Pohyb vody v porézních stavebních materiálech - VIII. Účinky evaporačního vysychání na rovnovážnou výšku kapilárního vzlínání ve stěnách

Rozměr: px
Začít zobrazení ze stránky:

Download "Pohyb vody v porézních stavebních materiálech - VIII. Účinky evaporačního vysychání na rovnovážnou výšku kapilárního vzlínání ve stěnách"

Transkript

1 Building and Environment, svazek 21, č. 3/4, strany , /86 $ Vytištěno ve Velké Británii. Pergamon Journals Ltd. Pohyb vody v porézních stavebních materiálech - VIII. Účinky evaporačního vysychání na rovnovážnou výšku kapilárního vzlínání ve stěnách S. J. I'ANSON*Ϯ W. D. HOFF* V tomto materiálu je předložena teoretická analýza vlivu nepřetržitého úbytku vody evaporací na rovnováhu vzlínající vlhkosti ve zděných stěnách. Analýza predikuje výšku kapilárního vzlínání ve shodě s praktickým pozorováním u stěn bez účinného ošetření proti vlhkosti. 1. ÚVOD VZLÍNAJÍCÍ vlhkost je jedním z nejčastějších problémů souvisejících s vodou ve starších budovách. Důvodem je kapilární sání porézním materiálem stěny, které natahuje vodu ze země v úrovni nebo pod úrovní terénu. Tímto způsobem absorbovaná voda ve stěně stoupá působením kapilárních sil a může způsobit poškození zdiva a degradaci budovy. V některých případech obsahuje podzemní voda značené množství rozpuštěných solí. Způsobují solné výkvěty a jiná poškození zdiva stěny. Takové extrémní případy se vyskytují v částech Austrálie, kde je "slaná vlhkost" dobře známým problémem způsobeným kapilárním vzlínáním vody. Vytvořený výkvět je v takových případech důkazem značného množství kapilární vody, která odchází ze stěn evaporací. Při zohlednění celkové kvality stěny je nutné poznamenat, že stěna zasažená vzlínající vlhkostí je také významným zdrojem vodní páry [1] a může způsobit nepřijatelné mikroklimatické podmínky uvnitř budovy. Obecně je závažnost problému vzlínající vody závislá na rovnováze mezi tokem vody směrem nahoru nasáváním stěnou ze základů a úbytkem vody evaporací ze zdiva stěny. Tak se v podmínkách intenzivního vysoušení může snížit obsah vody způsobený kapilární vzlínavostí, zatímco nevhodné podmínky mohou problém zhoršovat. Vezmeme-li v úvahu tyto vlivy, je zajímavé poznamenat, že je široce rozšířen názor [2], že se v praxi viditelné a závažné dopady vzlínající vlhkosti obvykle omezují na výšku cca 1 m nad terénem navzdory skutečnosti, že u většiny cihelných a kamenných zdicích materiálů může trvale dosahovat výška * Department of Building Engineering, UMIST (Stavební fakulta, Vědecký a technologický institut Univerzity v Manchesteru), PO Box 88, Manchester, M60 IQD, UK. Ϯ Nyní při Department of Paper Science, UMIST, PO Box 88, Manchester, M60 IQD, UK. kapilárního vzlínání hodnot o jeden nebo dva řády vyšší [3]. V tomto materiálu předkládáme teoretickou analýzu vlivu vysychání na rovnovážný stav vzlínající vlhkosti. Tato analýza predikuje výšku kapilárního vzlínání ve shodě s praktickým pozorováním u stěn bez účinného ošetření proti vlhkosti. 2. ROVNOVÁHA KAPILÁRNÍHO VZLÍNÁNÍ 2.1. Základní koncepce Aplikace teorie toku v nenasyceném prostředí pro analýzu pohybu vody v porézních stavebních materiálech byla diskutována Gummersonem et al. [3] a také v dřívějších publikacích této řady (např. [4]). Síly působící na vodu zadržovanou v porézních pevných látkách lze zařadit do dvou oblastí a to gravitační síly a sací síly. Gravitační síly jsou obvykle charakterizovány gravitačním potenciálem, který je vyjádřen výškou z nad definovanou referenční hladinou. Kapilární síly jsou charakterizovány kapilárním potenciálem gψ, který je definován jako energie na odstranění jednotky vody z porézní pevné látky do volného stavu na stejné úrovni. Kapilární potenciál je vhodné vyjadřovat spíše pomocí Ψ než gψ, protože Ψ má rozměr [délku]. Tak -Ψ lze vizualizovat jako napětí vodního sloupce h t, které může být udržováno kapilárou o průměru rovnajícímu se střednímu průměru pórů na rozhraní vzduch-voda. Stav vody v částečně nasycené porézní pevné látce lze definovat z hlediska celkového tlaku vodního sloupce h = h t + z. Pohyb vody v porézní pevné látce je způsoben rozdílem v tlaku vodního sloupce mezi různými oblastmi v pevné látce. Tento koncept vede následně k definování stavu rovnováhy kapilárního vzlínání při absenci evaporace a v tomto bodě odkazujeme na plný rozbor této problematiky v publikaci

