, že takto vzniklé těleso bude vyvážené a poto nemusíme počítat s momenty sil. Vzniklé těleso (m1 + m + houpačka) se tedy bude pohybovat úhlovou ychlostí ω. Budeme tedy vycházet ze zákona zachování momentu hybnosti a sestavíme ovnici: m 1 v =m 1 u m u J ω Kde v je ychlost padajícího tělesa, u výsledná ychlost těles, ω je výsledná úhlová ychlost. Dosadíme za u podle obecného vzoce v =ω a získáme: m 1 v =m 1 ω m ω J ω Vyjádříme výslednou úhlovou ychlost ω: ω= m1 v m1 m J Za úhlovou ychlost dosadíme, abychom získali výslednou ychlost tělesa, a také vytkneme člen ze jmenovatele zlomku a dostaneme: u = m 1 v m 1 m J Zkátíme a za v dosadíme: u= m1 g H J m 1 m Těleso tedy bude mít kinetickou enegii, kteá se přemění na potenciální a těleso vyletí do výšky h= v = g m1 g H J g m1 m = m1 J m1 m H Výška, do kteé těleso vyletí, je přímo úměná výšce, ze kteé duhé těleso padá. 3

4 Paktické ověření Houpačka Houpačka byla sestavena ze stavebnice Meku. Potože teoetická úvaha nepočítá s momentem sil, musel jsem houpačku s položenými tělesy vyvážit. Houpačka byla sestavena z těchto dílů: Pásek 5 díek (5) 4 Tvaovaný pásek 5 díek (9) Vaničky na koncích (seznam dílů po 1 vaničku): 1 Deska 50 50mm (35) Pásek tvaovaný 7 díek (31) Stojan: Pásek tvaovaný 7 díek (31) Deska mm (36) a šouby s maticí (53) Přívažky složeny z dílů: Pásek 5 díek (5) + šouby a matky 4

5 Zjištění momentu setvačnosti houpačky Hmotnost (kg) Délka / vzdálenost (m) Moment setvačnosti 1 J = m 6 0,047 0,15 0,0001 tyč s osou otáčení na kaji 1 J = m l 3 0,070 0,5 0,009 hmotný bod J =m 0,035 0,55 0,00455 přívažek 8 č. 5 hmotný bod J =m 0,031 0,85 0,005 přívažek 7 č. 5 hmotný bod J =m 0,04 0,85 0,00195 Součásti Uvažujeme jako Výpočet č. 5 tyč s osou otáčení ve středu č. 9 (dvakát) vanička (dvakát) Celkový moment setvačnosti viz měření. Postup při měření Postup Houpačka byla umístěna ke stěně a zajištěna. Za ní byly o stěnu opřeny čtveečkované desky (velikost čtveečků 1cm), kteé sloužily jako stupnice. Nad houpačkou u stěny bylo závěsné zařízení a na něm svinovací met na měření výšky pádu a padající těleso zavěšené na niti. Bylo potřeba maximální přesnosti a uklidnění zavěšeného tělesa, aby dopadlo na učené místo na houpačce a ne vedle. Pád byl nahávám digitálním foťáčkem mini od fimy Mustek (šířka 69 mm, výška 47 mm, hloubka 11 mm), kteý zvládá nahávat video jako PC kamea přes USB. Nahávání bylo pováděno ve velikosti pixelů při počtu 5 snímků za sekundu, což poskytuje dostatečnou přesnost. Pak následovalo pocházení nahaného videa na počítači snímek po snímku a učení výšky letu. Pomůcky houpačka složená ze stavebnice Meku (popis viz výše), měřidla, míčky na povádění pokusů, nit na zavěšení tělesa, digitální foťáček mini a další pomůcky domácího kutila. Softwaová výbava Linux (Gentoo) opeační systém QuickCam, Spca5xx ovladače na kameku Mencode pogam po nahávání videa (součást přehávače Mplaye) Avidemux pogam po editaci a střih videa, sloužil po pohlížení videa OpenOffice.og kancelářský balík 5

6 Ukázka měření výšky Z obázku č. 6 učujeme výšku tělesa. Měříme výšku spodní části, v tomto případě to je 19 cm. 6

7 Měření Použítá tělesa hakysák hadový míček, má sypkou náplň ýži. Sloužil jako padající míček a zvolen byl, potože se málo odáží díky vnitřní nesoudžnosti. m = 65 g míček č. 1 dutý gumový míček m = 7 g míček č. plný pěnovo-gumový míček m = 95 g Moment setvačnosti houpačky U míčku č. 1 byl použit přívažek 8 č. 5 J = 0,0101 kg. m U míčku č. byl použit přívažek 7 č. 5 (na stanu padajícího míčku) J = 0,00954 kg. m Tabulka hodnot Hodnoty jsou uvedeny v centimetech vzhledem k podložce. Celkem bylo povedeno 40 měření (někteé hodnoty však byly vyřazeny). výška pádu míček ,5 7 30, ,5 9 13,75 17,5,5 8 33, ,5 16,75 0 3,5 půmě míček půmě

