Budování automatických obchodních systémů

Rozměr: px
Začít zobrazení ze stránky:

Download "Budování automatických obchodních systémů"

Transkript

1 Budování automatických obchodních systémů Building automated trading systems Radek Vostřez Abstrakt Účelem tvorby každého obchodního systému je konzistentní ziskovost za akceptovatelného rizika. Mechanický přístup k obchodování na burze znamená, že pokyny k odeslání obchodních příkazů může generovat automatický obchodní systém (AOS). Takovéto systémy reprezentují soubor obchodních pravidel ve formě programu. Tento styl obchodování odstraňuje z rozhodovací situace lidský faktor použitím tvrdých metod. Cílem článku je na základě metodického postupu navrhnout ziskový AOS, který bude optimalizován genetickými algoritmy. Tyto výsledky budou využity jako základ pro návrh optimalizace zařazování a vyřazovaní AOS s ohledem na životnost AOS. Klíčová slova Automatický obchodní systém, křivka equity, profit faktor, genetické algoritmy, genetické programování Abstract The purpose of the creation of any trading system is a consistent profitability for acceptable risk. Mechanical approach to trading on a stock market means that instructions for sending trading orders may be generated by an automatic trading system (ATS). These systems represent business rules in a form of a program. This style of trading eliminates the human factor using the hard methods in decision-making situations. The aim of the article is based on a methodical process to design a profitable ATS, which will be optimized by genetic algorithms. These results will be used as a basis for optimization research to put into operation and discard ATS with respect to ATS life cycle. Key Words Automated trading system, equity curve, profit factor, genetic algorithms, genetic programming

2 ÚVOD Automatický obchodní systém je počítačový obchodní program, který automaticky obchoduje na burze. Tento obchodní systém (OS) se řadí mezi mechanické přístupy k obchodování. Oproti diskréčnímu přístupu k obchodování, kde trader obchoduje na základě subjektivního rozhodnutí, je mechanický přístup algoritmický (Durenard, 2013). Taleb (2011) popisuje prostředí trhů jako škálovatelné, ve kterém podléhá distribuce zisků mocninným zákonům. V tomto prostředí vítěz bere skoro vše. Tyto zákonitosti poprvé popsal Vilfredo Pareto. Jak uvádí Jankovsky (2007) a Plummer (2008), pravděpodobnost úspěchu obchodováním je velice malá. Připustíme-li, že distribuce zisků z obchodování na trhu podléhá mocninným zákonům, tak design AOS má klíčovou roli v ziskovosti. Obchoduje-li trader diskréčně, tak OS používá jako systém pro podporu rozhodování. U této strategie je obchodník nejvíce náchylný k negativním psychickým vlivům (Douglas, 2009). Důvodem chybování jsou emoce, které jsou motivující energií a podstatou naší existence (Wilber, 2000; Le Bon, 1994). Nejvýznamnějšími emocemi, z pohledu obchodování, jsou strach a chamtivost, které mohou zásadně pokřivovat logiku vnímání informací a zvyšovat pravděpodobnost chybného rozhodnutí. Obchodováním AOS se posouvá rozhodování obchodníka z rozhodování nad jednotlivými obchody do rozhodování nad chováním AOS jako celku (Prado, 2008). Základním předpokladem úspěšného AOS jsou kvalitní vstupní data, z nichž je AOS budován. Možnosti jak navrhnout AOS jsou různé, např. vyhledávání informací z textu, aplikací neuronových sítí, evolučních algoritmů, fuzzy logiky aj. (Deboeck, 1994; Jankovsky, 2007; Mitchel, 2002; Mitsuo, 1997; Prado, 2008). METODY Genetické algoritmy Genetické algoritmy (GA) jsou stochastické optimalizační metody založené na darwinovském principu evoluce. Genetické algoritmy se zařazují mezi hlavní metodologie evolučních algoritmů. Tuto metodu představil v polovině 70. let J. Holland (Holland 1992). Cílem genetických algoritmů je napodobit přírodní procesy. Původními kořeny, z nichž vznikla celá oblast evolučních algoritmů, je datována do roku 1859, kdy Charles Darwin poprvé publikoval svoji knihu O vzniku druhů přirozeným výběrem čili zachováním vhodných odrůd v boji o život. Darwinova myšlenka, že populace živočichů a rostlin se vyvíjela po mnoho generací podle principu přirozeného výběru a přežití těch nejschopnějších (Mitsuo 1997). Hledání optimálního (nebo alespoň dostatečně vyhovujícího) řešení probíhá formou soutěže v rámci populace, která postupně konverguje k řešení. K tomu, aby bylo možné posoudit, kteří členové populace mají větší šanci podílet se na dalším vývoji hledaného řešení, se používá pojem fitness. Fitness vyjadřuje ohodnocení míry kvality, vhodnosti, síly či reprodukční schopnosti individua. Jedinci s lepším ohodnocením (vyšší hodnotou fitness) mají přirozeně větší šanci přežít déle a podílet se na vytváření následující generace. Jedinec (fenotyp) je reprezentován chromozomem (genotyp). Genotyp se dále dělí na jednotlivé geny, které jsou lineárně uspořádány, tudíž i-tý gen dvou chromozomů stejného typu, reprezentuje stejnou charakteristiku v obou chromozomech. Aby mohl gen určovat příslušnou vlastnost, musí mít možnost nabývat různých hodnot, neboli musí se nacházet v různých stavech. Tyto stavy se nazývají alely (Hynek, 2008).

3 Reprezentace jedince chromozomem má pevně definovanou délku a pevně určené uspořádání genů. Je-li sestavena vhodná reprezentace jedinců, tak prvním úkolem je náhodně nebo pomocí heuristiky vygenerovat počáteční populaci (Mitsuo, 1997). Z inicializované populace je třeba stanovit, jakým způsobem bude vybrán nejvhodnější jedinec za účelem reprodukce. V procesu selekce mají jedinci s vyšší funkcí fitness větší pravděpodobnost přežití. Mezi nejčastěji používané metody selekce patří mechanizmus pořadí, ruletový a turnajový (Mitchel, 2002). Pro vytvoření potomků z právě vybraných rodičovských jedinců, jsou obecně používány dva základní genetické operátory a těmi jsou křížení a mutace. Technik křížení existuje celá řada. Mezi základní patří nejjednodušší technika jednobodová, k-bodová a uniformní. Jednobodové i k-bodové křížení zachovává s větší pravděpodobností v celistvější podobě vlastnosti rodičů. Zatímco uniformní křížení má spíše rozkladný vliv. Přesto lze nalézt konkrétní aplikace, kde je možné uniformní křížení s výhodou použít (Hynek, 2008). Právě vytvoření jedinci mohou být dále vystaveni působení operátoru mutace. Tento operátor způsobuje nenadálé změny v genetické výbavě. Mutace hraje v procesu evoluce jedinců důležitou roli, protože brání příliš rychlému zjednotvárnění vlastností v rámci populace. Tím by mohlo dojít ke ztrátě potenciálně užitečného genetického materiálu a předčasné konvergenci populace (Hynek, 2008; Smejkal, 2010). Po provedení selekce, křížení a mutace, je možné přejít k vytvoření zcela nové populace neboli další generace. Nejjednodušším způsobem je generační strategie, která původní populaci nechá vymřít a tím ztratí stará populace P (0) jakýkoliv význam. Následně je nová populace P (1) vytvořena z množiny potomků, která se stává populací novou. Tímto byl dokončen přechod od jedné populace k populaci druhé a celý cyklus je opakován tak dlouho, dokud nebude splněna ukončovací podmínka. Touto podmínkou může být například maximální počet generací, po který je v populaci umožněn její vývoj, nalezení uspokojivého řešení, nedostatečná změna nejlepšího dosud nalezeného řešení aj. (Hynek, 2008). Protože tento evoluční proces v sobě zahrnuje značný díl náhodnosti, je každý běh příslušného algoritmu jedinečný a odvíjí se odlišným způsobem. Z tohoto důvodu se v některých případech může stát, že celá populace v procesu vývoje zdegeneruje a nejlepší jedinec bude reprezentovat pouze lokální optimum (Mitchel, 2002). Genetické programování Genetické programování (GP) je jednou z disciplín evolučních algoritmů. Vychází z GA a používá stejnou terminologii. GP bylo představeno na konci 80. let minulého století prof. J. R. Kozou (Koza 1992; 1994; Koza a kol., 1999). Prof. Koza vytvořil metodu, pomocí níž se snažil o automatickou tvorbu programů řešící symbolickou regresi. U Problémů symbolické regrese, je pomocí adaptivního algoritmu hledán předpis funkce podle trénovací množiny. Tu tvoří vstupní a výstupní hodnoty hledané funkce. Aby bylo možné objektivně posoudit dosažené výsledky výpočtů realizovaných GP a porovnat je s výsledky dosaženými člověkem, navrhl prof. J. R. Koza osm kritérií konkurenceschopnosti (Koza a kol. 1999). Kritéria vypovídají o vhodnosti navrženého řešení vůči řešení navrženého člověkem. Z těchto kritérií musí být splněno alespoň jedno, aby výsledek navržený GP algoritmem bylo možné považovat za konkurenceschopný výsledku navrženému člověkem (Koza, 1994).

