Gymnázium Jana Nerudy

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Gymnázium Jana Nerudy"

Transkript

1 Gymnázium Jana Nerudy Závěrečná práce studentského projektu Metoda Monte Carlo 2014 Marek Šedivý a Noémie Gauthier

2 Prohlášení o vypracování Prohlašujeme, že jsme závěrečnou práci na téma Metoda Monte Carlo vypracovali samostatně s použitím uvedené odborné literatury a pramenů. Datum: Podpis.

3 Anotace Tématem naší práce je popis metody Monte Carlo a její aplikace v ekonomii. Nejdříve se zaměříme na základní pojmy nutné pro pochopení a následnou aplikaci metody Monte Carlo. Následně popíšeme jednu ze základních aplikací této metody a představíme naše experimentální provedení této aplikace. Poté se budeme zabývat historií vzniku této metody a na to navážeme stanovením podmínek pro aplikaci metody Monte Carlo na burzovní obchodování. Závěrem je sestavení algoritmu fungujícím na principu této metody.

4 Obsah Anotace Úvod Pojmy a Algoritmus b Náhodná a pseudonáhodná čísla c Pravděpodobnost Buffonova jehla a Teorie b Experiment Historie Vlastní projekt a Určení kritérii b Algoritmus c Výsledky d Ověření výsledků Závěr Použitá literatura... 16

5 1. Úvod Motivací k výběru metody Monte Carlo byl fakt, že jsme jako téma, hledali nějaký matematický postup, který bychom mohli dále aplikovat v ekonomii. Následovalo stanovení problému, který by byl vhodný pro využití této metody. Právě při tomto jsme narazili na metodu Monte Carlo. Ta se od svého vynalezení ve 40. letech vědci pracujícími na projektu Manhattan stala jednou z nejpoužívanějších metod k určení rizikovosti na akciových trzích. Mimoto má obrovské možnosti uplatnění i v jiných vědních disciplínách (např. fyzice, nebo biologii). Naše rozhodnutí bylo aplikovat tuto metodu při nákupu akcií. Cílem práce je tedy výpočet množství akcií, které splňují námi daná kritéria. Kritéria jsme si určili na základě různých údajů o akciích, snažili jsme vybrat taková, aby akcie nebyla ani příliš riziková, ale aby měla i dostatečný zisk. Metoda je založena na pravděpodobnosti a pseudonáhodných číslech. Budeme tedy generovat náhodná čísla a pomocí algoritmu je rozřadíme, abychom zjistili, kolik akcií by mělo teoreticky naše kritéria splňovat.

6 2. Pojmy V této kapitole definujeme a názorně vysvětlíme základní pojmy, nezbytné pro pochopení a možnost následné aplikace metody Monte Carlo. 2. a Algoritmus Algoritmus je postup, který se má dodržovat při řešení daného problému za daných podmínek. Rozlišujeme dva základní druhy algoritmů a to deterministický a stochastický. Při užití deterministického algoritmu víme, že daný jev nastane za předpokladu, že splníme soubor předem známých podmínek. Naopak splnění všech podmínek u algoritmu stochastického nám dává pouze možnost, že daný jev nastane. Díky tomu můžeme následně počítat pravděpodobnost daného jevu. Stochastické algoritmy jsou využity v metodě Monte Carlo. 2. b Náhodná a pseudonáhodná čísla Náhodná čísla jsou čísla, v jejichž výskytu nemůžeme, na základě předchozích čísel určit číslo následující. Zjednodušeně řečeno, nedá se určit posloupnost, která by vygenerovala danou řadu náhodných čísel. Můžeme je generovat například za využití fyzikálních jevů - radioaktivního rozpadu, šumu elektronky, nebo abecedním seřazením měst s počtem obyvatel nad libovolnou mez. Tyto postupy jsou ovšem časově a v některých případech i finančně náročné. Proto byla vymyšlena čísla pseudonáhodná. Ta jsou sice generována na základě nějaké dané posloupnosti, ale jejich výskyt můžeme považovat za dostatečně náhodný. Také jsou rovnoměrně rozdělena na intervalu, do kterého je generujeme. To je důležité právě při jejich užití v metodě Monte Carlo. Víme-li, že daný jev můžeme modelovat v intervalu [a; b] a v jeho podintervalu [c; d] nastane jev příznivý, tak je důležité, aby čísla, která daný jev modelují, byla rovnoměrně rozdělena na intervalu *a; b+ a ne, aby byla například koncentrována zejména v *c; d+, to by totiž mělo za následek posunutí výsledku nesprávným směrem (příznivý jev by v daném modelu nastal víckrát, než by tomu bylo ve skutečnosti) 2. c Pravděpodobnost Pravděpodobnost jsme definovali dvěma základními způsoby a to - 1) Klasická (Laplaceova) definice pravděpodobnosti Může-li určitý jev (proces) vykázat n různých disjunktních (vzájemně se vylučujících) výsledků, které jsou stejně možné a jestliže m z těchto pokusů má za následek nevyhnutelně realizaci určitého sledovaného jevu A, a zbylých n-m výsledků, ji vylučuje, potom pravděpodobnost jevu A položíme rovnu číslu m/n a píšeme, což se dá zjednodušeně reformulovat takto pravděpodobnost je poměr počtu případů sledovanému jevu příznivých, k počtu všech případů možných.