8 Zjištěné poznatky Zakeslená výška je vyjádřená vzhledem k podložce. Závislost výšky skoku na výšce pádu Výška skoku tělesa m (cm) maměřené hodnoty po míček 1 maměřené hodnoty po míček teoetické hodnoty po míček Výška pádu tělesa m1 (cm) Z gafu je patná přibližná lineání závislost. U míčku č. 1 se teoetické hodnoty velmi minuly s naměřenými a poto je ani neuvádím. Je zajímavé, že u obou míčků je zlom přímky naměřených hodnot u výšky pádu 80 cm a funkce potom stoupá stměji. Je to pavděpodobně způsobeno tím, že při výšce větší než 80 cm (poč je to pávě tato hodnota netuším) padající těleso nepokačuje v pohybu společně s houpačkou, ale předá veškeou svoji hybnost a zastaví se. Tento předpoklad jsem se snažil uplatnit při výpočtu teoetických hodnot. Takto upavená funkce (znázoněna v gafu) se přibližuje pouze v hodnotě 100 cm a dále už nestačí naůstat. Závislost poto není lineání v celém ozsahu a se vzůstající výškou se zvětšuje stmost náůstu. Dá se očekávat, že při dalších hodnotách by se objevil stejný zlom jako v hodnotě 80 cm. Závě Tento fyzikální poblém se zdaleka nedá dostatečně přesně popsat uvedeným jednoduchým vztahem. Závisí to mnoha dalších faktoech, například na předávání enegie pužnosti. Myslím tím to, že při větších výškách o tochu nadskočila celá houpačka v uchycení, přestože jsem se ho snažil co nejlépe zajistit zajistit. Vliv může mít i pužení amen houpačky, defomování míčků, otace míčků a další komplikované fyzikální jevy. Tento poblém je na úovni středoškolské fyziky neřešitelný. 8

9 Dodatek Předtím než jsem si uvědomil, že musím uvažovat moment sil, jsem povedl 46 dalších měření. Uvádím zde někteé poto jen infomativně, potože když už byly jednou naměřeny, je škoda je nezahnout do této páce. Je zajímavé, že při nevyvážených momentech sil je výška skoku větší. Původně jsem předpokládal, že to bude pávě naopak. Závislost výšky skoku na výšce pádu (poovnáná nevyváženého momentu sil) 50 Výška pádu (cm) vyvážený moment sil míček 1 vyvážený moment sil míček NEvyvážený moment sil míček 1 NEvyvážený moment sil míček NEvyvážený moment sil ping-pong míček Výška skoku (cm)

10 Malý vtípek na závě Když jsem popvé zkoušel, jestli houpačka funguje, vzal jsem nejbližší gumové těleso, co bylo po uce gumovou kachničku. Viděl mě můj mladší bat a nazval moji seiózní seminání páci: Skok kachničky na špek. Nakonec jsem to na jeho naléhání natočil. Díky tomu, že kachnička spadla na hlavu jsem si uvědomil, že dalším faktoem ovlivňujícím výsledek je otace.(pořadí snímků je obdobné jako u ukázky uvedené výše) 10

1.7.2 Moment síly vzhledem k ose otáčení

1.7.2 Moment síly vzhledem k ose otáčení .7. oment síly vzhledem k ose otáčení Předpoklady 70 Pedagogická poznámka Situaci tochu komplikuje skutečnost, že žáci si ze základní školy pamatují součin a mají pocit, že se pouze opakuje notoicky známá

Více

Modely produkčních systémů. Plánování výroby. seminární práce. Autor: Jakub Mertl. Xname: xmerj08. Datum: ZS 07/08

Modely produkčních systémů. Plánování výroby. seminární práce. Autor: Jakub Mertl. Xname: xmerj08. Datum: ZS 07/08 Modely podukčních systémů Plánování výoby seminání páce Auto: Jakub Metl Xname: xmej08 Datum: ZS 07/08 Obsah Obsah... Úvod... 3 1. Výobní linky... 4 1.1. Výobní místo 1... 4 1.. Výobní místo... 5 1.3.

Více

Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby

Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby Úvod do gavitace Hlavní body Kepleovy zákony Newtonův gavitační zákon Gavitační pole v blízkosti Země Planetání pohyby Konzevativní pole Potenciál a potenciální enegie Vztah intenzity a potenciálu Úvod

Více

S e m i n á r n í p r á c e : U r a m p a + V r a m p a

S e m i n á r n í p r á c e : U r a m p a + V r a m p a S e m i n á r n í p r á c e : U r a m p a + V r a m p a Popis úlohy Tato úloha se má zabývat vzájemnými přeměnami potenciální a kinetické mechanické energie na dvou dráhách: U rampě a V rampě. U rampa