2 S. J. I'Anson a W. D. Hoff od Gummersona et al. [3]. V tomto ideálním případě musí veškerý tok ustat a proto celková výška vodního sloupce h je nulová v každém bodě (jinak by se vyskytoval spád u h a tudíž i tok). Tento stav rovnováhy kapilárního vzlínání je proto definován jako h t = -z Experimentální data Kolísání tlaku vodního sloupce h t s obsahem vody θ - vodní charakteristika - může být stanoven experimentálně. V praxi obvykle dostaneme dvě charakteristické vodní křivky: křivka vlhnutí, která definuje obsah vody dosahovaný při vlhnutí původně suché pevné látky působením hydraulického napětí a křivka vysychání, která definuje obsah vody jako následek odtékání pod tlakem h t z původně nasycené pevné látky. Takováto hystereze mezi vlhnutím a vysycháním vyplývá z povahy zaplňování a vyprazdňování pórů. Z diskuze v kapitole 2.1 je jasné, že křivka vlhnutí u vodní charakteristiky definuje přesně rovnováhu rozdělení obsahu vody a výšky, která se vyskytuje v porézní pevné látce jako výsledek kapilárního vzlínání při absenci evaporace, protože h t a z mají stejnou číselnou hodnotu. Obrázek 1 ukazuje charakteristické vodní křivky u obyčejné hliněné cihly změřené v naší laboratoři s použitím standardního přístroje s tlakovou membránou používaného v půdoznalství. (Tyto výsledky byly poprvé publikovány v literatuře [3].) Skutečnost, že cihlová zeď je kompozitní struktura z cihel a malty neznehodnocuje vodní charakteristiku jako měřítko idealizované rovnováhy kapilárního vzlínání, protože rozdělení obsahu vody v závislosti na výšce v každém komponentu stěny bude stejná, jaká by byla při absenci druhé složky. Je nutné ovšem uznat, že kompozitní povaha stěny může ztěžovat tok vody a tím prodlužovat čas k dosažení rovnováhy u kapilárního vzlínání. Z vodní charakteristiky na obrázku 1 a studia vodních charakteristik jiných zdicích materiálů je jasné, že materiály použité při stavbě stěn obecně mají dostatečně jemnou porézní strukturu, aby byly schopny zadržovat velký objem vody až do výšky mnoha metrů. Toto u reálných stěn nepozorujeme, protože evaporace má řídicí vliv na množství vody zadržované ve stěně. 3. VLIV EVAPORACE NA ROVNOVÁHU KAPILÁRNÍHO VZLÍNÁNÍ 3.1. Teoretické aspekty Jak bylo zmíněno v kapitole 2, umožní-li se, aby obsah vody ve stěně, která je ve styku s nasyceným podkladem dosáhl rovnovážného stavu kapilárního vzlínání při absenci jakékoli evaporace, bude se u vodní charakteristiky rozdělení obsahu vody v závislosti na výšce ve stěně řídit křivkou vlhnutí. Samozřejmě by bylo možné toho dosáhnout pouze zamezením jakékoli evaporace ze stěny a proces by obecně trval velmi dlouhou dobu [3]. Pokud může evaporace probíhat z jedné strany stěny, bude každá část stěny ztrácet vodu evaporací rychlostí závisející jak na okolních podmínkách, tak i na obsahu vody v materiálu stěny v místě odpařování [5]. Faktory prostředí (teplota, relativní vlhkost, rychlost vzduchu) lze považovat za konstantní na celém povrchu stěny a kolísání obsahu vody je jediným faktorem, který bude ovlivňovat rychlost evaporace v různých místech povrchu stěny. Definujeme e(θ) jako funkci závislosti rychlosti evaporace za neměnných podmínek prostředí na obsahu vody. Uvažujme inkrementální vrstvu z počátečního obsahu vody θ ve výšce z ve stěně (obr. 2). Množství odpařované vody Obr. 1. Vodní charakteristika obyčejné hliněné cihly: kapilární potenciál Ψ versus obsah vody θ. Křivka W je charakteristika vlhnutí a křivka D je charakteristika vysychání. Obr. 2. Diagram znázorňující vypařování z elementu stěny ve výšce z.