4 Obrázek č. 1: Stromová reprezentace (User's Guide 2013) Hlavním rozdílem GP oproti GA je rozdílná reprezentace datové struktury, představující jedince, se kterou algoritmus manipuluje. GA obvykle pracují s lineárními datovými strukturami fixní délky. Oproti tomu GP operuje s populací hierarchicky strukturovaných jedinců, kteří reprezentují počítačové programy. Na Obrázku č. 1 je zobrazena vstupní podmínka pro otevření obchodu a její stromová reprezentace. Stromové datové struktury vycházejí z obecnějších struktur grafů (Miller, 1999). Metoda výběru kompromisní varianty Metody založené na práci s nominální informací vyjadřují důležitost aspiračních úrovní kritérií. Tyto metody lze použít, je-li známa nominální informace aspirační hodnoty kritérií a kardinální ohodnocení variant podle jednotlivých kritérií (Brožová a kol., 2003). Metody pracují na bázi porovnávání kriteriálních hodnot všech variant s aspiračními úrovněmi všech kritérií. Obvykle rozdělí množinu variant na varianty neakceptovatelné a akceptovatelné. Při dostatečném zpřísnění aspiračních úrovní může být pouze jediná varianta akceptovatelná. Tato varianta je nazývána jako kompromisní varianta. Při použití velmi přísných aspiračních úrovních nemusí být akceptovatelná žádná varianta. Poté je potřeba aspirační úrovně některých kritérií uvolnit. V případě konjunktivní metody akceptujeme pouze varianty, které splňují všechny aspirační úrovně M = {a i y ij je lepší než z j pro všechna j = 1,, n} (1) kde zj je minimální požadované hodnocení varianty podle j-tého kritéria (Brožová et al. 2003). EXPERIMENTÁLNÍ AOS Předmětem experimentu je budování ziskového AOS podle následující metodiky. Princip ziskovosti AOS bude založen na výpočtu hodnoty profit faktoru, neboli podílu celkového čistého zisku a celkové ztrátě. Profit faktor u ziskového AOS musí mít hodnotu vyšší než 1. Ziskový AOS má křivku equity rostoucí, neboli grafická reprezentace hodnoty obchodního účtu má rostoucí tendenci. Problém návrhu AOS můžeme řadit mezi špatně strukturované rozhodovací problémy. Problém nemá analyticky optimální řešení a mezi prvky existují složité vazby. Modelování ziskového AOS se uskutečňuje pomocí GP. Do modelu vstupuje velké množství proměnných a rozsáhlý datový soubor. Pro potřeby modelování AOS jsou použity denní historické ceny (při otevření trhu; minimum dne; maximum dne; při uzavření trhu)

5 indexu Russell za období od do Tato data jsou volně dostupná (Google Finance, 2014). AOS jsou budovány v programu Adaptrade Builder 1.5. Testování vlastností AOS je analyzováno v programu Multicharts 8.5. Obrázek č. 2: Metodické schéma experimentálního AOS Základní schéma metodického postupu je na Obrázku č. 2. Nastavení optimalizace bude rozděleno na fázi výchozí a redukovanou. V první fázi výchozího nastavení budou generovány tři AOS: 1) AOS s nižším prvkem náhodnosti; 2) AOS s vyšším prvkem náhodnosti; 3) náhodně nastaveného AOS. Rozdíl mezi nastaveními s nižším prvkem náhodnosti a vyšším prvkem náhodnosti bude v odlišném nastavení pravděpodobnosti křížení a mutace při výpočtu GA. Náhodné nastavení reprezentuje nastavení optimalizace genetických algoritmů laikem. Druhá fáze redukovaného nastavení bude přistupovat k výsledkům z výchozího nastavení inkrementálně a dále je bude větvit rozdílným nastavením money managementu na konzervativní a agresivní. Modelování AOS bude provedeno v programu Adaptrade Builder 1.5 pomocí GP. Výstupem z budování budou optimalizované AOS ve formě programu. Zdrojový kód AOS bude v programovacím jazyku EasyLanguage. V programu Multicharts 8.5 budou vygenerované AOS backtestovány. Backtest, neboli ověřování funkčnosti OS na historických datech, bude proveden na datech, ze kterých byly AOS budovány. To potvrdí nebo vyvrátí předpoklad, že AOS jsou ziskové, alespoň na těchto datech. Po provedení backtestu budou ztrátové AOS vyřazeny. Nevyřazené AOS budou otestovány v paper tradingu. Paper trading bude probíhat na datech, která nebyla použita do fáze budování AOS. Důvodem provedení testování bude získání kvalitnějších informací o vlastnostech AOS. Na základě výstupů z paper tradingu bude proveden test robustnosti. Test robustnosti bude mít formu výběru kompromisní varianty na základě aplikace konjunktivního přístupu aspiračních úrovní. Kompromisní varianta bude považována za nejlepší AOS z vybudovaných. Nastavení AOS Výchozí nastavení V této fázi je nastavení GP výpočetně velmi složité. Počet proměnných vstupujících do modelu GP je více než 50. Vstupní data do optimalizace mají pět sloupců (datum, open, high, low a 1 Akciový index složený z akciových titulů obchodovaných v USA, které jsou označovány jako smallcap.

6 close) a řádků. Vzhledem k časové náročnosti výpočtů byl nastaven počet jedinců v populaci na a počet generací na 100. AOS s nižším prvkem náhodnosti Nastavení tohoto AOS je popsáno úplným výčtem vstupních parametrů. U ostatních AOS jsou popsány pouze rozdíly vůči tomuto nastavení. Nastavení genetických algoritmů pro výchozí nastavení, které bylo generováno s nižší náhodností, bylo v programu Adaptrade Builder následující: testovanými daty byly denní hodnoty Open, High, Low a Close za období až do indexu Russell 2000; point value byl 100 $; celkové náklady za 1 obchod byly 5 $ (většina brokerů nemá vyšší); AOS byly budovány z 80 % in sample a 20 % out of sample; nastavení kompatibility zdrojového kódu bylo pro Multicharts a TradeStation 6; počáteční výše křivky equity byla $ (v optimalizaci nebyl uvažován margin); potenciální typy obchodů mohly být na short a long stranu; vstupy a výstupy z trhu nebyly podmíněny překročením podmínek, ale byly obchodovány již při jejich dosažení; počet obchodů za jeden den byl limitován na 1; vstoupit do nového obchodu bylo možné až po ukončení předešlého; výběr metody i hodnota parametru position sizingu byla předmětem optimalizace; pro první generaci byla nastavena metoda position sizingu na fixed fractional s hodnotou 3 %; minimální počet obchodovaných kontraktů byl 1; maximální počet obchodovaných kontraktů byl 100; násobek při zvyšování a snižování počtu kontraktů byl 1; ochranný stoplos byl aplikován již při vstupu do obchodu; výše stoplosu mohla být v intervalu 200 $ až $; výše stoplosu vůči křivce equity mohla být v intervalu 0,5 % až 10 %; pro obchodování akceptovatelná průměrná výška úsečky (ATR) mohla být v intervalu 0,5 až 5; výše hodnot cenových paternů mohla být v intervalu 1 až 20; výše hodnot indikátorů mohla být v intervalu 1 až 150; indikátory, které mohly vstoupit do OS, byly: Simple Mov Ave, Exp Mov Ave, Weighter Mov Ave, Triangular Mov Ave, MACD, TRIX, Momentum, Rate of Change, Fast K Stochastic, Fast D Stochastic, Slow D Stochastic, RSI, CCI, DI- /DI+, DMI, ADX, Ave True Range, True Range, Standard Deviation, Bollinger Band, Keltner Channel, Lowest, Highest, Chaiken, Crosses Above/Below, Price Patterns, Day of Week a Absolute Value; obchodní příkazy, které mohly vstoupit do OS, jsou: Enter at Market, Enter on Stop (Breakout), Enter at Limit, Exit at Target, Trailing Stop Exit, Exit at N Bars, Protective Stop ($), Protectiv Stop (%), Protectiv ATR, Exit at Market a Exit End-of-Day; fitness funkce byla složena z maximalizace čistého zisku, maximalizace koeficientu korelace, maximalizace statistické významnosti; mezi jednotlivými prvky fitness funkce nebyla žádná preference; vygenerovaný OS musel mít koeficient korelace alespoň 0,95 a statistická významnost alespoň 95 %; počet jedinců v generaci byl 1 000; počet generací byl 100;

7 pravděpodobnost křížení jedinců byla 80 %; pravděpodobnost mutace jedince byla 10 %; počet jedinců potřebných ke křížení byl 2; komplexivita podmínek (Tree Depth) byla 2. AOS s vyšším prvkem náhodnosti Nastavení genetických algoritmů AOS s vyšším prvkem náhodnosti bylo, až na některé rozdíly, ekvivalentní jako výchozí nastavení s nižším prvkem náhodnosti. Rozdíly mezi výchozí nastavení s nižším prvkem náhodnosti a vyšším prvkem náhodnosti byly: pravděpodobnost křížení jedinců byla snížena na 75 %; pravděpodobnost mutace jedince byla zvýšena na 25 %. Náhodné nastavení Výchozí nastavení u náhodně nastavených genetických algoritmů mělo většinu společných charakteristik s nastavením, které obsahuje menší prvek náhodnosti. Rozdíly v nastavení byly: position sizing metoda byla pevně zvolena na Fixed size; výše hodnot cenových paternů mohla být v intervalu 1 až 30; výše hodnot indikátorů mohla být v intervalu 1 až 100; pravděpodobnost křížení jedinců byla zvýšena na 90 %; pravděpodobnost mutace jedince byla snížena na 5 %; počet jedinců potřebných ke křížení byl 3; komplexivita podmínek (Tree Depth) byla 3. Redukované nastavení Druhá fáze optimalizace byla fáze redukovaného nastavení. Redukované nastavení přistupovalo k optimalizaci inkrementálně. Vstupní data byla pro obě fáze shodná. V tomto kroku byly postupně vybrány všechny AOS z výchozího nastavení a větveny agresivním a konzervativním směrem. Rozdíl výchozího nastavení a redukovaného byl v rozdílu počtu jedinců v populaci, počtu generací a velikosti risku na jeden obchod oproti velikosti křivky equity. Důvodem snížení počtu jedinců v populaci na 500 a počtu generací na 10 bylo snížení výpočetní složitosti. Určení směru agresivního a konzervativního bylo řízeno money managementem. V konzervativním směru byl nastaven money management, neboli interval pro riskování části obchodního účtu, na 0,5 % až 3% peněz obchodního účtu na jeden obchod. Při tomto nastavení by došlo k proinvestování účtu, pokud by bylo minimálně 33 obchodů v řadě ztrátových. Směr agresivní měl nastaven interval pro riskování na 0,5 % až 5 % peněz obchodního účtu na jeden obchod, což odpovídá garanci pro minimálně 20 ztrátových obchodů v řadě. Modelování AOS Schéma modelování AOS je na Obrázku č. 3. Šedé buňky reprezentují vstupující data do modelu. Optimalizace bude vycházet jak z dat In Sample, tak i Out of Sample. Výstupem z optimalizace budou AOS jako program.

