8. Stereometrie 1 bod

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "8. Stereometrie 1 bod"

Transkript

1 8. Stereometrie 1 bod 8.1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného válce je 4 : π b) : π c) : π d) : π e) 4 : π. 8.. Zmenšíme-li poloměr podstavy kužele o polovinu a jeho výšku zvětšíme o 0 % zmenší se objem kužele o 70 % b) 0 % c) 0 % d) 80 % e) 0 %. 8.. Objem tělesa které vznikne rotací čtverce o straně a kolem jeho úhlopříčky je πa b) 1 πa c) πa d) πa e) 5 πa Objem komolého pravidelného čtyřbokého jehlanu který má hranu dolní podstavy 10 m hranu horní podstavy 8 m a odchylku bočních stěn od podstavy 45 je 44 m b) 144 m c) 145 m d) 45 m e) 45 4 m Kvádru o hranách cm cm 4 cm jsou opsány tři válce tak že protější stěny kvádru jsou vepsány do podstav válců. Poměr objemů opsaných válců je : 5 : 0 b) 4 : 0 : c) 5 : 4 : 0 d) : 4 : 7 e) 5 : 0 : V kvádru který má podstavu o rozměrech cm 4 cm a výšku 5 cm platí pro tělesovou úhlopříčku u a její odchylku α od podstavy u = 5 cm α = 45 b) u = 4 cm α = 0 c) u = 5 cm α = 0 d) u = cm α = 15 e) u = 5 cm α = V krychli označíme K L M středy tří hran které vycházejí z jednoho jejího vrcholu. Trojúhelník KLM dělí krychli na dvě části. Poměr objemů těchto částí je 1 : 47 b) 1 : 15 c) 1 : 9 d) 1 : 5 e) 1 : Označme K střed stěny ABCD a L střed stěny BCGF v krychli ABCDEF GH o délce hrany a. Obsah trojúhelníku KLB je 8 a b) a c) a d) 4 a e) a Označme P střed hrany EH krychle ABCDEF GH o délce hrany a. Obsah trojúhelníku BCP je a b) a c) a d) a e) 5 a Do polokoule o poloměru r je vepsána krychle tak že jedna její stěna leží v podstavě polokoule a zbývající vrcholy na kulovém vrchlíku. Délka hrany krychle je 5 5 r b) r c) 5 r d) 5 5 r e) 5 r.

2 8.11. Objem tělesa které vznikne rotací rovnostranného trojúhelníku o straně a kolem jeho strany je 1 4 πa b) 4 πa c) 5 πa d) πa e) 1 πa Poměr objemů pravidelného čtyřbokého hranolu a jemu opsaného válce je : π b) : π c) : π d) : 4π e) : π Poměr povrchů krychle a jí vepsaného válce je 4 : π b) : π c) 4 : π d) : π e) : π Poměr objemů krychle vepsané a krychle opsané téže kouli je : 9 b) : c) : d) : 8 e) 4 : Pravidelný čtyřboký hranol má hranu podstavy a a výšku a. Poměr povrchů tohoto hranolu a jemu vepsaného válce je 4 : π b) : π c) : π d) 4 : π e) : π Objem pravidelného čtyřbokého jehlanu s úhlopříčkou podstavy délky 4 cm a délkou boční hrany 5 cm je cm b) cm c) 4 cm d) cm e) 4 cm Povrch pravidelného čtyřbokého jehlanu s úhlopříčkou podstavy délky 4 cm a délkou boční hrany 5 cm je 48 cm b) 0 cm c) 50 cm d) 80 cm e) 45 cm Tělesová úhlopříčka krychle která má objem 4 cm má délku 4 cm b) cm c) cm d) 5 cm e) cm Tělesová úhlopříčka krychle která má povrch 9 cm má délku 4 cm b) cm c) cm d) 5 cm e) cm Povrch čtyřbokého jehlanu jehož podstavou je stěna krychle o hraně a a vrcholem střed protější stěny této krychle je (1 + 5)a b) (1 + )a c) (1 + )a d) 5 a e) 4 5 a Povrch čtyřbokého jehlanu jehož podstavou je stěna krychle o hraně a a vrcholem jeden z vrcholů protější stěny této krychle je ( + )a b) (1 + )a c) (1 + )a d) a e) 4 a. 8.. Povrch rotačního válce o výšce rovné průměru podstavy který má objem 1 cm je π cm b) 4π cm c) 4π cm d) 4π cm e) π cm.

3 8.. Povrch komolého pravidelného čtyřbokého jehlanu který má hranu dolní podstavy velikosti 10 m hranu horní podstavy 8 m a odchylku bočních stěn od podstavy 45 je (14 + ) m b) (15 + ) m c) (15 + ) m d) (14 + ) m e) (14 + 5) m Střed stěny krychle je společným vrcholem dvou rotačních kuželů. Podstava prvního kužele je opsána a podstava druhého kužele je vepsána protější stěně krychle. Poměr objemů těchto kuželů je : 1 b) : 1 c) : 1 d) : 1 e) : Povrch rotačního kužele vepsaného do krychle o hraně a tak že jeho podstava je vepsána do stěny této krychle je 1 4 (1 + 5)πa b) 1 (1 + 5)πa c) 1 (1 + 5)πa d) 1 (1 + )πa e) 1 (1 + )πa. 8.. Povrch rotačního kužele jehož podstavou je kruh opsaný stěně krychle o hraně a a vrcholem je střed protější stěny této krychle je 1 (1 + )πa b) 1 (1 + 5)πa c) 1 (1 + 5)πa d) 1 (1 + )πa e) 1 (1 + )πa Do koule poloměru r jsou vepsány dva shodné rotační kužele se společnou podstavou poloměru r. Poměr součtu objemů obou kuželů a objemu koule je 1 : b) 1 : c) : d) : 4 e) 1 : Do koule poloměru r jsou vepsány dva shodné rotační kužele se společnou podstavou poloměru r. Poměr součtu obsahů plášťů obou kuželů a povrchu koule je : b) : 1 c) : 1 d) : e) : Poměr objemů krychle a koule které mají stejný povrch je π : b) π : c) π : d) π : e) π : Poměr povrchů krychle a koule které mají stejný objem je : π b) : π c) : π d) : π e) : π Obdélník o stranách a b a b je rozvinutým pláštěm dvou různých válců. Poměr jejich povrchů je a(a + πb) : b(b + π b) a(a + πb) : b(b + π c) a(a + πb) : b(b + π d) a(a πb) : b(b π e) a(a πb) : b(b π. 8.. Obdélník o stranách a b a b je rozvinutým pláštěm dvou různých válců. Poměr jejich objemů je a : b b) a : b c) a : b d) 1 a : b e) a : 1 b. 8.. Dva rotační válce o poloměrech podstav r R mají stejný objem. Poměr obsahů jejich plášťů je R : r b) r : R c) R : r d) R : r e) r : R.