3 Pohyb vody v porézních stavebních materiálech - VIII 197 z jednotky délky na jedné straně této stěny se rovná e(θ) z. Tento evaporační úbytek způsobí změnu obsahu vody θ, která následně vyvolá změnu hydraulického napětí h t v tomto bodě. Tato změna h t, bude mít snahu vyvolat tok vody k nahrazení úbytku způsobeného evaporací. Velikost h t, úměrnou poklesu obsahu vody θ, lze nalézt podle vodní charakteristiky materiálu stěny. Protože změna hydraulického napětí ve výšce z je výsledkem vysychání, nemůže tato změna h t probíhat podle křivky vlhnutí, ale musí sledovat malou křivku vysychání zobrazenou na obr. 3. Diskuzi takovéto kapilární hystereze představující křivky tohoto typu provedl Morrow [6]. Inkrementální průtoková rychlost jednotkou délky stěny vyvolaná změnou napětí h t se řídí Darcyho zákonem. Tak kde k je průměrná hydraulická konduktivita stěny až do výšky z, Q je objemová průtoková rychlost na jednotku délky a d je tloušťka stěny. Hydraulická konduktivita k(θ) se obvykle mění exponenciálně s obsahem vody, ale pro účely této analýzy je postačující uvažovat průměrnou hodnotu k(θ). Je-li Q dostatečně velký, aby nahradil úbytek vody evaporací, vrátí se hydraulický potenciál h t do své původní polohy na křivce vlhnutí přes křivku b a rovnováha bude zachována. Tento proces je ve skutečnosti nepřetržitý a teorie toto zohledňuje tím, že povoluje nekonečně malé θ, h t, t a z. Definujeme funkci f (z) definující poměr tok/evaporace tak, že na jednotku délky stěny. Je zřejmé, že při f(z) menší než 1 nebude rovnováha zachována a obsah vody ve stěně ve výšce z bude klesat - tj. stěna ve výšce z bude vysychat. Podmínka f (z) = 1 představuje rovnovážný stav a z podmínky f (z) > 1 vyplývá, že obsah vody bude udržován na úrovni definované vodní charakteristikou ve větší výšce než z. Obr. 3. Kapilární hystereze během stoupání vlhkosti. Úsek a u malé hysterezní smyčky platí pro inkrementální vysychání, úsek b platí při opětovném obnovení rovnováhy obsahu vody v důsledku vnikání vody u základu stěny. Substitucí vhodného výrazu pro inkrementální rychlost toku dostáváme Pro malé θ, h t, z můžeme psát Výraz (dz/dθ) θ je gradient křivky vlhnutí při obsahu vody θ a je proto snadno měřitelný. Výraz (dh t/dθ) θ je gradient malé hysterezní křivky, kde se setkává s křivkou vlhnutí při obsahu vody θ. Toto je na první pohled obtížné kvantifikovat, protože principiálně je každá hysterezní křivka odlišná. Ovšem podle práce Morrowa je to přibližně konstantní u křivky vlhnutí a rovná se gradientu křivky vysychání při nasycení (θ r = 1). Při definování funkce g(θ) jako můžeme psát drying curve wetting curve a z tohoto výrazu snadno vypočítat výšku rovnováhy kapilárního vzlínání v podmínkách evaporace. 4. APLIKACE TEORIE 4.1. Výpočet poměru tok/evaporace Funkci f (z) lze vypočítat za předpokladu, že jsou známy hydraulické parametry konduktivity a vodní charakteristiky porézní pevné látky a za předpokladu, že byly stanoveny ztráty evaporací jako funkce obsahu vody. Rychlost evaporace jako funkce obsahu vody byla měřena pro řadu podmínek prostředí a úpravy povrchu v programu prací prováděných ve stavebních laboratořích UMIST a obr. 4 od Plattena [7] ukazuje typické výsledky pro dva typy povrchů, jeden z obyčejných hliněných cihel a druhý z obyčejných hliněných cihel se základní omítkou z cementu a písku v poměru 1 : 6 v tloušťce 10 mm. Funkce f (z) byla vypočítána pro řadu podmínek vysychání a výsledky pro dva typické případy jsou uvedeny na obrázích 5 a 6. Oscilace na vypočítané křivce (plná čára) pro omítnuté cihlové zdivo nejsou považovány za významné, ale jsou výsledkem chyb vzniklých z problematického přesného definování funkce e(θ) z laboratorních dat. V tomto případě se na čerchovanou křivku pohlíží jako na realističtější znázornění f (z). Významným rysem těchto křivek, který také