7 Její aplikaci můžeme ukázat na jednoduchém příkladu Házíme-li dvěma kostkami (červenou a modrou), přičemž červená udává počet desítek a modrá udává počet jednotek výsledného čísla, jaká je pravděpodobnost, že nám padne prvočíslo (jev A)? Nejdříve si vyjádříme n, tedy počet všech možných výsledků. Protože víme, že na každé kostce nám může padnout 6 různých čísel, můžeme obdržet n různých čísel. Přičemž - Následně vyhodnotíme, kolik z daných jevů odpovídá jevu A, tedy že výsledné číslo je prvočíslo. Tyto jevy si označíme jako m. Všechna prvočísla, která nám mohou padnout, jsou 11, 13, 23, 31, 41, 43, 53, 61. (mohou nám vyjít jen prvočísla, která jsou větší 10 a menší 66, přičemž číslo na místě jejich jednotek musí být menší 6). Z výše uvedeného víme, že n = 36 a m = 8. Tudíž pravděpodobnost, že nastane jev A je 2) Geometrická definice pravděpodobnosti - máme množinu Ω (např. objem, obsah, délka) a její podmnožinu ω, pak pravděpodobnost volby bodu z množiny ω (označíme jako jev A),. Její aplikaci můžeme opět ilustrovat na následujícím příkladu Máme-li přímku D: y = x a generujeme-li náhodná čísla x na intervalu *0;3+ a y na intervalu od *0;3+, která nám udávají souřadnice bodu. Jaká je pravděpodobnost, že se takto generovaný bod bude nacházet pod přímkou D (jev B)? Zadání si můžeme znázornit na následujícím obrázku (Ob. 1) Otázka by se tedy dala položit také takto Jaká je pravděpodobnost, že se bude generovaný bod (výše popsaným způsobem) nacházet v trojúhelníku ABC?

8 Tudíž Nejdříve si vyjádříme hodnotu Ω. Ta je rovna obsahu čtverce ABCD. To je čtverec o straně 3. Následně vyjádříme hodnotu ω. Ta je rovna obsahu plochy pod přímkou D. K zjištění tohoto obsahu můžeme využít integrál. Výše uvedeným postupem jsme zjistili, že Ω = 9 a ω =. Tudíž 3. Buffonova jehla Tato kapitola se bude věnovat několik set let starému pokusu sloužícímu k aproximaci čísla π. Nejprve začneme vysvětlením teorie tohoto pokusu. Následně tento experiment sami vyzkoušíme. 3. a Teorie Pravděpodobnost se dá využít kupříkladu v matematice, ekonomii, či při předvídání jevů v sociologii. Jedno z využití je i aproximace hodnoty čísla π. To se podařilo francouzskému matematikovi Jeanu Louisu Leclerc de Buffon. Ten vymyslel úlohu, díky které je možné aproximovat hodnotu čísla π, díky jeho vlastnostem. George Louis Leclerc de Buffon (1707 Montbard Paris) Francouzský naturalista spisovatel. Zabýval se fyzikou, biologii a matematikou. Podílel se na tvorbě encyklopedií. Je také autorem pokusu s názvem Buffonova jehla. Buffon řešil následující úlohu: Nechť jsou jehly o stejné délce d zcela náhodně házeny na rovnou podložku. Podložka musí být nalinkována rovnoběžnými čarami, vzdálené od sebe stejnou vzdálenosti l pro kterou platí, že d <l. Tímto získáme zcela náhodně ležící jehly, jejichž vzdálenost středu k nejbližší čáře je zcela nahodilá, stejně tak jako jejich orientace, tyto dvě proměnné jsou na sobě nezávislé. Vzdálenost středu, s, jehly k nejbližší čáře nazvěme x a její orientace je dána úhlem α (viz. Ob. 2). Počítáme s tím, že každá jehla může protnout jen jednu čáru (d < l).