4 8.4. Rovnostrannému rotačnímu kuželi (r = s) je opsána a vepsána koule. Poměr povrchů obou koulí je 1 : 4 b) 1 : c) 1 : 5 d) : e) : Pro poloměry r 1 r a výšky v 1 v dvou rotačních válců platí r 1 : r = v 1 : v. Poměr obsahů jejich plášťů je r 1 : r b) 1 r 1 : r c) r 1 : 1 r d) 1 r 1 : r e) r 1 : 1 r. 8.. Pro poloměry r 1 r podstav a výšky v 1 v dvou rotačních kuželů platí r 1 : r = v 1 : v. Poměr obsahů jejich plášťů je r 1 : r b) 1 r 1 : r c) r 1 : 1 r d) 1 r 1 : r e) r 1 : 1 r Poměr objemu krychle ABCDEF GH a objemu jehlanu ABCF je : 1 b) 5 : 1 c) 5 : d) : e) 4 : Do rotačního kužele je vepsán rotační válec o poloviční výšce. Poměr jejich objemů je : 8 b) : 7 c) 5 : 8 d) 5 : 7 e) 1 : Poměr poloměrů koule krychli opsané a koule krychli vepsané je : 1 b) : c) : 1 d) : e) : Poměr objemů koule a rotačního válce kouli opsaného je : b) : 5 c) : 4 d) : 5 e) : Objem tělesa které vznikne rotací pravoúhlého rovnoramenného trojúhelníku s ramenem a kolem jeho přepony je πa b) 4 πa c) 5 πa d) πa e) 1 πa Obsahy tří stěn kvádru které mají společný právě jeden vrchol jsou S 1 S S. Objem kvádru je S 1 S S b) S 1 S S c) S 1 S S d) S S 1 S e) S S S Obdélník o stranách a b a b je rozvinutým pláštěm dvou různých válců. Jejich objemy jsou a b 4π ab 4π ab b) 4π ab 4π c) a b 4π ab π d) a b π ab 4π e) a b π ab π Objem krychle vepsané do koule poloměru r je 8 9 r b) 9 r c) 5 r d) 4 9 r e) 8 9 r Povrch krychle vepsané do koule poloměru r je 8r b) 9r c) 7r d) 4r e) r.

5 8.4. Kouli o poloměru r je opsán rotační kužel o výšce v = 4r. Objem kužele je 8 πr b) 4 πr c) 5 πr d) 5 πr e) 7 πr Obdélník o stranách a b a b je rozvinutým pláštěm dvou různých válců. Jejich povrchy jsou c) e) a(a + bπ) π a(a + bπ) π a(a + bπ) π b(b + aπ) π b(b + aπ) 4π b(b + aπ) π b) d). a(a + bπ) 4π a(a + bπ) π b(b + aπ) π b(b + aπ) π Do koule poloměru r je vepsán rotační válec jehož výška je rovna průměru jeho podstavy. Objem vepsaného válce je πr b) πr c) πr d) πr e) πr Středový úhel kruhové výseče do které se rozvine plášť rovnostranného rotačního kužele (tj. průměr podstavy je roven straně kužele) je π b) π c) π d) π e) π Hrana krychle která je vepsaná do rotačního rovnostranného kužele s poloměrem podstavy r (tj. průměr podstavy je roven straně kužele) je r b) r c) r d) r e) r Poměr povrchů koulí krychli opsané a vepsané je : 1 b) : 1 c) : d) 5 : e) 5 : Poměr obsahů plášťů rotačních kuželů které vzniknou rotací pravoúhlého trojúhelníku ABC kolem jeho odvěsen a b je b : a b) b : a c) b : a d) b : a e) b : a Poměr objemů rotačních kuželů které vzniknou rotací pravoúhlého trojúhelníku ABC kolem jeho odvěsen a b je b : a b) b : a c) b : a d) b : a e) b : a Objem čtrnáctistěnu který je určen středy všech hran krychle ABCDEF GH o hraně a je 5 a b) 4 a c) 5 a d) 4 5 a e) a Kouli o poloměru r je opsán rovnostranný rotační kužel (tj. průměr podstavy je roven straně kužele). Objem kužele je πr b) πr c) 4πr d) 5πr e) πr.