4 S. J. I'Anson a W. D. Hoff Obr. 4. Grafy zobrazující normalizovanou rychlost evaporace ẽ (tj. rychlost vysychání jako zlomek maximální hodnoty) proti sníženému obsahu vody θ r. Křivka A ukazuje vysychání neomítnuté hliněné cihly a křivka B ukazuje vysychání podobné cihly s omítkou z cementu a písku v poměru 1:6 v tloušťce 10 mm. vyplývá z ostatních křivek, které jsme spočítali pro řadu podmínek prostředí, je rychlý nárůst hodnoty f(z) pro výšku z menší než cca 1 m. Jak bylo uvedeno dříve, podmínka f(z)= 1 představuje rovnovážný stav, kdy kapilární vzlínání je právě vyrovnáno evaporačními ztrátami. Hodnoty z odpovídající f(z) = 1 jsou uvedeny v tabulce 1 pro několik podmínek vysychání. Tyto výsledky ukazují, že v praxi by se očekávalo, že evaporace by měla řídit výšku kapilárního vzlínání do úrovně řádově 1 m a toto je v souladu s pozorováním ve většině situací v praxi. Použití cementových omítek snižuje rychlost evaporace z povrchu stěn a dle očekávání by toto mohlo zvýšit výšku pro rovnovážný stav kapilárního vzlínání. Křivky f(z) versus z toto podporují Časový harmonogram procesu kapilárního vzlínání V literatuře [3] je uvedena úplná diskuze postupu výpočtu od Philipa [8], podle níž lze stanovit časové období k dosažení rovnovážného stavu kapilárního vzlínání při absenci evaporace. V této analýze Obr. 6. Graf zobrazující funkci f(z) versus z pro vysychání cihlové stěny omítnuté maltou z cementu a písku v poměru 1 : 6 v tloušťce 10 mm se stejnými podmínkami vysychání jako u obr. 5. se počítá charakteristický čas t v představující dobu nutnou k dosažení cca 95 % rovnovážného stavu obsahu vody. Tak kde S je sorptivita získaná z diagramu absorpce vody t 1/2 a i celkový rovnovážný volumetrický obsah vody na jednotku plochy průřezu až do výšky z 1, je dáno kde φ je efektivní poréznost materiálu. Je zřejmé, že lze spočítat podobný čas t v pro dosažení nižšího obsahu vody, než jaký předpokládáme najít ve stěnách, když dochází k evaporaci a tyto hodnoty t v jsou uvedeny v tabulce 1. Je ovšem nutné podotknout, že tyto hodnoty budou výrazně podhodnocovat čas potřebný k dosažení rovnováhy, protože při procesu kapilárního vzlínání dochází k evaporaci, která nevyhnutelně zpozdí dosažení evaporací kontrolované rovnováhy Rozložení obsahu vody Obrázek 7 je schematický diagram rozložení obsahu vody v cihlové stěně následkem vzlínající vlhkosti, jak Obr. 5. Graf zobrazující funkci f(z) versus z pro vysychání neomítnuté cihlové stěny s podmínkami vysychání 10 C, 80% relativní vlhkost, rychlost vzduchu 0,1 m s -1. Obr. 7. Graf zobrazující teoretické rozdíly obsahu vody θ r v závislosti na z u stěny z obyčejných cihel v podmínkách dosažení rovnovážné výšky 0,5 m.