9 Je tedy možné pozorovat, že jehla protne čáru jen v případě, že (vyšrafovaná část). Musíme tedy najít pravděpodobnost jevu P ). Pro usnadnění použijeme úhel β jako obecný úhel a znázorníme si všechny možnosti 2 proměnných x (na ose x) a α (na ose α) (Ob. 3). Využijeme tedy souřadnice x a α a vymezíme si část vnitřku obdélníku OPQR, který toto splňuje, tato část je na obrázku vyšrafovaná. Vlastně jsme přiřadili ke každé hodnotě α hodnotu x pro kterou platí, že jehla protne čáru. Musí pro ně tedy platit nerovnost a. Jelikož celý obdélník nám ukazuje všechny možnosti dopadu jehly, a tyto možnosti jsou všechny stejně pravděpodobné, musíme zjistit jaká je pravděpodobnost, že jehla bude splňovat výše uvedené nerovnosti. Tato pravděpodobnost je rovna poměru vyšrafované plochy obdélníku OP a celé jeho plochy. Z obrázku odvodíme že To znamená, že pokud budeme házet jehly o délce d, na linkovaný povrch, kde vzdálenosti mezi čárami jsou rovny d, pravděpodobnost úspěšných hodů bude. Lze tedy jednoduše provést pokus a odvodit číslo π neúspěšných jehel (jehla, která neprotly jednu z rovnoběžných čar)., tedy poměr úspěšných jehel (jehly, která protly čáru) a 3. b Experiment K našemu experimentu jsme použili papír o velikosti A4 a 285 špendlíků. Určili jsme si vzdálenost mezi čáry jako kde je délka jehly. Díky tomuto kroku si můžeme upravit výsledný poměr. (Záznam experimentu je přiložen na poslední stránce této práce). Po náhodném rozhození jehel po papíře jsme měli 216 jehel, které neproťaly žádnou čáru a 69 jehel které proťaly.. Tento výsledek je menší než číslo π, které se rovná 3,1416, ovšem změna jedné jehly (přechod z úspěšných do neúspěšných) by nám dal výsledek 3,1911, který je naopak větší než π.

10 4. Historie Za metodou Monte Carlo tak, jak jí známe dnes, stojí dva muži - Stanislaw Marcin Ulam a Jon von Neumann. Právě jejich spolupráce na amerických vědeckých projektech je přivedla na tento nápad. Jon von Neumann (občas jako John von Neumann) je původem maďarský matematik, narozený v roce 1903 na území Rakouska Uherska. Věnoval se kvantové teorii a byl průkopníkem teorie her. V roce 1929 dostal nabídku učit kvantovou teorii na Princetonu. Tam se stal prvním profesorem v Ústavu pro pokročilé studium (Institute for Advanced Study). Roku 1943 byl přizván Robertem Oppenheimrem k projektu Manhatann. (Ob. 4) (Ob. 5) Stanislaw Marcin Ulam je původem Polák, narozený 1909 na území tehdejšího Rakouska Uherska. Po získání doktorátu, v roce 1933, ve Lvově (nynější Lviv) byl pozván Jonem von Neumannem do spojených států, aby pracoval ve vědeckém ústavu na Princetonu. Po té učil na různých univerzitách, až nakonec získal americké občanství a mohl být zapojen do institutu Los Alamos, kde pracoval na jaderné bombě v rámci projektu Manhattan. Největší spolupráce těchto dvou začala právě díky výzkumu v institutu Los Alamos. Vědci potřebovali spočítat vzdálenost, kterou neutrony mohou urazit, skrze různé materiály. I přes všechna data a výzkumy to nemohli fyzici z Los Alamos spočítat. Problém totiž nastal ve chvíli, kdy se neutron pohltí při srážce s jiným nukleonem. Ulama napadla možnost vypočítat pravděpodobnost odehratelnosti solitairu, tedy pravděpodobnost, že při rozložení karet je možné hru odehrát. To mělo být uskutečněno díky ENIACu (Electronic Numerical Integrator And Computer), na kterém právě pracovali, Ulam s Von Neumannem. Později se rozhodli aplikovat i na neutrony a jejich trasu. Sestavili experiment, ve kterém použili na simulaci cesty atomu rulety. Věděli, že k pohlcení dojde v jednom případu ze 100 a tudíž 1 ze sta políček na ruletě označili jako pohlcení. Následně roztočili ruletu, pokud padlo políčko pohlcení, byl to konec života neutron. V opačném případě se z dalších otočení ruletou určil směr a rychlost neutronu (vše bylo tedy náhodné). Ten samý postup se opakoval stále, dokud nenastalo pohlcení neutronu.