6 8.5. Kouli o poloměru r je vepsán rovnostranný rotační kužel (tj. průměr podstavy je roven straně kužele). Objem kužele je 8 πr b) 7 πr c) 4 7 πr d) 5 8 πr e) 5 πr Střed koule o poloměru r je vrcholem rotačního kužele jehož podstava se koule dotýká. Jestliže objemy obou těles jsou stejné poloměr podstavy kužele je r b) r c) 4r d) r e) 5r Střed koule o poloměru r je vrcholem rotačního kužele jehož podstava se koule dotýká. Jestliže povrchy obou těles jsou stejné poloměr podstavy kužele je 4r b) r c) 4r d) r e) 5r Pravidelný trojboký jehlan ABCV je vepsaný do polokoule o poloměru r tak že jeho podstava ABC je vepsaná hraničnímu kruhu polokoule. Objem jehlanu je 5 4 r b) r c) r d) 4 r e) 4 r První ze dvou souosých rotačních kuželů má vrchol ve středu podstavy druhého kužele (a naopak). Poloměry jejich podstav jsou r 1 r. Potom poloměr kružnice ve které se protínají jejich pláště je r 1 r r 1 + r b) r 1 r r 1 + r c) r 1 r r 1 + r d) r r 1 + r e) r 1 r 1 + r.

Otázky z kapitoly Stereometrie

Otázky z kapitoly Stereometrie Otázky z kapitoly Stereometrie 10. února 015 Obsah 1 Krokované příklady (0 otázek) 1 Metrické vlastnosti (30 otázek) 1.1 Obtížnost 1 (16 otázek)....................................... 1. Obtížnost (14

Více

Geometrické těleso je prostorově omezený geometrický útvar. Jeho hranicí, povrchem, je uzavřená plocha.

Geometrické těleso je prostorově omezený geometrický útvar. Jeho hranicí, povrchem, je uzavřená plocha. 18. Tělesa řezy, objemy a povrchy, (řez krychle, kvádru, jehlanu, objemy a povrchy mnohostěnů, rotačních těles a jejich částí včetně komolých těles, obvody a obsahy mnohoúhelníků, kruhu a jeho částí) Tělesa

Více

Zadání. stereometrie. 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK =3 AK ; M EH; HM =3 EM.

Zadání. stereometrie. 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK =3 AK ; M EH; HM =3 EM. STEREOMETRIE Zadání 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK = AK ; M EH; HM = EM ) Sestrojte řez pravidelného čtyřbokého jehlanu ABCDV rovinou KLM; K AB; BK = AK ; L CD; DL = CL ; M

Více

4. Vypočítejte objem dané krychle, jestliže víte, že objem krychle s hranou poloviční délky má objem 512 m 3.

4. Vypočítejte objem dané krychle, jestliže víte, že objem krychle s hranou poloviční délky má objem 512 m 3. Didaktika matematiky DM 3 - příklady stereometrie Kvádr, krychle 1. Vypočítejte objem krychle, jejíž povrch je 96 cm 2. 2. Vypočítejte povrch krychle, jejíž objem je 512 cm 3. 3. Jedna stěna krychle má

Více

Stereometrie pro učební obory

Stereometrie pro učební obory Variace 1 Stereometrie pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz 1. Vzájemná poloha prostorových

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ..07/.5.00/4.080 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/ Inovace a zkvalitnění výuky prostřednictvím

Více

STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI. STEREOMETRIE geometrie v prostoru

STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI. STEREOMETRIE geometrie v prostoru Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ Mgr. Tomáš MAŇÁK 4. května 2014 Název zpracovaného celku: STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI STEREOMETRIE geometrie

Více

Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3

Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3 y, objemy nám vlastně říká, kolik tapety potřebujeme k polepení daného tělesa. Základní jednotkou jsou metry čtverečné (m 2 ). nám pak říká, kolik vody se do daného tělesa vejde. Základní jednotkou jsou

Více

Vypočítejte délku tělesové úhlopříčky krychle o hraně délky a cm.

Vypočítejte délku tělesové úhlopříčky krychle o hraně délky a cm. Vypočítejte délku tělesové úhlopříčky krychle o hraně délky a cm. 8 cm u s = 11,3137085 cm pomocí Pythagorovy věty z pravoúhlého ABC u t = 13,85640646 cm opět pomocí Pythagorovy věty z pravoúhlého ACA'

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_15 ŠVP Podnikání RVP 64-41-L/51

Více

f(x) = 9x3 5 x 2. f(x) = xe x2 f(x) = ln(x2 ) f(x) =

f(x) = 9x3 5 x 2. f(x) = xe x2 f(x) = ln(x2 ) f(x) = Zadání projektů Projekt 1 f(x) = 9x3 5 2. Určete souřadnice vrcholů obdélníka ABCD, jehož dva vrcholy mají kladnou y-ovou souřadnici a leží na parabole dané rovnicí y = 16 x 2 a další dva vrcholy leží

Více

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách. Registrační číslo projektu: CZ.1.07/1.4.00/21. 0918

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách. Registrační číslo projektu: CZ.1.07/1.4.00/21. 0918 Prioritní osa: 1 Počáteční vzdělávání Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Registrační číslo projektu: CZ.1.07/1.4.00/21. 0918 Název projektu:inovace vzdělávání v

Více

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ),

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), Tělesa 1/6 Tělesa 1.Mnohostěny n-boký hranol Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), hranol kosý hranol kolmý (boční stěny jsou kolmé k rovině podstavy) pravidelný

Více

7/ Podstavou kolmého trojbokého hranolu ABCA BĆ je rovnoramenný trojúhelník ABC. Určete odchylku přímek: a) BA ; BC b) A B ; BC c) AB ; BC

7/ Podstavou kolmého trojbokého hranolu ABCA BĆ je rovnoramenný trojúhelník ABC. Určete odchylku přímek: a) BA ; BC b) A B ; BC c) AB ; BC Stereometrie 1/ Je dána krychle ABCDEFGH. Uveďte všechny přímky, které procházejí bodem E a dalším vrcholem krychle a jsou s přímkou BC a) rovnoběžné b) různoběžné c) mimoběžné / Je dána krychle ABCDEFGH.