8 Obrázek č. 3: Schéma budování AOS (User's Guide 2013) Technické indikátory Vstupní podmínky Nastavení GA Generovaní AOS Reset populace Modifikování populace Vyhodnocení AOS Cíle optimalizace Out-of-Sample vyhodnocení Historická data Russell 2000 Finální AOS Backtest AOS Podle definovaného nastavení GA bylo provedeno devět optimalizací. Na těchto AOS byl proveden backtest. Vstupními daty pro backtest byly denní hodnoty cen indexu Russell 2000 v období od do Velikost obchodního účtu byla nastavena na začátku backtestu na výši $. Při backtestu OS nebyla brána v potaz výše poplatků za provedení obchodu. OS AOS 1 - výchozí nastavení nižší náhodnost AOS 2 - redukované nastavení nižší náhodnost konzervativní AOS 3 - redukované nastavení nižší náhodnost agresivní AOS 4 - výchozí nastavení vyšší náhodnost AOS 5 - redukované nastavení vyšší náhodnost konzervativní AOS 6 - redukované nastavení vyšší náhodnost agresivní AOS 7 - výchozí nastavení náhodné AOS 8 - redukované nastavení náhodné konzervativní AOS 9 - redukované nastavení náhodné agresivní Tabulka č. 1: Souhrnné výsledky backtestu AOS Celkový Max Čistý profit Profit počet drawdown ($) faktor obchodů (%) Profitabilita (%) ,07 3,12-3,49 57, ,00 1,62-4,71 43, ,29 3,24-3,33 43, ,85 1,76-4,35 49, ,88 1,85-4,76 49, ,98 1,85-4,72 49, ,73 1,88-4,73 62, ,00 1,62-4,71 43, ,54 1,94-4,33 62,54

9 Základní ekonomické vlastnosti AOS vycházející z backtestu jsou uvedeny v Tabulce č. 1Chyba! Nenalezen zdroj odkazů.. V backtestu jsou AOS hodnoceny za dané období podle celkového počtu obchodů, čistého profitu, maximálního drawdownu a profitability. Vlastnosti AOS v backtestu jsou následující: Celkový počet obchodů obchodů je nejvyšší počet obchodů exekuovaných podle AOS. Tento počet obchodů mají shodně 2. AOS, 3. AOS a 8. AOS. Nejmenší počet obchodů má 4. AOS. Šest z devíti AOS, mají celkový počet obchodů v intervalu od do Profit ($) AOS v backtestu začínaly s obchodním účtem o velikosti $. Nejvyšší zhodnocení ,29 $ dosáhl 3. AOS. Nejnižší zhodnocení ,29 $ má 4. AOS. Tento AOS zobchodoval v daném období nejméně obchodů. Dva AOS překonaly hranici $ a zbylé se pohybují v intervalu od ,29 $ do ,54 $. Profit faktor Nejvyšší profit faktor 3,24 má 3. AOS, který měl zároveň nejvyšší zisk. Druhý nejvyšší profit faktor 3,12 má AOS s druhým nejvyšším zhodnocením. Zbylé AOS se pohybují v intervalu 1,62 až 1,94. Maximální drawdown V tomto kritériu jsou AOS vcelku vyrovnané. Nejnižší drawdown je 3,33 % účtu a nejvyšší je 4,76 % účtu. 3. AOS s nejvyšším zhodnocením má nejnižší drawdown. Profitabilita Nejvyšší profitabilitu 62,54 % má 9. AOS a nejnižší 43,69 % mají 2. AOS, 3. AOS, 8. AOS. 3. AOS má s nejvyšším zhodnocením kapitálu nejnižší profitabilitu. Maximalizace profitability nemusí vést k nejvyšším ziskům, neboť i AOS s nižší profitabilitou při vysokém profit faktoru může dosáhnout výrazně lepších výsledků než AOS s vysokou profitabilitou. Všech 9 backtestovaných AOS má profit faktor vyšší jak 1. Všechny AOS lze považovat za ziskové. V rámci backtestu nebyl vyřazen žádný AOS. Paper trading AOS Všechny AOS vykázaly v backtestu ziskovost, tudíž byly zařazeny do paper tradingu. Vlastnosti AOS z backtestu nelze očekávat při reálném nasazení, protože na těchto datech byly AOS optimalizovány. Důvodem provedení paper tradingu je kvalitnější přiblížení vlastností AOS, pokud by byly nasazeny do obchodování. Paper trading byl proveden na datech, které již nebyly součástí optimalizace OS. Vstupními daty byly denní hodnoty cen indexu Russell 2000 v období od do Výpočet zisku sníženého o výše poplatků byl počítán jako rozdíl mezi ziskem bez poplatků a počtem všech obchodů násobený 5 $ (běžná výše poplatků za jeden obchod). V rámci paper tradingu nebyl uvažován skluz mezi požadovaným a skutečně získaným plněním. Bohužel nezahrnutí slippage do testu zkresluje vlastnosti OS mezi paper tradingem a reálným obchodováním. Základní informace z paper tradingu jsou uvedeny v Tabulce č. 2, kde je proveden test robustnosti. Vlastnosti nejlepšího AOS z paper tradingu jsou uvedeny v kapitole Výsledky experimentu. Test robustnosti AOS Na základě výsledků backtestu a paper tradingu byl trader postaven před rozhodovací problém: Je ve výčtu testovaných AOS takový systém, který splňuje kritéria pro nasazení na živé obchodování? Z pohledu teorie rozhodování je možné test robustnosti řešit konjunktivní metodou aspiračních úrovní. Cílem testu bylo zjistit, zda analyzované AOS byly podle traderem stanovených kritérií robustní a který je z nich nejlepší. Kritéria a jejich ohodnocení pro test

10 robustnosti jsou individuální. Každý trader má jinou hranici, kdy je již ochoten riskovat peníze obchodováním. V rámci experimentu jsou použity aspirační úrovně vycházející z nastavení autorem. Volba kritérií a jejich hladin je obecně individuální. Vyjadřují traderův postoj k riziku. Experimentální aspirační úrovně jsou následující: počet obchodů - v backtestu >= 4000 a v paper tradingu >= 500; drawdown v paper tradingu maximálně 15 %; zisk průměrného obchodu v paper tradingu >= 150 $ profit faktor v paper tradingu >= 1,5; profit v paper tradingu >= $. V Tabulce č. 2 je znázorněn výsledek testu robustnosti. Světle šedé zvýraznění buňky označuje splnění aspirační úrovně dané varianty podle kritéria a tmavě šedé zvýraznění buňky označuje opak. Testem robustnosti prošla pouze 1 varianta. Jedná se o 7. AOS budovaný ve výchozí fázi na základě náhodného nastavení. Tento AOS je možné považovat za kompromisní variantu. Ostatní varianty nejčastěji nesplňují aspirační úroveň u kritérií drawdown a zisk z průměrného obchodu. OS AOS 1 - výchozí nastavení nižší náhodnost AOS 2 - redukované nastavení nižší náhodnost konzervativní AOS 3 - redukované nastavení nižší náhodnost agresivní AOS 4 - výchozí nastavení vyšší náhodnost AOS 5 - redukované nastavení vyšší náhodnost konzervativní AOS 6 - redukované nastavení vyšší náhodnost agresivní AOS 7 - výchozí nastavení náhodné AOS 8 - redukované nastavení náhodné konzervativní AOS 9 - redukované nastavení náhodné agresivní Tabulka č. 2: Testování robustnosti AOS Počet obchodů backtest Počet obchodů paper trading Drawdown (%) Zisk z průměrného obchodu ($) Profit faktor Profit ($) , , , , , , , , , , , , , , , , , , VÝSLEDKY NAVRŽENÝCH AOS Na základě výsledků testu robustnosti je AOS 7 nejlepším. V Tabulce č. 3 je znázorněn přehled obchodů v paper tradingovém období. Pro každý ukazatel je uvedena hodnota za všechny obchody long a short. Long představuje obchody spekulované nákupem na růst trhu. Short obchody reprezentují spekulaci prodejem na pokles trhu. Celkový počet obchodů byl 545, z nichž bylo otevřeno na spekulaci růstu trhu 244 a na spekulaci poklesu trhu 301. Celkový počet ziskových obchodů byl 261, z nichž bylo 124 na stranu long a 137 na stranu short. Celkový počet ztrátových obchodů byl 283, z nichž bylo na stranu long 120 a na stranu short 163. Pravděpodobnost, že bude obchod ziskový, byla 47,89 %. Na stranu long měl OS vyšší pravděpodobnost ziskového obchodu ve výši 50,82 % oproti 45,51 % na stranu short.