5 Pohyb vody v porézních stavebních materiálech -- VIII 199 Tabulka 1. Rovnovážné výšky kapilárního vzlínání u neomítnutých a omítnutých cihlových stěn za různých podmínek spolu s vypočtenými hodnotami charakteristického času t v Podmínky vysychání Výška kapilárního vzlínání při dosažení rovnováhy (m) Charakteristický čas t v (rok) Relativní Rychlost Bez omítky S omítkou Bez omítky S Teplota ( C) vlhkost (%) vzduchu (m s -1 ) omítkou předpovídá teorie uvedená v této kapitole. Z bodu A do bodu B sleduje rozdělení charakteristickou křivku vody pro obyčejnou cihlu. V podmínkách evaporace při 80% relativní vlhkosti, 10 C, rychlosti vzduchu 0,1 m s -1 předpokládá křivka f(z) rovnovážnou výšku přibližně 0,5 m. U výšek větších než 0,5 m nemůže být rovnováha udržována vzlínající vlhkostí a tak obsah vlhkosti klesá do bodu C. U ještě větších výšek se obsah vlhkosti přibližuje nízké hodnotě, která je v rovnováze s okolním vzduchem a pro většinu účelů použití lze tuto stěnu považovat za suchou. Obrázek 8 je překreslený z dat publikovaných Mamillanen a Bouineauem [9] při měření vzlínající vlhkosti u vápencových testovacích stěn. Obecný tvar této křivky se velice podobá tvaru na obr. 6. Mamillan and Bouineau se domnívají, že je to přítomnost prvního maltového spoje v jejich testovací stěně ve výšce cca 0,5 m, který je do značné míry odpovědný za rychlý pokles obsahu vody kolem této úrovně. Ovšem podle teorie uvedené v tomto materiálu se domníváme, že pozorované Obr. 8. Experimentální výsledky prezentované Mamillanem a Bouineauem [9] pro vzlínající vlhkost ve vápencové testovací stěně. Graf ukazuje rozdíly volumetrického obsahu vody θ v závislosti na výšce z. Tyto tři křivky byly získány při použití různých metod měření obsahu vody. rozdělení obsahu vody je způsobené vlivem evaporačního vysychání a že k velmi podobnému rozdělení by došlo i při absenci maltového spoje. Toto tvrzení podporuje i skutečnost, že měření provedená nad maltovým spojem vykazují obsah vody spíše klesající, než konstantní úrovně. 5. ZÁVĚRY V tomto materiálu je předkládána jednoduchá teorie popisující vliv evaporačního vysychání na rovnováhu u kapilárního vzlínání. Model i přes zjednodušující předpoklady provedené v analýze poskytuje předpovědi rovnovážných výšek v řádu 1 m pro kapilární vzlínání ve skutečných stěnách s probíhajícím evaporačním vysycháním. Toto je v dobré shodě s pozorováním vzlínající vlhkosti v praxi. Z této analýza dále plyne, že obsah vody klesá na velmi malé hodnoty ve výškách větších než je predikovaná rovnovážná výška, a toto se také ukázalo při praktickém pozorování. Na základě této analýzy lze také dospět k závěru, že v podmínkách silného vysychání lze zmírnit problém vzlínající vlhkosti a lze učinit různé praktické kroky na podporu takového vysychání. Mezi nimi může mít významný vliv ventilace z obou stran stěny, protože proudění vzduchu je hlavním faktorem pro nastavení dobrých podmínek vysychání. Naopak, postupy omezující evaporační vysychání, jako je použití dekorativních povrchů, lze považovat za ty, jež problém zhoršují. V tomto ohledu je nutné poznamenat, že i dekorativní povrchy a povlaky odpuzující vodu, které jsou propustné pro vodní páru, musí přesto snižovat rychlost vysychání na úrovně stupně II procesu vysychání, které jsou obecně mnohem nižší než rychlost evaporace volné vody vyskytující se ve stupni I [5]. Poděkování - Autoři děkují Radě pro vědecký a technický výzkum za finanční podporu. Rádi by také poděkovali Dr. C. Hallovi za jeho připomínky. LITERATURA 1. C. Hall and W. D. Hoff, Dampness in dwellings : performance requirements for remedial treatments, ASTM/CIB/RILEM Symposium on the Performance Concept in Building, Lisbon, Vol. I, pp (1982). 2. Building Research Establishment Digest 245, Rising damp in walls : diagnosis and treatment. HMSO, London (1981).