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004 PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 003 004 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO M 0030 Vyjádřete jedním desetinným číslem (4 ½ 4 ¼ ) (4 ½ + 4 ¼ ) Správné řešení: 0,5 Zjednodušte výraz : ( 4)

Více

Matematika a geometrie

Matematika a geometrie Počítání 5001.ID053 - Barevná pravítka Z nerozbitného plastového materiálu, s různými barvami. Rozměry pravítek jsou všechny násobky jednotek a umožňují ověřování a porovnávání matematických konceptů.

Více

5.1.1 Úvod do stereometrie

5.1.1 Úvod do stereometrie 5.1.1 Úvod do stereometrie Předpoklady: Stereometrie geometrie v prostoru Co už jsme se učili: planimetrie geometrie v rovině zkoumali jsme pouze útvary, které se vejdou do roviny, mají maximálně dva rozměry

Více

Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek)

Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek) Mária adloňová Fajn MATIKA (nejen) na přijímačky 50 řešených příkladů (vorek) 0 Mgr. Mária adloňová FajnMATIKA (nejen) na přijímačky 50 řešených příkladů (reklamní vorek) Mgr. Mária adloňová, 0 Vydavatel

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Konstruktivní fotogrammetrie

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Konstruktivní fotogrammetrie Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Konstruktivní fotogrammetrie Vypracoval: Barbora Mrázová Třída: 8.M Školní rok: 2014/2015 Seminář: Deskriptivní geometrie Zadavatel:

Více

STEREOMETRIE, TĚLESA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

STEREOMETRIE, TĚLESA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky STEREOMETRIE, TĚLESA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Povrch a objem těles

Povrch a objem těles Povrch a objem těles ) Kvádr: a.b.c S =.(ab+bc+ac) ) Krychle: a S = 6.a ) Válec: π r.v S = π r.(r+v) Obecně: S podstavy. výška S =. S podstavy + S pláště Vypočtěte objem a povrch kvádru, jehož tělesová

Více

Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů

Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů 1/13 Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů STEREOMETRIE Stereometrie - geometrie v prostoru - zabývá se vzájemnou polohou

Více

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie, Komplexní čísla Třída: 3. ročník Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor Volné rovnoběžné promítání Zobrazí ve volném rovnoběžném

Více

Přehled učiva matematiky 7. ročník ZŠ

Přehled učiva matematiky 7. ročník ZŠ Přehled učiva matematiky 7. ročník ZŠ I. ARITMETIKA 1. Zlomky a racionální čísla Jestliže rozdělíme něco (= celek) na několik stejných dílů, nazývá se každá část celku zlomkem. Zlomek tři čtvrtiny = tři

Více

MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň

MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň Obsahové, časové a organizační vymezení Předmět Matematika se vyučuje jako samostatný předmět v 6. až 8. ročníku 4 hodiny týdně, v 9. ročníku 3

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Matematika (MAT) Náplň: Racionální čísla a procenta a základy finanční matematiky, trojúhelníky a čtyřúhelníky, výrazy 1, hranoly Třída: Sekunda Počet hodin: 4 hodiny týdně Pomůcky: Učebna s PC

Více

Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r.

Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r. 7. Kruh, kružnice, válec 7. ročník - 7. Kruh, kružnice, válec 7.1 Kruh, kružnice 7.1.1. Základní pojmy Kružnice je množina bodů mající od daného bodu stejnou vzdálenost. Daný bod označujeme jako střed

Více

Návody k domácí části I. kola kategorie A

Návody k domácí části I. kola kategorie A Návody k domácí části I. kola kategorie A 1. Najděte všechny dvojice prvočísel p, q, pro které existuje přirozené číslo a takové, že pq p + q = a + 1 a + 1. 1. Nechť p a q jsou prvočísla. Zjistěte, jaký

Více

STEREOMETRIE. Vzájemná poloha přímky a roviny. Mgr. Jakub Němec. VY_32_INOVACE_M3r0104

STEREOMETRIE. Vzájemná poloha přímky a roviny. Mgr. Jakub Němec. VY_32_INOVACE_M3r0104 STEREOMETRIE Vzájemná poloha přímky a roviny Mgr. Jakub Němec VY_32_INOVACE_M3r0104 VZÁJEMNÁ POLOHA PŘÍMKY A ROVINY Podobně jako v předchozí lekci bude rozhodovat o vzájemné poloze jednorozměrného a dvourozměrného

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ PRAVIDLA PRO KÓTOVÁNÍ SOUČÁSTÍ

Více

1. Tři shodné obdélníky jsou rozděleny různými způsoby. První je rozdělen na 4 shodné části, poslední obdélník na 6 shodných částí.

1. Tři shodné obdélníky jsou rozděleny různými způsoby. První je rozdělen na 4 shodné části, poslední obdélník na 6 shodných částí. . Tři shodné obdélníky jsou rozděleny různými způsoby. První je rozdělen na 4 shodné části, poslední obdélník na 6 shodných částí. Vyjádřete zlomkem, jakou část druhého obdélníku tvoří zatmavená plocha..

