VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ. Doc. Ing. MARCELA KARMAZÍNOVÁ, CSc. KOVOVÉ MOSTY I MODUL M04 SPŘAŽENÉ OCELOBETONOVÉ MOSTY

Rozměr: px
Začít zobrazení ze stránky:

Download "VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ. Doc. Ing. MARCELA KARMAZÍNOVÁ, CSc. KOVOVÉ MOSTY I MODUL M04 SPŘAŽENÉ OCELOBETONOVÉ MOSTY"

Transkript

1 VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Doc. Ing. MARCELA KARMAZÍNOVÁ, CSc. KOVOVÉ MOSTY I MODUL M04 SPŘAŽENÉ OCELOBETONOVÉ MOSTY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

2 Doc. Ing. Marcela Karmazínová, CSc.,

3 Spřažené ocelobetonové mosty OBSAH 1. ÚVOD Cíle Požadované znalosti Doba potřebná ke studiu Klíčová slova Spřažené ocelobetonové konstrukce Uplatnění spřažených ocelobetonových konstrukcí v mostním stavitelství Typy spřažených mostních konstrukcí Materiál spřažených mostních konstrukcí Průřez plnostěnných ocelových nosníků spřažených ocelobetonových mostních konstrukcí Statický výpočet spřažených ocelobetonových nosníků za předpokladu pružného působení Statický výpočet spřažených ocelobetonových nosníků za předpokladu pružného působen Spřažení (smykové spojení Závěr Shrnutí Studijní prameny Použitá literatura Doplňková studijní literatura Odkazy na další studijní zdroje a prameny (32) -

4

5 Spřažené ocelobetonové mosty 1. ÚVOD 1.1 Cíle Cílem tohoto modulu studijní opory BO09 Kovové mosty I je seznámení s problametikou spřažených ocelových konstrukcí a jejich aplikací v oblasti ocelových mostů. Po prostudování modulu by měl být student schopen pochopit podstatu a principy navrhování spřažených konstrukcí obecně a měl by být schopen aplikovat získané zvnalosti při předběžném nvrhu průřezu spřažené ocelové mostní konstrukce. Student by měl zvládnout posouzení spřaženého průřezu na mezní stav únosnost, a to jak při pružném, tak při plastickém působení, a na mezní stav použitelnosti. 1.2 Požadované znalosti Ke zvládnutí a pochopení následujícího učiva jsou důležité znalosti zejména z prvků kovových konstrukcí a kovových konstrukcí obecně z hlediska jejich základních zásad navrhování a posuzování, dále jsou potřebné znalosti základů stavební mechaniky a dobrá orientace v základech pružnosti a pevnosti, rovněž základní informace ze stavební dynamiky a pochopitelně znalost matematiky obecně, která usnadní orientaci v některých výpočetních postupech; zcela jistě jsou vhodné poznatky o typických vlastnostech běžných stavebních materiálů, a to zejména oceli a (s ohledem na problematiku spřažených ocelobetonových mostních konstrukcí) betonu. 1.3 Doba potřebná ke studiu Je velmi individuální a závisí zejména na intenzívnosti studia a soustředěnosti čtenáře na obsah textu. Podle toho se v obvyklých případech pohybuje kolem 4 hodin. 1.4 Klíčová slova Ocel, beton, spřažený průřez, ocelobetonový průřez, mezní stav únosnosti, mezní stav použitelnosti, reologické vlastnosti betonu, smršťování, dotvarování, nerovnoměrná změna teploty, účinný průřez, efektivní průřez, smykové spojení, spřažení, spřahovaní prostředky. - 5 (32) -

6

7 Spřažené ocelobetonové mosty 2. Spřažené ocelobetonové konstrukce 2.1 Uplatnění spřažených ocelobetonových konstrukcí v mostním stavitelství 2.2 Typy spřažených mostních konstrukcí Základní případy uplatnění spřažených ocelobetonových mostních konstrukcí v mostním stavitelství a dále základní typy spřažených ocelobetonových mostních konstrukcí uvádí kapitola 6 Modulu M02 této studijní opory. 2.3 Materiál spřažených mostních konstrukcí Ocel Spřažené ocelobetonové mostní konstrukce používají prakticky tytéž oceli jako konstrukce ocelové. Betonová deska však svým účinkem lépe umožňuje použití ocelí vyšších pevností, a to z několika důvodů: - protože deska zvyšuje ohybovou tuhost, je průhyb spřažených ocelobetonových nosníků menší; - nosníky jsou příznivěji namáhány na únavu vlivem větší hmotnosti konstrukce a tím většího podílu napětí od vlastní tíhy na celkovém namáhání; - betonová deska významně přispívá ke zvýšení stability tlačených stěn nosníků (pásnice proti klopení, stojina proti boulení atd.). Pro spřažené konstrukce lze také výhodně využít oceli se zvýšenou odolností proti atmosférické korozi, např. ATMOFIX nebo COR-TEN Beton U betonu se v posledních obdobích také výrazně projevuje tendence přechodu k betonům vyšších pevností, a tedy použití betonů s krychelnou pevností v rozsahu kolem 30 až 45 MPa (válcová pevnost cca od 25 do 35 MPa) je zcela běžné, často se však používá beton o vyšších krychelných pevnostech cca kolem 60 MPa (válcová pevnost cca kolem 50 MPa). Beton vyšších pevností umožňuje zmenšit tloušťku betonové desky, případně zvětšit vzdálenosti hlavních nosníků, což nabývá na významu zvláště s rostoucím rozpětím mostu. V posledních letech se pro spřažené mosty používají i lehké konstrukční betony s objemovou hmotností kolem až kg/m 3. Jejich použití přispívá ke snížení celkové hmotnosti konstrukce, v některých případech až o 20 %, a též ke zmenšení spotřeby oceli, a to až o 15 %. Mají však značně nižší modul pružnosti (někdy až o 50 %) než běžné betony, což může být nevýhodou zvláště pro deformace konstrukce. Další nevýhodou je i nižší únosnost spřahovacích prostředků (hlavně trnů), pro niž je u těchto betonů často rozhodující porušení betonu, nikoliv samotného spřahovacího prvku. - 7 (32) -

8 2.4 Průřez plnostěnných ocelových nosníků spřažených ocelobetonových mostních konstrukcí Výška spřažených nosníků Optimální výška spřažených nosníků je obvykle asi o 20 % nižší než u konstrukcí nezpražených. Velká ohybová tuhost, s ohledem na průhyb, je vhodná při omezené stavební výšce. U silničních mostů otevřeného průřezu se výška prostých hlavních nosníků (včetně betonové desky) volí zpravidla asi 1/15 až 1/20 rozpětí, je-li stavební výška dostatečná, při omezené stavební výšce asi 1/25 rozpětí i méně. U železničních mostů se výška hlavních prostých nosníků navrhuje obvykle poněkud vyšší, a to v rozsahu asi od 1/10 do 1/15 rozpětí Průřez ocelového nosníku Pro ocelové nosníky spřažených ocelobetonových průřezů mostních konstrukcí bývá typický nesymetrický průřez se silnějším dolním pásem (viz obr. 2.9), jen u mostů malých rozpětí (s válcovanými nosníky) nebo nad vnitřními podporami spojitých nosníků (svařované nosníky) bývá průřez ocelového nosníku symetrický. Je-li konstrukce při montáži průběžně podepřena (betonáž na lešení), má horní pásnice převážně jen konstrukční funkci, aby zajistila spojení ocelového nosníku s betonovou deskou. Proto může mít jen minimální průřez, hlavně betonujeli se až na místě; prefabrikované dílce vyžadují většinou pro uložení širší pásnici. Není-li konstrukce při montáži průběžně podepřena (betonáž na montážních bárkách nebo bez podepření), přenáší tíhu konstrukce ve stadiu betonáže pouze ocelový nosník a horní pásnice musí mít přiměřeně větší průřez v závislosti na statickém posouzení. S ohledem na hospodárnost je třeba také volit tloušťku stojiny a její vyztužení. Obr. 2.9 Průřez spřažených hlavních nosníků betonová deska je: a) bez náběhů, b) s plochými náběhy, c) se strmými náběhy Průřez betonové desky Tloušťka betonové desky se obvykle pohybuje v rozmezí 200 až 300 mm a vychází zejména z její funkce jako nosného podkladu vozovky. Větší tloušťky desky nejsou příliš výhodné, protože hmotnost konstrukce se tím zvyšuje rychleji než její únosnost. Aby při povrchu desky nevznikaly větší trhlinky (s ohledem na životnost a trvanlivost konstrukce) způsobené příliš velkým tahovým 8