11 Při hledání jména pro svou metodu se inspirovali Ulamovým strýčkem, velkým gamblerem v Monte Carlu. Následně Neumann vymyslel výpočet pseudonáhodných čísel, která je možné využít při aplikování této metody. Od té doby metoda Monte Carlo našla uplatnění v mnoha různých disciplínách, namátkou můžeme zmínit biologii (simulace vývoje hmyzu), fyziku (simulace života neutronu), ekonomie (hodnocení rizikovosti akcií na burze). Tyto problémy musí jednak splnit některé podmínky spojité rozložení pravděpodobnosti a jednak musíme znát pravidla, kterými se daná problematika řídí. Jako jsou například u života neutronu podmínky jeho pohlcení a odražení od určitých prvků. 5. Vlastní projekt Jak je řečeno již v anotaci, naším cílem bylo aplikovat metodu Monte Carlo na nějaký ekonomický problém, a to ideálně z burzovního prostředí. Jako samotný problém k řešení jsme si stanovili odhad počtu akcií, které odpovídají námi zadaným kritériím pro nákup. 5. a Určení kritérii Prvně bylo nutné najít kritéria, podle kterých chceme hodnotit akcie. Vybrali jsme si 4 základní charakteristiky, které jsou veřejně dostupné pro veškeré akcie. Pro stanovení intervalů, ve kterých se daná kritéria pohybují, jsme využili server Patria Direct: 1. Cena akcie je reálná suma, kterou člověk zaplatí za jednu akcii. Jejich rozmezí je velmi různé ovšem určili jsme si rozmezí Kč a podinterval Kč. 2., podle tabulek se následně dá určit jak riziková akcie je, zpravidla čím vyšší P/E poměr tím vyšší rizikovost. Kvalita akcie se dá určit z následující tabulky. My jsme si stanovili podinterval z celkového intervalu 0-50, tudíž chceme potencionálně obchodovat s akciemi, které se považují za stabilní. P/E poměr Závěr vyplívající pro akcii dané firmy Buďto je akcie dané firmy podhodnocena, nebo jsou zisky dané firmy v úpadku. Pro většinu akcií se P/E poměr pohybující v tomto intervalu považuje za dobrou hodnotu.

12 Akcie dané společnosti je buď nadhodnocená, nebo zisk dané společnosti vzrostl oproti posledním publikovaným výsledkům. Společnost, od níž se očekává v budoucnosti velký růst, nebo její letošní zisk byl velmi nízký. Případně mohou její akcie být obětí spekulace. zdroj 3. Dividenda suma, která se vyplácí akcionářům dané firmy ve stanovený termín (tzv. rozhodný den). Její výše není přímo závislá na tom, zda akcie rostla nebo klesala, ale na rozhodnutí valné hromady dané firmy. Zde jsme si stanovili celkový interval a podinterval Tržní kapitalizace tržní hodnota akciové společnosti. Spočítáme ji tak, že objem všech akcií dané firmy na trhu vynásobíme aktuální cenou jedné akcie. Celkový interval byl My jsme si stanovili podinterval b Algoritmus Na základě výše zmíněných kritérií a seřazení jich dle pořadí našeho rozhodování získáme algoritmus. Ten je znázorněn na dolním schématu.

13 Zde vidíme samotný program (psaný v jazyce Java) vycházející z našeho algoritmu function vypocet(){ var pokusy = ; (1) var vyhrajenakupakcie = 0; var prohrajenakupakcie = 0; for(var i = 0;i<pokusy;i++){ (2) var num1 = Math.random() * (1000); var num2 = Math.random() * (50); var num3 = Math.random() * (1000); var num4 = Math.random() * (190)+10; if (nakupakcie(num1, num2, num3, num4) == true) { vyhrajenakupakcie += 1; (3) }else { prohrajenakupakcie += 1; (4)

14 } } Logger.log("Nakup:"+vyhrajeNakupAkcie); Logger.log("Prodej:"+prohrajeNakupAkcie) } function nakupakcie(num1, num2, num3, num4) { (5) if (num1 > 25 && num1 < 500) { (6) if (num2 > 12 && num2 < 30) { (7) if (num3 > 100 && num3 < 500) { (8) if (num4 > 20 && num4 < 100) { (9) return true; (10) }}}} return false; (11) }; Komentář (1) Počet pokusů zde zadáme, kolikrát chceme pokus opakovat, respektive s kolika akciemi chceme pokus provést (jeden pokus = jedna akcie) (2) Generátor pseudonáhodných čísel pro jednotlivé parametry dané akcie, var num1 reprezentuje cenu, var num2 P/E poměr, var num3 Dividendu, var num4 tržní kapitalizaci. Za každou proměnou je stanoven interval, do kterého mají být čísla generována. (3) Přírůst výher pokud je výsledek srovnání parametrů dané akcie označen jako pozitivní, tak program na základě tohoto příkazu připíše 1 k počtu pozitivních výsledků. (4) Přírůst proher - pokud není některá z podmínek splněna, program na základě tohoto příkazu připíše 1 k počtu negativních výsledků. (5) Následuje soubor podmínek, které akcie musí splnit, abychom dostali pozitivní výsledek. (6) Zadání rozpětí ceny zadáváme nejdříve dolní a následně horní hranici intervalu, který jsme si stanovili. Pokud se číslo nachází v daném intervalu, tak program postoupí k další podmínce. Pokud ne tak je srovnání ukončeno. (7) P/E poměr - zadáváme nejdříve dolní a následně horní hranici intervalu, který jsme si stanovili. Pokud se číslo nachází v daném intervalu, tak program postoupí k další podmínce. Pokud ne tak je srovnání ukončeno. (8) Dividenda - zadáváme nejdříve dolní a následně horní hranici intervalu, který jsme si stanovili. Pokud se číslo nachází v daném intervalu, tak program postoupí k další podmínce. Pokud ne tak je srovnání ukončeno.

