Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava ENERGETIKA U ŘÍZENÝCH ELEKTRICKÝCH POHONŮ. 1.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava ENERGETIKA U ŘÍZENÝCH ELEKTRICKÝCH POHONŮ. 1."

Transkript

1 Katedra obecé eletrotechiy Faulta eletrotechiy a iformatiy, VŠB - TU Ostrava EERGETIKA U ŘÍZEÝCH EEKTRICKÝCH POHOŮ Předmět : Rozvody eletricé eergie v dolech a lomech. Úvod: Světový tred z hledisa eletricé eergie je směrová a zvyšováí úsor ři jejím využíváí. Eergie z úsor ejlevější eergie, rotože je zde zřejmá úsora ivestic otřebých výrobí aacitě této eergie. Celé ojetí úsor eergie je uto brát z hledisa celové účiosti vztažeé a zdroj rimárí eergie. Tato účiost je ještě stále i ve vysělých státech velmi malá a je ovlivěa jedotlivými dílčími účiostmi v celovém eergeticém řetězci, mezi teré atří:: - účiost řeměy rimárí eergie a eletricou (,3,4 - účiost řeosu eletricé eergie (,8,9 - účiost řeměy eletricé.eergie a mechaicou a a užitou ráci. Tato účiost je u ohou závislá a zůsobu jeho řízeí a účiostech jeho jedotlivých omoetů (motor, měič, řevody atd.. výroba řeos a rozvod oho Obsah : G P W. Úvod. Eergetia řízeého ohou 3. Účiost a ztráty v motoru 4. Klasifiace účiostí u A 5. Závislost účiosti A a rovozích arametrech P 434 W,4,9, 8, 8 74 (el 56 (el 5 (mech P P tot P mech P W,3 P: 6 W 8 W 3 W 5 W Doc. Ig. Václav Vráa, CSc., Ig. Václav Kolář Ph.D. osledí úrava: úor 6 obr.- Bilace eergeticého řetězce od výrobce uživateli Z dostuých rováděých studií a statisticých údajů je zřejmé, že celový odíl ztrát a celové sotřebovaé eergii čií asi 69 %, odíl růmyslu 5 %, domácostí a služeb %, a řeosu asi 4 %. Úsoru eergie je uto hledat a všech člácích a to zejméa a oci řetězce, de se achází oblast ohoů. Zde je zde možo vlastí úsory eergie hledat hlavě v těchto oblastech: - otimalizace odběru eletricé eergie z hledisa techologicého rocesu - sížeím ztrát ve vlastím systému ohou. Každý oho vlastě ředstavuje systém, terý lze graficy zázorit v roviě rozděleé osami: osa x - veličiy úměré hací eergii (, F, Q aod. osa y - veličiy úměré ieticé eergii (, v, H aod..

2 V tato rozděleé roviě lze ázorě zobrazit tzv. zátěžé řivy racovího mechaismu (ař. závislosti P ( a hací řivy motoru ot (. Průsečíy těchto řive udávají racoví body ohou v ustáleém stavu, dy edochází e změě ieticé eergie (ost a b Obr. - - Hací a zátěžé řivy oháěého systému a bez řízeí rychlosti b s řízeím rychlosti Otimalizace využití eletricé eergie z hledisa techologicého rocesu je ejvíce zřejmá v oblasti ohoů mechaismů zabezečujících doravu objemového možství media, jao jsou ař. čeradla, vetilátory, ásové doravíy, de je uto doravovaé možství media měit. Ve srováí se zůsobem řízeí založeým a tzv. šrceí (ař. laou lze u řízeých ohoů s romělivou rychlostí dosáhout oroti ředchozí metodě dosti začých úsor eletricé eergie s rátou dobou ávratostí ivestic a ořízeí moderích ačích čleů - měičů. Změu racoví rychlosti u ohou (racovího mechaismu lze obecě dosáhout:. Změou zátěžé řivy (P - racoví bod se řemisťuje o hací řivce (P P. Příladem může být ař. šrceí, oužíváí brzdy (eldroregulace atd. Potřebá eergie řiváděá racovímu mechaismu W je úměrá loše vymezeé očátem souřadic a racovím bodem P xx : W P W P. Změou hací řivy (motoru, - racoví bod se řemisťuje o zátěžé řivce (P P. Příladem je řízeý oho u terého dochází e změě mometové charateristiy hacího motoru. Tuto změu řivy je možo rovést buď jejím osuem (změa rychlosti arázdo, ( -hosodárý zůsob, ebo změou slou řivy olem evého bodu ~, ( méě hosodárý zůsob. Potřebá eergie ro stejou racoví rychlost je zde odstatě meší oroti ředchozímu zůsobu. V říadě regulovaého ohou (řízeý oho se zětou vazbou emá změa zátěžé řivy vliv a rychlost.. Eergetia řízeého ohou: Eletricé ohoy řeměňují eletricou eergii v mechaicou a aoa. ohou tedy racovat buď v motoricém ebo brzdém režimu. Při řeměě jedotlivých druhů a forem eergií ve vlastím motoru a ačím čleu (měiči dochází e ztrátám eergie, teré se jeda velmi eřízivě rojeví v celém eergeticém řetězci a dále hrají výzamou roli ři dimezováí jedotlivých omoetů ohou (ař. motor, měič, rezistory a od.. Jedotlivé toy výoů jsou zřejmé z obr.-, terý zázorňuje řízeý oho z eergeticého hledisa jao systém, ve terém vystuují setrvačé hmoty (J ot, J P a idučosti jao zásobíy eergií (ieticé - W i a eletromageticé W. Eergeticou bilaci ohou s tuhou vazbou lze vyjádřit vztahem: dw dwiot dwip e P + P + ot + q dwiot dwip m P + P + d, d + P otřebý mechaicý výo P (a hřídeli motoru P >...motoricý režim, P <...brzdý režim P ztrátový výo v P (včetě řevodovy ot ( q ztrátový výo motoru (měiče m mech. výo a hřídeli motoru d dyamicý výo ři změách rychlosti d >...zvyšováí rychlosti (rozběh d <...sižováí rychlosti (doběh - zastavováí úravou rovice eergeticé bilace obdržíme ohybovou rovici a momet motoru m(t W el ot g P d m( t mp md dw m( t el ot q aájecí síť q el Ačí čle - měič q otor dw, Pot dwiot Brzdá jedota P, m P P dwip Obr. - Bloové usořádáí systému regulovaého ohou z eergeticého hledisa 3 4