9 napětím od lokálního ohybu, bývá často vhodné navrhnout desku s náběhy, nejčastěji plochými ve sklonu cca 1:3 (viz obr. 2.9b). Naopak vysoké strmé náběhy (viz obr. 2.9 c) mohou přispět ke zvětšení výšky spřaženého průřezu, aniž bychom zvětšovali výšku ocelového nosníku. Zajištění příčného spádu vozovky u mostů pozemních komunikací lze dosáhnout návrhem betonové desky střechovitě lomené podle příčného sklonu, aniž by se zvýšila hmotnost konstrukce, u mostů s větším počtem hlavních nosníků i za předpokladu různě vysokých nosníků nebo jejich umístění v různé výšce; u konstrukcí s příčníkovou mostovkou lze vytvořit ve sklonu horní pás příčníků. Obdobně lze řešit tvar průřezu i u mostů v půdorysném oblouku. 2.5 Statický výpočet spřažených ocelobetonových nosníků za předpokladu pružného působení V tomto odstavci se budeme zabývat zásadami výpočtu spřažených ocelobetonových nosníků založených na předpokladu pružného působení. I když i v oblasti spřažených mostních konstrukcí se v posledním období uplatňuje rovněž plastický výpočet (viz dále odst. 2.6), v řadě případů jej nelze využít, protože ocelové nosníky mají často vysoké průřezy se štíhlými stojinami patřící do tříd 3 nebo 4, a proto neumožňují využití plasticity při výpočtu. Navíc i u spřažených nosníků, u nichž mezní stav únosnosti lze posuzovat za předpokladu využití plasticity, při posouzení mezního stavu použitelnosti se vychází ze základních principů pružného působení, které jsou uvedeny dále Zatížení spřažených konstrukcí Stálé zatížení spřažených konstrukcí se obecně skládá ze dvou částí. Tzv. první část stálého zatížení působí na konstrukci před zatvrdnutím betonové desky, příp. před spřažením prefabrikátů, tedy v určitém montážním stadiu (betonáž, montáž prefabrikátů), a proto namáhán jen ocelové nosníky. Druhá část stálého zatížení začne působit později, až když je zajištěno spolupůsobení obou částí průřezu, ocelového nosníku a betonové desky, jako spřaženého průřezu. Jak jsou jednotlivé složky stálého zatížení přenášeny konkrétně, závisí na způsobu montáže, tedy na způsobu podepření ocelového nosníku při betonáži desky. Není-li konstrukce při betonáži podepřena nebo je-li podepřena jen ojedinělými montážními bárkami, přenášejí vlastní tíhu ocelové konstrukce a tíhu mokrého betonu včetně montážního zatížení ocelové nosníky, zatímco spřažené nosníky pak přenášejí pouze zatížení, které je vneseno až po zajištění spolupůsobení betonu s ocelovými nosníky, tzn. tíhu vozovky, chodníků, zábradlí apod. Je-li konstrukce při betonáži podepřena průběžným lešením, je první část stálého zatížení nulová a celé stálé zatížení pak přenášejí spřažené nosníky. Zatížení působící na spřaženou konstrukci rozdělujeme na krátkodobé a dlouhodobé, což je důležité z hlediska dotvarování betonu, které je vyvoláno pouze účinky dlouhodobými, jako je zatížení stálé, nahodilé dlouhodobé, předpětí konstrukce a v některých případech i smršťování betonu. 9

10 2.5.2 Analýza spřažených konstrukcí Spřažené konstrukce se chovají jako prostorově tuhé systémy. Je to dáno tuhostí betonové desky a ztužidly. Neuvažuje-li se přesnější působení (řešení metodou konečných prvků nebo pásů, metodou lomenic apod.), lze při výpočtu zjednodušeně vycházet z řešení založeném na teorii nosníkových roštů, které působení spřažených mostních konstrukcí poměrně výstižně vyjadřují. Lze je použít při libovolném půdorysném uspořádání konstrukce, a tedy např. i pro mosty šikmé nebo v půdorysném oblouku. Každý nosník otevřeného průřezu nebo každá stěna komorového průřezu tvoří ve výpočtovém modelu hlavní podélný nosník roštu, každý příčník tvoří příčné ztužidlo roštu, betonovou desku lze nahradit dalšími podružnými příčníky tak, aby byla zohledněna její tuhost ve vodorovném směru. Při výpočtu dbáme ohybové i torzní tuhosti nosníků, protože tuhost betonové desky v prostém kroucení je poměrně velká, dokonce i u komorových mostů je její příspěvek k celkové torzní tuhosti nezanedbatelný. Na rozdíl od ocelových konstrukcí je nutno u spřažených konstrukcí posoudit mezní stav únosnosti i mezní stav použitelnosti v různých časových stadiích s ohledem na účinky dotvarování betonu, event. smršťování. Obvykle je třeba sledovat počáteční stadium, kdy v konstrukci teprve začíná působit dotvarování a smršťování betonu, a konečné stadium, kdy podstatná část těchto účinků odezněla. Kromě toho je třeba posoudit namáhání konstrukce během montáže (betonáže) a rovněž provést posouzení na únavu. I při pružném působení (tím spíše při plastickém) se musí dbát vlivu trhlin v tažených oblastech betonové desky (např. v oblastech záporných momentů nad vnitřními podporami spojitých nosníků), které zmenšují ohybovou tuhost nosníků. Obvykle se s taženým betonem vůbec nepočítá (tak jako u plastického výpočtu viz dále) a namáhání v tahu přenáší pouze betonářská výztuž. Potom má nosník proměnný průřez, který se dále mění i vlivem dotvarování betonu (vysvětlení viz další odstavec) Namáhání spřaženého nosníku krátkodobým svislým zatížením Princip výpočtu (předpoklad pružného působení) Nehomogenní průřez spřaženého nosníku lze převést na průřez homogenní tak, že průřezovou plochu betonové desky A c nahradíme myšlenou ocelovou plochou stejné tuhosti v tlaku, tedy A c / n, kde n = E a / E c je poměr modulu pružnosti oceli E a a modulu pružnosti betonu E c. Tak dostaneme ekvivalentní, tzv. ideální ocelový průřez, s nímž dále pracujeme jako s homogenním průřezem. Je-li deska celá nebo částečně tlačená, do ideálního průřezu se může zahrnout podélná výztuž, není to však nutné, protože tlakové namáhání převážně přenese deska sama; je-li však deska tažená, beton v tahu se neuvažuje a potom se výztuž musí do ideálního průřezu zahrnout, protože přenáší tah namísto betonu. 10

11 Obr Rozdělení normálového napětí po výšce spřaženého průřezu Odvození principu ideálního průřezu je ukázáno dále (viz níže) včetně vztahů pro průřezové veličiny a napětí. Na rozdíl od ocelových nosníků je třeba vyčíslit napětí nejen v krajních vláknech průřezu, ale také v dolních vláknech betonové desky a v horních vláknech ocelového průřezu (viz obr. 2.10). K napětím v krajních vláknech ocelového průřezu je třeba přičíst napětí od první části stálého zatížení vzniklá při betonáži desky. Princip odvození ideálního průřezu vyplývá z následující úvahy: Za předpokladu dokonale tuhého spřažení (smykového spojení) nemůže dojít k prokluzu ve spáře mezi betonovou deskou a ocelovým nosníkem a poměrná přetvoření oceli ε a i betonu ε c musí být stejná, tedy ε a = ε c. V pružné oblasti platí Hookeův zákon a potom lze poměrná přetvoření oceli a betonu vyjádřit ve tvaru pomocí napětí a modulu pružnosti ε a = σ a / E a, resp. ε c = σ c / E c. Z jejich rovnosti pak např. pro napětí v betonu σ c vyjádřené pomocí napětí v oceli σ a vyplývá Ec σ a σ c = σ a =, E n a kde jsme pro poměr modulů pružnosti oceli a betonu E a / E c zavedli označení n a nazvali jsme ho pracovním součinitelem viz dále také vztah (2.1). Při pružném výpočtu je tedy třeba uvážit rozdílné moduly pružnosti oceli a betonu, a to v průřezových charakteristikách tzv. ideálního průřezu, kde parametry betonu jsou převedeny na ekvivalentní ocelový průřez pomocí tzv. pracovního součinitele E a n =, (2.1) E c kde E a je modul pružnosti oceli a E c je modul pružnosti betonu. Pomocí modulu pružnosti betonu lze do výpočtu zahrnout vlivy jako je dotvarování a smršťování. Nepočítáme-li přesněji, je možno uvažovat s průměrným modulem pružnosti E c, m E c, i =, (2.2) 2 kde E c,m je sečnový modul pružnosti betonu. Průřezová plocha A i ideálního Ac průřezu se stanoví Ai = Aa +, (2.3) n kde A a je plocha ocelového průřezu a A c je plocha betonové desky. Moment setrvačnosti ideálního průřezu k jeho těžištní ose je Ic Ii = Ia +, (2.4) n 11

12 kde I a je moment setrvačnosti ocelového profilu k těžištní ose ideálního průřezu a I c je moment setrvačnosti betonové desky k těžištní ose ideálního průřezu. Napětí je na obr Obr Pružný výpočet ideální průřez Účinný průřez vliv smykového ochabnutí Účinný (efektivní) průřez je třeba stanovit s ohledem na smykové ochabnutí (ochabnutí normálových napětí vlivem smyku), ke kterému může dojít u širokých pásů a díky němuž je normálové napětí v betonové desce rozděleno po šířce desky nerovnoměrně (viz obr. 2.12). Nerovnoměrnost je výraznější s rostoucí vzdáleností hlavních nosníků a zmenšuje se s rostoucím rozpětím. Obr Rozdělení napětí v betonové desce v důsledku smykového ochabnutí a princip účinné (efektivní) šířky V tomto případě je širokým pásem betonová deska a účinek smykového ochabnutí se do výpočtu zavádí prostřednictvím tzv. spolupůsobící (účinné, efektivní) šířky. Dále se zaměříme pouze na praktický postup zavedení spolupůsobící šířky. V obecném případě se účinná šířka b eff určí jako součet spolupůsobících šířek na každou stranu od osy nosníku (viz obr. 2.13), tedy pro vnitřní nosník b eff = b e1 + b e2, (2.5) kde b e1, resp. b e2 je l 0 / 8, ale maximálně b 1, resp. b 2 a pro krajní nosník b eff = b e0 + b e1, (2.6) kde b e0 = l 0 / 8, ale maximálně b 0. 12