11 Průměrný obchod byl v zisku 188,88 $. Strana long měla průměrný zisk 196,64 $ a strana short 182,59 $. Hodnota průměrného ziskového obchodu byla 758,55 $. Na stranu long měl AOS nižší průměrný ziskový obchod ve výši 717,33 $ oproti 795,85 $ na stranu short. Průměrná výše ztrátového obchodu byla -335,83 $. Na stranu long byla průměrná výše ztráty -341,42 $ a strana short -331,72 $. Poměr mezi ziskovým obchodem a ztrátovým obchodem byl z celkového pohledu 2,26. Na stranu long je tento poměr 2,1 a na stranu short je 2,4. Tabulka č. 3: Přehled obchodů AOS 7 Ukazatel Všechny Long obchody Short obchody Celkový počet obchodů Počet vítězných obchodů Počet ztrátových obchodů Profitabilita (%) 47,89 50,82 45,51 Průměrný obchod 188,88 196,64 182,59 Průměrný vítězný obchod 758,55 717,33 795,85 Průměrný ztrátový obchod -335,83-341,42-331,72 Průměrné vítězné / průměrné ztrátové ratio 2,26 2,10 2,40 V Tabulce č. 4 jsou uvedeny vybrané výsledky AOS 7 z paper tradingu. Tato tabulka analogicky obsahuje sloupce za všechny obchody long a short. AOS 7 za dvouleté obchodování skončil v zisku ,20 $. Zhodnocení účtu bylo na dvouletém paper tradingovém období %. Podíl na celkovém zisku měly obchody na stranu long ve výši ,36 $, což představuje 47 % celkového čistého zisku. AOS 7 byl první systém, který měl větší podíl čistého zisku z short obchodů a to ve výši ,84 $, což představuje 53 % celkového čistého zisku. Obchody na stranu long měly na zisk nižší podíl než short obchody. Celková suma všech ziskových obchodů byla ,19 $ a ztrátových ,99 $. Profit faktor celého AOS byl 2,08. Na stranu long byl 2,17 a na stranu short 2,02. Maximální výše drawdownu AOS byla ve výši ,12 $ a nejvyšší procentuální podíl drawdownu vůči equity účtu byl -13,12 %. Podíl mezi ziskem a maximálním drawdownem byl 8,6. Tabulka č. 4: Výsledky obchodování AOS 7 Ukazatel Všechny Long obchody Short obchody Čistý zisk , , ,84 Celkový profit , , ,67 Celková ztráta , , ,83 Profit faktor 2,08 2,17 2,02 Maximální drawdown portfolia ,12 Maximální drawdown portfolia (%) - 13,12 Čistý zisk / Maximální drawdown portfolia 8,60 Na Obrázku č. 4 je uveden průběh křivky equity, průběh drawdownu a průběh drawdownu vůči aktuální výši křivky equity za paper tradingové období. Do grafu byly zaneseny pouze ty obchody, které zvýšily nebo snížily hodnotu křivky equity. V průběhu celého paper tradingu byly nejvyšší hodnoty procentuálního drawdownu vůči křivce equity na začátku paper tradinugu. Poté byly vyrovnané s výjimkou závěru paper tradingu, kdy se procentuální drawdown opět zvýšil. V prvních 100 obchodech se AOS dostal přes největší procentuální drawdown 13,12 % křivky equity a zvýšil křivku equity o téměř $. Mezi obchody AOS zvýšil křivku equity

12 o téměř $. Mezi obchody AOS zvýšil křivku equity o téměř $. Mezi obchody AOS vytvořil maximum křivky equity na úrovni ,97 $ v 391 nenulovém obchodu. Toto maximum již AOS v závěru paper tradingu nedokázal překonat. V rámci těchto obchodů AOS zvýšil křivku equity o $. Zbylé obchody AOS zakončil v drawdownu, který snížil křivku equity o $. Obrázek č. 4: Průběh křivky equity a drawdownu pro AOS 7 v paper tradingu DISKUZE Deng a kol. (2012) provedli empirický test robustnosti navržených AOS, které optimalizovali pomocí GA. Optimalizovaná obchodní pravidla byla zaměřena na technické indikátory, které znázorňují překoupenost a přeprodanost trhu. AOS testovali na historických datech pohybů kurzu měnových páru EUR/USD a USD/JPY v období roku Jejich první experimentální AOS (USD/JPY) měl v testovaném období profitabilitu 60,37 %. Jejich druhý experimentální AOS (USD/EUR) měl v testovaném období profitabilitu 71,42%. Autoři se již nezabývali vyjádřením ekonomických vlastností navržených AOS.

13 V tomto příspěvku byly také navrženy experimentální AOS optimalizované GA. Oproti Deng a kol. (2012) byly AOS navrženy a testovány na denních historických datech indexu Russell Časová řada historických dat vstupujících do návrhu a analyzování AOS je delší (backtest od do a paper trading od do ). Profitabilita experimentálních AOS se v backtestu pohybovala od 43,69 % do 62,54 %. Ukazatel profitabilita může být zavádějícím kritériem pro posuzování výkonnosti AOS, protože AOS s vysokou hodnotou profitability nemusí dosahovat vyšší ziskovosti než AOS s nízkou profitabilitou. Důvodem je nastavení money managementu. Oproti Deng a kol. (2012) tento příspěvek vyjadřuje nejen profitabilitu AOS, ale i další důležité ekonomické ukazatele experimentálních AOS v paper tradingovém období. Základními ukazateli jsou: profit faktor, průběh křivky equity, drawdown, procentuální drawdown vůči equity, čistý zisk, celkový profit, celkovou ztrátu aj. Dosažené výsledky v tomto příspěvku mají významnější vypovídající schopnost ekonomické interpretace AOS pro obchodování v praxi. ZÁVĚR Z navrhnutých devíti AOS byl paradoxně nejlepší AOS 7, neboť nastavení vstupních parametrů GA bylo nastaveno náhodně. Příčinou kladného výsledku může být neotřelé nastavení, které by většina traderů nezvolila. V dvouletém paper tradingovém období AOS 7 zhodnotil obchodní účet o % při maximálním drawdownu 13,12 %. Ačkoliv AOS 7 je nejlepší z navrhnutých AOS, tak v průběhu paper tradingu růst křivky equity postupně zpomaluje. Experiment dokazuje, že lze navrhnout ziskový AOS optimalizovaný genetickými algoritmy. Experiment nebere v potaz životní cyklus těchto modelů. Jak uvádí Prado (2008), existují dva směry řízení životního cyklu AOS. První směr je vývoj obecně funkčního systému a druhý směr je průběžná aktualizace AOS. Předmětem dalšího výzkumu bude návrh způsobu jak optimálně řídit vyřazování vysloužilých AOS a nahrazování novými AOS. Možnými směry návrhu řízení mohou být: nevyřazovat AOS, zařazovat nové AOS na základě pevně definované periody nebo zařazovat nové AOS v okamžiku, kdy stávající AOS nesplní test robustnosti. LITERATURA Le Bon, G. (1994): Psychologie davu. Praha, KRA; ISBN Deboeck G. (1994): Trading on the edge: neural, genetic, and fuzzy systems for chaotic financial markets. New York, Wiley; ISBN DENG, Shangkun, Yizhou SUN a Akito SAKURAI. Robustness Test of Genetic Algorithm on Generating Rules for Currency Trading. 2012, Winter. Douglas M. (2009): Disciplinovaný trader. Tetčice, IMPOSSIBLE; ISBN Durenard E. A. (2013): Professional Automated Trading: Theory and Practice. New Jersey, Wiley; ISBN Google Finance. Russell 2000: INDEXRUSSELL:RUT historical prices [online] [cit ]. Dostupné z: https://www.google.com/finance?q=rut&ei=qjxluvingjkkwaottwe. Holland, J. H. (1992): Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. Cambridge, The MIT Press; ISBN

14 Hynek J. (2008): Genetické algoritmy a genetické programování. Praha, Grada; ISBN Jankovsky J. A. (2007): Trading Rules that Work: The 28 Essential Lessons Every Trader Must Master. New Jersey, Wiley; ISBN Koza J. R. (1992): Genetic programming: on the programming of computers by means of natural selection. Cambridge, The MIT Press. Koza J. R. (1994): Genetic programming II: Automatic discovery of reusable programs. Cambridge, The MIT Press. Koza J. R., Bennett F. H., Andre D., Keane M. A. (1999): Genetic Programming III: Darwinian Invention & Problem Solving. San Francisco, Morgan Kaufmann Publishers Inc. Miller J. F. (1999): An empirical study of the efficiency of learning boolean functions using a Cartesian Genetic Programming approach. In Proceedings of the 1999 Genetic and Evolutionary computation Conference (GECCO 1999), Orlando, Florida, USA, 14-17, p Mitchel M. (2002): An Introduction to Genetic Algorithms. Cambridge, MIT Press; ISBN Mitsuo G. (1997): Genetic Algorithms and Engineering Design. New York, Wiley; ISBN Plummer T. (2008): Prognóza finančních trhů: psychologie úspěšného investování. Brno, Computer Press; ISBN Prado R. (2008): The Evaluation and Optimization of Trading Strategies. New Jersey, Wiley; ISBN Smejkal V. (2010): Řízení rizik ve firmách a jiných organizacích. Praha, Grada; ISBN Taleb N. (2011): Černá labuť: následky vysoce nepravděpodobných událostí. Praha, Paseka; ISBN User's Guide. (2013). Adaptrade Builder. Available at Wilber K. (2000): A brief history of everything. New York, Random House; ISBN

TRADESTATION A ÚSPĚŠNÝ ALGORITMICKÝ TRADING. Ing. Petr Tmej www.aostrading.cz petr.tmej@aostrading.cz

TRADESTATION A ÚSPĚŠNÝ ALGORITMICKÝ TRADING. Ing. Petr Tmej www.aostrading.cz petr.tmej@aostrading.cz TRADESTATION A ÚSPĚŠNÝ ALGORITMICKÝ TRADING Ing. Petr Tmej www.aostrading.cz petr.tmej@aostrading.cz Poučení o riziku Důrazně upozorňujeme, že veškeré informace a poznatky uveřejněné na AOStrading.cz jsou