3 el q ot P P ot q el A A q ot P a v motoricém režimu (I.a IV. vadrat v roviě - obr. - Zobrazeí toů výoů u ohou v ustáleém stavu 3. Účiost a ztráty motoru: P rovádí omocým oeficietem - de C d θ A. θ aájecí síť P el P tot P ( o - m [ W; m,rad/sec ],....ss motory (+R/R...asychroí motory Ztráty v motoru ve stacioárích (ustáleých stavech: P m P ot q b v brzdém režimu (II.a IV. vadrat v roviě - Dle defiičího vztahu je účiost obecě závislá a veliosti ztrát, teré u motoru dělíme a: ostatí ztráty (ezávislé a zatížeí - P - roměé ztráty (variabilí závislé a zatížeí - P v Výsledé (celové ztráty v motoru: P tot P + P v Ztráty v motoru závislé a zatížeí jsou zjedodušeě dáy (ři zaedbáí ztrát ve stator. viutí rozdílem řiváděého el. říou P el P o a odevzdaého mechaicého výou P m P m., což se dá ázorě zobrazit v roviě - (jao locha. Zohleděí ztrát ve statoru se zjedodušeě ásledě V ustáleém stavu jsou tedy tyto závislé ztráty dáy racovím bodem P ři jeho zázorěí v roviě -, jehož souřadice ři zobrazeí v roviě jsou P, P. Pro racoví body ohou A a B dle obr.3- jsou tyto ztráty úměré lochám vymezeým (omocí rovoběže s osami racovími body a bodem ři ulové zátěži tj. tzv. bodem arázdo -. o, což se dá vyjádřit vztahy. Pro bod A: P A P ( - A, Pro bod B: P B P ( - B Ztráty jsou tedy závislé a : a veliosti mometu zátěže P, a rozdílu rychlosti arázdo a racoví rychlosti, terý je závislý a slou (tvrdosti mechaicé charateristiy motoru. Přílady ohou ro růzé druhy zátěže a tvary hacích řive (mechaicých charateristi ohou. P P A P B P obr. 3 - Závislosti f( a f( P ro,,tzv. sluzové odorové řízeí rychlosti, ři P ost. A B B B ost P B obr. 3 - Závislosti f( a f( P ro,,tzv. sluzové odorové řízeí rychlosti, ři P obr. 3-3 Závislosti f( a f( P ro,,řízeí změou rychlosti arázdo motoru Ztráty v motoru v estacioárích (řechodých stavech (rozběhy, brzděí a od.: ztráty eergie obecě jsou dáy vztahem W t t P A, P A P B P A B var. P ost. B t t A P P B, A P ( ( Rozběh zatížeého ohou (ostatím mometem P : Dosazeím z ohybové rovice ( J α P 5 6

4 W t a P ( + J ( d ožství ztraceé eergie během rozběhu zatížeého ohou je závislé - a době rozběhu t a (J,α a a jeho časovém růběhu, - a veliosti mometu zátěže P, - a veliosti ieticé eergii W i ohybujících se hmot. - a rychlosti arázdo motoru o, terá je závislá a zůsobu řízeí během rozběhu. eřízeý rozběh zatížeého ohou -římým řiojeím motoru aájecí síti řes souštěcí rezistor (o římové-regulačí mechaicé charateristice, o ost.: momet motoru : ( momet zátěže: P ost. záb, ost. čárovaě orajové odmíy: t, t t a 3,, W (,5 B + J (, ta P ta + J P 5 P záb τ t r t obr. 3-4 Závislosti f( a f(t ro rozběh řiojeím motoru aájecí síti řes souštěcí rezistor. B, u rozb. P z P ost. rozb. t r t Obr. 3-5 Závislosti ro řízeý rozběh zatížeého ohou - řiojeím řes řízeý ačí čle. Brzděí rotiroudem: Pro orajové odmíy t, t t b, o - o,, jsou ztráty ři tomto druhu brzděí tb W P tb + J ( +, 5 W P ~ B W J ~ 3.W i Pro P je W P, W,5 J 3 W i Pro říad jedostuňového bržděí ( bez řeíáí odor. stuě : P ost. m - z - ( z / - z - t τ P τ e t ( e Obr. 3-6 Závislosti f( a f(t ři bržděí rotiroudem(jedostuňového bržděí. Řízeý rozběh zatížeého ohou-řiojeím řes řízeý ačí čle. t P rozb ( o r J W P tr ( rozb rozb P ( rozb P J ( Ztráty jsou římo úměré ieticé eergii a loše A. 7 8

5 Příad řízeého bržděí rotiroudem, dy je momet motoru ahraze středím brzdým mometem S. V Evroě došlo rověž reacím a uvedeé iiciativy. ezi geerálím ředitelstvím Evrosé omisí a Sdružeím evrosých výrobců motorů a výoové eletroiy CEEP ( Comitee of Euroe aufacturs of Electrical aschies ad Power Eletroics došlo dobrovolé dohodě obsahující jedotý zůsob čleěí účiostí motorů do lasifiačích tříd a jejich ozačováí. Všechy a 4- ólové motory stadardího rovedeí, ro aětí 4 V, 5 Hz a druh zatížeí S jsou v rozsahu výoů (, 9 W rozděley do tří lasifiačích tříd, teré jsou ozačey a alfaumericým ódem Eff Eff Eff3 vysoá účiost (Hight efficiecy, zvýšeá účiost (Imroved efficiecy, stadardí účiost (Stadard efficiecy, odovídající dohoduté lasifiačí stuici:. Ozačeí třídy účiosti musí být rovedeo a štítu motoru a rověž v techicé doumetaci solu s uvedeím hodot účiosti ro jmeovité a sížeé (75% zatížeí. Obr. 3-7 Závislosti f( a f(t ři bržděí rotiroudem(řízeého bržděí. Závislost ztrát a době rozběhu: Zmešeí ztrát motoru závislých a zatížeí lze dosáhout: - zmešeím celového mometu setrvačosti ohou J tot - změou rychlosti arázdo motoru o obr. 3-8 Toy eergie ři rozbězích ohou 4. Klasifiace účiostí u A Závěry a rohlášeí z meziárodích oferecí o ŽP obsahují otřeby sížeí šodlivých emisí CO a tím i zmešováí sotřeby eletricé eergie. Podíl zlešováí účiosti u eletricých motorů a celovém sížeí sotřeby eletricé eergie je dosti výzamý a ředstavuje cca 8 %. Celová sotřeba eletricé eergie WJ WJ (3 % WJ Wi Toy eergie u ezatížeého ohou by mohla a měla v důsledu zvýšeí účiosti eletromotorů lesout o cca 3 %. V USA se dle záoa EPCA (Eergy Policy ad Coservatio Act, musí mít, 4 a 6-ti ólové motory v rozsahu výoů (,7 5 W miimálí hodotu jmeovité účiosti (HE-High efficiecy. 9 ost arázdo W ~. Wi var. arázdo W ~ Wi Wi Při zatížeí Wzt ~. Wi + Wzt + Wzt WJ Wzt Při zatížeí Wzt ~ Wi + Wzt Wi Wzt Wi Wzt Toy eergie u ohou zatížeého mometem zt Jmeovitá účiost [%] Eff Eff 3 Eff Jmeovitý výo [W] obr. 4- Závislosti mezích účiosti motorů Provozí vlastosti a eoomia rovozu motorů s vyšší účiostí Jmeovitá účiost [%] Eff Eff 3 Eff Jmeovitý výo [W] Vyšší účiost motoru romě eergeticých úsor dále ředstavuje: větší solehlivost chodu motoru a tím i meší rostoje zůsobeé jeho oruchami; ižší oteleí viutí a tím i větší možost řetěžováí ohou; odolost vůči oruchám v aájecí síti (olísáí aětí, fázová esouměrost; větší toleraci vůči eharmoicému aájecímu aětí. Zlešeí účiosti motorů lze dosáhout sížeím jejich ztrát až o cca 4 %. Toho se dosáhe oužitím valitějších materiálů, změou ostruce ativích a mechaicých částí motoru. Toto je ovšem rovedeo a úor zvýšeí jeho výrobích áladů motorů oroti stadardímu rovedeí a tím i jejich ořizovací cey. Z dostuých rameů vylývá, že toto zvýšeí cey je ejvyšší u motorů meších výoů, de dosahuje cca 5 %. S rostoucím výoem motorů dochází olesu až a cca 5 %. Pořizovací cea motoru ovšem ředstavuje je velmi malou část z celových rovozích áladů zahrujících i ceu za sotřebovaou eletricou eergii a álady a údržbu. Při růměré životosti