13 Pro nosníky ve stejné vzdálenosti b eff = 2 l 0 / 8 = l 0 / 4. (2.7) Náhradní délka l 0 je v případě prostého nosníku rovna rozpětí, tedy l 0 = L. Pro nosníky spojité jsou náhradní délka L e a její princip, který vyplývá v podstatě ze vzdáleností nulových bodů momentové čáry, uvedeny na obr Obr Účinná (efektivní, spolupůsobící) šířka Obr Náhradní délka L e pro jednotlivá pole a podpory spojitého nosníku Změny teploty Součinitel teplotní roztažnosti oceli je α a, t = 0, ºC -1, u betonu závisí hodnota α c, t na druhu kameniva a na teplotě betonu, většinou však bývají obě hodnoty přibližně stejné. Z toho vyplývá, že stejnoměrná změna teploty (oteplení či ochlazení) spřažené konstrukce obvykle nezmění její napjatost, způsobí pouze změnu délky, a to jak u prostých, tak u spojitých nosníků. Avšak v případě vápence nebo některých žul použitých jako kameniva může klesnout hodnota součinitele teplotní roztažnosti betonu až na α c, t = 0, ºC -1, potom i stejnoměrná změna teploty vyvolá v konstrukci normálová a smyková napětí. 13

14 Při nestejnoměrné změně teploty může teplotní rozdíl v našich klimatických podmínkách dosahovat až 20 ºC. Teplotní gradient po výšce průřezu však není konstantní, protože ocel vede teplo asi 50krát lépe než beton a ocelové průřezy mají malou teplotní setrvačnost z toho důvodu, že jejich části jsou řádově asi 10krát tenčí než betonová deska. Charakteristické případy rozdělení teploty po výšce spřaženého průřezu jsou následující (viz obr. 2.15): - betonová deska vystavená intenzivnímu slunečnímu záření, současně zastíněné ocelové nosníky v poledních hodinách (viz obr. 2.15a); - ochlazení konstrukce v nočních hodinách (viz obr. 2.15b); - exponovaný nosník vystavený slunečnímu záření v ranních hodinách (viz obr. 2.15c); - náhlé ochlazení ocelového nosníku při dešti apod. (viz obr. 2.15d). Obr Průběh teploty po výšce spřaženého průřezu při nestejnoměrném oteplení nebo ochlazení Obr Přetvoření a napětí při nestejnoměrné změně teploty Normálová napětí vyvolaná nestejnoměrnou změnou teploty se stanoví z podmínek statické rovnováhy za předpokladu, že průřezy zůstávají rovinné. Kdyby elementy nosníku měly možnost volně dilatovat, způsobila by změna teploty t poměrné přetvoření ε t = α t t (viz obr. 2.16). Skutečné poměrné přetvoření dané kompatibilitou deformací označíme ε r a rovnici přímky ε r (viz obr. 2.16) určíme ze dvou podmínek rovnováhy N = σ da = ( ε r ε t ) E da = 0, (2.8) A A M = σ zda = ( ε r ε t ) Ez da = 0. (2.9) A A 14

15 Integrací po ploše průřezu a dosazením modulu pružnosti oceli nebo betonu za E podle polohy elementu průřezu dostaneme řešení rovnice, z něhož lze odvodit normálové napětí v libovolném bodě podle vztahu ( r t ) σ = ε ε E. (2.10) Nahradíme-li plynulou křivku teploty lomenou čarou, přechází integrál v sumu. Průřez nosníku můžeme rozdělit na pásma, jejichž hranice jsou jednak v lomech teplotní čáry, jednak v místech změny šířky průřezu. Potom každému pásmu odpovídá jeden člen součtu, jímž je vyjádřena síla N, resp. moment M. U spřažených mostů menších rozpětí lze výpočet zjednodušit zavedením předpokladu, že teplota je v ocelové i betonové části průřezu konstantní a celý teplotní rozdíl ± t se realizuje ve styčné spáře mezi ocelovým nosníkem a betonovou deskou (viz obr. 2.17a, b). Napětí pak můžeme stanovit podle výše uvedeného postupu nebo odvodit a základě úvahy: kdybychom spřažení zrušili a betonovou desku ochladili stejnoměrně o t, deska by se vůči ocelovému nosníku zkrátila (viz obr. 2.18) a poměrné zkrácení by bylo ε t = α t t; spřahovací záchytky však takovému zkrácení brání a za předpokladu tuhého spřažení působí na desku silou (akcí) P ε A E t A E, (2.11) t = t c c = α t jíž odpovídá síla stejné velikosti a opačného smyslu (reakce) P t, kterou přenáší celý spřažený nosník. Reakce P t působící v těžišti betonové desky (ve vzdálenosti z c od těžiště spřaženého průřezu) na celý spřažený průřez vyvolává napětí v j-tých vláknech (ve vzdálenosti z a,j od těžiště spřaženého průřezu) ocelové části průřezu P t P t zc Ac zc Ai σ a, j = za, j = α t t Ec 1 + za, j. (2.12) Ai Ii Ai Ii Napětí v betonové části průřezu se skládá ze dvou složek jednak od síly P t působící na betonovou desku, jednak od reakce P t působící na celý spřažený průřez. Jednodušeji lze dospět k výsledku úvahou, že ochlazení betonové desky má ekvivalentní účinek jako oteplení ocelového nosníku; stanovíme tedy účinek jediné síly P t působící v těžišti ocelového průřezu (ve vzdálenosti z a od těžiště spřaženého průřezu) na celý spřažený průřez; napětí v j-tých vláknech (ve vzdálenosti z c,j od těžiště spřaženého průřezu) betonové části průřezu je Ac za Ai σ c, j = + α t t Ea 1 zc, j. (2.13) n Ai Ii Ve vztazích značí z a, z c vzdálenosti těžišť ocelové a betonové části průřezu od těžiště ideálního průřezu, z a,j, z c,j vzdálenosti posuzovaných vláken od těžiště ideálního průřezu, které se dosazují s odpovídajícím znaménkem (při dané konvenci směr nahoru je kladný). Ochlazením desky vznikají v betonu tahová napětí, oteplení vyvolává stejně velká napětí opačného znaménka. Přímkový průběh teploty (viz obr. 2.16c) vyvolává u prostého nosníku jen deformace, nikoliv napětí, a proto jej nelze použít jako zjednodušující předpoklad. c c 15

16 Obr Zjednodušený průběh teploty po výšce spřaženého průřezu a), b) teplotní skok ve styčné spáře, c) konstantní teplotní spád Obr Stanovení účinku nestejnoměrného ochlazení spřaženého nosníku princip Objemové změny betonu Dotvarování betonu Působí-li tlakové napětí v betonu po dlouhou dobu, deformace postupně narůstá, protože k počáteční, převážně pružné deformaci ε el se přidružuje deformace ε cr vznikající dotvarováním betonu. Na deformaci ε cr se podílí jednak opožděné pružné přetvoření, které odeznívá přibližně po třech měsících, jednak nepružné přetvoření, které je podmíněno vytlačováním vody z mikropórů a probíhá řadu let. Jestliže se zatížení ani vnější prostředí nemění, má přetvoření průběh podle obr Celkové poměrné přetvoření lze vyjádřit vztahem ε σ ε = ε + ε = ε 1 + cr c el cr el = ( + ϕ ) ε 1, el Ec (2.14) kde φ = ε cr / ε el (2.15) je tzv. součinitel dotvarování, který je funkcí času. Analyticky lze průběh dotvarování vyjádřit nejjednodušeji funkcí t t ( e ) ϕ ( t) = ϕ 1, (2.16) kde t je stáří betonu (čas) v rocích a φ t je hodnota součinitele dotvarování pro čas t a vyjadřuje konečnou míru dotvarování. 16

17 Obr Časový průběh dotvarování betonu U spřažených nosníků brání výztuž desky a zejména ocelový nosník volnému průchodu deformací vyvolávaných dotvarováním. V betonu tak vznikají tahová napětí, čímž se zmenšuje namáhání tlačené desky a zvětšuje namáhání ocelového nosníku (viz obr. 2.20). V tzv. nulovém bodě se napětí vlivem dotvarování nemění. Obr Přerozdělení napětí vlivem dotvarování betonu Vliv dotvarování na napětí spřaženého nosníku lze vystihnout nejjednodušeji tak, že se místo modulu pružnosti E c zavede do výpočtu, v souladu se vztahem (2.14), tzv. modul přetvárnosti Ec E c, cr =. (2.17) 1 + ϕ Obvykle skutečný průběh dotvarování zcela neodpovídá teoretickému vyjádření podle (2.14), proto se častěji místo vztahu (2.17) uvádí jeho úprava ve tvaru Ec E c, cr =, (2.18) 1 + κ ϕ kde κ závisí na dimenzích spřaženého průřezu a na intenzitě dotvarování a pro obvyklé případy vysokých ocelových nosníků mostního stavitelství vyhovuje hodnota κ = 1,1. Pro modul přetvárnosti E c,cr se pak pracovní součinitel (viz odst ) n = E a / E c mění na hodnotu Ea ncr = = n ( 1 + κ ϕ ). (2.19) E c, cr Popsaný způsob zavedení účinků dotvarování do výpočtu napjatosti je jednoduchý a umožňuje pomocí různých pracovních součinitelů n určit ke každému typu zatížení (krátkodobému, dlouhodobému, smršťování) odpovídající ekvivalentní (ideální) ocelový průřez dané tuhosti, což jiné metody neumožňují. 17