15 (9) Tržní kapitalizace - zadáváme nejdříve dolní a následně horní hranici intervalu, který jsme si stanovili. Pokud se číslo nachází v daném intervalu, tak program postoupí k dalšímu příkazu. Pokud ne tak je srovnání ukončeno. (10) Pokud akcie splnila všechna srovnání, tak tento příkaz označí výsledek jako pozitivní. (11) Pokud akcie nesplnila některé ze srovnání, tak tento příkaz označí výsledek jako pozitivní. 5. c Výsledky Počet pokusů (akcií) Počet pozitivních výsledků = 0,1674 % Počet negativních výsledků = 99,8326 % 5. d Ověření výsledků Pro ověření výsledků nejdříve spočítáme pravděpodobnost pro získání pozitivního výsledku za námi daných podmínek (6. a) a tou následně vynásobíme počet akcií, se kterým jsme provedli náš experiment. Pravděpodobnost získání pozitivního výsledku u jednotlivých kritérií výběru Cena Počet všech možných výsledků n = 1000 Počet všech příznivých výsledků m = = 175 P/E poměr Počet všech možných výsledků n = 50 Počet všech pozitivních výsledků m = = 11 Dividenda Počet všech možných výsledků n = 1000 Počet všech pozitivních výsledků m = = 200 Tržní kapitalizace Počet všech možných výsledků n = Počet všech příznivých výsledků m = = Tudíž pravděpodobnost, že za námi daných podmínek dostaneme pozitivní výsledek (akcie bude odpovídat všem podmínkám) je

16 Tuto pravděpodobnost vynásobíme počtem pokusů (akcií), se kterými jsme počítali a tím získáme počet akcií, který by měl odpovídat námi zadaným podmínkám. 6. Závěr Námi experimentálně získaný počet se liší o 53 akcií od předpokládaného výsledku (odchylka 5,3 * %). Vzhledem k takto malé odchylce můžeme konstatovat, že náš algoritmus negeneruje chybné výsledky a tudíž se nám podařilo nasimulovat počet akcií, které odpovídají námi zadaným podmínkám. Ovšem je potřeba si uvědomit, že bychom mohli ještě zpřísnit kritéria pro výběr akcie. Také by se mohla použít jinak definovaná pravděpodobnost. 7. Použitá literatura FABIÁN, F, KLUIBER, Z. Metoda Monte Carlo a možnosti jejího uplatnění. Praha: Prospektum s.r.o., s. ISBN Bakalářská práce- Statistická metoda Monte Carlo Bc.Jakub Kupčík, UTB Zlín publikováno 2009 Bakalářská práce- Monte Carlo simulace v ekonometrii Autor: Klára Vopatová VŠE publikováno 2013 HAVLÍČEK, Jiří. Iracionální čísla: Ludolfovo číslo π. In: [online]. [cit ]. Dostupné z: PIVETEAU, Jean. Britannica: Georges-Louis Leclerc, count de Buffon. In: [online]. [cit ]. Dostupné z: Buffon SCHUKLA, Gurav a Chelsey PARROTT-SHEFFER. Britannica: Stanislaw Marcin Ulam. In: [online]. [cit ]. Dostupné z: Ulam O CONNOR, J J a E F ROBERTSON. History at School of Mathematisc and Statistics: John von Neumann. In: [online]. [cit ]. Dostupné z: Wikipedia: John von Neumann. In: Wikipedia: the free encyclopedia [online]. San Francisco (CA): Wikimedia Foundation, [cit ]. Dostupné z: JohnvonNeumann-LosAlamos.gif Wikipedia: Stanislaw Ulam. In: Wikipedia: the free encyclopedia [online]. San Francisco (CA): Wikimedia Foundation, [cit ]. Dostupné z: Stanislaw_Ulam.tif.jpg

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Ekonomické modelování pro podnikatelskou praxi

Ekonomické modelování pro podnikatelskou praxi pro podnikatelskou praxi Ing. Jan Vlachý, Ph.D. vlachy@atlas.cz Dlouhý, M. a kol. Simulace podnikových procesů Vlachý, J. Řízení finančních rizik Scholleová, H. Hodnota flexibility: Reálné opce Sylabus