Více

Základní škola Ruda nad Moravou. Označení šablony (bez čísla materiálu): EU-OPVK-MAT-8+9- Slovní úlohy

Základní škola Ruda nad Moravou. Označení šablony (bez čísla materiálu): EU-OPVK-MAT-8+9- Slovní úlohy Označení šablony (bez čísla materiálu): EU-OPVK-MAT-8+9- Slovní úlohy Číslo mate riálu Datum Třída Téma hodiny Ověřený materiál - název Téma, charakteristika Autor Ověřil 1. 2.5. 2012 VI.B I. Sestavení

Více

Pravoúhlá axonometrie - osvětlení těles

Pravoúhlá axonometrie - osvětlení těles Pravoúhlá axonometrie - osvětlení těles KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Pravoúhlá axonometrie - osvětlení těles ZS 2008 1 / 39 KG - L (MZLU v Brně) Pravoúhlá axonometrie - osvětlení těles

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Trojúhelník V. kružnice vepsaná a opsaná. konstrukce kružnice vepsaní a opsané trojúhelníku

Svobodná chebská škola, základní škola a gymnázium s.r.o. Trojúhelník V. kružnice vepsaná a opsaná. konstrukce kružnice vepsaní a opsané trojúhelníku METODICKÝ LIST DA39 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Trojúhelník V. kružnice vepsaná a opsaná Astaloš Dušan Matematika šestý

Více

3.2 OBJEMY A POVRCHY TĚLES

3.2 OBJEMY A POVRCHY TĚLES . OBJEMY A POVRCHY TĚLES Krychle, kvádr, hranol Dochované matematické texty ze starého Egypta obsahují několik úloh na výpočet objemu čtverhranných obilnic tvaru krychle; lze předpokládat, že stejným způsobem

Více

I. kolo kategorie Z9

I. kolo kategorie Z9 58. ročník Matematické olympiády I. kolo kategorie Z9 Z9 I Do tří prázdných polí na obrázku patří taková přirozená čísla, aby součin tří čísel na každé straně trojúhelníku byl stejný. 42 6 72 Jakénejmenšíajakénejvětšíčíslomůžebýtzatétopodmínkyvepsánodošeděvybarveného

Více

BA03 Deskriptivní geometrie

BA03 Deskriptivní geometrie BA03 Deskriptivní geometrie Mgr. Jan Šafařík přednášková skupina P-B1VS2 učebna Z240 letní semestr 2013-2014 Jan Šafařík: Úvod do předmětu deskriptivní geometrie Kontakt: Ústav matematiky a deskriptivní

Více

Opakování k maturitě matematika 4. roč. TAD 2 <

Opakování k maturitě matematika 4. roč. TAD 2 < 8.. Otázka číslo Mocniny a odmocniny. b.) Zjednodušte: 6 b. b Opakování k maturitě matematika. roč. TAD : 6.) Zjednodušte: 6 6.) Vypočtěte: a. y : ( a. y ) =.) Usměrněte zlomek =.. Otázka číslo Lineární

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 5.

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 5. Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 5. Očekávané výstupy z RVP ZV Ročníkové výstupy Učivo Průřezová témata a přesahy Číslo a početní operace využívá při

Více

Matematika 9. ročník

Matematika 9. ročník Matematika 9. ročník Náhradník NáhradníkJ evátá třída (Testovací klíč: SVFMFRIH) Počet správně zodpovězených otázek Počet nesprávně zodpovězených otázek 0 26 Počítání s čísly / Geometrie / Slovní úlohy

Více

Příklady k opakování učiva ZŠ

Příklady k opakování učiva ZŠ Příklady k opakování učiva ZŠ 1. Číslo 78 je dělitelné: 8 7 3. Rozhodněte, které z následujících čísel je dělitelem čísla 94: 4 14 15 3. Určete všechny dělitele čísla 36:, 18, 4, 9, 6, 3, 1, 3, 6, 1 3,

Více

Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro

Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro Příjímací zkoušky 01 Přípravný kurz k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) 1. Číselné obory 1.1. Doplňte číslo do rámečku tak, aby platila rovnost: 1.1.1.

Více

5.4.1 Mnohostěny. Předpoklady:

5.4.1 Mnohostěny. Předpoklady: 5.4.1 Mnohostěny Předpoklady: Geometrické těleso je prostorově omezený geometrický útvar, jehož hranicí je uzavřená plocha. Hranoly Je dán n-úhelník A... 1A2 A n (řídící n-úhelník) ležící v rovině ρ a

Více

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol. ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní

Více

Úvodní opakování, kladná a záporná čísla, dělitelnost, osová a středová souměrnost

Úvodní opakování, kladná a záporná čísla, dělitelnost, osová a středová souměrnost Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika (MAT) Úvodní opakování, kladná a záporná, dělitelnost, osová a středová souměrnost Prima 4 hodiny týdně Učebna s PC a dataprojektorem (interaktivní

Více

S = 2. π. r ( r + v )

S = 2. π. r ( r + v ) horní podstava plášť výška válce průměr podstavy poloměr podstavy dolní podstava Válec se skládá ze dvou shodných podstav (horní a dolní) a pláště. Podstavou je kruh. Plášť má tvar obdélníka, který má

Více

POČÍTAČOVÁ GRAFIKA 3D MODELOVÁNÍ ZÁKLADY PROGRAMU SKETCHUP

POČÍTAČOVÁ GRAFIKA 3D MODELOVÁNÍ ZÁKLADY PROGRAMU SKETCHUP POČÍTAČOVÁ GRAFIKA 3D MODELOVÁNÍ ZÁKLADY PROGRAMU SKETCHUP SKETCHUP SketchUp je program pro tvorbu trojrozměrných modelů. Je to jednoduchý, intuitivní a silný nástroj pro modelování. Není žádný problém

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 15. 10. 2013 Obtížnost 1 Úloha 1 Přednáška trvala 80 minut a skončila

Více

SBÍRKA ŘEŠENÝCH ÚLOH Z GEOMETRIE

SBÍRKA ŘEŠENÝCH ÚLOH Z GEOMETRIE Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Katedra matematiky SBÍRKA ŘEŠENÝCH ÚLOH Z GEOMETRIE BAKALÁŘSKÁ PRÁCE Vedoucí práce Mgr. Roman Hašek, Ph.D. Vypracovala Lucie Kuklová duben

Více

Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků

Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků Geodézie přednáška 9 Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Určování výměr určování

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAIVD11C0T01 ILUSTRAČNÍ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje

Více

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po

Více

Euklidovský prostor Stručnější verze

Euklidovský prostor Stručnější verze [1] Euklidovský prostor Stručnější verze definice Eulidovského prostoru kartézský souřadnicový systém vektorový součin v E 3 vlastnosti přímek a rovin v E 3 a) eprostor-v2, 16, b) P. Olšák, FEL ČVUT, c)

Více

Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je 3 m dlouhý.

Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je 3 m dlouhý. DDÚ Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je m dlouhý. Na délce válce vůbec nezáleží, záleží na jeho obvodu, poloměr je 110 cm, vypočítám

Více

1. Opakování učiva 6. ročníku

1. Opakování učiva 6. ročníku . Opakování učiva 6. ročníku.. Čísla, zlomek ) Z číslic, 6 a sestavte všechna trojciferná čísla tak, aby v každém z nich byly všechny tři číslice různé. ) Z číslic, 0, 3, sestavte všechna čtyřciferná čísla

Více

Matematika pro 9. ročník základní školy

Matematika pro 9. ročník základní školy Matematika pro 9. ročník základní školy Řešení Číselné výrazy 1. Prvočíslo je přirozené číslo, které je beze zbytku dělitelné právě dvěma různými přirozenými čísly, a to číslem jedna a sebou samým (tedy

Více

MATEMATIKA / 1. ROČNÍK. Strategie (metody a formy práce)

MATEMATIKA / 1. ROČNÍK. Strategie (metody a formy práce) MATEMATIKA / 1. ROČNÍK Učivo Čas Strategie (metody a formy práce) Pomůcky Numerace v oboru do 7 30 pokládání koleček rozlišování čísel znázorňování kreslení a představivost třídění - číselné obrázky -

Více

Tematický plán pro školní rok 2015/2016 Předmět: Matematika Vyučující: Mgr. Jitka Vlčková Týdenní dotace hodin: 5 hodin Ročník: čtvrtý

Tematický plán pro školní rok 2015/2016 Předmět: Matematika Vyučující: Mgr. Jitka Vlčková Týdenní dotace hodin: 5 hodin Ročník: čtvrtý ČASOVÉ OBDOBÍ Září KONKRÉTNÍ VÝSTUPY KONKRÉTNÍ UČIVO PRŮŘEZOVÁ TÉMATA porovnává přirozená čísla v oboru do zaokrouhluje čísla na desítky a stovky provádí zpaměti jednoduché početní operace řeší a tvoří

Více

1. jarní série. Barevné úlohy

1. jarní série. Barevné úlohy Téma: Datumodeslání: 1. jarní série Barevné úlohy ½ º ÒÓÖ ¾¼½¼ ½º ÐÓ Ó Ýµ Háňa má krychli, jejíž stěny jsou tvořeny barevnými skly. Když se Háňa na svou kostku podívá jako na obrázku, vidí v každé ze sedmi

Více

A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 6. 4 Klíčové kompetence.

A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 6. 4 Klíčové kompetence. A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 6. 4 Klíčové kompetence Výstupy Učivo Průřezová témata Evaluace žáka Poznámky (Dílčí kompetence) 5 Kompetence

Více

Vyučovací předmět: Matematika. Charakteristika vyučovacího předmětu

Vyučovací předmět: Matematika. Charakteristika vyučovacího předmětu Vyučovací předmět: Matematika Školní vzdělávací program pro základní vzdělávání Základní školy a mateřské školy Dobrovice Charakteristika vyučovacího předmětu Obsahové, časové a organizační vymezení předmětu

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Základní škola Moravský Beroun, okres Olomouc

Základní škola Moravský Beroun, okres Olomouc Charakteristika vyučovacího předmětu matematika Vyučovací předmět má časovou dotaci čtyři hodiny týdně v prvním ročníku, pět hodin týdně ve druhém až pátém ročníku, pět hodin týdně v šestém ročníku a čtyři

Více

6. Jehlan, kužel, koule

6. Jehlan, kužel, koule 6. Jehlan, kužel, koule 9. ročník 6. Jehlan, kužel, koule 6. Jehlan ( síť, objem, porch ) Jehlan je těleso, které má jednu podstau taru n-úhelníku. Podle počtu rcholů n-úhelníku má jehlan náze. Stěny toří

Více

Úlohy. b) číslo 0,8 o 35% d) číslo 220 o 22 % 1 % ze z 10,80 Kč č 10,80 Kč 103,5 = 1117,80 Kč

Úlohy. b) číslo 0,8 o 35% d) číslo 220 o 22 % 1 % ze z 10,80 Kč č 10,80 Kč 103,5 = 1117,80 Kč 2. Obnos 1080 Kč představuje základ z, ze kterého počítáme procentovou část č, odpovídající počtu procent p 3,5; vypočítanou procentovou část pak přičteme k základu. 1. způsob: z 1080 Kč p 103,5 č... Kč

Více

1BMATEMATIKA. 0B9. třída

1BMATEMATIKA. 0B9. třída BMATEMATIKA 0B. třída. Na mapě v měřítku : 40 000 je vyznačena červená turistická trasa o délce cm. Za jak dlouho ujde tuto trasu turista, který se pohybuje stálou rychlostí 4 km/h? (A) za minut (B) za

Více

3. ročník, 2013/ 2014 Mezinárodní korespondenční seminář iks

3. ročník, 2013/ 2014 Mezinárodní korespondenční seminář iks Řešení 3. série Úloha C3. Rovnostranný trojúhelník o straně délky n je vyplněný jednotkovou trojúhelníčkovou mřížkou. Uzavřená lomená čára vede podél této mřížky a každý vrchol mřížky potká právě jednou.