18 Smršťování betonu Smršťováním se zmenšuje objem betonu vlivem odpařování vody. Ocelový nosník brání volnému zkracování desky, a proto ve spřaženém nosníku vznikají obdobná napětí jako při změně teploty ochlazením desky (viz odst ). Smršťování je však, ve srovnání se změnou teploty, proces dlouhodobější a vyvolává dotvarování, které je však menší než od stálého zatížení, a proto při smršťování počítáme s modulem přetvárnosti Ec E c, s = (2.20) 1 + 0,5 ϕ a s pracovním součinitelem Ea ns = = n ( 1 + 0, 5 ϕ ). (2.21) E c, s V některých případech, při zjednodušeném vyjádření, se vystačí s modulem pružnosti E c, a potom tedy s pracovním součinitelem n. Pro výpočet napětí od vlivu smršťování lze použít tytéž vtahy jako pro případ změny teploty, kdy je betonová deska chladnější než ocelový nosník (viz odst ), kam za poměrné přetvoření dosadíme ε s = 0, pro normální vlhkost prostředí, příp. ε s = 0, pro velmi vlhké prostředí. Smršťování způsobuje tah v betonové desce, který se superponuje s tahovým napětím vznikajícím od účinků nestejnoměrných změn teploty. Proto se snažíme velikost smršťování omezovat, např. použitím betonu s nízkým obsahem vody, jeho co nejdokonalejším zhutněním, udržováním desky zpočátku ve vlhkém prostředí, její ochranou před slunečním zářením, ochranou před vysoušením účinkem větru, před účinky mrazu, před chemicky agresivními látkami, před otřesy a zpočátku také před deštěm. Účinky smršťování lze podstatně zmenšit použitím prefabrikované desky, u níž může podstatná část smršťování odeznít ještě před jejím osazením do konstrukce a spřažením, je-li vyrobena s dostatečným předstihem. Potom můžeme poměrné smrštění uvažovat přibližně poloviční hodnotou než v případě desek vyráběných monoliticky na stavbě Namáhání spřažených nosníků smykem Účinky smykových sil, tj. namáhání spřažených ocelobetonových průřezů smykem, přisuzujeme při výpočtu pouze ocelovému nosníku, a to konkrétně pouze části průřezu rovnoběžné se směrem působící smykové síly. V případě svislého zatížení, a tedy smykové síly působící svisle, přenáší účinky smyku v podstatě pouze stojina ocelového nosníku. Namáhání stojiny a únosnost stojiny ve smyku se pak posuzuje obvyklými způsoby jako u nosníků ocelových, které nejsou spřaženy. Je však třeba uvážit případné účinky boulení stojiny od účinků smyku, zvláště v případě vysokých štíhlých stěn, které jsou velmi časté u nosníků (ať už pouze ocelových nebo ocelobetonových) mostních konstrukcí. 18

19 2.5.7 Mezní stavy použitelnosti Aby spřažená ocelobetonová mostní konstrukce spolehlivě sloužila provozu, nelze připustit následující situace: - nadměrný průhyb konstrukce; - velký prokluz ve styčné spáře mezi betonovou deskou a ocelovým nosníkem; - velkou šířku trhlin v tažených oblastech betonové desky; - rozkmitání konstrukce, což je reálné zejména u lávek pro chodce. Při posuzování mezních stavů se spřažená ocelobetonová konstrukce vyšetřuje na základě teorie pružnosti, a to i v případě, že mezní stavy únosnosti jsou posuzovány podle teorie plasticity (viz dále). Při výpočtu průhybů uvažujeme betonovou desku v rozsahu spolupůsobící (účinné) šířky a s betonem v tahu (např. nad podporou spojitých nosníků) neuvažujeme. Dále předpokládáme, že celou smykovou sílu přenáší stojina ocelového nosníku (viz předcházející odstavec) Průhyb spřaženého nosníku Při výpočtu průhybu je třeba rozlišovat, zda zatížení přenáší spřažený nosník nebo pouze ocelový nosník, a to především v montážním stavu, tzn. při betonáži desky, kdy má na velikost průhybu ocelového nosníku značný vliv jeho podepření v průběhu betonáže. Další vliv, který je třeba výrazně uplatňovat, je účinek dlouhodobého zatížení, od něhož se deformace vlivem dotvarování během provozu mostu zvětšují. Přetvoření spřaženého nosníku lze stanovit podle obvyklých zásad stavební mechaniky jako u homogenních nosníků, pouze s tím rozdílem, že do výpočtu dosazujeme průřezové veličiny tzv. ideálního průřezu (jeho podstata a odvození viz výše) a vzhledem k tomu, že ideální průřez má charakter ekvivalentního ocelového průřezu, pracujeme s modulem pružnosti oceli. Vliv dotvarování lze při výpočtu průhybu vystihnout změnou modulu pružnosti betonu místo E c na E c,cr (odvození bylo rovněž provedeno v předchozích odstavcích), a tedy změnou pracovního součinitele n na n cr, z něhož pak vyplývají změny průřezových charakteristik. Vliv smršťování lze zahrnout uplatněním příslušných vnitřních sil a v průřezových charakteristikách pomocí změny modulu pružnosti betonu z E c na E c,s (odvození a podstata viz výše). V některých případech však postačí uvažovat modul pružnosti v původní hodnotě E c, protože smršťování zpravidla neovlivňuje velikost průhybů příliš výrazně. Při výpočtu průhybu je nutno dbát změn účinné šířky betonové desky po délce nosníku (viz odst ), což vede na nosníky s proměnným průřezem, které potom mají po délce proměnnou tuhost; to se uplatní zejména u spojitých nosníků, kde tuhost má vliv nejen na vnitřní síly, ale také na velikost průhybů. Další změny tuhosti po délce spojitého nosníku vyplývají z toho, že nad podporami jsou tahová namáhání přenášena pouze betonářskou výztuží (při vyloučení taženého betonu, jak bylo řečeno výše), zatímco v polích působí velký průřez betonové desky, která je zpravidla celá nebo z větší části tlačena. K těmto změnám tuhosti je nutno přihlédnout při výpočtu nejen vnitřních sil, ale také deformací u spojitých nosníků. 19

20 Prokluz v kontaktní spáře Při návrhu spřažené konstrukce za předpokladu pružného působení zpravidla vycházíme z toho, že se betonová deska při zatížení neposune po ocelovém nosníku. To by však bylo možné pouze v ideálním případě za předpokladu dokonale tuhého smykového spojení (spřažení), což však v praxi prakticky nenastává, neboť všechny prostředky spřažení (smykové záchytky viz dále) jsou více nebo méně poddajné. Z toho vyplývá, že vždy dochází ve spáře mezi betonovou deskou a ocelovým nosníkem ke vzniku prokluzu, s nímž je třeba počítat jako s vlivem, který zvětšuje velikost průhybu (možný způsob výpočtu zvětšeného průhybu vlivem prokluzu je uveden dále), protože v důsledku poddajnosti smykového spojení není zajištěno úplné spolupůsobení obou částí spřaženého nosníku. Velikost prokluzu je však také možno částečně omezit a tím zmenšit velikost průhybu Trhliny v betonové desce V oblasti záporných ohybových momentů (nad podporami spojitých nosníků) vznikají v betonové desce trhliny, které by při větší šířce mohly ohrožovat trvanlivost, vzhled i provozuschopnost konstrukce. Nebezpečí vyplývá zejména z možné koroze výztuže, je-li vlivem trhlin částečně dočasně odkryta. Šířka trhliny v betonové desce je ovlivňována především těmito parametry (viz obr. 2.21): - poměrná deformace v uvažovaném bodě povrchu desky ve směru osy nosníku; - vzdálenost uvažovaného bodu od povrchu nejbližšího prutu podélné výztuže; - vzdálenost horního povrchu desky od těžištní osy ideálního průřezu. Obr Parametry ovlivňující šířku trhliny v betonové desce Trhliny se při přejezdu vozidel po mostě rozevírají a uzavírají; to však nastává pouze při výskytu mimořádně velkého zatížení, který je spíše ojedinělý, a proto postačí šířku trhlin počítat se součiniteli zatížení platnými pro mezní stav použitelnosti (γ = 1) a není třeba uvažovat tzv. výjimečné dopravní zatížení. Se vzrůstající vzdáleností od stěny ocelového nosníku se vlivem smykového ochabnutí snižují normálová napětí v desce a tím i šířka trhlin. Nepříznivý účinek lokálního zatížení může však šířku trhlin naopak zvětšovat. 20

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ 7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní

Více

7. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger

7. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger 7. přednáška OCELOVÉ KONSTRUKCE VŠB Technická univerzita Ostrava Fakulta stavební Ludvíka Podéš éště 1875, 708 33 Ostrava - Poruba Miloš Rieger Téma : Spřažené ocelobetonové konstrukce - úvod Spřažené

Více

9. Spřažené ocelobetonové nosníky Spřažené ocelobetonové konstrukce, návrh nosníků teorie plasticity a pružnosti.

9. Spřažené ocelobetonové nosníky Spřažené ocelobetonové konstrukce, návrh nosníků teorie plasticity a pružnosti. 9. Spřažené ocelobetonové nosníky Spřažené ocelobetonové konstrukce, návrh nosníků teorie plasticity a pružnosti. Spřažené ocelobetonové konstrukce (ČSN EN 994-) Spřažené nosníky beton (zejména lehký)

Více

studentská kopie 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice

studentská kopie 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice Vaznice bude přenášet pouze zatížení působící kolmo k rovině střechy. Přenos zatížení působícího rovnoběžně se střešní rovinou bude popsán v poslední

Více

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr.