Více

1.3.8 Rovnoměrně zrychlený pohyb po kružnici I

1.3.8 Rovnoměrně zrychlený pohyb po kružnici I 1.3.8 Rovnoměně zychlený pohyb po kužnici I Předpoklady: 137 Opakování: K veličinám popisujícím posuvný pohyb existují analogické veličiny popisující pohyb po kužnici: ovnoměný pohyb pojítko ovnoměný pohyb

Více

Rozklad přírodních surovin minerálními kyselinami

Rozklad přírodních surovin minerálními kyselinami Laboatoř anoganické technologie Rozklad příodních suovin mineálními kyselinami Rozpouštění příodních mateiálů v důsledku pobíhající chemické eakce patří mezi základní technologické opeace řady půmyslových

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu EKONOMIKA V ZEMĚMĚŘICTVÍ A KATASTRU číslo úlohy 1. název úlohy NEMOVITOSTÍ Analýza

Více

21. ročník, úloha II. 3... víno teče proudem (4 body; průměr 2,08; řešilo 38 studentů)

21. ročník, úloha II. 3... víno teče proudem (4 body; průměr 2,08; řešilo 38 studentů) 1 očník, úloha II 3 víno teče poudem (4 body; půmě,8; řešilo 38 studentů) Vinaři a řidiči kamionu dobře znají šikovné přelévání kapalin z těžkých nádob Vinař Ignác chce stočit víno z jednoho demižonu do

Více

Metodický list. Název materiálu: Měření rychlosti zvukovým záznamem. Autor materiálu: Mgr. Martin Havlíček

Metodický list. Název materiálu: Měření rychlosti zvukovým záznamem. Autor materiálu: Mgr. Martin Havlíček Příjemce: Základní škola Ruda nad Moravou, okres Šumperk, Sportovní 300, 789 63 Ruda nad Moravou Zařazení materiálu: Metodický list Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT (III/2) Sada:

Více

vzhledem k ose kolmé na osu geometrickou a procházející hmotným středem válce. c) kužel o poloměru R, výšce h, hmotnosti m

vzhledem k ose kolmé na osu geometrickou a procházející hmotným středem válce. c) kužel o poloměru R, výšce h, hmotnosti m 8. Mechanika tuhého tělesa 8.. Základní poznatky Souřadnice x 0, y 0, z 0 hmotného středu tuhého tělesa x = x dm m ( m) 0, y = y dm m ( m) 0, z = z dm m ( m) 0. Poznámka těžiště tuhého tělesa má v homogenním

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 17. 12. 2012 Číslo DUM: VY_32_INOVACE_19_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 17. 12. 2012 Číslo DUM: VY_32_INOVACE_19_FY_B Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 17. 12. 2012 Číslo DUM: VY_32_INOVACE_19_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

ÍKLAD Rychlost st ely = 4 gramy = 1 tuny = 20,4 cm zákon pohybová energie náboje polohovou energii t p e el e n l ou en e e n r e gi r i

ÍKLAD Rychlost st ely = 4 gramy = 1 tuny = 20,4 cm zákon pohybová energie náboje polohovou energii t p e el e n l ou en e e n r e gi r i PŘÍKLAD Rychlost střely lze určit tak, že se vystřelí zblízka do dostatečně těžkého pytle s pískem, který je zavěšen na několikametrovém laně. Změří se, do jaké výšky vystoupalo těžiště T pytle. Odtud

Více

ELEKTRICKÉ STROJE - POHONY

ELEKTRICKÉ STROJE - POHONY ELEKTRICKÉ STROJE - POHONY Ing. Petr VAVŘIŇÁK 2013 2.1 OBECNÉ ZÁKLADY EL. POHONŮ 2. ELEKTRICKÉ POHONY Pod pojmem elektrický pohon rozumíme soubor elektromechanických vazeb a vztahů mezi elektromechanickou

Více

VY_52_INOVACE_2NOV42. Autor: Mgr. Jakub Novák. Datum: 15. 11. 2012 Ročník: 8.

VY_52_INOVACE_2NOV42. Autor: Mgr. Jakub Novák. Datum: 15. 11. 2012 Ročník: 8. VY_52_INOVACE_2NOV42 Autor: Mgr. Jakub Novák Datum: 15. 11. 2012 Ročník: 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Zvukové děje, Energie Téma: Kmitání kyvadla Metodický

Více

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce Gavitační pole Newtonův gavitační zákon Gavitační a tíhové zychlení při povchu Země Pohyby těles Gavitační pole Slunce Úvod V okolí Země existuje gavitační pole. Země působí na každé těleso ve svém okolí

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Konstrukce kladkostroje. Výpočet výkonu kladkostroje.

Konstrukce kladkostroje. Výpočet výkonu kladkostroje. Název: Konstrukce kladkostroje. Výpočet výkonu kladkostroje. Tematický celek: Mechanická práce a energie. Úkol: 1. Kladkostroj druhy a využití. 2. Navrhněte konstrukci robota - jeřábu s kladkostrojem.