Více

Matematický KLOKAN 2005 kategorie Junior

Matematický KLOKAN 2005 kategorie Junior Matematický KLOKAN 2005 kategorie Junior Vážení přátelé, v následujících 75 minutách vás čeká stejný úkol jako mnoho vašich vrstevníků v řadě dalších evropských zemí. V níže uvedeném testu je zadáno čtyřiadvacet

Více

( ) Zadání SPORT 2014. 1. Kolik % z 2,5 Kč je 0,5 Kč? a) 5% b) 10% c) 20% d) 25% 2. Žák popleta v písemce napsal: ( x 1) x 1

( ) Zadání SPORT 2014. 1. Kolik % z 2,5 Kč je 0,5 Kč? a) 5% b) 10% c) 20% d) 25% 2. Žák popleta v písemce napsal: ( x 1) x 1 Zadání SPORT 0. Kolik % z,5 Kč 0,5 Kč? a) 5% b) 0% c) 0% d) 5%. Žák popleta v písemce napsal: ( x ) x =. Pro která x ho výpočet správný? a) x = b) x = c) x = 0 d) pro žádné x. Určete délku x podle údajů

Více

Matematika I: Aplikované úlohy

Matematika I: Aplikované úlohy Matematika I: Aplikované úlohy Zuzana Morávková Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava 260. Řy 283 - Pálkař Zadání Pálkař odpálí míč pod úhlem α = 30 a rychlostí

Více

MATEMATIKA+ MAMPD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA+ MAMPD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA+ DIDAKTICKÝ TEST MAMPD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 3 úloh. Časový limit pro řešení didaktického

Více

Slouží k procvičení aplikace vzorců pro povrch a objem těles ve slovních úlohách

Slouží k procvičení aplikace vzorců pro povrch a objem těles ve slovních úlohách Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Mgr. Martina Smolinková Datum 11. 1. 2014 Ročník 9. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika

Více

6. Čtyřúhelníky, mnohoúhelníky, hranoly

6. Čtyřúhelníky, mnohoúhelníky, hranoly 6. Čtyřúhelníky, mnohoúhelníky, hranoly 7. ročník - 6. Čtyřúhelníky, mnohoúhelníky, hranoly 6.1. Základní pojmy 6.1.1. n úhelník n - úhelník pro n > 2 je geometrický obrazec, který má n vrcholů ( stran,

Více

Alternace 2012/13 ALTERNACE MATEMATIKA 4. ROČNÍK 2012/13

Alternace 2012/13 ALTERNACE MATEMATIKA 4. ROČNÍK 2012/13 ALTERNACE MATEMATIKA 4. ROČNÍK 01/13-1- Obsah Posloupnosti... 4 Aritmetická posloupnost... 5 Geometrická posloupnost... 6 Geometrické řady... 7 Finanční matematika... 8 Vektor, operace s vektory... 9 Vzdálenosti

Více

Matematika. Až zahájíš práci, nezapomeò:

Matematika. Až zahájíš práci, nezapomeò: 9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení

Více

I. kolo kategorie Z5

I. kolo kategorie Z5 62. ročník Matematické olympiády I. kolo kategorie Z5 Z5 I 1 Maminka zaplatila v knihkupectví 2 700 Kč. Platila dvěma druhy bankovek, dvousetkorunovými a pětisetkorunovými, a přesně. Kolik kterých bankovek

Více

PRAVIDELNÉ MNOHOSTĚNY

PRAVIDELNÉ MNOHOSTĚNY PRVIDELNÉ MNOHOĚNY Vlst Chmelíková, Luboš Morvec MFF UK 007 1 Úvod ento text byl vytvořen s cílem inspirovt učitele středních škol k zčlenění témtu prvidelné mnohostěny do hodin mtemtiky, neboť při výuce

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

ZÁZNAMOVÝ ARCH VY_42_INOVACE_M_I/2

ZÁZNAMOVÝ ARCH VY_42_INOVACE_M_I/2 Název školy Číslo projektu Název projektu Název šablony klíčové aktivity Zpracovatel sady DUM Název sady DUM Kód sady DUM Kód DUM Datum Tříd a VY_42_INOVACE_M_I/2.01 13.11. 2012 ZÁZNAMOVÝ ARCH VY_42_INOVACE_M_I/2

Více

M01 : Čísla, množiny, mocniny, odmocniny, výrazy

M01 : Čísla, množiny, mocniny, odmocniny, výrazy S o u b o r t e s t o v ý c h o t á z e k k e s t á t n í m a t u r i t ě z m a t e m a t i k y S Š S S O s t r a v a - H r a b ů v k a M g r. P a v e l V i s k u p M0 : Čísla, množiny, mocniny, odmocniny,

Více

ANOTACE nově vytvořených/inovovaných materiálů

ANOTACE nově vytvořených/inovovaných materiálů ANOTACE nově vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.1017 III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Stereometrie

Více

Stereometrie. Obsah. Stránka 924

Stereometrie. Obsah. Stránka 924 Obsah 6. tereometrie... 95 6.1 Polohové úlohy... 95 6.1.1 Řezy těles... 95 6.1. Průnik přímky s rovinou... 94 6.1. Průnik přímky s povrchem tělesa... 947 6. Metrické úlohy... 951 6..1 Vzdálenost dvou bodů...