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. . cvičení Klopení nosníků Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. Ilustrace klopení Obr. Ohýbaný prut a tvar jeho ztráty

Více

Ocelobetonové konstrukce

Ocelobetonové konstrukce Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován

Více

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3)

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován

Více

Nosné konstrukce II - AF01 ednáška Navrhování betonových. použitelnosti

Nosné konstrukce II - AF01 ednáška Navrhování betonových. použitelnosti Brno University of Technology, Faculty of Civil Engineering Institute of Concrete and Masonry Structures, Veveri 95, 662 37 Brno Nosné konstrukce II - AF01 1. přednp ednáška Navrhování betonových prvků

Více

Ve výrobě ocelových konstrukcí se uplatňují následující druhy svařování:

Ve výrobě ocelových konstrukcí se uplatňují následující druhy svařování: 5. cvičení Svarové spoje Obecně o svařování Svařování je technologický proces spojování kovů podmíněného vznikem meziatomových vazeb, a to za působení tepla nebo tepla a tlaku s případným použitím přídavného

Více

1 Použité značky a symboly

1 Použité značky a symboly 1 Použité značky a symboly A průřezová plocha stěny nebo pilíře A b úložná plocha soustředěného zatížení (osamělého břemene) A ef účinná průřezová plocha stěny (pilíře) A s průřezová plocha výztuže A s,req

Více

φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ

φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ KONSTRUKČNÍ ZÁSADY, kotvení výztuže Minimální vnitřní průměr zakřivení prutu Průměr prutu Minimální průměr pro ohyby, háky a smyčky (pro pruty a dráty) φ 16 mm 4 φ φ > 16 mm 7 φ Minimální vnitřní průměr

Více

3. Tenkostěnné za studena tvarované OK Výroba, zvláštnosti návrhu, základní případy namáhání, spoje, přístup podle Eurokódu.

3. Tenkostěnné za studena tvarované OK Výroba, zvláštnosti návrhu, základní případy namáhání, spoje, přístup podle Eurokódu. 3. Tenkostěnné za studena tvarované O Výroba, zvláštnosti návrhu, základní případy namáhání, spoje, přístup podle Eurokódu. Tloušťka plechu 0,45-15 mm (ČSN EN 1993-1-3, 2007) Profily: otevřené uzavřené

Více

Šroubovaný přípoj konzoly na sloup

Šroubovaný přípoj konzoly na sloup Šroubovaný přípoj konzoly na sloup Připojení konzoly IPE 180 na sloup HEA 220 je realizováno šroubovým spojem přes čelní desku. Sloup má v místě přípoje vyztuženou stojinu plechy tloušťky 10mm. Pro sloup

Více

Tabulky únosností trapézových profilů ArcelorMittal (výroba Senica)

Tabulky únosností trapézových profilů ArcelorMittal (výroba Senica) Tabulky únosností trapézových profilů ArcelorMittal (výroba Senica) Obsah: 1. Úvod 4 2. Statické tabulky 6 2.1. Vlnitý profil 6 2.1.1. Frequence 18/76 6 2.2. Trapézové profily 8 2.2.1. Hacierba 20/137,5

Více

SPOJE OCELOVÝCH KONSTRUKCÍ

SPOJE OCELOVÝCH KONSTRUKCÍ 2. cvičení SPOJE OCELOVÝCH KONSTRUKCÍ Na spojování prvků ocelových konstrukcí se obvykle používají spoje šroubové (bez předpětí), spoje třecí a spoje svarové. Šroubové spoje Základní pojmy. Návrh spojovacího

Více

GlobalFloor. Cofrastra 40 Statické tabulky

GlobalFloor. Cofrastra 40 Statické tabulky GlobalFloor. Cofrastra 4 Statické tabulky Cofrastra 4. Statické tabulky Cofrastra 4 žebrovaný profil pro kompozitní stropy Tloušťka stropní desky až cm Použití Profilovaný plech Cofrastra 4 je určen pro

Více

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE 1 TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Katedra ocelových a dřevěných konstrukcí Obsah přednášek 2 Stabilita stěn, nosníky třídy 4. Tenkostěnné za studena tvarované profily. Spřažené ocelobetonové spojité

Více

GlobalFloor. Cofraplus 60 Statické tabulky

GlobalFloor. Cofraplus 60 Statické tabulky GlobalFloor. Cofraplus 6 Statické tabulky Cofraplus 6. Statické tabulky Cofraplus 6 žebrovaný profil pro kompozitní stropy Polakovaná strana Použití Profilovaný plech Cofraplus 6 je určen pro výstavbu

Více

Spolehlivost a bezpečnost staveb zkušební otázky verze 2010

Spolehlivost a bezpečnost staveb zkušební otázky verze 2010 1 Jaká máme zatížení? 2 Co je charakteristická hodnota zatížení? 3 Jaké jsou reprezentativní hodnoty proměnných zatížení? 4 Jak stanovíme návrhové hodnoty zatížení? 5 Jaké jsou základní kombinace zatížení

Více

Šroubované spoje namáhané smykem Šroubované spoje namáhané tahem Třecí spoje (spoje s VP šrouby) Vůle a rozteče. Vliv páčení

Šroubované spoje namáhané smykem Šroubované spoje namáhané tahem Třecí spoje (spoje s VP šrouby) Vůle a rozteče. Vliv páčení Šroubové spoje Šroubované spoje namáhané smykem Šroubované spoje namáhané tahem Třecí spoje (spoje s VP šrouby) Vůle a rozteče Vliv páčení 1 Kategorie šroubových spojů Spoje namáhané smykem A: spoje namáhané

Více

GlobalFloor. Cofrastra 70 Statické tabulky

GlobalFloor. Cofrastra 70 Statické tabulky GlobalFloor. Cofrastra 7 Statické tabulky Cofrastra 7. Statické tabulky Cofrastra 7 žebrovaný profil pro kompozitní stropy Tloušťka stropní desky až cm Polakovaná strana Použití Profilovaný plech Cofrastra

Více

4 Halové objekty a zastřešení na velká rozpětí

4 Halové objekty a zastřešení na velká rozpětí 4 Halové objekty a zastřešení na velká rozpětí 4.1 Statické systémy Tab. 4.1 Statické systémy podle namáhání Namáhání hlavního nosného systému Prostorové uspořádání Statický systém Schéma Charakteristické

Více

Roznášení svěrné síly z hlav, resp. matic šroubů je zajištěno podložkami.

Roznášení svěrné síly z hlav, resp. matic šroubů je zajištěno podložkami. 4. cvičení Třecí spoje Princip třecích spojů. Návrh spojovacího prvku V třecím spoji se smyková síla F v přenáší třením F s mezi styčnými plochami spojovaných prvků, které musí být vhodně upraveny a vzájemně

Více

Určeno posluchačům Fakulty stavební ČVUT v Praze

Určeno posluchačům Fakulty stavební ČVUT v Praze Strana 1 HALOVÉ KONSTRUKCE Halové konstrukce slouží nejčastěji jako objekty pro různé typy průmyslových činností nebo jako prostory pro skladování. Jsou také velice často stavěny pro provozování rozmanitých

Více

KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled

KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební KONSTRUKCE POZEMNÍCH STAVEB komplexní přehled Petr Hájek, Ctislav Fiala Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

5 Analýza konstrukce a navrhování pomocí zkoušek

5 Analýza konstrukce a navrhování pomocí zkoušek 5 Analýza konstrukce a navrhování pomocí zkoušek 5.1 Analýza konstrukce 5.1.1 Modelování konstrukce V článku 5.1 jsou uvedeny zásady a aplikační pravidla potřebná pro stanovení výpočetních modelů, které

Více

KONSTRUKCE POZEMNÍCH STAVEB

KONSTRUKCE POZEMNÍCH STAVEB 6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle

Více

Principy návrhu 28.3.2012 1. Ing. Zuzana Hejlová

Principy návrhu 28.3.2012 1. Ing. Zuzana Hejlová KERAMICKÉ STROPNÍ KONSTRUKCE ČSN EN 1992 Principy návrhu 28.3.2012 1 Ing. Zuzana Hejlová Přechod z národních na evropské normy od 1.4.2010 Zatížení stavebních konstrukcí ČSN 73 0035 = > ČSN EN 1991 Navrhování

Více

Omezení nadměrných průhybů komorových mostů optimalizací vedení předpínacích kabelů

Omezení nadměrných průhybů komorových mostů optimalizací vedení předpínacích kabelů Omezení nadměrných průhybů komorových mostů optimalizací vedení předpínacích kabelů Lukáš Vráblík, Vladimír Křístek 1. Úvod Jedním z nejzávažnějších faktorů ovlivňujících hlediska udržitelné výstavby mostů

Více

9 Spřažené desky s profilovaným plechem v pozemních stavbách

9 Spřažené desky s profilovaným plechem v pozemních stavbách 9 Spřažené desky s profilovaným plechem v pozemních stavbách 9.1 Všeobecně 9.1.1 Rozsah platnosti Tato kapitola normy se zabývá spřaženými stropními deskami vybetonovanými do profilovaných plechů, které

Více

Aktuální trendy v oblasti modelování

Aktuální trendy v oblasti modelování Aktuální trendy v oblasti modelování Vladimír Červenka Radomír Pukl Červenka Consulting, Praha 1 Modelování betonové a železobetonové konstrukce - tunelové (definitivní) ostění Metoda konečných prvků,

Více

NOVING s.r.o. Úlehlova 108/1 700 30 Ostrava - Hrabůvka TEL., Tel/fax: +420 595 782 426-7, 595 783 891 E-mail: noving@noving.cz http://www.noving.