Více

Měření momentu setrvačnosti prstence dynamickou metodou

Měření momentu setrvačnosti prstence dynamickou metodou Měření momentu setrvačnosti prstence dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=13 Tato úloha patří zejména svým teoretickým základem k nejobtížnějším. Pojem momentu setrvačnosti dělá

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

Praktikum I Mechanika a molekulová fyzika

Praktikum I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. XIX Název: Pád koule ve viskózní kapalině Pracoval: Matyáš Řehák stud.sk.: 16 dne:

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #11 Dynamika rotačního pohybu Jméno: Ondřej Finke Datum měření: 24.11.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě odvoďte

Více

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vlastnosti molekul kapalin V neustálém pohybu Ve stejných vzdálenostech, nejsou ale vázány Působí na sebe silami: odpudivé x přitažlivé Vlastnosti kapalin

Více

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol ÚLOHY

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_01_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_01_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_01_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod

Více

CVIČENÍ č. 7 BERNOULLIHO ROVNICE

CVIČENÍ č. 7 BERNOULLIHO ROVNICE CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem

Více

Vibrace vícečásticových soustav v harmonické aproximaci. ( r)

Vibrace vícečásticových soustav v harmonické aproximaci. ( r) Paktikum z počítačového modelování ve fyzice a chemii Úloha č. 5 Vibace vícečásticových soustav v hamonické apoximaci Úkol Po zadané potenciály nalezněte vibační fekvence soustavy několika částic diagonalizací

Více

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE 1 ELEKTRICKÝ NÁBOJ Elektický náboj základní vlastnost někteých elementáních částic (pvní elektické jevy pozoovány již ve staověku janta (řecky

Více

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa].

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. Příklad 1 Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. m 20[kg], t 15 [ C] 288.15 [K], p 10 [MPa] 10.10 6 [Pa], R 8314 [J. kmol 1. K 1 ] 8,314

Více

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Práce a energie, tepelné jevy, elektrický proud, zvukové jevy Tercie 1+1 hodina týdně Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika

Více

Měření modulů pružnosti G a E z periody kmitů pružiny

Měření modulů pružnosti G a E z periody kmitů pružiny Měření modulů pružnosti G a E z periody kmitů pružiny Online: http://www.sclpx.eu/lab2r.php?exp=2 V tomto experimentu vycházíme z pojetí klasického pokusu s pružinovým oscilátorem. Z periody kmitů se obvykle

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská

Více

ATOMOVÁ HMOTNOSTNÍ JEDNOTKA

ATOMOVÁ HMOTNOSTNÍ JEDNOTKA CHEMICKÉ VÝPOČTY Teoie Skutečné hmotnosti atomů jsou velmi malé např.: m 12 C=1,99267.10-26 kg, m 63 Cu=1,04496.10-25 kg. Počítání s těmito hodnotami je nepaktické a poto byla zavedena atomová hmotností

Více

Mechanické kmitání - určení tíhového zrychlení kyvadlem

Mechanické kmitání - určení tíhového zrychlení kyvadlem I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 9 Mechanické kmitání - určení

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Vzdělávací obor fyzika

Vzdělávací obor fyzika Kompetence sociální a personální Člověk a měření síly 5. technika 1. LÁTKY A TĚLESA Žák umí měřit některé fyz. veličiny, Měření veličin Neživá měření hmotnosti,objemu, 4. zná některé jevy o pohybu částic,

Více

Rutherfordův experiment s multikanálovým analyzátorem

Rutherfordův experiment s multikanálovým analyzátorem Ruthefodův expeiment s multikanálovým analyzátoem Úkol Ověřte Ruthefodův vztah po ozptyl poměřením počtu alfa částic ozptýlených tenkou zlatou fólií do ůzných úhlů mezi cca 0 a 90. Zjistěte, jak ovlivňuje

Více

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný

Více

Síla, vzájemné silové působení těles

Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_02_01 Vytvořeno Leden 2014 Síla, značka a jednotka síly, grafické znázornění

Více

VY_52_INOVACE_2NOV52. Autor: Mgr. Jakub Novák. Datum: 14. 3. 2013 Ročník: 6., 7, 8.

VY_52_INOVACE_2NOV52. Autor: Mgr. Jakub Novák. Datum: 14. 3. 2013 Ročník: 6., 7, 8. VY_5_INOVACE_NOV5 Autor: Mgr. Jakub Novák Datum: 14. 3. 013 Ročník: 6., 7, 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Pohyb těles, síly Téma: Průměrná rychlost Metodický

Více

Charakteristika předmětu:

Charakteristika předmětu: Vzdělávací oblast : Vyučovací předmět: Volitelné předměty Člověk a příroda Seminář z fyziky Charakteristika předmětu: Vzdělávací obsah: Základem vzdělávacího obsahu předmětu Seminář z fyziky je vzdělávací

Více

Základní vlastnosti elektrostatického pole, probrané v minulých hodinách, popisují dvě diferenciální rovnice : konzervativnost el.