6 motoru cca 5 let bude odíl ořizovacích áladů u motoru s jmeovitým výoem 5 W v rozsahu ročí doby rovozu ( 8 hod v rozmezí (3,4% celových áladů. Určeí ročích áladů a rovoz motoru r t P C Wh [ Kč; hod, W, Kč/Wh ] de t... doba rovozu motoru za ro P... jmeovitý (štítový výo motoru... oměré zatížeí motoru (P/P... účiost motoru ro daé oměré zatížeí - C Wh jedotová cea eletricé eergie Určeí ročích úsor ři oužití motoru s vyšší účiosti - Heigh Ur t P CWh ( Heigh Určeí doby ávratosti t ořizovacích áladů (cey ot a motor s vyšší účiostí ot t [měs. ; Kč] U r 5. Závislosti účiosti A a jeho rovozích arametrech U mitočtově řízeých asychroích motorů lze ztráty jejichž veliost je ezávislá a zatížeí v závislosti a mitočtu aájecího aětí f vyjádřit matematicy.zavedeme-li oměrou rychlost (otáčy ν vztažeou rychlosti jmeovité (otáčám rovou oměré rychlosti vztažeé rychlosti arázdo ( : ν f f f racoví mitočet aájecího aětí a svorách motoru f - jmeovitý mitočet motoru ( 5 Hz m - exerimetálě zjištěý oeficiet zohledňující jaost oužitého mageticého materiálu lze ásledě uravit vztah ro tzv. ostatí ztráty motoru P m ( ν P Fe + P mec de : P Fe - jmeovité ztráty v mageticém obvodě ( železe statoru P mec - jmeovité mechaicé ztráty motoru Závislost variabilích ztrát a veliosti zatížeí vyjádřeé oměrým mometem zatížeí P m lze vyjádřit vztahem : P Cu ( m P m Cu Celové ztráty v motoru jsou dáy součtem ztrát ostatích a variabilích dle vztahu: ( ν, m P ( ν P ( m P + Cu, Účiost řízeého eletricého motoru v závislosti a romělivé oměré rychlosti ν a oměrém zatížeí m lze určit ze vztahu: (, m P ( ν, m P m ( ν, m + P( ν, m P m + P ( ν + P ( m ν P Cu Z uvedeých vztahů ro účiost u řízeého motoru je zřejmé, že maximálí hodoty účiosti, rové řibližě jmeovité účiosti, dosáhe motor ři slěí dvou odmíe - jmeovitém zatížeí a jmeovité rychlosti. V říadech, dy jeda z těchto veliči bude ostatí a meší ež maximálí hodota dojde olesu účiosti motoru. Pro zadaé odmíy (ostatí rychlost ebo zatížeí lze určit maximálí hodotu účiosti a hodotu závislé veličiy ro teto extrém. Graficé růběhy účiosti motoru a jeho rovozích arametrech mot mot m.5 m.8 m.5 m.8 m,, m, ν ν Jestliže lze zatížeí v závislosti a rychlosti defiovat jao charateristicé či tyové vyjádřeé exoetem x dle vztahu P x ( ν + P ( P P a oměrý momet zátěže z rovice (6 lze vyjádřit jao: m ( ν P x ( ν x P + P, de : P - momet zátěže ři ulové rychlosti x- exoet vyjadřující závislost zatížeí a rychlostí (,,.5, V tomto říadě lze účiost řízeého eletricého motoru vyjádřit v závislosti a oměré rychlosti ν a a hodotě exoetu x. (, x ν P m ( ν, x P m ( ν, x + P( ν, x ( Cu de P ν, x P ( ν + P m ( ν, x x.8,.6 x P x.4 x, ν

Měření na trojfázovém transformátoru naprázdno a nakrátko.

Měření na trojfázovém transformátoru naprázdno a nakrátko. Úol: Měřeí a trojfázovém trasformátoru aprázdo a aráto. 1. Změřte a areslete charateristiy aprázdo trojfázového trasformátoru 2,, P, cos = f ( 1) v rozmezí 4-1 V. Zdůvoděte průběh charateristi 2 = f (

Více

ASYNCHRONNÍ STROJE. Obsah

ASYNCHRONNÍ STROJE. Obsah VŠB TU Ostrava Fakulta elektrotechiky a iformatiky Katedra obecé elektrotechiky ASYCHROÍ STROJE Obsah. Výzam a oužití asychroích motorů 2. rici čiosti asychroího motoru 3. Rozděleí asychroích motorů 4.

Více

Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava

Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava Katedra elektrotechiky Fakulta elektrotechiky a iformatiky, VŠB - TU Ostrava 10. STŘÍDAVÉ STROJE Obsah 1. Asychroí stroje 1. Výzam a použití asychroích strojů 1.2 Pricip čiosti a provedeí asychroího motoru.

Více

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže Regulace apětí v ES Základí pricip regulace v ES si ukážeme a defiici statických charakteristik zátěže Je zřejmé, že výko odebíraý spotřebitelem je závislý a frekveci a apětí a přípojicích spotřebitelů.

Více

Základy elektrických pohonů, oteplování,ochlazování motorů

Základy elektrických pohonů, oteplování,ochlazování motorů Základy elektrických ohonů, otelování,ochlazování motorů Určeno ro studenty kombinované formy FS, ředmětu Elektrotechnika II an Dudek únor 2007 Elektrický ohon Definice (dle ČSN 34 5170): Elektrický ohon

Více

Základní teoretický aparát a další potřebné znalosti pro úspěšné studium na strojní fakultě a k řešení technických problémů

Základní teoretický aparát a další potřebné znalosti pro úspěšné studium na strojní fakultě a k řešení technických problémů Základí teoretický aarát a další otřebé zalosti ro úsěšé studium a strojí fakultě a k řešeí techických roblémů MATEMATIKA: logické uvažováí, matematické ástroje - elemetárí matematika (algebra, geometrie,

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

HYDROMECHANICKÉ PROCESY. Doprava tekutin Čerpadla a kompresory (přednáška) Doc. Ing. Tomáš Jirout, Ph.D.