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti PRAVDĚPODOBNOST anotace Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti VM vytvořil: Mgr. Marie Zapadlová Období vytvoření VM: září 2013 Klíčová

Více

Matematika stavebního spoření

Matematika stavebního spoření Matematika stavebního spoření Výpočet salda ve stacionárním stavu a SKLV Petr Kielar Stavební spořitelny se od klasických bank odlišují tím, že úvěry ze stavebního spoření poskytují zásadně z primárních

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Autor Použitá literatura a zdroje Metodika

Autor Použitá literatura a zdroje Metodika Poř. číslo III-2-F-II-1-7r. III-2-F-II-2-7.r. Název materiálu Vlastnosti kapalin Hydraulická zařízení Autor Použitá literatura a zdroje Metodika http://www.quido.cz/osobnosti/pascal.htm. http://black-hole.cz/cental/wp-content/uploads/2011/04/spojene_nadoby.pdf

Více

GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA

GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA Oblasti využití generátorů náhodných čísel Statistika Loterie Kryptografie (kryptologie) Simulace Simulační modely DETERMINISTICKÉ STOCHASTICKÉ (činnost systému

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.0/1.5.00/4.018 Šablona III/ Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY INOVACE_Hor015 Vypracoval(a), dne Mgr.

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

PRAVDĚPODOBNOST A JEJÍ UŽITÍ

PRAVDĚPODOBNOST A JEJÍ UŽITÍ PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Rainer Scharf, Félix M. Izrailev, 1990 rešerše: Pavla Cimrová, 28. 2. 2012 1 Náhodné matice Náhodné matice v současnosti nacházejí

Více

URČITÝ INTEGRÁL OBSAH PLOCHY ROVINNÉHO OBRAZCE OHRANIČENÉHO ZADANÝMI KŘIVKAMI

URČITÝ INTEGRÁL OBSAH PLOCHY ROVINNÉHO OBRAZCE OHRANIČENÉHO ZADANÝMI KŘIVKAMI URČITÝ INTEGRÁL OBSAH PLOCHY ROVINNÉHO OBRAZCE OHRANIČENÉHO ZADANÝMI KŘIVKAMI Co je kýženým výsledkem je zřejmé ze zadání obsah, respektive obsah jistého obrazce omezeného zadanými křivkami který je samozřejmě

Více

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávání v informačních a komunikačních technologií

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávání v informačních a komunikačních technologií VY_32_INOVACE_31_02 Škola Střední průmyslová škola Zlín Název projektu, reg. č. Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Tematická oblast Název Autor Vytvořeno, pro obor, ročník Inovace výuky

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého 8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění

Více

2.1. 50 bodů 2.1 Pokyny otevřeným úlohám. je uveden na záznamovém archu. Je-li požadován celý postup řešení, uveďte. výrazů. mimo vyznačená bílá pole

2.1. 50 bodů 2.1 Pokyny otevřeným úlohám. je uveden na záznamovém archu. Je-li požadován celý postup řešení, uveďte. výrazů. mimo vyznačená bílá pole MATEMATIKA MATEMATIKA DIDAKTICKÝ TEST DIDAKTICKÝ TEST DIDAKTICKÝ TEST MAMZD14C0T01 MAMZD14C0T01 MAMZD14C0T01 Maximální bodové hodnocení: 50 bodů 2.1 Pokyny k otevřeným úlohám Maximální Hranice úspěšnosti:

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

Obsahy. Trojúhelník = + + 2

Obsahy. Trojúhelník = + + 2 Obsahy Obsah nám říká, jak velkou plochu daný útvar zaujímá. Třeba jak velký máme byt nebo pozemek kolik metrů čtverečných (m 2 ), hektarů (ha), centimetrů čtverečných (cm 2 ), Základní jednotkou obsahu

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Numerické řešení variačních úloh v Excelu

Numerické řešení variačních úloh v Excelu Numerické řešení variačních úloh v Excelu Miroslav Hanzelka, Lenka Stará, Dominik Tělupil Gymnázium Česká Lípa, Gymnázium Jírovcova 8, Gymnázium Brno MirdaHanzelka@seznam.cz, lenka.stara1@seznam.cz, dtelupil@gmail.com

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Krásy naší země VY_32_INOVACE_OBV_441. Autor: Dana Šrailová. Použití: 7. ročník. Datum vypracování: 5.1. 2013. Datum pilotáže: 9. 1.