Základní vlastnosti elektrostatického pole, probrané v minulých hodinách, popisují dvě diferenciální rovnice : konzervativnost el. Aplikace Gaussova zákona ) Po sestavení základní ovnice elektostatiky Základní vlastnosti elektostatického pole, pobané v minulých hodinách, popisují dvě difeenciální ovnice : () ot E konzevativnost el.

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Dynamika Vojtěch Beneš žák měří vybrané veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, určí v konkrétních situacích síly působící na

Více

Gravitační a elektrické pole

Gravitační a elektrické pole Gavitační a elektické pole Newtonův gavitační zákon Aistotelés (384-3 př. n. l.) předpokládal, že na tělesa působí síla směřující svisle dolů. Poto jsou těžké předměty (skály tvořící placatou Zemi) dole

Více

SCLPX 07 2R Ověření vztahu pro periodu kyvadla

SCLPX 07 2R Ověření vztahu pro periodu kyvadla Klasické provedení a didaktické aspekty pokusu U kyvadla, jakožto dalšího typu mechanického oscilátoru, platí obdobně vše, co bylo řečeno v předchozích experimentech SCLPX-7 a SCLPX-8. V současném pojetí

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

Zákon zachování energie - příklady

Zákon zachování energie - příklady DUM Základy přírodních věd DUM III/2-T3-13 Téma: ZZE - příklady Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Zákon zachování energie - příklady 1.) Jakou má polohovou energii

Více

Pohyb tělesa, síly a jejich vlastnosti, mechanické vlastnosti kapalin a plynů, světelné jevy

Pohyb tělesa, síly a jejich vlastnosti, mechanické vlastnosti kapalin a plynů, světelné jevy Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Pohyb tělesa, síly a jejich vlastnosti, mechanické vlastnosti kapalin a plynů, světelné jevy Sekunda 2 hodiny týdně Pomůcky, které poskytuje sbírka

Více

Název: Studium kmitů na pružině

Název: Studium kmitů na pružině Název: Studium kmitů na pružině Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Mechanické kmitání

Více

VY_52_INOVACE_2NOV51. Autor: Mgr. Jakub Novák. Datum: 17. 1. 2013 Ročník: 8.

VY_52_INOVACE_2NOV51. Autor: Mgr. Jakub Novák. Datum: 17. 1. 2013 Ročník: 8. VY_52_INOVACE_2NOV51 Autor: Mgr. Jakub Novák Datum: 17. 1. 2013 Ročník: 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Pohyb těles, síly Téma: Nakloněná rovina Metodický

Více

Návrh a realizace úloh do Fyzikálního praktika z mechaniky a termiky

Návrh a realizace úloh do Fyzikálního praktika z mechaniky a termiky Návrh a realizace úloh do Fyzikálního praktika z mechaniky a termiky DIPLOMOVÁ PRÁCE Studentka: Bc. Lenka Kadlecová Vedoucí práce: Ing. Helena Poláková, PhD. Aktuálnost zpracování tématu Původně Od 2014

Více

VY_52_INOVACE_2NOV45. Autor: Mgr. Jakub Novák. Datum: 10. 9. 2012 Ročník: 7.

VY_52_INOVACE_2NOV45. Autor: Mgr. Jakub Novák. Datum: 10. 9. 2012 Ročník: 7. VY_52_INOVACE_2NOV45 Autor: Mgr. Jakub Novák Datum: 10. 9. 2012 Ročník: 7. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Mechanické vlastnosti kapalin Téma: Vztlaková síla

Více

SCLPX 11 1R Zákon zachování mechanické energie

SCLPX 11 1R Zákon zachování mechanické energie Klasické provedení a didaktické aspekty pokusu Zákony zachování mají ve fyzice významné postavení. V učivu mechaniky se na střední škole věnuje pozornost zákonu zachování hybnosti a zákonu zachování energie

Více

2.1.2 Jaký náboj projde proudovodičem, klesá-li v něm proud z 18 A na nulu tak, že za každou sekundu klesne hodnota proudu na polovinu?

2.1.2 Jaký náboj projde proudovodičem, klesá-li v něm proud z 18 A na nulu tak, že za každou sekundu klesne hodnota proudu na polovinu? . LKTCKÝ POD.. lektický odpo, páce a výkon el. poudu.. Jaké množství el. náboje Q pojde vodičem za t = 0 s, jestliže a) poud = 5 A je stálý, b) poud ovnoměně oste od nuly do A?.. Jaký náboj pojde poudovodičem,

Více

Určování hustoty látky

Určování hustoty látky Určování hustoty látky Očekávané výstupy dle RVP ZV: využívá s porozuměním vztah mezi hustotou, hmotností a objemem při řešení praktických problémů Předmět: Fyzika Učivo: měření fyzikální veličiny hustota

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického.