HYDROMECHANICKÉ PROCESY. Doprava tekutin Čerpadla a kompresory (přednáška) Doc. Ing. Tomáš Jirout, Ph.D. HROMECHANICKÉ PROCES orava tekti Čeradla a komresory (ředáška) oc. Ig. Tomáš Jirot, Ph.. (e-mail: Tomas.Jirot@fs.cvt.cz, tel.: 435 68) ČERPALA Základy teorie čeradel Základí rozděleí čeradel Hydrostatická

Více

6. Vliv způsobu provozu uzlu transformátoru na zemní poruchy

6. Vliv způsobu provozu uzlu transformátoru na zemní poruchy 6. Vliv zůsobu rovozu uzlu transformátoru na zemní oruchy Zemní oruchou se rozumí sojení jedné nebo více fází se zemí. Zemní orucha může být zůsobena řeskokem na izolátoru, růrazem evné izolace, ádem řetrženého

Více

Funkční měniče. A. Na předloženém aproximačním funkčním měniči s operačním zesilovačem realizujícím funkci danou tabulkou:

Funkční měniče. A. Na předloženém aproximačním funkčním měniči s operačním zesilovačem realizujícím funkci danou tabulkou: Funční měniče. Zadání: A. Na předloženém aproximačním funčním měniči s operačním zesilovačem realizujícím funci danou tabulou: proveďte: U / V / V a) pomocí oscilosopu měnič nastavte b) změřte na něm jeho

Více

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Středí hodoty Artmetcý průměr vážeý Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Zatím jsme počítal s tím, že četost ve vztahu pro vážeý artmetcý průměr byla přrozeá čísla Četost mohou

Více

Obr. Z1 Schéma tlačné stanice

Obr. Z1 Schéma tlačné stanice Části a mechaismy strojů III Předmět : 34750/0 Části a mechaismy strojů III Cvičí : Doc Ig Jiří Havlík, PhD Ročík : avazující Školí rok : 00 0 Semestr : zimí Zadáí cvičeí Navrhěte a kostrukčě zracujte

Více

3. Decibelové veličiny v akustice, kmitočtová pásma

3. Decibelové veličiny v akustice, kmitočtová pásma 3. Decibelové veličiy v akustice, kmitočtová ásma V ředchozí kaitole byly defiováy základí akustické veličiy, jako ař. akustický výko, akustický tlak a itezita zvuku. Tyto veličiy ve v raxi měí o moho

Více

elektrické filtry Jiří Petržela základní pojmy

elektrické filtry Jiří Petržela základní pojmy Jiří Petržela základí ojmy základí ojmy z oblati elektrických filtrů základí ojmy elektrický filtr je lieárí dvojbra, který bez útlumu roouští je určité kmitočtové ložky, které obahuje vtuí igál rouštěé

Více

Měřící technika - MT úvod

Měřící technika - MT úvod Měřící techika - MT úvod Historie Už Galileo Galilei zavádí vědecký přístup k měřeí. Jeho výrok Měřit vše, co je měřitelé a co eí měřitelým učiit platí stále. - jedotá soustava jedotek fyz. veliči - símače

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

Dopravní stroje a zařízení odborný základ - 2015

Dopravní stroje a zařízení odborný základ - 2015 Dopraví stroje a zařízeí odbor zálad - 05 Idetifiačí číslo: Počet otáze: 5 Čas : 60 miut Počet bodů Hodoceí Bodové hodoceí otáze: otáza body 0 0 3 0 0 5 0 OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdch

Více

Aplikace marginálních nákladů. Oceňování ztrát v distribučním rozvodu

Aplikace marginálních nákladů. Oceňování ztrát v distribučním rozvodu Apliace margiálích áladů Oceňováí ztrát v distribučím rozvodu Učebí text předmětu MES Doc. Ig. J. Vastl, CSc. Celové ročí álady a ztráty N P ( T ) z z sj z wj Kč de N z celové ročí álady a ztráty *Kč+

Více

Měření na třífázovém asynchronním motoru

Měření na třífázovém asynchronním motoru 15.1 Zadáí 15 Měřeí a zatěžovaém třífázovém asychroím motoru a) Změřte otáčky, odebíraý proud, fázový čiý výko, účiík a fázová apětí a 3-fázovém asychroím motoru apájeém z třífázové sítě 3 x 50 V při běhu

Více

Í é čá í á ř í á ó ř é ď ň í á é č é ř á í á á á í í á á á á ď á é č á ó ů č á í ů č é é í Í é ů é ř í í ů í ď é ř é é í é í é é é á č é á á á é í ů í é á é Á Í Š Í É é á é í íčí ů Í ů é á á í ř é á é

Více

Jihočeská univerzita v Českých Budějovicích. Pedagogická fakulta PRAVDĚPODOBNOSTNÍ MODELY KOLEM NÁS BAKALÁŘSKÁ PRÁCE. Radka Glücksmannová

Jihočeská univerzita v Českých Budějovicích. Pedagogická fakulta PRAVDĚPODOBNOSTNÍ MODELY KOLEM NÁS BAKALÁŘSKÁ PRÁCE. Radka Glücksmannová Jihočesá uiverzita v Česých Budějovicích Pedagogicá faulta PRAVDĚPODOBNOSTNÍ MODELY KOLEM NÁS BAKALÁŘSKÁ PRÁCE Rada Glücsmaová Česé Budějovice, rosiec 7 Na tomto místě bych ráda oděovala vedoucímu baalářsé

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 Entalická bilance výměníků tela Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

Spalovací turbíny, elektromotory

Spalovací turbíny, elektromotory KAEDRA VOZIDEL A OORŮ Salovací turbíy, eletromotory #/ Karel Páv Salovací turbía / 5 79 Joh Barber rví atet (salováí ři ostatím objemu s výbuchem) 90 Fra Whittle - turbovrtulová lyová turbia v letectví

Více

Elektrické přístroje. Přechodné děje při vypínání

Elektrické přístroje. Přechodné děje při vypínání VŠB - Techická uiverzita Ostrava Fakulta elektrotechiky a iformatiky Katedra elektrických strojů a řístrojů Předmět: Elektrické řístroje Protokol č.5 Přechodé děje ři vyíáí Skuia: Datum: Vyracoval: - -

Více

Ě Á ČÁ Úř ě é úř š é š ě Ž ř ř Í ř ě é Ž Ž é ě ř é ř é ě é éř ě š š ě ě ř ř é ň ě š ň ž ř ě é é ž é é ř é ě é ě ř é ř ž ť ě é ř ě é ř š úř ú ř é ě š ě ě š ř ř é ě ě é ďě é úř ě ě ě ěř ž š Č úř é ž Ž š

Více

1 Regulace napětí. 2 Regulace napětí TRN ( OPF ) HRT ARN A S R U SRQ PRN. Jaroslav Doležal, Katedra elektroenergetiky ČVUT Praha

1 Regulace napětí. 2 Regulace napětí TRN ( OPF ) HRT ARN A S R U SRQ PRN. Jaroslav Doležal, Katedra elektroenergetiky ČVUT Praha 5% 5% Reglace naětí Reglace naětí PŘENOSOVÁ SOUSAVA erciární reglace U/Q ASRU systém sendární reglace U/Q PIONÍ UZY U i U i REF RN ( OPF ) EMS SCADA ESIMACE U REF PVE ' ARN A S R U HR ' Reglace U v ilotním

Více

cenný papír, jehož koupí si investor zajistí předem definované peněžní toky, které obdrží v budoucnosti

cenný papír, jehož koupí si investor zajistí předem definované peněžní toky, které obdrží v budoucnosti DLUHOPISY ceý papír, jehož koupí si ivestor zajistí předem defiovaé peěží toky, které obdrží v budoucosti podle doby splatosti ~ 1 rok dlouhodobé dluhopisy Pokladičí poukázky

Více

Obr. V1.1: Schéma přenosu výkonu hnacího vozidla.