Krásy naší země VY_32_INOVACE_OBV_441. Autor: Dana Šrailová. Použití: 7. ročník. Datum vypracování: 5.1. 2013. Datum pilotáže: 9. 1. Krásy naší země VY_32_INOVACE_OBV_441 Autor: Dana Šrailová Použití: 7. ročník Datum vypracování: 5.1. 2013 Datum pilotáže: 9. 1. 2013 Anotace: Prezentace pro žáky sedmých tříd je zaměřena na seznámení

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel Ročník: I. - vytváří si názoru představu o čísle 5, 10, 20 - naučí se vidět počty prvků do 5 bez počítání po jedné - rozpozná a čte čísla 0 5 - pozná a čte čísla 0 10 - určí a čte čísla 0 20 Číselná řada

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro základní vzdělávání Vzdělávací oblast: Matematika a její aplikace Tematický okruh:

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Projekt Obrázek strana 135

Projekt Obrázek strana 135 Projekt Obrázek strana 135 14. Projekt Obrázek 14.1. Základní popis, zadání úkolu Pracujeme na projektu Obrázek, který je ke stažení na http://java.vse.cz/. Po otevření v BlueJ vytvoříme instanci třídy

Více

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech.

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech. 3 Grafické zpracování dat Grafické znázorňování je velmi účinný způsob, jak prezentovat statistické údaje. Grafy nejsou tak přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobnost a matematická statistika Mirko Navara Centrum strojového vnímání katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://cmp.felk.cvut.cz/ navara/mvt http://cmp.felk.cvut.cz/

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Matematický KLOKAN 2005 kategorie Junior

Matematický KLOKAN 2005 kategorie Junior Matematický KLOKAN 2005 kategorie Junior Vážení přátelé, v následujících 75 minutách vás čeká stejný úkol jako mnoho vašich vrstevníků v řadě dalších evropských zemí. V níže uvedeném testu je zadáno čtyřiadvacet

Více

OPERACE S KOMBINAČNÍMI ČÍSLY A S FAKTORIÁLY, KOMBINACE

OPERACE S KOMBINAČNÍMI ČÍSLY A S FAKTORIÁLY, KOMBINACE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol OPERACE

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují.

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. .. Funkce, definiční obor funkce Předpoklady: 03 Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. Uděláme si na tabuli jenom krátký seznam: S = a, y = x, s = vt, výška lidí v

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor012 Vypracoval(a),

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

Výroková logika dokazatelnost

Výroková logika dokazatelnost Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen společnost) stanoví k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen osvědčení) následující

Více

Matematika - 1. ročník Vzdělávací obsah

Matematika - 1. ročník Vzdělávací obsah Matematika - 1. ročník Časový Téma Učivo Ročníkové výstupy žák podle svých schopností: Poznámka Září Přípravná část Poznávání vlastností předmětů, třídění podle vlastnosti Poznávání barev, třídění podle

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Pravděpodobnost a statistika pro SŠ

Pravděpodobnost a statistika pro SŠ Pravděpodobnost a statistika pro SŠ RNDr. Blanka Šedivá, Ph.D., katedra matematiky, Fakulta aplikovaných věd Západočeské univerzity v Plzni sediva@kma.zcu.cz 28. března 2012 Počátky teorie pravděpodobnosti

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

MĚŘ, POČÍTEJ A MĚŘ ZNOVU

MĚŘ, POČÍTEJ A MĚŘ ZNOVU MĚŘ, POČÍTEJ A MĚŘ ZNOVU Václav Piskač Gymnázium tř.kpt.jaroše, Brno Abstrakt: Příspěvek ukazuje možnost, jak ve vyučovací hodině propojit fyzikální experiment a početní úlohu způsobem, který výrazně zvyšuje

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_4IS Ověření ve výuce Třída 8. A Datum: 12. 6. 2013 Pořadové číslo 20 1 Vědci Předmět: Ročník: Jméno autora: Fyzika

Více

SOMA CUBE. Komponent č.7

SOMA CUBE. Komponent č.7 SOMA CUBE Jako první část mého projektu jsem si zvolil Soma Cube (v češtině bohužel bez paralely). Vymyslel ji Piet Hein, skandinávský spisovatel o hlavolamech, taktických a matemativkých hrách (například

Více

Přehled vhodných metod georeferencování starých map

Přehled vhodných metod georeferencování starých map Přehled vhodných metod georeferencování starých map ČVUT v Praze, katedra geomatiky 12. 3. 2015 Praha Georeferencování historická mapa vs. stará mapa georeferencování umístění obrazu mapy do referenčního

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává

Více

OSOVÁ SOUMĚRNOST. Lekce je navržená pro dvě vyučovací hodiny, 90 minut. Průběh lekce:

OSOVÁ SOUMĚRNOST. Lekce je navržená pro dvě vyučovací hodiny, 90 minut. Průběh lekce: OSOVÁ SOUMĚRNOST Lekce je navržená pro dvě vyučovací hodiny, 90 minut. Průběh lekce: EVOKACE Metoda: volné psaní Každý žák obdrží obrázek zámku Červená Lhota. Obrázek je také možné promítnout na interaktivní