Více

BAKALÁŘSKÁ PRÁCE. Řešené úlohy v axonometrii. UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie

BAKALÁŘSKÁ PRÁCE. Řešené úlohy v axonometrii. UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie BAKALÁŘSKÁ PRÁCE Řešené úlohy v axonometrii Vypracovala: Barbora Bartošová M-DG, III. ročník Vedoucí práce: RNDr. Miloslava

Více

Očekávaný výstup Žák zvládne náčrtek a rys jednoduchých hranolů, dosadí do vzorce, účelně použije kalkulátor Speciální vzdělávací žádné

Očekávaný výstup Žák zvládne náčrtek a rys jednoduchých hranolů, dosadí do vzorce, účelně použije kalkulátor Speciální vzdělávací žádné Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/1.3763 utor Mgr. Martina Smolinková Datum 11. 1. 014 Ročník 9. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika

Více

3. Středoškolská stereometrie v anaglyfech

3. Středoškolská stereometrie v anaglyfech 3. Středoškolská stereometrie v anaglyfech V předchozích dvou kapitolách jsme zjistili, jak se zobrazují tělesa ve středovém promítání a hlavně v lineární perspektivě, a jak pomocí těchto promítání vytvořit

Více

B A B A B A B A A B A B B

B A B A B A B A A B A B B AB ABA BA BABA B AB A B B A A B A B AB A A B B B B ABA B A B A A A A A B A A B A A B A A B A BA B A BA B D A BC A B C A B A B C C ABA B D D ABC D A A B A B C D C B B A A B A B A B A A AB B A AB A B A A

Více

2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5

2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5 Obsah 1 Tekutiny 1 2 Tlak 2 2.1 Tlak v kapalině vyvolaný vnější silou.............. 3 2.2 Tlak v kapalině vyvolaný tíhovou silou............. 4 2.3 Tlak v kapalině vyvolaný tíhovou silou............. 4

Více

Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce)

Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce) Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 15. září

Více

Ě ÁÁ Ú é é ý ů ý ů é ý ů é é ú Ž ý ů é ů é é Ě ÁÁ Ú é Ý ž ý ž ý ý ů ž ů ň é Ž ý Ž ů ý é é é é ý ž Í Ě ÁÁ Ú é é ň é Ž ý ž Ž Í ý é ý Í ů ý ý ý é ý é ý é ň Ž Ž Ě ÁÁ Ú é é ý Ý é é ý Ž Í Í é ž Í Ž Ě ÁÁ Ú é

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

Výjezdní soustředění matematických talentů Karlov pod Pradědem 5. 8. 5. 2012

Výjezdní soustředění matematických talentů Karlov pod Pradědem 5. 8. 5. 2012 Projekt OPVK - CZ.1.07/2.3.00/09.0017 MATES - Podpora systematické práce s žáky SŠ v oblasti rozvoje matematiky Výjezdní soustředění matematických talentů Karlov pod Pradědem 5. 8. 5. 2012 ŘEŠITELNOST

Více

Mat2 - Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků základních škol. Matematické semináře pro 9.

Mat2 - Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků základních škol. Matematické semináře pro 9. škola: číslo projektu: název projektu: Základní škola Ivana Olbrachta, Semily CZ.1.07/1.4.00/21.0439 Inovace pro kvalitní výuku Název šablony: číslo šablony: 1 poř.č. označení oblast dle RVP okruh dle

Více

KOS. (Matematického ústavu Slezské univerzity v Opavě) 2001/2002

KOS. (Matematického ústavu Slezské univerzity v Opavě) 2001/2002 KOS Matematický KOrespondenční Seminář (Matematického ústavu Slezské univerzity v Opavě) 1. ROČNÍK 2001/2002 1 Vážení přátelé, děkujeme vám za vaši účast v 1. ročníku našeho korespondenčního semináře KOS.

Více

PŘEDMĚT: Matematika Ročník: 1. Výstup z RVP Ročníkový výstup Doporučené učivo Průřezová témata

PŘEDMĚT: Matematika Ročník: 1. Výstup z RVP Ročníkový výstup Doporučené učivo Průřezová témata PŘEDMĚT: Matematika Ročník: 1. Výstup z RVP Ročníkový výstup Doporučené učivo Průřezová témata číslo a početní operace 1. používá přirozená čísla k modelování reálných situací, počítá předměty v daném

Více

CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ MATEMATIKA A JEJÍ APLIKACE MATEMATIKA Mgr. Dana Rauchová

CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ MATEMATIKA A JEJÍ APLIKACE MATEMATIKA Mgr. Dana Rauchová CHARAKTERISTIKA VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ MATEMATIKA A JEJÍ APLIKACE MATEMATIKA Mgr. Dana Rauchová Obsah vzdělávacího oboru Matematika a její aplikace je rozdělen na čtyři tématické

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou čtyři červené

Více

Geometrie zakřiveného prostoru aplikace s fyzikální tématikou

Geometrie zakřiveného prostoru aplikace s fyzikální tématikou Gymnázium Přírodní škola, o p s Geometrie zakřiveného prostoru aplikace s fyzikální tématikou Jan Pokorný Petr Martiška, Vojtěch Žák 1 11 2012 Obsah 1 Úvod 3 2 Teoretické základy a použité metody 4 21

Více

Univerzita Karlova v Praze. Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE. Yulianna Tolkunova. Geometrie stínu. Katedra didaktiky matematiky

Univerzita Karlova v Praze. Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE. Yulianna Tolkunova. Geometrie stínu. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Yulianna Tolkunova Geometrie stínu Katedra didaktiky matematiky Vedoucí bakalářské práce: RNDr. Petra Surynková, Ph.D. Studijní

Více

Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 6.

Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 6. 5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 6. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo ČÍSLO A PROMĚNNÁ M9101 provádí

Více