Obr. V1.1: Schéma přenosu výkonu hnacího vozidla. říklad 1 ro dvounáravové hnací kolejové vozidlo motorové trakce s mechanickým řenosem výkonu určené následujícími arametry určete moment hnacích nárav, tažnou sílu na obvodu kol F O. a rychlost ři maximálním

Více

Regulace frekvence a velikosti napětí Řízení je spojeno s dodávkou a přenosem činného a jalového výkonu v soustavě.

Regulace frekvence a velikosti napětí Řízení je spojeno s dodávkou a přenosem činného a jalového výkonu v soustavě. 18. Řízeí elektrizačí soustavy ES je spojeí paralelě pracujících elektráre, přeosových a rozvodých sítí se spotřebiči. Provoz je optimálě spolehlivá hospodárá dodávka kvalití elektrické eergie. Stěžejími

Více

0. 4b) 4) Je dán úhel 3450. Urči jeho základní velikost a převeď ji na radiány. 2b) Jasný Q Q ZK T D ZNÁMKA. 1. pololetí 2 3 1 2 2 3 5 2 3 1 1

0. 4b) 4) Je dán úhel 3450. Urči jeho základní velikost a převeď ji na radiány. 2b) Jasný Q Q ZK T D ZNÁMKA. 1. pololetí 2 3 1 2 2 3 5 2 3 1 1 ) Urči záladí veliost úhlu v radiáech, víš-li, že platí: a) si cos 0. b) cos, Opravá zouša z matematiy 3SD (druhé pololetí) c) cotg 3 5b) ) Na možiě R řeš rovici cos cos 0. 4b) 3) Vzdáleost bodů AB elze

Více

Základní vlastnosti polovodičů

Základní vlastnosti polovodičů Základí vlastosti olovodičů Volé osiče áboje - elektroy -e m, - díry +e m V termodyamické rovováze latí Kocetrace osičů je možo vyjádřit omocí Fermiho eergie W F dotace doory ty N dotace akcetory ty P

Více

4.5.9 Vznik střídavého proudu

4.5.9 Vznik střídavého proudu 4.5.9 Vzik střídavého proudu Předpoklady: 4508 Miulá hodia: Pokud se v uzavřeém závitu měí magetický idukčí tok, idukuje se v ěm elektrické apětí =. Př. 1: Vodorově orietovaá smyčka se pohybuje rovoměrě

Více

Í ě ě ě Č Ů ě ž Ú ě Ů ě š š ě Ů ť Š Ů ž ž ě ě ě ě ě š š Ů žů š Č Ó ě ž ě ě ě š ě ť ě ě ě ě š ž ě š ž ě Ů ě š Ů ě ě ť ě ž ž ž ě ě š ť ě ť ě ě Č š ě š ť ě ě š Ú ž š ž ě ě Í ě ě ž ě ž ž ě š ě ž ě š ě Č ě

Více

ř ň ČÚ Č š É ř Č Č ř ř ť ý ý ž é ř š š ý ý š ý š Č Č ř ů ý ů ý Č ž ř ů é ř ý šř ř š ý ý ř ř Š Ý Č ř ř Ě Š ž š Ň Č š š é š é Č š é é é Č Í ž é é é š Ý Ě Ý É ň Í é Č é ž é š Č Ž ó š Ř é é ť š Č š ž ž Í ž

Více

2.5.10 Přímá úměrnost

2.5.10 Přímá úměrnost 2.5.10 Přímá úměrost Předpoklady: 020508 Př. 1: 1 kwh hodia elektrické eergie stojí typicky 4,50 Kč. Doplň do tabulky kolik Kč stojí růzá možství objedaé elektrické eergie. Zkus v tabulce ajít zajímavé

Více

PRŮMYSLOVÉ PROCESY. Přenos hybnosti III Doprava tekutin čerpadla a kompresory

PRŮMYSLOVÉ PROCESY. Přenos hybnosti III Doprava tekutin čerpadla a kompresory PRŮMYSLOVÉ PROCESY Přeos hybosti III orava tekti čeradla a komresory Prof. Ig. Tomáš Jirot, Ph.. (e-mail: Tomas.Jirot@fs.cvt.cz, tel.: 435 68) ČERPALA Základy teorie čeradel Základí rozděleí čeradel Hydrostatická

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228)

Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228) Stavebí statka - vyučující Dooručeá lteratura Ig. Vladmíra chalcová, h.d. Katedra stavebí mechaky (228) místost: LH 47/ tel.: (59 732) 348 e mal: vladmra.mchalcova@vsb.c www: htt://fast.vsb.c/mchalcova

Více

SIMULACE ŘÍZENÍ HYDRAULICKÉHO POHONU KOMBINACÍ VENTILŮ HYDRAULICKÝCH PŮLMŮSTKŮ

SIMULACE ŘÍZENÍ HYDRAULICKÉHO POHONU KOMBINACÍ VENTILŮ HYDRAULICKÝCH PŮLMŮSTKŮ IMULCE ŘÍZENÍ HYDRULICÉHO POHONU OMINCÍ VENTILŮ HYDRULICÝCH PŮLMŮTŮ Ing. oňaří Petr VŠ-Technicá univerzita Ostrava faulta strojní atedra automatizační techniy a řízení bstrat This aer deal with detail

Více

TŘETÍ HLOŽANKA DUŠAN 29.4.2013. Název zpracovaného celku: TŘECÍ PŘEVODY TŘECÍ PŘEVODY

TŘETÍ HLOŽANKA DUŠAN 29.4.2013. Název zpracovaného celku: TŘECÍ PŘEVODY TŘECÍ PŘEVODY Předmět: Ročík: Vytvořil: Datum: STAVBA A PROVOZ STROJŮ TŘETÍ HLOŽANKA DUŠAN 9.4.03 Název zpracovaého celku: TŘECÍ PŘEVODY A. Pricip, účel, vlastosti TŘECÍ PŘEVODY Obecý popis převodů: Převody jsou mechaismy

Více

3.4.7 Můžeme ušetřit práci?

3.4.7 Můžeme ušetřit práci? 3.4.7 Můžeme ušetřit práci? Předpolady: 030404 Pomůcy: Pedaoicá pozáma: Hodia je oraizováa jao supiová práce. Třída je rozdělea a čtyřčleé supiy, aždý ze čleů má jedu možost ozultovat se mou ebo mě předat