3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického. Pracovní úkoly. Změřte místní tíhové zrychlení g metodou reverzního kyvadla. 2. Změřte místní tíhové zrychlení g metodou matematického kyvadla. 3. Vypočítejte chybu, které se dopouštíte idealizací reálného

Více

ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů

ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů Autor Mgr. Vladimír Hradecký Číslo materiálu 8_F_1_02 Datum vytvoření 2. 11. 2011 Druh učebního materiálu

Více

MĚŘ, POČÍTEJ A MĚŘ ZNOVU

MĚŘ, POČÍTEJ A MĚŘ ZNOVU MĚŘ, POČÍTEJ A MĚŘ ZNOVU Václav Piskač Gymnázium tř.kpt.jaroše, Brno Abstrakt: Příspěvek ukazuje možnost, jak ve vyučovací hodině propojit fyzikální experiment a početní úlohu způsobem, který výrazně zvyšuje

Více

1. Teorie. jednom konci pevně upevněn a na druhém konci veden přes kladku se zrcátkem

1. Teorie. jednom konci pevně upevněn a na druhém konci veden přes kladku se zrcátkem MěřENÍ MODULU PRUžNOSTI V TAHU TEREZA ZÁBOJNÍKOVÁ 1. Teorie 1.1. Měření modulu pružnosti z protažení drátu. Pokud na drát působí síla ve směru jeho délky, drát se prodlouží. Je li tato jeho deformace pružná

Více

Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte.

Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte. Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte. Pozn.: Na konci je uvedena stručná verze výpočtu, aby se vešla na jednu stránku. Začneme silovým rozborem. Na první

Více

Určení hustoty látky. (laboratorní práce) Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.1.28/02.0055

Určení hustoty látky. (laboratorní práce) Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.1.28/02.0055 Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.1.28/02.0055 Určení hustoty látky (laboratorní práce) Označení: EU-Inovace-F-6-12 Předmět: fyzika Cílová skupina: 6. třída Autor:

Více

Měření magnetické indukce elektromagnetu

Měření magnetické indukce elektromagnetu Měření magnetické indukce elektromagnetu Online: http://www.sclpx.eu/lab3r.php?exp=1 V tomto experimentu jsme využili digitální kuchyňské váhy, pomocí kterých jsme určovali sílu, kterou elektromagnet působí

Více

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové

Více

B1. Výpočetní geometrie a počítačová grafika 9. Promítání., světlo.

B1. Výpočetní geometrie a počítačová grafika 9. Promítání., světlo. B. Výpočetní geometie a počítačová gafika 9. Pomítání., světlo. Pomítání Převedení 3D objektu do 2D podoby je ealizováno pomítáním, při kteém dochází ke ztátě infomace. Pomítání (nebo též pojekce) je tedy

Více

LabQuest měření v terénu

LabQuest měření v terénu LabQuest měření v terénu VÁCLAV PAZDERA Gymnázium, Olomouc LabQuest [1] je jednoduchý měřící přístroj pro fyzikální, chemická i biologická měření ve třídě i v přírodě. V příspěvku budou prezentována jednoduchá

Více

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda SÍLY A JEJICH VLASTNOSTI Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vzájemné působení těles Silové působení je vždy vzájemné! 1.Působení při dotyku 2.Působení na dálku prostřednictvím polí gravitační pole

Více

VY_52_INOVACE_2NOV43. Autor: Mgr. Jakub Novák. Datum: 4. 10. 2012 Ročník: 7., 8.

VY_52_INOVACE_2NOV43. Autor: Mgr. Jakub Novák. Datum: 4. 10. 2012 Ročník: 7., 8. VY_52_INOVACE_2NOV43 Autor: Mgr. Jakub Novák Datum: 4. 10. 2012 Ročník: 7., 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Látky a tělesa, Mechanické vlastnosti tekutin

Více

Prováděcí plán Školní rok 2013/2014

Prováděcí plán Školní rok 2013/2014 září Období Prováděcí plán Školní rok 2013/2014 Vyučovací předmět: Fyzika Třída: VIII. Vyučující: Jitka Wachtlová, Clive Allen Časová dotace: 1 hodina týdně v českém jazyce + 1 hodina týdně v anglickém

Více

Dynamika 43. rychlost pohybu tělesa, třecí sílu, tlakovou sílu ...

Dynamika 43. rychlost pohybu tělesa, třecí sílu, tlakovou sílu ... Dynamika 43 Odporové síly a) Co je příčinou vzniku odporových sil?... b) Jak se odporové síly projevují?... c) Doplňte text nebo vyberte správnou odpověď: - když se těleso posouvá (smýká) po povrchu jiného

Více

Stanovení hustoty pevných a kapalných látek

Stanovení hustoty pevných a kapalných látek 55 Kapitola 9 Stanovení hustoty pevných a kapalných látek 9.1 Úvod Hustota látky ρ je hmotnost její objemové jednotky, definované vztahem: ρ = dm dv, kde dm = hmotnost objemového elementu dv. Pro homogenní

Více

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou.