NOVING s.r.o. Úlehlova 108/1 700 30 Ostrava - Hrabůvka TEL., Tel/fax: +420 595 782 426-7, 595 783 891 E-mail: noving@noving.cz http://www.noving. ČSN EN ISO 9001 NOVING s.r.o. Úlehlova 108/1 700 30 Ostrava - Hrabůvka TEL., Tel/fax: +420 595 782 426-7, 595 783 891 E-mail: noving@noving.cz http://www.noving.cz PROLAMOVANÉ NOSNÍKY SMĚRNICE 11 č. S

Více

IDEA StatiCa novinky. verze 5.4

IDEA StatiCa novinky. verze 5.4 IDEA StatiCa novinky verze 5.4 IDEA StatiCa Prestressing Spřažený spojitý nosník Postupná výstavba spojité konstrukce Hlavním vylepšením ve verzi 5 v části beton a předpjatý beton je modul pro analýzu

Více

Problematika je vyložena ve smyslu normy ČSN 73 0035 Zatížení stavebních konstrukcí.

Problematika je vyložena ve smyslu normy ČSN 73 0035 Zatížení stavebních konstrukcí. ZATÍŽENÍ KONSTRUKCÍ 4. cvičení Problematika je vyložena ve smyslu normy ČSN 73 0035 Zatížení stavebních konstrukcí. Definice a základní pojmy Zatížení je jakýkoliv jev, který vyvolává změnu stavu napjatosti

Více

Průvodní zpráva ke statickému výpočtu

Průvodní zpráva ke statickému výpočtu Průvodní zpráva ke statickému výpočtu V následujícím statickém výpočtu jsou navrženy a posouzeny nosné prvky ocelové konstrukce zesílení části stávající stropní konstrukce v 1.a 2. NP objektu ředitelství

Více

6 Mezní stavy únosnosti

6 Mezní stavy únosnosti 6 Mezní stavy únosnosti 6.1 Nosníky 6.1.1 Nosníky pozemních staveb Typické průřezy spřažených nosníků jsou na obr. 4. Betonová deska může být kompaktní nebo žebrová, případně může mít náběhy. Ocelový nosník

Více

Ocelobetonové stropní konstrukce vystavené požáru Jednoduchá metoda pro požární návrh

Ocelobetonové stropní konstrukce vystavené požáru Jednoduchá metoda pro požární návrh Ocelobetonové stropní konstrukce vystavené požáru požární návrh Cíl návrhové metody požární návrh 2 požární návrh 3 Obsah prezentace za požáru ocelobetonových desek za běžné Model stropní desky Druhy porušení

Více

ZATÍŽENÍ KONSTRUKCÍ VŠEOBECNĚ

ZATÍŽENÍ KONSTRUKCÍ VŠEOBECNĚ ZATÍŽENÍ KONSTRUKCÍ VŠEOBECNĚ Charakteristiky zatížení a jejich stanovení Charakteristikami zatížení jsou: a) normová zatížení (obecně F n ), b) součinitele zatížení (obecně y ), c) výpočtová zatížení

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice POZEMNÍ STAVITELSTVÍ II Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

PROBLÉMY STABILITY. 9. cvičení

PROBLÉMY STABILITY. 9. cvičení PROBLÉMY STABILITY 9. cvičení S pojmem ztráty stability tvaru prvku se posluchač zřejmě již setkal v teorii pružnosti při studiu prutů namáhaných osovým tlakem (viz obr.). Problematika je však obecnější

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ. Doc. Ing. MARCELA KARMAZÍNOVÁ, CSc. KOVOVÉ MOSTY I

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ. Doc. Ing. MARCELA KARMAZÍNOVÁ, CSc. KOVOVÉ MOSTY I VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Doc. Ing. MARCELA KARMAZÍNOVÁ, CSc. KOVOVÉ MOSTY I MODUL M02 MATERIÁL KOVOVÝCH MOSTŮ, STABILITA POLOHY, MOSTNÍ SVRŠEK A MOSTOVKA ŽELEZNIČNÍCH MOSTŮ, PLNOSTĚNNÉ

Více

Namáhání na tah, tlak

Namáhání na tah, tlak Namáhání na tah, tlak Pro namáhání na tah i tlak platí stejné vztahy a rovnice. Velikost normálového napětí v tahu, resp. tlaku vypočítáme ze vztahu: resp. kde je napětí v tahu, je napětí v tlaku (dále

Více

Statické tabulky profilů Z, C a Σ

Statické tabulky profilů Z, C a Σ Statické tabulky profilů Z, C a Σ www.satjam.cz STATICKÉ TABULKY PROFILŮ Z, C A OBSAH PROFIL PRODUKCE..................................................................................... 3 Profi ly Z,

Více

Sylabus k přednášce předmětu BK1 SCHODIŠTĚ Ing. Hana Hanzlová, CSc., Ing. Jitka Vašková, CSc.

Sylabus k přednášce předmětu BK1 SCHODIŠTĚ Ing. Hana Hanzlová, CSc., Ing. Jitka Vašková, CSc. Schodiště jsou souborem stavebních prvků (schodišťová ramena, podesty, mezipodesty, podestové nosníky, schodnice a schodišťové stěny), které umožňují komunikační spojení různých výškových úrovní. V budovách

Více

A. 1 Skladba a použití nosníků

A. 1 Skladba a použití nosníků GESTO Products s.r.o. Navrhování nosníků I Stabil na účinky zatížení výchozí normy ČSN EN 1990 Zásady navrhování konstrukcí ČSN EN 1995-1-1 ČSN 731702 modifikace DIN 1052:2004 navrhování dřevěných stavebních

Více

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Vzpěr,

Více

14. ŽB DESKOVÉ STROPY

14. ŽB DESKOVÉ STROPY 14. ŽB DESKOVÉ STROPY NAVRHOVÁNÍ, POSOUZENÍ M d M u ZÁKLADNÍ POJMY PRO VÝZTUŽ M d moment od výpočtového (extrémního) zatížení M u moment na mezi únosnosti - výzutž rozumíme souhrn všech ocel. výztuž. vložek,

Více

předběžný statický výpočet

předběžný statický výpočet předběžný statický výpočet (část: betonové konstrukce) KOMUNITNÍ CENTRUM MATKY TEREZY V PRAZE . Základní informace.. Materiály.. Schéma konstrukce. Zatížení.. Vodorovné konstrukc.. Svislé konstrukce 4.

Více

8 Zatížení mostů větrem

8 Zatížení mostů větrem 8 Zatížení mostů větrem 8.1 Všeoecně Tento Eurokód je určen pro mosty s konstantní šířkou a s průřezy podle or. 8.1, tvořenými jednou hlavní nosnou konstrukcí o jednom neo více polích. Stanovení zatížení

Více

Návrh a posouzení plošného základu podle mezního stavu porušení ULS dle ČSN EN 1997-1

Návrh a posouzení plošného základu podle mezního stavu porušení ULS dle ČSN EN 1997-1 Návrh a posouzení plošného základu podle mezního stavu porušení ULS dle ČSN EN 1997-1 1. Návrhové hodnoty účinků zatížení Účinky zatížení v mezním stavu porušení ((STR) a (GEO) jsou dány návrhovou kombinací

Více

STATICKÝ VÝPOČET původní most

STATICKÝ VÝPOČET původní most Akce: Oprava mostu na místní komunikaci přes řeku Olešku v obci Libštát (poloha mostu - u p.č. 2133 - k.ú. Libštát) strana 1(17) D. Dokumentace objektů 1. Dokumentace inženýrského objektu 1.2. Stavebně

Více

LANGERŮV TRÁM MOST HOLŠTEJN

LANGERŮV TRÁM MOST HOLŠTEJN LANGERŮV TRÁM MOST HOLŠTEJN Ing. Jiří Španihel, Firesta - Fišer, rekonstrukce, stavby a.s. Konference STATIKA 2014, 11. a 12. června POPIS KONSTRUKCE Most pozemní komunikace přes propadání potoka Bílá

Více

I. Přehled norem pro ocelové konstrukce ČSN EN 1993 1 Úvod

I. Přehled norem pro ocelové konstrukce ČSN EN 1993 1 Úvod Úvod I. Přehled norem pro ocelové konstrukce ČSN EN 1993 1 Úvod Zatímco stavební praxe vystačí pro betonové, dřevěné a ocelobetonové konstrukce se třemi evropskými normami, pro ocelové konstrukce je k

Více

Náhradní ohybová tuhost nosníku

Náhradní ohybová tuhost nosníku Náhradní ohybová tuhost nosníku Autoři: Doc. Ing. Jiří PODEŠVA, Ph.D., Katedra mechaniky, Fakulta strojní, VŠB - Technická univerzita Ostrava, e-mail: jiri.podesva@vsb.cz Anotace: Výpočty ocelových výztuží

Více

Schöck Isokorb typ KS

Schöck Isokorb typ KS Schöck Isokorb typ 20 Schöck Isokorb typ 1 Obsah Strana Varianty připojení 16-165 Rozměry 166-167 Dimenzační tabulky 168 Vysvětlení k dimenzačním tabulkám 169 Příklad dimenzování/upozornění 170 Údaje pro

Více

Předpjatý beton Přednáška 13

Předpjatý beton Přednáška 13 Předpjatý beton Přednáška 13 Obsah Statická analýza postupně budovaných předpjatých konstrukcí: Nehomogenita konstrukcí Řešení reologických účinků v uzavřené formě Vlastnosti moderních postupně budovaných

Více

STATICKÉ TABULKY stěnových kazet

STATICKÉ TABULKY stěnových kazet STATICKÉ TABULKY stěnových kazet OBSAH ÚVOD.................................................................................................. 3 SATCASS 600/100 DX 51D................................................................................