Více

Obchodní systém. Kvalitní obchodní systém odděluje profesionály od amatérů. Dává nám výhodu před ostatními (statistická výhoda = edge)

Obchodní systém. Kvalitní obchodní systém odděluje profesionály od amatérů. Dává nám výhodu před ostatními (statistická výhoda = edge) OBCHODNÍ PLÁN Obchodní systém Kvalitní obchodní systém odděluje profesionály od amatérů Slouží nám pro volbu správného momentu, kdy do trhu vstoupit a následně z něj vystoupit Dává nám výhodu před ostatními

Více

SPECIFICKÝCH MIKROPROGRAMOVÝCH ARCHITEKTUR

SPECIFICKÝCH MIKROPROGRAMOVÝCH ARCHITEKTUR EVOLUČNÍ NÁVRH A OPTIMALIZACE APLIKAČNĚ SPECIFICKÝCH MIKROPROGRAMOVÝCH ARCHITEKTUR Miloš Minařík DVI4, 2. ročník, prezenční studium Školitel: Lukáš Sekanina Fakulta informačních technologií, Vysoké učení

Více

Technická analýza a AOS Prezentace pro Českou asociaci treasury, Praha, 27.4.2010

Technická analýza a AOS Prezentace pro Českou asociaci treasury, Praha, 27.4.2010 Technická analýza a AOS Prezentace pro Českou asociaci treasury, Praha, 27.4.2010 Štěpán Pírko, Asset Management Colosseum, a.s. pirko@colosseum.cz Obsah 1. Co je a co není TA? 2. Charting 3. Indikátory

Více

Akciové. investování. www.xtb.cz

Akciové. investování. www.xtb.cz Akciové investování www.xtb.cz Obsah Úvod k akciovému investování 9 základní pojmů akciového investora Důležité faktory čas, výnos, riziko 3 +1 investiční strategie: Hodnotové investiční tituly Růstové

Více

Příručka k měsíčním zprávám ING fondů

Příručka k měsíčním zprávám ING fondů Příručka k měsíčním zprávám ING fondů ING Investment Management vydává každý měsíc aktuální zprávu ke každému fondu, která obsahuje základní informace o fondu, jeho aktuální výkonnosti, složení portfolia

Více

ANALYTICKÉ PROGRAMOVÁNÍ

ANALYTICKÉ PROGRAMOVÁNÍ ZVYŠOVÁNÍODBORNÝCH KOMPETENCÍAKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉUNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ ANALYTICKÉ PROGRAMOVÁNÍ Eva Volná Zuzana Komínková Oplatková Roman Šenkeřík OBSAH PRESENTACE

Více

NÁVRH A REALIZACE TRADING STRATEGIÍ NA BÁZI STROJOVÉHO UČENÍ S POMOCÍ MATLABU

NÁVRH A REALIZACE TRADING STRATEGIÍ NA BÁZI STROJOVÉHO UČENÍ S POMOCÍ MATLABU NÁVRH A REALIZACE TRADING STRATEGIÍ NA BÁZI STROJOVÉHO UČENÍ S POMOCÍ MATLABU RNDr. Miroslav Pavelka, PhD m.pavelka@sh.cvut.cz Ing. Jan Hovad jan@hovad.cz OBSAH Obchodování a strojové učení Specifika prediktivního

Více

Moderní systémy pro získávání znalostí z informací a dat

Moderní systémy pro získávání znalostí z informací a dat Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:

Více

Vyhodnocení cenového vývoje drahých kovů na světových burzách v období let 2005 2010

Vyhodnocení cenového vývoje drahých kovů na světových burzách v období let 2005 2010 Vyhodnocení cenového vývoje drahých kovů na světových burzách v období let 2005 2010 Martin Maršík, Jitka Papáčková Vysoká škola technická a ekonomická Abstrakt V předloženém článku autoři rozebírají vývoj

Více

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 DOLOVÁNÍ V DATECH (DATA MINING) OBJEVUJE SE JIŽ OD 60. LET 20. ST. S ROZVOJEM POČÍTAČOVÉ TECHNIKY DEFINICE PROCES VÝBĚRU, PROHLEDÁVÁNÍ A MODELOVÁNÍ

Více

Principy oceňování a value management. Úvod do problematiky

Principy oceňování a value management. Úvod do problematiky Principy oceňování a value management Úvod do problematiky Obsah Principy oceňování společností Principy oceňování DCF Chování klíčových faktorů Finanční trhy a hodnota firmy Value based management Dluh

Více

Ing. Ondřej Audolenský

Ing. Ondřej Audolenský České vysoké učení technické v Praze Fakulta elektrotechnická Katedra ekonomiky, manažerství a humanitních věd Ing. Ondřej Audolenský Vedoucí: Prof. Ing. Oldřich Starý, CSc. Rizika podnikání malých a středních

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER GRAPHICS AND

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ TECHNICKÁ ANALÝZA DIPLOMOVÁ PRÁCE FAKULTA PODNIKATELSKÁ ÚSTAV INFORMATIKY BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ TECHNICKÁ ANALÝZA DIPLOMOVÁ PRÁCE FAKULTA PODNIKATELSKÁ ÚSTAV INFORMATIKY BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV INFORMATIKY FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF INFORMATICS TECHNICKÁ ANALÝZA TECHNICAL ANALYSIS DIPLOMOVÁ

Více

Masarykova univerzita. Fakulta informatiky. Evoluce pohybu

Masarykova univerzita. Fakulta informatiky. Evoluce pohybu Masarykova univerzita Fakulta informatiky Evoluce pohybu IV109 Tomáš Kotula, 265 287 Brno, 2009 Úvod Pohyb je jedním ze základních projevů života. Zdá se tedy logické, že stejně jako ostatní vlastnosti

Více

Ekonomické aspekty statistické regulace pro vysoce způsobilé procesy. Kateřina Brodecká

Ekonomické aspekty statistické regulace pro vysoce způsobilé procesy. Kateřina Brodecká Ekonomické aspekty statistické regulace pro vysoce způsobilé procesy Kateřina Brodecká Vysoce způsobilé procesy s rozvojem technologií a důrazem kladeným na aktivity neustálého zlepšování a zeštíhlování

Více

Trh SPY, 30 dnů do expirace (vstup středa), delta min. 20. V grafu v tuto chvíli nejsou zahrnuty komise.

Trh SPY, 30 dnů do expirace (vstup středa), delta min. 20. V grafu v tuto chvíli nejsou zahrnuty komise. IC a obchodování na ETFs Strategie IC D20 funguje velmi dobře i dalších trzích. Naprosto ideálními kandidáty pro začínající tradery jsou EFTs Výhody: Obrovská likvidita Malé rozpětí bid/ask = velmi dobré

Více

Genetické algoritmy. Vysoká škola ekonomická Praha. Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/

Genetické algoritmy. Vysoká škola ekonomická Praha. Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/ Genetické algoritmy Jiří Vomlel Laboratoř inteligentních systémů Vysoká škola ekonomická Praha Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/ Motivace z Darwinovy teorie evoluce Přírodní

Více

Příručka k měsíčním zprávám ING fondů

Příručka k měsíčním zprávám ING fondů Příručka k měsíčním zprávám ING fondů ING Investment Management vydává každý měsíc aktuální zprávu ke každému fondu, která obsahuje základní informace o fondu, jeho aktuální výkonnosti, složení portfolia

Více

dokumentu: Proceedings of 27th International Conference Mathematical Methods in

dokumentu: Proceedings of 27th International Conference Mathematical Methods in 1. Empirical Estimates in Stochastic Optimization via Distribution Tails Druh výsledku: J - Článek v odborném periodiku, Předkladatel výsledku: Ústav teorie informace a automatizace AV ČR, v. v. i., Dodavatel

Více

1. Úvod do genetických algoritmů (GA)

1. Úvod do genetických algoritmů (GA) Obsah 1. Úvod do genetických algoritmů (GA)... 2 1.1 Základní informace... 2 1.2 Výstupy z učení... 2 1.3 Základní pomy genetických algoritmů... 2 1.3.1 Úvod... 2 1.3.2 Základní pomy... 2 1.3.3 Operátor

Více

UKÁZKA VYUŽITÍ PROGRAMU WINQSB PŘI VÝUCE KVANTITATIVNÍCH METOD V ROZHODOVÁNÍ V DISTANČNÍ FORMĚ STUDIA

UKÁZKA VYUŽITÍ PROGRAMU WINQSB PŘI VÝUCE KVANTITATIVNÍCH METOD V ROZHODOVÁNÍ V DISTANČNÍ FORMĚ STUDIA UKÁZKA VYUŽITÍ PROGRAMU WINQSB PŘI VÝUCE KVANTITATIVNÍCH METOD V ROZHODOVÁNÍ V DISTANČNÍ FORMĚ STUDIA ALENA KOLČAVOVÁ, LENKA DRÁBKOVÁ Abstrakt: V úvodu příspěvku je nastíněna současná situace stavu připravenosti

Více

Emergence chování robotických agentů: neuroevoluce

Emergence chování robotických agentů: neuroevoluce Emergence chování robotických agentů: neuroevoluce Petra Vidnerová, Stanislav Slušný, Roman Neruda Ústav Informatiky, AV ČR Kognice a umělý život VIII Praha 28. 5. 2008 Evoluční robotika: EA & neuronové

Více

5 Informace o aspiračních úrovních kritérií

5 Informace o aspiračních úrovních kritérií 5 Informace o aspiračních úrovních kritérií Aspirační úroveň kritérií je minimální (maximální) hodnota, které musí varianta pro dané maximalizační (minimalizační) kritérium dosáhnout, aby byla akceptovatelná.

Více

KOMODITNÍ SPREADY. diskréční obchodování s komoditami jinak a profitabilně. Romana Křížová CEO, TradeandFinance.eu, s.r.o.