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 1 Pracovní úkoly 1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 2. Sestrojte graf této závislosti. 2 Teoretický úvod 2.1 Povrchové napětí

Více

1.1.13 Poskakující míč

1.1.13 Poskakující míč 1.1.13 Poskakující míč Předpoklady: 1103, 1106 Pedagogická poznámka: Tato hodina je zvláštní tím, že si na začátku nepíšeme její název. Nový druh pohybu potřebujeme nový pokus Zatím jsme stále na začátku

Více

Název: Archimedův zákon. Úvod. Cíle. Teoretická příprava (teoretický úvod)

Název: Archimedův zákon. Úvod. Cíle. Teoretická příprava (teoretický úvod) Název: Archimedův zákon Úvod Jeden z nejvýznamnějších učenců starověku byl řecký fyzik a matematik Archimédes ze Syrakus. (žil 287 212 př. n. l.) Zkoumal podmínky rovnováhy sil, definoval těžiště, zavedl

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454. Název DUM: Měření fyzikálních veličin

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454. Název DUM: Měření fyzikálních veličin Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Měření fyzikálních

Více

3.1.7 Kyvadlo. Předpoklady: 3106

3.1.7 Kyvadlo. Předpoklady: 3106 37 Kyvado ředpokady: 306 edaoická poznámka: Ceý obsah hodiny není možné stihnout za 45 minut Je třeba se ozhodnout, co je podstatné: testování vzoce paktickým sestojováním kyvade, povídání o kyvadových

Více

1.3.7 Rovnoměrný pohyb po kružnici II

1.3.7 Rovnoměrný pohyb po kružnici II ..7 Ronoměný pohyb po kužnici II Předpoklady: 6 Pedagogická poznámka: Obsah hodiny je hodně nadnesený. Pokud necháte žáky počítat samostatně, yjde na dě hodiny. Úodní ozbo nedopoučuji příliš uychloat.

Více

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207 6..8 Vlnová funkce ředpoklady: 06007 edagogická poznámka: Tato hodina není příliš středoškolská. Zařadil jsem ji kvůli tomu, aby žáci měli alespoň přibližnou představu o tom, jak se v kvantové fyzice pracuje.

Více

HLOUBKOMĚRY DIGITÁLNÍ HLOUBKOMĚR PŘÍMÝ 0274 DIGITÁLNÍ HLOUBKOMĚR S NOSEM 0275

HLOUBKOMĚRY DIGITÁLNÍ HLOUBKOMĚR PŘÍMÝ 0274 DIGITÁLNÍ HLOUBKOMĚR S NOSEM 0275 DIGITÁLNÍ HLOUBKOMĚR PŘÍMÝ 0274 200 8 100 4 0,01 0,0005 0,70 0274 700 300 12 150 6 0,01 0,0005 1,00 0274 701 500 20 150 6 0,01 0,0005 1,24 0274 702 1000 40 250 0,01 0,0005 3,20 0274 704 1500 60 250 0,01

Více

DYNAMIKA ROTAČNÍ POHYB

DYNAMIKA ROTAČNÍ POHYB DYNAMIKA ROTAČNÍ POHYB Dynamika rotačního pohybu hmotného bodu kolem pevné osy - při rotační pohybu hmotného bodu kolem stálé osy stálými otáčkami kolem pevné osy (pak hovoříme o rovnoměrném rotačním pohybu)

Více

FYZIKA. Kapitola 3.: Kinematika. Mgr. Lenka Hejduková Ph.D.

FYZIKA. Kapitola 3.: Kinematika. Mgr. Lenka Hejduková Ph.D. 1. KŠPA Kladno, s. r. o., Holandská 2531, 272 01 Kladno, www.1kspa.cz FYZIKA Kapitola 3.: Kinematika Mgr. Lenka Hejduková Ph.D. Kinematika obor, který zkoumá pohyb bez ohledu na jeho příčiny klid nebo

Více

VY_52_INOVACE_2NOV60. Autor: Mgr. Jakub Novák. Datum: 25. 2. 2013 Ročník: 6., 7., 8.

VY_52_INOVACE_2NOV60. Autor: Mgr. Jakub Novák. Datum: 25. 2. 2013 Ročník: 6., 7., 8. VY_52_INOVACE_2NOV60 Autor: Mgr. Jakub Novák Datum: 25. 2. 2013 Ročník: 6., 7., 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Látky a tělesa Téma: Měření hmotnosti rovnoramennými

Více

Sluneční plachetnice. 1. Trocha historieequation Chapter 1 Section 1. 2. Pohyb v gravitačním poli

Sluneční plachetnice. 1. Trocha historieequation Chapter 1 Section 1. 2. Pohyb v gravitačním poli Sluneční plachetnice 1. Tocha histoieequation Chapte 1 Section 1 O plachetnici poháněné tlakem slunečního záření, kteá letí napříč sluneční soustavou, snily desítky spisovatelů a fyziků. Mezi nejznámějšími

Více

Paprsky světla létají úžasnou rychlostí. Když dorazí do našich očí, donesou

Paprsky světla létají úžasnou rychlostí. Když dorazí do našich očí, donesou SVĚTLO Paprsky světla létají úžasnou rychlostí. Když dorazí do našich očí, donesou nám mnoho informací o věcech kolem nás. Vlastnosti světla mohou být ukázány na celé řadě zajímavých pokusů. Uvidíš svíčku?