Více

Programování v jazyku LOGO - úvod

Programování v jazyku LOGO - úvod Programování v jazyku LOGO - úvod Programovací jazyk LOGO je určen pro výuku algoritmizace především pro děti školou povinné. Programovací jazyk pracuje v grafickém prostředí, přičemž jednou z jeho podstatných

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

Grafy EU peníze středním školám Didaktický učební materiál

Grafy EU peníze středním školám Didaktický učební materiál Grafy EU peníze středním školám Didaktický učební materiál Anotace Označení DUMU: VY_32_INOVACE_IT4.09 Předmět: IVT Tematická oblast: Microsoft Office 2007 Autor: Ing. Vladimír Šauer Škola: Gymnázium,

Více

Finanční. matematika pro každého. 8. rozšířené vydání. f inance. věcné a matematické vysvětlení základních finančních pojmů

Finanční. matematika pro každého. 8. rozšířené vydání. f inance. věcné a matematické vysvětlení základních finančních pojmů Finanční matematika pro každého 8. rozšířené vydání J. Radová, P. Dvořák, J. Málek věcné a matematické vysvětlení základních finančních pojmů metody pro praktické rozhodování soukromých osob i podnikatelů

Více

Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem

Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem Podle mateiálu ESO přeložil Rostislav Halaš Úkol: Změřit vzdálenost Země Slunce (tzv. astronomickou jednotku AU) pozorováním přechodu

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Aplikace multifraktální geometrie na finančních trzích

Aplikace multifraktální geometrie na finančních trzích Aplikace multifraktální geometrie na finančních trzích 5. studentské kolokvium a letní škola matematické fyziky Stará Lesná Fakulta jaderná a fyzikálně inženýrská ČVUT, Praha 1. 9. 2011 Úvod náhodné procesy

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 22 úloh. Časový limit pro

Více

MATURITNÍ PRÁCE Z PŘEDMĚTU GRAFIKA A MULTIMEDIA

MATURITNÍ PRÁCE Z PŘEDMĚTU GRAFIKA A MULTIMEDIA MATURITNÍ PRÁCE Z PŘEDMĚTU GRAFIKA A MULTIMEDIA Studijní obor: 18-20-M/01 Informační technologie Třída: I4.A Školní rok: 2012/2013 Autor: Lukáš Zuzaňák Prohlášení autora: Prohlašuji, že jsem tuto práci

Více

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně

Více

Úrokové sazby na mezibankovním trhu a předpovědní schopnost tohoto trhu

Úrokové sazby na mezibankovním trhu a předpovědní schopnost tohoto trhu Úrokové sazby na mezibankovním trhu a předpovědní schopnost tohoto trhu KMA/MAB.5.00 Lenka Skalová A08N085P leninkaskalova@centrum.cz Obsah Obsah... Zadání... Zdroj dat... Peněžní trh.... Definice peněžního

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

Základní pojmy o signálech

Základní pojmy o signálech Základní pojmy o signálech klasifikace signálů transformace časové osy energie a výkon periodické signály harmonický signál jednotkový skok a impuls Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz

Více

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207 6..8 Vlnová funkce ředpoklady: 06007 edagogická poznámka: Tato hodina není příliš středoškolská. Zařadil jsem ji kvůli tomu, aby žáci měli alespoň přibližnou představu o tom, jak se v kvantové fyzice pracuje.

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Žák cvičí prostorovou představivost Žák využívá při paměťovém i písemném počítání komutativnost i asociativní sčítání a násobení Žák provádí písemné početní operace v oboru Opakování učiva 3. ročníku Písemné

Více

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávání v informačních a komunikačních technologií

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávání v informačních a komunikačních technologií VY_32_INOVACE_31_18 Škola Název projektu, reg. č. Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Tematická oblast Název Autor Vytvořeno, pro obor, ročník Anotace Přínos/cílové kompetence Střední

Více

Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami

Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika)

Více

Ukázka knihy z internetového knihkupectví www.kosmas.cz

Ukázka knihy z internetového knihkupectví www.kosmas.cz Ukázka knihy z internetového knihkupectví www.kosmas.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w. k o s m a s. c z, U I D : K O S 1 8 0 7 6 1 Edice Osobní a rodinné

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

VY_06_Vla5E_45. Operační program Vzdělávání pro konkurenceschopnost Inovativní metody v prvouce, vlastivědě a zeměpisu

VY_06_Vla5E_45. Operační program Vzdělávání pro konkurenceschopnost Inovativní metody v prvouce, vlastivědě a zeměpisu Materiál pro domácí přípravu žáků: Název programu: Název projektu: Registrační číslo projektu: Předmět: Ročník: Autor: Téma učivo: Učební pomůcky: Zápis z vyučovací hodiny: VY_06_Vla5E_45 Operační program

Více