KOMODITNÍ SPREADY. diskréční obchodování s komoditami jinak a profitabilně. Romana Křížová CEO, TradeandFinance.eu, s.r.o. KOMODITNÍ SPREADY diskréční obchodování s komoditami jinak a profitabilně Romana Křížová CEO, TradeandFinance.eu, s.r.o. Co je to spread? Často používaný termín Spread = cenové rozpětí = rozdíl mezi dvěma

Více

NÁVRH AUTOMATICKÉHO OBCHODNÍHO SYSTÉMU PRO DROBNÉHO INVESTORA

NÁVRH AUTOMATICKÉHO OBCHODNÍHO SYSTÉMU PRO DROBNÉHO INVESTORA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV MANAGEMENTU FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF MANAGEMENT NÁVRH AUTOMATICKÉHO OBCHODNÍHO SYSTÉMU PRO

Více

ČESTNÉ PROHLÁŠENÍ. Jméno, Příjmení, titul. Bytem. Datum narození

ČESTNÉ PROHLÁŠENÍ. Jméno, Příjmení, titul. Bytem. Datum narození ČESTNÉ PROHLÁŠENÍ Já, níže podepsaný Jméno, Příjmení, titul Bytem Datum narození tímto čestně prohlašuji: - že jsem byl před podpisem Komisionářské smlouvy, na základě které mně budou poskytovány investiční

Více

Geneticky vyvíjené strategie Egyptská hra SENET

Geneticky vyvíjené strategie Egyptská hra SENET Geneticky vyvíjené strategie Egyptská hra SENET Lukáš Rypáček, lukor@atrey.karlin.mff.cuni.cz Abstrakt V tomto dokumentu popíši jeden příklad použití genetických algoritmů pro počítačové hraní her. V tomto

Více

FOREX. Jana Horáková. (sem. sk. středa 8,30-10,00)

FOREX. Jana Horáková. (sem. sk. středa 8,30-10,00) FOREX Jana Horáková (sem. sk. středa 8,30-10,00) Obsah 1. FOREX obecně 2. Historie 3. Fungování Forexu 4. Pojmy: MĚNOVÝ PÁR, BUY, SELL, ASK, BID BOD SPREAD LOT PIP VALUE MARGIN, LEVERAGE ROLLOVER 5. Fundamentální

Více

MĚŘENÍ NÁKLADOVOSTI INVESTIČNÍCH PRODUKTŮ

MĚŘENÍ NÁKLADOVOSTI INVESTIČNÍCH PRODUKTŮ Téma prezentace MĚŘENÍ NÁKLADOVOSTI INVESTIČNÍCH PRODUKTŮ Roman Stuchlík časopis FOND SHOP, odborný redaktor Vít Kalvoda SOPHIA FINANCE, finanční poradce Praha, 22.11.2007 Seminář časopisu Finanční poradce

Více

Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů

Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů Design and implementation of algorithms for adaptive control of stationary robots Marcel Vytečka 1, Karel Zídek 2 Abstrakt Článek

Více

Analysis of the personal average tax rate evolution at the selected taxpayers in the Czech Republic during the years of 1993-2011

Analysis of the personal average tax rate evolution at the selected taxpayers in the Czech Republic during the years of 1993-2011 VŠB-TU Ostrava, faculty of economics,finance department 6 th 7 th September 11 Abstract Analysis of the personal average tax rate evolution at the selected taxpayers in the Czech Republic during the years

Více

Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy

Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Autor práce : RNDr. Ivo Beroun,CSc. Vedoucí práce: prof. RNDr. Milan Meloun, DrSc. PROFILOVÁNÍ Profilování = klasifikace a rozlišování

Více

Channel EA: Nastavitelné hodnoty: Take Profit, SL, počet bodů, o které má být trend proražen, Lot size

Channel EA: Nastavitelné hodnoty: Take Profit, SL, počet bodů, o které má být trend proražen, Lot size Přijatý zip soubor rozbalte na plochu. Soubory s přílohou.ex4 (obchodní systémy) zkopírujte do instalační složky Metatraderu Složka MQL/Experts. Soubory s příponou.mq4 (skripty) kopírujte do složky MQL/Experts/Scripts

Více

MetaTrader 4 Builder. X-Trade Brokers DM S.A., organizační složka. Vzorové strategie. X-Trade Brokers DM S.A., organizační složka 1/9

MetaTrader 4 Builder. X-Trade Brokers DM S.A., organizační složka. Vzorové strategie. X-Trade Brokers DM S.A., organizační složka 1/9 MetaTrader 4 Builder Vzorové strategie 1/9 Obsah Otevření strategie... 3 Vzorové strategie... 6 Klouzavý průměr (MA.xtb)... 6 Moving Average (MA_Cross.xtb)... 6 RSI (RSI_positions_in_canal.xtb)... 6 RSI

Více

PRAVIDLA PRO PROVÁDĚNÍ OBCHODŮ

PRAVIDLA PRO PROVÁDĚNÍ OBCHODŮ AKRO investiční společnost, a.s. Slunná 25 162 00 Praha 6 PRAVIDLA PRO PROVÁDĚNÍ OBCHODŮ AKRO investiční společnost, a.s., identifikační číslo 492 41 699, se sídlem Praha 6, Slunná 547/25 (dále jen společnost,

Více

Unstructured data pre-processing using Snowball language

Unstructured data pre-processing using Snowball language Unstructured data pre-processing using Snowball language Předzpracování nestrukturovaných dat pomocí jazyka Snowball Bc. Pavel Řezníček, doc. Ing. František Dařena, PhD., Ústav informatiky, Provozně ekonomická

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Genetické algoritmy a jejich praktické využití

Genetické algoritmy a jejich praktické využití Genetické algoritmy a jejich praktické využití Pavel Šturc PB016 Úvod do umělé inteligence 21.12.2012 Osnova Vznik a účel GA Princip fungování GA Praktické využití Budoucnost GA Vznik a účel GA Darwinova

Více

HIGH-FREQUENCY TRADING

HIGH-FREQUENCY TRADING HIGH-FREQUENCY TRADING Představení Vysokofrekvenční obchodování je alternativním způsobem správy kapitálu na globálních finančních trzích. Je tu pro investory, kteří hledají možnosti diverzifikace pro

Více

P R O J E K T O V É Ř Í Z E N Í A M A R K E T I N G 1. Akad. rok 2015/2016, LS Projektové řízení a marketing - VŽ 1

P R O J E K T O V É Ř Í Z E N Í A M A R K E T I N G 1. Akad. rok 2015/2016, LS Projektové řízení a marketing - VŽ 1 P R O J E K T O V É Ř Í Z E N Í A M A R K E T I N G 1 Akad. rok 2015/2016, LS Projektové řízení a marketing - VŽ 1 Vznik a historie projektového řízení Akad. rok 2015/2016, LS Projektové řízení a marketing

Více

3. Zajištěný fond. Odvaz s minimálním rizikem.

3. Zajištěný fond. Odvaz s minimálním rizikem. 3. Zajištěný fond Odvaz s minimálním rizikem. 1 4 DŮVODY PROČ INVESTOVAT do 3. Zajištěného fondu 1 Jistota návratnost 106 % vložené investice Podstupujete minimální riziko - fond způsobem svého investování

Více

Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?]

Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?] Optimalizace obecný úvod 1 Optimalizace obecný úvod Motivace optimalizačních úloh [proč optimalizovat?] Formalizace problému [jak obecně popsat optimalizační úlohu?] Klasifikace optimalizačních problémů

Více

MANAŽERSKÉ ROZHODOVÁNÍ. Zpracoval Ing. Jan Weiser

MANAŽERSKÉ ROZHODOVÁNÍ. Zpracoval Ing. Jan Weiser MANAŽERSKÉ ROZHODOVÁNÍ Zpracoval Ing. Jan Weiser Obsah výkladu Rozhodovací procesy a problémy Dvě stránky rozhodování Klasifikace rozhodovacích procesů Modely rozhodování Nástroje pro podporu rozhodování

Více

Metodický list - Finanční deriváty

Metodický list - Finanční deriváty Metodický list - Finanční deriváty Základní odborná literatura vydaná VŠFS: [0] Záškodný,P., Pavlát,V., Budík,J.: Finanční deriváty a jejich oceňování.všfs,praha 2007 Tato literatura platí v plném rozsahu,

Více

PLATFORMA SEASONALGO. bezkonkurenční nástroj pro obchodování komodit a futures spreadů na bázi sezónnosti

PLATFORMA SEASONALGO. bezkonkurenční nástroj pro obchodování komodit a futures spreadů na bázi sezónnosti PLATFORMA SEASONALGO bezkonkurenční nástroj pro obchodování komodit a futures spreadů na bázi sezónnosti Romana Křížová CEO, TradeandFinance.eu, s.r.o. 1 SeasonAlgo www.seasonalgo.com Unikátní nástroj

Více

Biologicky inspirované výpočty. Schématické rozdělení problematiky a výuky

Biologicky inspirované výpočty. Schématické rozdělení problematiky a výuky Biologicky inspirované výpočty Schématické rozdělení problematiky a výuky 1 Biologicky inspirované výpočty - struktura problematiky Evoluční systémy: evoluční algoritmy, evoluční hardware, víceúčelová

Více

eské vysoké ení technické Praze Fakulta elektrotechnická Katedra kybernetiky

eské vysoké ení technické Praze Fakulta elektrotechnická Katedra kybernetiky eskévysokéenítechnicképraze Fakultaelektrotechnická Katedrakybernetiky Bakaláskápráce Obchodovánínadevizovémtrhuvyužitímgenetického programování TomášJungman Vedoucípráce:Ing.PetrPošík,Ph.D. Studijníprogram:Softwarovétechnologiemanagement,Bakaláský

Více

1. Téma 03 - Rozhodování

1. Téma 03 - Rozhodování 1. Téma 03 - Rozhodování Cíl látky Seznámit se a prakticky si vyzkoušet zápis rozhodování v jazyce Java 1.1. Úvod Jednou z nejčastěji používanou konstrukcí při programování je rozhodování. Právě této problematice

Více

VYSOKÁ ŠKOLA HOTELOVÁ V PRAZE 8, SPOL. S R. O.