Více

Ž é ř é ř é ř é č č š ě š ě č ř úř ř úř é é ě ě Í ř č ř ř ěž ě ř č é ř é ř č é ě ř ě č éř Ž é ě ě ř ř ě š ě č Ť é Í ě Ž ř é č ř é ř é Ž ě ě Ž ř é č Č é ě č Č é Ž č Č é é č é ě ř ň č é ř ř č ň č Ť é Ť ů

Více

Výpočet planetových soukolí pomocí maticových metod

Výpočet planetových soukolí pomocí maticových metod Česé Vysoé Učeí Techcé v ze Fult stojí Techcá 4, h 6, 166 07 Výočet letových souolí omocí mtcových metod Výzumá záv áce byl odoová Výzumým cetem Josef Bož Záv č.: Z 02-07 Auto: Gbel Achteová Se, 2002 1

Více

2. Definice plazmatu, základní charakteristiky plazmatu

2. Definice plazmatu, základní charakteristiky plazmatu 2. efiice plazmatu, základí charakteristiky plazmatu efiice plazmatu Plazma bývá obyčejě ozačováo za čtvrté skupeství hmoty. Pokud zahříváme pevou látku, dojde k jejímu roztaveí, při dalším zahříváí se

Více

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu 1. Defiice elektrického pohou Pod pojmem elektrický poho rozumíme soubor elektromechaických vazeb a vztahů mezi pracovím mechaismem a elektromechaickou soustavou. Mezi základí tři části elektrického pohou

Více

Návod pro výpočet základních induktorů s jádrem na síťové frekvenci pro obvody výkonové elektroniky.

Návod pro výpočet základních induktorů s jádrem na síťové frekvenci pro obvody výkonové elektroniky. Návod pro cvičeí předmětu Výkoová elektroika Návod pro výpočet základích iduktorů s jádrem a síťové frekveci pro obvody výkoové elektroiky. Úvod V obvodech výkoové elektroiky je možé většiu prvků vyrobit

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

FINANČNÍ MATEMATIKA. Jarmila Radová KBP VŠE Praha

FINANČNÍ MATEMATIKA. Jarmila Radová KBP VŠE Praha FINANČNÍ MATEMATIA Jarmila Radová BP VŠE Praha Osova Jedoduché úročeí Diskotováí krátkodobé ceé papíry Metody vedeí a výpočtu úroku z běžého účtu Skoto Složeé úrokováí Budoucí hodota auity spořeí Současá

Více

Š é ě ěř é š Š ř ř é ř é ěř é ř ě ř ě é ř ě ě Ú ř ě é ř ť ý é ř ě ř ě úř úř ý é ě ř ď Ž ř š é ř é ř ď ý ý ě é ěř ěř š Š š ěř š Š ď Ž é ě ř é ě ý Ž ř ď ě ě ě ď ě é ě ě ě ě ď ě ě é ě ě é ř ý ě Ú Í é é ě

Více

KABELY. Pro drátové okruhy (za drát se považuje i světlovodné vlákno): metalické kabely optické kabely

KABELY. Pro drátové okruhy (za drát se považuje i světlovodné vlákno): metalické kabely optické kabely KABELY Pro drátové okruhy (za drát se považuje i světlovodé vláko): metalické kabely optické kabely Metalické kabely: osou veličiou je elektrické apětí ebo proud obvykle se jedá o vysokofrekvečí přeos

Více

Č É Č Í Š ŘÁ É ÁŘ É É Í Š ŘÁ É ÁŘ É É Ú Í š ř ř Č é Č Č ř ř ý š š ů ý š š ř ů é Č Ř ý Č ý Ž é Ž ř Č ň š é ý ů ř ň úř Č ý ň é ř é é ň Č ř Ž ň ú Č é ř Ž ň ú ů ý Č ř Ž š ý Ž ý ř ů Ž ž ý š ý ý é é é ý š š

Více

Ř š ý Ť Ť Ť ř š ř š ů ž ó ů ó ó óř ý ý Š Š ř Ú ř ó ů ž ář Ú ů ž ú ý ý ž ů š ó ý ó á Ž ó š ú ý ž ó ú š ó š ú ý ř ú ň ó ú ý ů ú ů ý Ý š úř ř ó ý ř ó ř á š á Žá ř ř řá á ý Žá ž á ř ř š ž ň á ý á ý ž ž ř á

Více

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13). 37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

ZÁKLADNÍ POJMY OPTIKY

ZÁKLADNÍ POJMY OPTIKY Záš pojmy A. Popiš aspoň jede fyzikálí experimet měřeí rychlosti světla. - viz apříklad Michelsoův, Fizeaův, Roemerův pokus. Defiuj a popiš fyzikálí veličiu idex lomu. - je to bezrozměrá fyzikálí veličia

Více

ý Í ť č í ý úř í á ěř ý í ří í Č í ě č á Č í ě č áš ý á ě í Č á í Č á á ě í Č á á á í š č á ž í á ě á ýš č í ří š ú ýš č ě čá č ú í š š í ů čá č í á í ří ýš č á á á í íí í Ž í á í ž í áš á á ž ý ě í ý

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko

Více

Kopie z www.dschuchlik.cz

Kopie z www.dschuchlik.cz ó š ó Ň Ť ú š ú š š š ř Ú ó ú ň ú š řš ř řš ř ú ú ú ú ř ú ň ů ů š ň ú š řš ú ř ó š Ý Á ů ú úř š ň š ú š š š š ťť ř ň ů ř ř ř š ů ů ů řš ř ú ú ř ň ř ů ř ř ú ř ř ú ú ř ř ú ří š š ř ů ú Ú ř ú ÚČ ú ú ú š ů

Více

Doc. Ing. Dagmar Blatná, CSc.

Doc. Ing. Dagmar Blatná, CSc. PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj

Více

Ú Í Á É Í Á Í Ů Ž ř Á É Í ř Ú ř Í ů ř ú ú ú ů ř ú ů ů Ú Í Á É Í Á Í Ů Ž ř ř ř Í Ú ů Ú Í š ň ř ů ř ň ř Ú ř Ú š ů ů řš řú řš ú Í ú Ú ú Ú ů ú ů Ú ů Ú Ú Í Á É Í Á Í ů Ž ř Í ú úč ř ň ř ň Í ú ř ř Ú Í ř ř ř ú

Více

Třetí Dušan Hložanka 16. 12. 2013. Název zpracovaného celku: Řetězové převody. Řetězové převody

Třetí Dušan Hložanka 16. 12. 2013. Název zpracovaného celku: Řetězové převody. Řetězové převody Předmět: Ročník: Vytvořil: Datum: Stavba a rovoz strojů Třetí Dušan Hložanka 6.. 03 Název zracovaného celku: Řetězové řevody Řetězové řevody A. Pois řevodů Převody jsou mechanismy s tuhými členy, které