Více

5. Ohýbané nosníky Únosnost ve smyku, momentová únosnost, klopení, MSP, hospodárný nosník.

5. Ohýbané nosníky Únosnost ve smyku, momentová únosnost, klopení, MSP, hospodárný nosník. 5. Ohýbané nosník Únosnost ve smku, momentová únosnost, klopení, P, hospodárný nosník. Únosnost ve smku stojina pásnice poue pro válcované V d h t w Posouení na smk: V pružně: τ = ( τ pl, Rd) I V V t w

Více

Platnost zásad normy:

Platnost zásad normy: musí zajistit Kotvení výztuže -spolehlivé přenesení sil mezi výztuží a betonem musí zabránit -odštěpování betonu -vzniku podélných trhlin Platnost zásad normy: betonářská prutová výztuž výztužné sítě předpínací

Více

Statický výpočet střešního nosníku (oprava špatného návrhu)

Statický výpočet střešního nosníku (oprava špatného návrhu) Statický výpočet střešního nosníku (oprava špatného návrhu) Obsah 1 Obsah statického výpočtu... 3 2 Popis výpočtu... 3 3 Materiály... 3 4 Podklady... 4 5 Výpočet střešního nosníku... 4 5.1 Schéma nosníku

Více

Spoje pery a klíny. Charakteristika (konstrukční znaky)

Spoje pery a klíny. Charakteristika (konstrukční znaky) Spoje pery a klíny Charakteristika (konstrukční znaky) Jednoduše rozebíratelná spojení pomocí per, příp. klínů hranolového tvaru (u klínů se skosením na jedné z ploch) vložených do podélných vybrání nebo

Více

Různé druhy spojů a spojovací součásti (rozebíratelné spoje)

Různé druhy spojů a spojovací součásti (rozebíratelné spoje) Různé druhy spojů a spojovací součásti (rozebíratelné spoje) Kolíky, klíny, pera, pojistné a stavěcí kroužky, drážkování, svěrné spoje, nalisování aj. Nýty, nýtování, příhradové ocelové konstrukce. Ovládací

Více

Dřevěné a kovové konstrukce

Dřevěné a kovové konstrukce Učební osnova předmětu Dřevěné a kovové konstrukce Studijní obor: Stavebnictví Zaměření: Pozemní stavitelství Forma vzdělávání: denní Celkový počet vyučovacích hodin za studium: 64 4. ročník: 32 týdnů

Více

studentská kopie PATKY A KOTVENÍ SLOUPŮ Kotvení přenos tahových sil

studentská kopie PATKY A KOTVENÍ SLOUPŮ Kotvení přenos tahových sil PATKY A KOTENÍ SLOUPŮ Patka sloupu tvoří přechod mezi sloupem a základem a přenáší namáhání z ocelového sloupu na betonový základ. Stk oceli a betonu zajišťuje podlití cementovou maltou. Podlití se volí

Více

POZEMNÍ STAVITELSTVÍ I

POZEMNÍ STAVITELSTVÍ I POZEMNÍ STAVITELSTVÍ I Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

Statický výpočet komínové výměny a stropního prostupu (vzorový příklad)

Statický výpočet komínové výměny a stropního prostupu (vzorový příklad) KERAMICKÉ STROPY HELUZ MIAKO Tabulky statických únosností stropy HELUZ MIAKO Obsah tabulka č. 1 tabulka č. 2 tabulka č. 3 tabulka č. 4 tabulka č. 5 tabulka č. 6 tabulka č. 7 tabulka č. 8 tabulka č. 9 tabulka

Více

POŽADAVKY NA STATICKÝ VÝPOČET

POŽADAVKY NA STATICKÝ VÝPOČET POŽADAVKY NA STATICKÝ VÝPOČET Statický výpočet je podkladem pro vypracování technické specifikace konstrukční části a výkresové dokumentace Obsahuje dimenzování veškerých prvků konstrukcí, které jsou obsahem

Více

Průvodní zpráva. Investor: Libštát 198, 512 03 Libštát 00275891 CZ00275891. Zpracovatel dokumentace:

Průvodní zpráva. Investor: Libštát 198, 512 03 Libštát 00275891 CZ00275891. Zpracovatel dokumentace: (poloha mostu - u p.č. 2133 - k.ú. Libštát) strana 1(12) Průvodní zpráva 1. Investor: Firma: Adresa: IČO: DIČ: 2. Obec Libštát Libštát 198, 512 03 Libštát 00275891 CZ00275891 Zpracovatel dokumentace: Firma:

Více

OCELOVÉ A DŘEVĚNÉ PRVKY A KONSTRUKCE Část: Dřevěné konstrukce

OCELOVÉ A DŘEVĚNÉ PRVKY A KONSTRUKCE Část: Dřevěné konstrukce OCELOVÉ A DŘEVĚNÉ PRVKY A KONSTRUKCE Část: Dřevěné konstrukce Přednáška č. 3 Doc. Ing. Antonín Lokaj, Ph.D. VŠB Technická univerzita Ostrava, Fakulta stavební, Katedra konstrukcí, Ludvíka Podéště 1875,

Více

POZEMNÍ STAVITELSTVÍ II

POZEMNÍ STAVITELSTVÍ II POZEMNÍ STAVITELSTVÍ II Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

PODKLADY PRO DIMENZOVÁNÍ NOSNÉHO BEDNĚNÍ PODLAH A REGÁLŮ Z DESEK OSB/3 Sterling

PODKLADY PRO DIMENZOVÁNÍ NOSNÉHO BEDNĚNÍ PODLAH A REGÁLŮ Z DESEK OSB/3 Sterling PODKLADY PRO DIMENZOVÁNÍ NOSNÉHO BEDNĚNÍ PODLAH A REGÁLŮ Z DESEK OSB/3 Sterling Objednavatel: M.T.A., spol. s r.o., Pod Pekárnami 7, 190 00 Praha 9 Zpracoval: Ing. Bohumil Koželouh, CSc. znalec v oboru

Více

STAVEBNÍ KONSTRUKCE. Témata k profilové ústní maturitní zkoušce. Školní rok 2014 2015. Třída 4SVA, 4SVB. obor 36-47-M/01 Stavebnictví

STAVEBNÍ KONSTRUKCE. Témata k profilové ústní maturitní zkoušce. Školní rok 2014 2015. Třída 4SVA, 4SVB. obor 36-47-M/01 Stavebnictví Střední průmyslová škola stavební Střední odborná škola stavební a technická Ústí nad Labem, příspěvková organizace tel.: 477 753 822 e-mail: sts@stsul.cz www.stsul.cz STAVEBNÍ KONSTRUKCE Témata k profilové

Více

6. Skelety: Sloupy, patky, kotvení, ztužidla.

6. Skelety: Sloupy, patky, kotvení, ztužidla. 6. Skelety: Sloupy, patky, kotvení, ztužidla. Sloupy: klasifikace z hlediska stability, namáhání sloupů, průřezy, montážní styky. Kloubové patky nevyztužené a vyztužené, dimenzování patek, konstrukční

Více

29.05.2013. Dřevo EN1995. Dřevo EN1995. Obsah: Ing. Radim Matela, Nemetschek Scia, s.r.o. Konference STATIKA 2013, 16. a 17.

29.05.2013. Dřevo EN1995. Dřevo EN1995. Obsah: Ing. Radim Matela, Nemetschek Scia, s.r.o. Konference STATIKA 2013, 16. a 17. Apollo Bridge Apollo Bridge Architect: Ing. Architect: Miroslav Ing. Maťaščík Miroslav Maťaščík - Alfa 04 a.s., - Alfa Bratislava 04 a.s., Bratislava Design: DOPRAVOPROJEKT Design: Dopravoprojekt a.s.,

Více

BETONOVÉ A ZDĚNÉ KONSTRUKCE 1. Dimenzování - Deska

BETONOVÉ A ZDĚNÉ KONSTRUKCE 1. Dimenzování - Deska BETONOVÉ A ZDĚNÉ KONSTRUKCE 1 Dimenzování - Deska Dimenzování - Deska Postup ve statickém výpočtu (pro BEK1): 1. Nakreslit navrhovaný průřez 2. Určit charakteristické hodnoty betonu 3. Určit charakteristické

Více

Výpočtová analýza vlivu polohy výztuže na únosnost tenkostěnných střešních panelů

Výpočtová analýza vlivu polohy výztuže na únosnost tenkostěnných střešních panelů Výpočtová analýza vlivu polohy výztuže na únosnost tenkostěnných střešních panelů Daniel Makovička, ČVUT v Praze, Kloknerův ústav, Šolínova 7, 166 08 Praha 6, Česká republika & Daniel Makovička, jr., Statika

Více

Stavební úpravy bytu č. 19, Vrbová 1475, Brandýs nad Labem STATICKÝ POSUDEK. srpen 2015

Stavební úpravy bytu č. 19, Vrbová 1475, Brandýs nad Labem STATICKÝ POSUDEK. srpen 2015 2015 STAVBA STUPEŇ Stavební úpravy bytu č. 19, Vrbová 1475, Brandýs nad Labem DSP STATICKÝ POSUDEK srpen 2015 ZODP. OSOBA Ing. Jiří Surovec POČET STRAN 8 Ing. Jiří Surovec istruct Trabantská 673/18, 190

Více

Přednášející: Ing. Zuzana HEJLOVÁ

Přednášející: Ing. Zuzana HEJLOVÁ NAVRHOVÁNÍ ZDĚNÝCH KONSTRUKCÍ ČSN EN 1996 Přednášející: Ing. Zuzana HEJLOVÁ 28.3.2012 1 ing. Zuzana Hejlová NORMY V ČR Soustava národních norem (ČR - ČSNI) Původní soustava ČSN - ČSN 73 1201 (pro Slovensko