VYSOKÁ ŠKOLA HOTELOVÁ V PRAZE 8, SPOL. S R. O. VYSOKÁ ŠKOLA HOTELOVÁ V PRAZE 8, SPOL. S R. O. Návrh konceptu konkurenceschopného hotelu v době ekonomické krize Diplomová práce 2013 Návrh konceptu konkurenceschopného hotelu v době ekonomické krize Diplomová

Více

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER SYSTEMS GENEROVÁNÍ MATEMATICKÝCH

Více

VYHODNOCENÍ UDRŽITELNÉHO ROZVOJE V ÚZEMNÍM PLÁNOVÁNÍ EVALUATION OF SUSTAINABLE DEVELOPEMENT IN LANDSCAPE PLANNING

VYHODNOCENÍ UDRŽITELNÉHO ROZVOJE V ÚZEMNÍM PLÁNOVÁNÍ EVALUATION OF SUSTAINABLE DEVELOPEMENT IN LANDSCAPE PLANNING VYHODNOCENÍ UDRŽITELNÉHO ROZVOJE V ÚZEMNÍM PLÁNOVÁNÍ EVALUATION OF SUSTAINABLE DEVELOPEMENT IN LANDSCAPE PLANNING Bc. Aneta Panchártková Univerzita Pardubice, Fakulta ekonomickosprávní, Studentská 84 532

Více

(CELO) ŽIVOTNÍ HODNOTA ZÁKAZNÍKA

(CELO) ŽIVOTNÍ HODNOTA ZÁKAZNÍKA (CELO) ŽIVOTNÍ HODNOTA ZÁKAZNÍKA Ing. Martin Bárta Vysoké učení technické v Brně, Kolejní 2906/4 Brno 612 00, barta@fbm.vutbr.cz Abstract The aim of the work CUSTOMER LIFE-TIME VALUE" is the formulation

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis nekategorizovaných dat Co se dozvíte v tomto modulu? Kdy používat modus, průměr a medián. Co je to směrodatná odchylka. Jak popsat distribuci

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

VYSOKÁ ŠKOLA HOTELOVÁ V PRAZE 8, SPOL.S R. O.

VYSOKÁ ŠKOLA HOTELOVÁ V PRAZE 8, SPOL.S R. O. VYSOKÁ ŠKOLA HOTELOVÁ V PRAZE 8, SPOL.S R. O. Mgr. Evgeniya Pavlova Rozvojová strategie podniku ve fázi stabilizace Diplomová práce 2013 Rozvojová strategie podniku ve fázi stabilizace Diplomová práce

Více

TEORETICKÉ PŘEDPOKLADY Garantovaných produktů

TEORETICKÉ PŘEDPOKLADY Garantovaných produktů TEORETICKÉ PŘEDPOKLADY Garantovaných produktů 1 Výnosově -rizikový profil Knockoutprodukty Warrants Výnosová-šance Garantované produkty Dluhopisy Diskontové produkty Airbag Bonus Indexové produkty Akciové

Více

VÝSLEDKY VÝZKUMU. indikátor ECI/TIMUR A.1 SPOKOJENOST OBYVATEL S MÍSTNÍM SPOLEČENSTVÍM V PROSTĚJOVĚ

VÝSLEDKY VÝZKUMU. indikátor ECI/TIMUR A.1 SPOKOJENOST OBYVATEL S MÍSTNÍM SPOLEČENSTVÍM V PROSTĚJOVĚ VÝSLEDKY VÝZKUMU indikátor ECI/TIMUR A.1 SPOKOJENOST OBYVATEL S MÍSTNÍM SPOLEČENSTVÍM V PROSTĚJOVĚ Realizace průzkumu, zpracování dat a vyhodnocení: Střední odborná škola podnikání a obchodu, spol. s r.o.

Více

INFORMATIKA. Jindřich Kaluža. Ludmila Kalužová

INFORMATIKA. Jindřich Kaluža. Ludmila Kalužová INFORMATIKA Jindřich Kaluža Ludmila Kalužová Recenzenti: doc. RNDr. František Koliba, CSc. prof. RNDr. Peter Mikulecký, PhD. Vydání knihy bylo schváleno vědeckou radou nakladatelství. Všechna práva vyhrazena.

Více

GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS. Roman Biskup, Anna Čermáková

GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS. Roman Biskup, Anna Čermáková GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS Roman Bisup, Anna Čermáová Anotace: Příspěve se zabývá prezentací principů učení jednoho onrétního typu neuronových sítí. Cílem práce

Více

Manažerská ekonomika KM IT

Manažerská ekonomika KM IT KVANTITATIVNÍ METODY INFORMAČNÍ TECHNOLOGIE (zkouška č. 3) Cíl předmětu Získat základní znalosti v oblasti práce s ekonomickými ukazateli a daty, osvojit si znalosti finanční a pojistné matematiky, zvládnout

Více

PowerOPTI Řízení účinnosti tepelného cyklu

PowerOPTI Řízení účinnosti tepelného cyklu PowerOPTI Řízení účinnosti tepelného cyklu VIZE Zvýšit konkurenceschopnost provozovatelů elektráren a tepláren. Základní funkce: Spolehlivé hodnocení a řízení účinnosti tepelného cyklu, včasná diagnostika

Více

Procesní řízení. Hlavní zásady a praxe dodavatele Komix

Procesní řízení. Hlavní zásady a praxe dodavatele Komix Procesní řízení Hlavní zásady a praxe dodavatele Komix 1 Obsah prezentace Teoretická část (menšího objemu) orientace na zákazníka hodnocení procesu podmínky procesního řízení cyklus zlepšování procesu

Více

Gramatická evoluce a softwarový projekt AGE

Gramatická evoluce a softwarový projekt AGE Gramatická evoluce a softwarový projekt AGE Adam Nohejl Matematicko-fyzikální fakulta Univerzita Karlova v Praze http://nohejl.name/ 4. 4. 2010 Poznámka: Prezentace založené na variantách těchto slajdů

Více

Forex Outlook EURUSD 1.3. 2015

Forex Outlook EURUSD 1.3. 2015 Forex Outlook EURUSD 1.3. 2015 Ohlédnutí za minulým FX Outlookem V minulém FX Outllooku jsem se zaměřil na trh GBPUSD. Uvedl jsem, že mě budou zajímat především swing long obchody. Pro vstup do longu vnímám

Více

Model pro simulaci staví na výpočtu hrubého domácího produktu výdajovou metodou:

Model pro simulaci staví na výpočtu hrubého domácího produktu výdajovou metodou: Model vývoje HDP ČR Definice problému Očekávaný vývoj hrubého domácího produktu jakožto základní makroekonomické veličiny ovlivňuje chování tržních subjektů, které v důsledku očekávání modulují své chování

Více

BARIÉRY VSTUPU V ODVĚTVÍ PRODUKCE JABLEK V ČESKÉ REPUBLICE BARRIERS TO ENTRY IN THE CZECH APPLES PRODUCTION INDUSTRY.

BARIÉRY VSTUPU V ODVĚTVÍ PRODUKCE JABLEK V ČESKÉ REPUBLICE BARRIERS TO ENTRY IN THE CZECH APPLES PRODUCTION INDUSTRY. BARIÉRY VSTUPU V ODVĚTVÍ PRODUKCE JABLEK V ČESKÉ REPUBLICE BARRIERS TO ENTRY IN THE CZECH APPLES PRODUCTION INDUSTRY Dagmar Kudová Anotace: Příspěvek, který je součástí řešení výzkumného záměru PEF MZLU

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice OPERAČNÍ VÝZKUM 11. TEORIE ZÁSOB Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

Vliv věku a příjmu na výhodnost vstupu do důchodového spoření (II. pilíře)

Vliv věku a příjmu na výhodnost vstupu do důchodového spoření (II. pilíře) Vliv věku a příjmu na výhodnost vstupu do důchodového spoření (II. pilíře) Následující analýza výhodnosti vstupu do II. pilíři vychází ze stejné metodologie, která je popsána v Pojistněmatematické zprávě

Více

Grammar-based genetic programming

Grammar-based genetic programming Grammar-based genetic programming Obhajoba diplomové práce Adam Nohejl Vedoucí práce: RNDr. František Mráz, CSc. Katedra software a výuky informatiky, MFF UK Praha 2011 1 Úvod do problematiky: genetické

Více

Komoditní zajištěný fond. Odvažte se s minimálním rizikem.

Komoditní zajištěný fond. Odvažte se s minimálním rizikem. Komoditní zajištěný fond Odvažte se s minimálním rizikem. 4 DŮVODY PROČ INVESTOVAT do Komoditního zajištěného fondu 1 Jistota návratnost 105 % vložené investice Podstupujete minimální riziko - fond způsobem

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER SYSTEMS SOUBĚŽNÉ UČENÍ V

Více

Mendelova univerzita v Brně Provozně ekonomická fakulta. Analýza dat sleep Semestrální práce do předmětu Informační systémy pro rozhodování

Mendelova univerzita v Brně Provozně ekonomická fakulta. Analýza dat sleep Semestrální práce do předmětu Informační systémy pro rozhodování Mendelova univerzita v Brně Provozně ekonomická fakulta Analýza dat sleep Semestrální práce do předmětu Informační systémy pro rozhodování Jan Grmela, EI Brno 2011 Popis zdrojových dat Zdrojová data souboru

Více

Registrační číslo projektu: CZ.1.07/1.5.00/34.0649

Registrační číslo projektu: CZ.1.07/1.5.00/34.0649 Výukový materiál zpracován v rámci projektu EU peníze školám Název školy: Střední zdravotnická škola a Obchodní akademie, Rumburk, příspěvková organizace Registrační číslo projektu: CZ.1.07/1.5.00/34.0649

Více

Model byl např. publikován v závěrečné výzkumné zprávě z tohoto projektu.