Více

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD F-1 Fyzika hravě ( k sadě 20 materiálů) Poř. 1. F-1_01 KLID a POHYB 2. F-1_02 ROVNOVÁŽNÁ POLOHA Prezentace obsahuje látku 1 vyučovací hodiny. materiál slouží k opakování látky na téma relativnost klidu

Více

VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE

VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jednoduchý stroj je jeden z druhů mechanických

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

MĚŘENÍ A ORÝSOVÁNÍ. Střední odborná škola a Gymnázium Staré Město. Lubomír Petrla III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název DUMu

MĚŘENÍ A ORÝSOVÁNÍ. Střední odborná škola a Gymnázium Staré Město. Lubomír Petrla III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název DUMu MĚŘENÍ A ORÝSOVÁNÍ Název školy Střední odborná škola a Gymnázium Staré Město Číslo projektu CZ.1.07/1.5.00/34.1007 Autor Lubomír Petrla Název šablony III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

Více

DYNAMIKA - Dobový a dráhový účinek

DYNAMIKA - Dobový a dráhový účinek Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 109 Tento projekt

Více

Páka, rovnovážná poloha páky

Páka, rovnovážná poloha páky Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_3IS Pořadové číslo: 10 Ověření ve výuce Třída: 7.A Datum: 4.12.2012 1 Páka, rovnovážná poloha páky Předmět: Ročník:

Více

Experimentální hodnocení bezpečnosti mobilní fotbalové brány

Experimentální hodnocení bezpečnosti mobilní fotbalové brány ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav mechaniky, biomechaniky a mechatroniky Odbor mechaniky a mechatroniky Název zprávy Experimentální hodnocení bezpečnosti mobilní fotbalové brány

Více

pracovní list BIOMECHANIKA 1 Běhy do schodů Potřebné vybavení: stopky (na mobilu), kalkulačka

pracovní list BIOMECHANIKA 1 Běhy do schodů Potřebné vybavení: stopky (na mobilu), kalkulačka BIOMECHANIKA 1 Běhy do schodů pracovní list Potřebné vybavení: stopky (na mobilu), kalkulačka 1. Vyberte ze skupiny nejtěžšího a nejlehčího žáka a zapište si jejich hmotnost. 2. Stopněte oběma čas, za

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Přípravný kurz z fyziky na DFJP UPa

Přípravný kurz z fyziky na DFJP UPa Přípravný kurz z fyziky na DFJP UPa 26. 28.8.2015 RNDr. Jan Zajíc, CSc. ÚAFM FChT UPa Pohyby rovnoměrné 1. Člun pluje v řece po proudu z bodu A do bodu B rychlostí 30 km.h 1. Při zpáteční cestě z bodu

Více

POHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

POHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda POHYB TĚLESA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Pohyb Pohyb = změna polohy tělesa vůči jinému tělesu. Neexistuje absolutní klid. Pohyb i klid jsou relativní. Záleží na volbě vztažného tělesa. Spojením

Více

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,

Více

Měřicí přístroje a měřicí metody

Měřicí přístroje a měřicí metody Měřicí přístroje a měřicí metody Základní elektrické veličiny určují kvalitativně i kvantitativně stav elektrických obvodů a objektů. Neelektrické fyzikální veličiny lze převést na elektrické veličiny

Více

www.projektsako.cz Fyzika Pracovní list č. 4 Téma: Měření rychlosti proudění a tlaku Mgr. Libor Lepík Student a konkurenceschopnost

www.projektsako.cz Fyzika Pracovní list č. 4 Téma: Měření rychlosti proudění a tlaku Mgr. Libor Lepík Student a konkurenceschopnost www.projektsako.cz Fyzika Pracovní list č. 4 Téma: Měření rychlosti proudění a tlaku Lektor: Projekt: Reg. číslo: Mgr. Libor Lepík Student a konkurenceschopnost CZ.1.07/1.1.07/03.0075 Měření rychlosti

Více

Registrační číslo projektu: CZ.1.07/1.5.00/34.0185. Název projektu: Moderní škola 21. století. Zařazení materiálu: Ověření materiálu ve výuce:

Registrační číslo projektu: CZ.1.07/1.5.00/34.0185. Název projektu: Moderní škola 21. století. Zařazení materiálu: Ověření materiálu ve výuce: STŘEDNÍ ODBORNÁ ŠKOLA A STŘEDNÍ ODBORNÉ UČILIŠTĚ NERATOVICE Školní 664, 277 11 Neratovice, tel.: 315 682 314, IČO: 683 834 95, IZO: 110 450 639 Ředitelství školy: Spojovací 632, 277 11 Neratovice tel.:

Více