Více

STATICKÉ POSOUZENÍ K AKCI: RD BENJAMIN. Ing. Ivan Blažek www.ib-projekt.cz NÁVRHY A PROJEKTY STAVEB

STATICKÉ POSOUZENÍ K AKCI: RD BENJAMIN. Ing. Ivan Blažek www.ib-projekt.cz NÁVRHY A PROJEKTY STAVEB STATICKÉ POSOUZENÍ K AKCI: RD BENJAMIN Obsah: 1) statické posouzení krovu 2) statické posouzení stropní konstrukce 3) statické posouzení překladů a nadpraží 4) schodiště 5) statické posouzení založení

Více

5. Aplikace výsledků pro průřezy 4. třídy.

5. Aplikace výsledků pro průřezy 4. třídy. 5. plikace výsledků pro průřez 4. tříd. eff / eff / Výsledk únosnosti se používají ve tvaru součinitele oulení ρ : ρ f eff kde d 0 Stěn namáhané tlakem a momentem: Základní případ: stlačovaná stěna: výsledk

Více

OBSAH: A4 1/ TECHNICKÁ ZPRÁVA 4 2/ STATICKÝ VÝPOČET 7 3/ VÝKRESOVÁ ČÁST S1-TVAR A VÝZTUŽ OPĚRNÉ STĚNY 2

OBSAH: A4 1/ TECHNICKÁ ZPRÁVA 4 2/ STATICKÝ VÝPOČET 7 3/ VÝKRESOVÁ ČÁST S1-TVAR A VÝZTUŽ OPĚRNÉ STĚNY 2 OBSAH: A4 1/ TECHNICKÁ ZPRÁVA 4 2/ STATICKÝ VÝPOČET 7 3/ VÝKRESOVÁ ČÁST S1-TVAR A VÝZTUŽ OPĚRNÉ STĚNY 2 DESIGN BY ing.arch. Stojan D. PROJEKT - SERVIS Ing.Stojan STAVEBNÍ PROJEKCE INVESTOR MÍSTO STAVBY

Více

Šroubové spoje. Průměr šroubu d (mm) 12 16 20 24 27 30 Plocha jádra šroubu A S (mm 2 ) 84,3 157 245 353 459 561

Šroubové spoje. Průměr šroubu d (mm) 12 16 20 24 27 30 Plocha jádra šroubu A S (mm 2 ) 84,3 157 245 353 459 561 Šroubové spoje Šrouby pro ocelové konstrukce s šestihrannou hlavou, vyráběné tvarováním za tepla nebo také za studena, se podle přesnosti rozměrů a drsnosti povrchu dělí na hrubé (průměr otvoru pro šroub

Více

2 Dodatečné zřizování otvorů v nosných stěnách vícepodlažních panelových budov

2 Dodatečné zřizování otvorů v nosných stěnách vícepodlažních panelových budov 2 Dodatečné zřizování otvorů v nosných stěnách vícepodlažních panelových budov Příčné uspořádání nosných panelových stěn omezuje možnost volnějšího provozně dispozičního spojení sousedních travé, které

Více

Ocelové konstrukce požární návrh

Ocelové konstrukce požární návrh Ocelové konstrukce požární návrh Zdeněk Sokol František Wald, 17.2.2005 1 2 Obsah prezentace Úvod Přestup tepla do konstrukce Požárně nechráněné prvky Požárně chráněné prvky Mechanické vlastnosti oceli

Více

Sylabus přednášek OCELOVÉ KONSTRUKCE. Zkoušky oceli. Obsah přednášky. Koutové svary. Značení oceli. Opakování. Tahová zkouška

Sylabus přednášek OCELOVÉ KONSTRUKCE. Zkoušky oceli. Obsah přednášky. Koutové svary. Značení oceli. Opakování. Tahová zkouška Sylabus přednášek OCELOVÉ KONSTRUKCE Studijní program: STAVEBNÍ INŽENÝRSTVÍ pro bakalářské studium Kód předmětu: K134OK1 4 kredity (2 + 2), zápočet, zkouška Prof. Ing. rantišek Wald, CSc., místnost B 632

Více

Schöck Isokorb typ QS

Schöck Isokorb typ QS Schöck Isokorb typ Schöck Isokorb typ Obsah Strana Varianty připojení 182 Rozměry 183 Pohledy/čelní kotevní deska/přídavná stavební výztuž 18 Dimenzační tabulky/vzdálenost dilatačních spar/montážní tolerance

Více

Ctislav Fiala: Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb

Ctislav Fiala: Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb 16 Optimální hodnoty svázaných energií stropních konstrukcí (Graf. 6) zde je rozdíl materiálových konstant, tedy svázaných energií v 1 kg materiálu vložek nejmarkantnější, u polystyrénu je téměř 40krát

Více

POZEMNÍ STAVITELSTVÍ I

POZEMNÍ STAVITELSTVÍ I POZEMNÍ STAVITELSTVÍ I Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ. Doc. Ing. MARCELA KARMAZÍNOVÁ, CSc. KOVOVÉ MOSTY I

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ. Doc. Ing. MARCELA KARMAZÍNOVÁ, CSc. KOVOVÉ MOSTY I VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Doc. Ing. MARCELA KARMAZÍNOVÁ, CSc. KOVOVÉ MOSTY I MODUL M05 PŘÍHRADOVÉ TRÁMOVÉ MOSTY, MOSTNÍ VYBAVENÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU

Více

Materiály charakteristiky potř ebné pro navrhování

Materiály charakteristiky potř ebné pro navrhování 2 Materiály charakteristiky potřebné pro navrhování 2.1 Úvod Zdivo je vzhledem k velkému množství druhů a tvarů zdicích prvků (cihel, tvárnic) velmi různorodý stavební materiál s rozdílnými užitnými vlastnostmi,

Více

Smykové trny Schöck typ ESD

Smykové trny Schöck typ ESD Smykové trny Schöck typ kombinované pouzdro HK kombinované pouzdro HS pouzdro HSQ ED (pozinkovaný) ED (z nerezové oceli) -B Systémy jednoduchých trnů Schöck Obsah strana Typy a označení 36-37 Příklady

Více

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavebních konstrukcí

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavebních konstrukcí Průmyslová střední škola Letohrad Ing. Soňa Chládková Sbírka příkladů ze stavebních konstrukcí 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního

Více

ETAG 001. KOVOVÉ KOTVY DO BETONU (Metal anchors for use in concrete)

ETAG 001. KOVOVÉ KOTVY DO BETONU (Metal anchors for use in concrete) Evropská organizace pro technická schválení ETAG 001 Vydání 1997 ŘÍDICÍ POKYN PRO EVROPSKÁ TECHNICKÁ SCHVÁLENÍ KOVOVÉ KOTVY DO BETONU (Metal anchors for use in concrete) Příloha B: ZKOUŠKY PRO URČENÁ POUŽITÍ

Více

Ing. Ivan Blažek www.ib-projekt.cz NÁVRHY A PROJEKTY STAVEB

Ing. Ivan Blažek www.ib-projekt.cz NÁVRHY A PROJEKTY STAVEB 1 Obsah: 1. statické posouzení dřevěného krovu osazeného na ocelové vaznice 1.01 schema konstrukce 1.02 určení zatížení na krokve 1.03 zatížení kleštin (zatížení od 7.NP) 1.04 vnitřní síly - krokev, kleština,

Více

PRVKY BETONOVÝCH KONSTRUKCÍ

PRVKY BETONOVÝCH KONSTRUKCÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ DOC. ING. LADISLAV ČÍRTEK, CSC PRVKY BETONOVÝCH KONSTRUKCÍ MODUL M05 NAVRHOVÁNÍ JEDNODUCHÝCH PRVKŮ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 013 Použitá literatura: Technická

Více

Téma 7 Smyková napětí v ohýbaných nosnících

Téma 7 Smyková napětí v ohýbaných nosnících Pružnost a plasticita,.ročník bakalářského studia Téma 7 Smková napětí v ohýbaných nosnících Základní vtah a předpoklad řešení Výpočet smkového napětí vbraných průřeů Dimenování nosníků namáhaných na smk

Více

F Zug F H. F Druck. Desky Diamant 07/2010. Knauf Diamant. Diamant deska, která unese dům

F Zug F H. F Druck. Desky Diamant 07/2010. Knauf Diamant. Diamant deska, která unese dům F H F H F Zug F Druck Desky Diamant 07/2010 Knauf Diamant Diamant deska, která unese dům Základní předpoklady pro zatěžování Pro namáhání stěn jsou uvažovány třídy trvání zatížení dle ČSN EN 1995-1-1 +

Více

PRVKY KOVOVÝCH KONSTRUKCÍ

PRVKY KOVOVÝCH KONSTRUKCÍ VYSOKÉ UČEÍ TECHICKÉ V BRĚ AKULTA STAVEBÍ Doc. Ing. ARCELA KARAZÍOVÁ, CSc. PRVKY KOVOVÝCH KOSTRUKCÍ ODUL BO0-0 SPOJE KOVOVÝCH KOSTRUKCÍ STUDIJÍ OPORY PRO STUDIJÍ PROGRAY S KOBIOVAOU OROU STUDIA Doc. Ing.

Více

5. Ocelové skelety budov. Dispozice, stropy.

5. Ocelové skelety budov. Dispozice, stropy. 5. Ocelové skelety budov. Dispozice, stropy. Patrové budovy: zásady návrhu, dispozice, způsob kreslení. Stropy: stropní desky, stropnice prosté a spojité, průvlaky, přípoj na železobetonové jádro, štíhlý

Více