Více

Í ě Ě Á Í ú ř ě ů ď ř ď ř ř ě ě š ř ů ř ě ďě ř ů ř š ř ě ř ř ď ď ř ř ě ě š ř ů ř ř ř ě ě ů š ů ě Í š ó ě ř ř ř ř ě Ž ó ř š ř š ř ř ě ř ě ú ů š ř ú ů ř ě ř š ř ř ě ř ů ř ř ě ř š Č ě Š ř ř ě Č É Ě Ě Á ě

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

Interakce světla s prostředím

Interakce světla s prostředím Iterakce světla s prostředím světlo dopadající rozptyl absorpce světlo odražeé světlo prošlé prostředím ODRAZ A LOM The Light Fatastic, kap. 2 Light rays ad Huyges pricip, str. 31 Roviá vla E = E 0 cos

Více

ě ě ú ů ú ě á ú á á ú ú á ú Ů ř Ů ú á ť úč á á á ě á ě ý ý ř ě ú ú Ú á á ý ů ú ž ú ř ú ů ě ť ů ř ě ů ě ě á ů ů ÚČ Ů úř á Ú ř ář ý ú ř ř š á ú á ú ě ú ů ě á á ě ř á ú á ř š á ř ů ý ů ě á ú ř á á á ě ú ů

Více

Č áš ž á č Í Á ť á š Ť á ů á ů š á á Č ČŠ ž ů ř ř ě á ě čá š á ň ň č ěž á á ď ě á č ň ě š ř š Š Ž ŘŤ č ě é č Ť š á ř šš é é ě á á š ě ě š ř ů á š č č š ě á á ě á á š é š ě ž ů ů š ř ď ě á áď š ě á ě á

Více

ě ě š é Č ě ě š Š š Č ú ě ě ě ě ó š ě ě š é ě é š ě é é é ě é é ěž ě Ž ě ě ě ů ě š ů ů é Ž ňů ňů Ž Ž é ňů ů ď é ů ď é ů Ý ď é é ňů ňů ě ů ňů ů ů ě é ňů Ý ě Ý ď é é š Ž š š Ž ě Ž ů ě š ě Ž Ž š ě é Ž Ž š

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

Přehled trhu snímačů teploty do průmyslového prostředí

Přehled trhu snímačů teploty do průmyslového prostředí símače teploty Přehled trhu símačů teploty do průmyslového prostředí Přehled trhu símačů teploty a str. 36 a 37 představuje v přehledé tabulce abídku símačů teploty do průmyslového prostředí, které jsou

Více

Nejistoty v mìøení II: nejistoty pøímých mìøení

Nejistoty v mìøení II: nejistoty pøímých mìøení V úvodí èásti [] volého cylu èláù yl uvede struèý pøehled proletiy ejistot v ìøeí, pøilíže historicý vývoj v této olsti zèey dùvody výhody používáí souèsé odifice v širších souvislostech eziárodí etrologie

Více

VLIV ELEKTROMAGNETICKÉ KOMPATIBILITY NA BEZPEČNOST LETOVÉHO PROVOZU INFLUENCE OF THE ELECTROMAGNETIC COMPATIBILITY ON THE AIR TRAFFIC SAFETY

VLIV ELEKTROMAGNETICKÉ KOMPATIBILITY NA BEZPEČNOST LETOVÉHO PROVOZU INFLUENCE OF THE ELECTROMAGNETIC COMPATIBILITY ON THE AIR TRAFFIC SAFETY 348 roceedings o the Conerence "Modern Saety Technologies in Transortation - MOSATT 005" VLIV ELETROMAGNETICÉ OMATIBILITY NA BEZEČNOST LETOVÉHO ROVOZU INFLUENCE OF THE ELECTROMAGNETIC COMATIBILITY ON THE

Více

Í š á Ž ě žá š é ř ř ě á š á š á á á á ř ůž ř á á á č ř á č ř š á ř šš é é ďě á á š á ě ě š ř ů é á ě ř š é á á á á ě á š ů č č é ě á ž é é á ě žš ž á

Í š á Ž ě žá š é ř ř ě á š á š á á á á ř ůž ř á á á č ř á č ř š á ř šš é é ďě á á š á ě ě š ř ů é á ě ř š é á á á á ě á š ů č č é ě á ž é é á ě žš ž á ě Ý á ě ř Ť ř ě é ě č á á č Í ě ě š ř ů á č č ú č ů ě ě š ř ů á ě ř š á ř šš é é ďě á á š á ě ě š ř ů á á ě č Ú á č č Í á ě úř á ě ř ě č á č č ř ě é á á Š á ř úč ř ě č ř ě é úč ř ě á Ť š ě č ů Ť š á ě

Více

5 DISKRÉTNÍ ROZDĚLENÍ PRAVDĚPODOBNOSTI. Čas ke studiu kapitoly: 120 minut. Cíl: Po prostudování tohoto odstavce budete umět:

5 DISKRÉTNÍ ROZDĚLENÍ PRAVDĚPODOBNOSTI. Čas ke studiu kapitoly: 120 minut. Cíl: Po prostudování tohoto odstavce budete umět: 5 DISKRÉTNÍ ROZDĚLENÍ RAVDĚODOBNOSTI Čas e sudiu aioly: 0 miu Cíl: o rosudováí ohoo odsavce budee umě: charaerizova hyergeomericé rozděleí charaerizova Beroulliho ousy a z ich odvozeé jedolivé yy disréích

Více

á ř č á é Ž ř ů á á ř á Čá Ž ř á á é ž ř á á Š ý é ř é ř á ř Š ář ř ž á ř ý ž á ř á ý ú ů á ř ý á á ú ň ý ř č á č ř Ž á á Žá ý ý ř ý ř č ú ř ůž á žá ý

á ř č á é Ž ř ů á á ř á Čá Ž ř á á é ž ř á á Š ý é ř é ř á ř Š ář ř ž á ř ý ž á ř á ý ú ů á ř ý á á ú ň ý ř č á č ř Ž á á Žá ý ý ř ý ř č ú ř ůž á žá ý á á á é áí ř ý Čá áš ř ý ý á Š ář á Šá á á č ů á á ř ř éč č á č Č á ž á ř ů áš é á ž á Í á ř é úř Ž š ř á š úč á ř Ž é ú ů é č č é á ž á řá á á áš š úř ý á á á ý á Ž š é á á ř ů á á ř á ú ů é á Ž é ř á

Více

É ú ž ž č ž ů ý ů ř ů ý ň ú ň č ůč Ž ř č ý ů Í ý č Ž ř č ř č ší ý ů ř š š ů ř Ž š ů č č ň Í ý ř š š č Ž š š ý č Ž č š ú Ž ř Š Ž Í ů ř č š č č ůč Ž ř Í č č ý Í ř ý č š Ž Š š Ž ř č Í ý úč ý ý ř š ý š ř Ž

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Opakování. Metody hodnocení efektivnosti investic. Finanční model. Pravidla pro sestavení CF. Investiční fáze FINANČNÍ MODEL INVESTIČNÍHO ZÁMĚRU