Model byl např. publikován v závěrečné výzkumné zprávě z tohoto projektu. Restrikce veřejných výdajových programů a výdajových aktivit veřejných služeb Prof. PhDr. František Ochrana,DrSc.,katedra veřejných financí, VŠE v Praze Referát je součástí výstupu z výzkumného projektu

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

Otázky ke státní závěrečné zkoušce

Otázky ke státní závěrečné zkoušce Otázky ke státní závěrečné zkoušce obor Ekonometrie a operační výzkum a) Diskrétní modely, Simulace, Nelineární programování. b) Teorie rozhodování, Teorie her. c) Ekonometrie. Otázka č. 1 a) Úlohy konvexního

Více

Ukázka knihy z internetového knihkupectví www.kosmas.cz

Ukázka knihy z internetového knihkupectví www.kosmas.cz Ukázka knihy z internetového knihkupectví www.kosmas.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w. k o s m a s. c z, U I D : K O S 1 8 0 7 8 4 U k á z k a k n i h

Více

TRADERS MEETING. Na téma: Jak zlepšit svoje výsledky na Forexu. Praha, 12.10.2011 Tomáš Vobořil, Colosseum, a.s. www.colosseum.cz

TRADERS MEETING. Na téma: Jak zlepšit svoje výsledky na Forexu. Praha, 12.10.2011 Tomáš Vobořil, Colosseum, a.s. www.colosseum.cz TRADERS MEETING Na téma: Jak zlepšit svoje výsledky na Forexu Praha, 12.10.2011 Tomáš Vobořil, Colosseum, a.s. KDO JE KDO mezi námi Kdo jsem? Jak dlouho obchoduji Forex? Jakým způsobem obchoduji? Jak se

Více

Návrh Investičního portfolia

Návrh Investičního portfolia Návrh Investičního portfolia Jan Bohatý vytvořeno: 18. březen Připravil: Ing.Petr Ondroušek PO Investment Dunajská 17 62500 Brno Kontakt: telefon: 603383742 email: petr.ondrousek@poinvestment.cz www.poinvestment.cz

Více

Růst provozních nákladů a cen vstupů v letech 1996-2000 PREMMI.. 2004-2020 www.infoenergie.cz portál o hospodaření energií

Růst provozních nákladů a cen vstupů v letech 1996-2000 PREMMI.. 2004-2020 www.infoenergie.cz portál o hospodaření energií Růst provozních nákladů a cen vstupů v letech 1996-2000 PREMMI internetové centrum pro energetické řízení Program energetického managementu a monitoringu Úvod Náklady na paliva, energii a vodu se stávají

Více

DAN EST FIN FRA IR NEM NIZ POR RAK RUM SLO SWE VB CZ 0% 0% 0% 50% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

DAN EST FIN FRA IR NEM NIZ POR RAK RUM SLO SWE VB CZ 0% 0% 0% 50% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% PROJEKT ROZVOJE PORTÁLU BROŽURA PŘINÁŠÍ DÍLČÍ VÝSLEDKY STUDIÍ ZAMĚŘENÝCH NA ROZVOJ PORTÁLU BUSINESSINFO.CZ V LETECH 2010 2013. STUDIE OBSAHUJÍ DATA PLATNÁ K 1. 3. 2010 B e n c h m a r k i n g a n a l ý

Více

Inteligentní systémy a neuronové sítě

Inteligentní systémy a neuronové sítě Inteligentní systémy a neuronové sítě Arnošt Veselý, Česká zemědělská univerzita, Kamýcká, Praha 6 - Suchdol Summary: In the article two main architectures of inteligent systems: logical-symbolic and connectionist

Více

Veřejná správa veřejně a správně

Veřejná správa veřejně a správně Veřejná správa veřejně a správně Ministerstvo vnitra ČR Procesní modelování agend Josef Beneš Mikulov, 9/9/2014 Veřejná správa veřejně a správně OBSAH PREZENTACE Důvody realizace Program PMA Využití procesních

Více

ADAPTIVITA INFORMAČNÍCH SYSTÉMŮ INFORMATION SYSTEM ADAPTIVITY

ADAPTIVITA INFORMAČNÍCH SYSTÉMŮ INFORMATION SYSTEM ADAPTIVITY ADAPTIVITA INFORMAČNÍCH SYSTÉMŮ INFORMATION SYSTEM ADAPTIVITY Roman Malo Mendelova zemědělská a lesnická univerzita v Brně Provozně ekonomická fakulta, Ústav informatiky, malo@pef.mendelu.cz Abstrakt Problematika

Více

Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky

Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky Konference ANSYS 2009 Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky J. Štěch Západočeská univerzita v Plzni, Katedra energetických strojů a zařízení jstech@kke.zcu.cz

Více

3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem

3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem ČVUT FEL X36PAA - Problémy a algoritmy 3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem Jméno: Marek Handl Datum: 1. 1. 2009 Cvičení: Pondělí 9:00 Zadání Naprogramujte

Více

1 Úvod. 1 Tento příspěvek je částí analýzy (odborné statě) Maastrichtská konvergenční kritéria (Šimíková (2003)), jenž

1 Úvod. 1 Tento příspěvek je částí analýzy (odborné statě) Maastrichtská konvergenční kritéria (Šimíková (2003)), jenž Makroekonomická analýza maastrichtských konvergenčních kritérií; Případ cenové stability 1 Ing. Ivana Šimíková, Ph.D. Katedra financí a účetnictví TUL, Hospodářská fakulta Hálkova 6 461 17 Liberec E -

Více

POKROČILÉ POUŽITÍ DATABÁZÍ

POKROČILÉ POUŽITÍ DATABÁZÍ POKROČILÉ POUŽITÍ DATABÁZÍ Barbora Tesařová Cíle kurzu Po ukončení tohoto kurzu budete schopni pochopit podstatu koncepce databází, navrhnout relační databázi s využitím pokročilých metod, navrhovat a

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

INVESTOR ZAČÁTEČNÍK OBSAH

INVESTOR ZAČÁTEČNÍK OBSAH INVESTOR ZAČÁTEČNÍK OBSAH Úvod Investor začátečník Život a finance Úspěch a bohatství Krysí závod Aktiva a pasiva Pasivní příjmy Druhy pasivních příjmů Pasivní příjmy a internet Ideální pasivní příjem

Více

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem.

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem. Algoritmus Algoritmus je schematický postup pro řešení určitého druhu problémů, který je prováděn pomocí konečného množství přesně definovaných kroků. nebo Algoritmus lze definovat jako jednoznačně určenou

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

PŘÍLOHA C Požadavky na Dokumentaci

PŘÍLOHA C Požadavky na Dokumentaci PŘÍLOHA C Požadavky na Dokumentaci Příloha C Požadavky na Dokumentaci Stránka 1 z 5 1. Obecné požadavky Dodavatel dokumentaci zpracuje a bude dokumentaci v celém rozsahu průběžně aktualizovat při každé

Více

RiJ ŘÍZENÍ JAKOSTI L 4 4-1

RiJ ŘÍZENÍ JAKOSTI L 4 4-1 RiJ ŘÍZENÍ JAKOSTI ML 4-1 CÍL TÉMATICKÉHO CELKU Název tematického celku: Nástroje pro měření, analýzu a zlepšování systému jakosti v podniku Hlavním cílem tematického celku je nastínit význam interních

Více

Pokročilé metody učení neuronových sítí. Tomáš Řehořek tomas.rehorek@fit.cvut.cz

Pokročilé metody učení neuronových sítí. Tomáš Řehořek tomas.rehorek@fit.cvut.cz Pokročilé metody učení neuronových sítí Tomáš Řehořek tomas.rehorek@fit.cvut.cz Problém učení neuronové sítě (1) Nechť N = (V, I, O, S, w, f, h) je dopředná neuronová síť, kde: V je množina neuronů I V

Více

I. Úvod. II. Popis základních metod technické analýzy !! "# ! "" $% &'() "* *+ "" "* (,-.,/ " " "" *!!+ 01+ " * " " 2! " "*"*!

I. Úvod. II. Popis základních metod technické analýzy !! # !  $% &'() * *+  * (,-.,/    *!!+ 01+  *   2!  **! I. Úvod!! "#! "" $% &'() "* *+ "" "* (,-.,/ " " "" *!!+ 01+ " * " " 2! " "*"*! 3 * 4 " (,-.,/ *" * # "!5!0 6 7289:+789:!; ;"! ; *$! "#!; 0 + ní získané, za! + 0 0"< = >

Více

Základní informace o co se jedná a k čemu to slouží

Základní informace o co se jedná a k čemu to slouží Základní informace o co se jedná a k čemu to slouží založené na relačních databází transakční systémy, které jsou určeny pro pořizování a ukládání dat v reálném čase (ERP, účetní, ekonomické a další podnikové

Více

Obsah. Obsah. Předmluva...9. 1. Úvod...13. Část I: Genetické algoritmy...17. 2. Genetický algoritmus krok za krokem...19

Obsah. Obsah. Předmluva...9. 1. Úvod...13. Část I: Genetické algoritmy...17. 2. Genetický algoritmus krok za krokem...19 GENETICKÉ ALGORITMY A GENETICKÉ PROGRAMOV N 5 Obsah Předmluva...9 1. Úvod...13 Část I: Genetické algoritmy...17 2. Genetický algoritmus krok za krokem...19 3. Proč genetické algoritmy fungují?...27 4.

Více