Opakování. Metody hodnocení efektivnosti investic. Finanční model. Pravidla pro sestavení CF. Investiční fáze FINANČNÍ MODEL INVESTIČNÍHO ZÁMĚRU Metody hodoceí efektvost vestc Opakováí Typy vazeb v uzlové síťové grafu K čeu slouží stude využtelost Fačí odel vestčího záěru Časová hodota peěz Metody vyhodoceí Napšte strukturu propočtu Fačí odel FINANČNÍ

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí

Více

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman ASYNCHRONNÍ STROJE Obsah. Pricip čiosti asychroího motoru. Náhradí schéma asychroího motoru. Výko a momet asychroího motoru 4. Spouštěí trojfázových asychroích motorů 5. Řízeí otáček asychroích motorů

Více

Směrnice 1/2011 Statistické vyhodnocování dat, verze 4 Verze 4 je shodná se Směrnicí 1/2011 verze 3, pouze byla rozšířena o robustní analýzu

Směrnice 1/2011 Statistické vyhodnocování dat, verze 4 Verze 4 je shodná se Směrnicí 1/2011 verze 3, pouze byla rozšířena o robustní analýzu Směrce /0 Stattcké vyhodocováí dat, verze 4 Verze 4 e hodá e Směrcí /0 verze 3, ouze byla rozšířea o robutí aalýzu. Stattcké metody ro zkoušeí zůoblot Cílem tattcké aalýzy výledků zkoušek ř zkouškách zůoblot

Více

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1 Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více

Kopie z www.dsholding.cz

Kopie z www.dsholding.cz Ú š ř ú š ÚČ ú ř ř ú ř ú ú ú ú ú ú ů ň ů ř ů ř ů ř ů ů ř ú ů ň ň ů ú ř ů ň ň ú ř ů ú ú ň ú ú ň ř š ř ú ú ů ú ů ů ů šť ú ů ú ř ř ú ú ú š ř ů ú ú š š š š ú ú ú šš Č ú ů ů ú šš ú š šť ř ú ů Ý ú ů ů ů ů Ú

Více

Ř É Á ý ř ř ý č ř ě ř ů ř č ř ý ř ř č š ň ú Ó Á Í Ó ú Ú Č Š ň Č ě ě ě ě ř ý Š Š ř ý ě ř ř Š č ůž č Ž Č ůž ý š ý Ž Č ě ř Í ř ř ě č ě Ž ý Ž Č ř ý č ý ě ů č ě Š ě Š ř Í ů Č ů Í ý ě ň č Ž ěř č Ž ý Č ý č ě

Více

Č Č ř ů ě ř Í ř ú ů ě ů ů ů ě ě ž ř ř ě ř Ž ě ě ě ě š ů ř ř ě ř ě ř ě ě ě ě ř šř ů ř ř ř ě Ž š šš ř ž ě š Č ě Ž šř ě š Ž š ů ů ě ů ě ě ů Č ř ř Ž ě ě ř ř Š Ž ň ě ůš Ř ů Č ř ř úř ř šř Š ř ě Ú ř ě ř Ú ř Ž

Více

ú é ě ě ú ě š ě š š Š Í Č ě ú é ě ď ú Í ě é é ě ě ě ť ě ú ď ď ě ě Ý ě Ú š ě Ú š ď ď ěž é ú é ě ěž é ú é Č é é ě ě Ť ó š ď é é ěň ě é ě ú ě Č ě ě ě ě ě Ž ď ě š ď ž é ž ě Ž Ú é ě ď ě ě ž ě é ď š ú ě é ú

Více

Vážeí zákazíci dovolujeme si Vás upozorit že a tuto ukázku kihy se vztahují autorská práva tzv. copyright. To zameá že ukázka má sloužit výhradì pro osobí potøebu poteciálího kupujícího (aby èteáø vidìl

Více

É á ž ž ý Ů Ů ý Ů ř ž š ě á ň č ř ž ý Ů Ž É Á á á š á ř ú ř Č ě š ř š ň ů ě ěž ý ů á ří ář č ě Ů ář Á á ř č á á Č á ě ÍÁ á č ř áž Š ě á ě á á á Š ř řá ě ě ý ř á á á ý ě ě Ž á ž ý č á á ý ů á č č ě č á

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 2. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ..07/..00/08.000 VZDUCHOTECHNIKA Ig. PAVEL ŽITEK TENTO

Více

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu. 2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se

Více

Geometrické uspořádání koleje

Geometrické uspořádání koleje Geoetricé uspořádáí oeje rají přechodice Otto Páše, doc. Ig. Ph.D. Ústav žeezičích ostrucí a staveb Tato prezetace ba vtvoře pro studijí úče studetů. ročíu baaářsého studia oboru ostruce a dopraví stavb

Více

Teplovzdušné motory motory budoucnosti

Teplovzdušné motory motory budoucnosti Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní Katedra energetiky Telovzdušné motory motory budoucnosti Text byl vyracován s odorou rojektu CZ.1.07/1.1.00/08.0010 Inovace odborného vzdělávání

Více

ě Á Á é é ě ě ě ú é é é ě é é ď ď ď š š Č Á ě ú Á ď š ě Č ě š ěž ě é ě ě ě ě ě ě Č Á ě Á é ú Ž é š ě š š é Ž ě é š é Š ť Ž ě Č Á ú Á Ť é ě é š ě ě š š ď ď Č é š š Č ě ě ú ě ú Ť é ě š ě ě š ě š ě ě ú ě

Více

č Ť ÍŘÁ Ť ř š ě á Ú ř ě ž á ě ž á ý ž ř á ž ž á č ě ý Í á ě š á ě č á á č ř ť ž ď šť ň ó č č č ě ý řá á ě š ě Á ť Í á Ťá ž ř ěř ý ž áď ů ě ů ě ř š ď ě á ě ř ý š á ě ý ž ř ě á š ě ý š ž á ů č ě š ž ě š

Více

ř č ě ě š ř ů č Č Č ř ř š ý é ě ý č ř é é é ř ž Ž é ř ý ě ě š ř Č é č ú Č Č ř é é ř ž é Č ý ý ě ě č ř é ř é ř Č Č ř é ý Ú ř ě ř ě ě ž ú ž ě ů ř ě ě Ž ž č š ě ů ň ý é é ř ř ě ě Ž ů ž ů ř ň ý ě ů č š ě ě

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY

6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY 6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY Rozdleí áhodé veliiy je edis, terým defiujeme ravdodobost jev, jež lze touto áhodou veliiou osat. Záladím rozdleím oisujícím výbry bez vraceí je hyergeometricé

Více

ý ř ě Í ě ÍÍ ž ý ř ž Í ý é ž ý ý ž é ů ž ž ž é ž ě ě ž ě ě é ě ž š ů é ě ř ž ý Í Í ť ž ěř ě š ž é ě š ě ř é ř ě ý ž ě ř š š ě ř ě ý Í ý ů é š žš ě ž ě ř ž ě é é ě é ž é ž ž ě ě ě Í ý ů ří ř š Íř é ě é

Více