6 S. J. I'Anson a W. D. Hoff 3. R.J. Gummerson, C. Hall and W. D. Hoff, Capillary water transport in masonry structures ; building construction applications of Darcy's law. Constr. Papers 1, (1980). 4. C. Hall, Water movement in porous building materials--i. Unsaturated flow theory and its applications. Bldg Envir. 12, (1977). 5. C. Hall, W. D. Hoffand M. R. Nixon, Water movement in porous building materials--v1. Evaporation and drying in brick and block materials. Bldg Envir. 19, (1984). 6. N.R. Morrow, Physics and thermodynamics of capillary action in porous media. Ind. Engny Chem. 62, 33 (1970). 7. A.K. Platten, Ph.D. thesis, University of Manchester (1986). 8. J.R. Philip, Theory of infiltration. Adv. Hydrosci. 5, (1965). 9. M. Mamillan and A. Bouineau, Etude de l'asséchement des tours soumis á des remontées capillaires. Lithoclastia (numéro special) ( [ 976).

Pohyb vody v porézních stavebních materiálech III. Použití testu sorptivity u izolace proti vlhkosti injektáží chemických látek

Pohyb vody v porézních stavebních materiálech III. Použití testu sorptivity u izolace proti vlhkosti injektáží chemických látek Building and Environment, svazek 16, č. 3, strany 193-199, 1981. 0360--1323181/030193-07502.0010 Vytisknuto ve Velké Británii 1981 Pergamon Press Ltd. Pohyb vody v porézních stavebních materiálech III.

Více

Pohyb vody v porézních stavebních materiálech - V. Absorpce a odvádění deště povrchy staveb

Pohyb vody v porézních stavebních materiálech - V. Absorpce a odvádění deště povrchy staveb Building and Environment, svazek 17. č. 4. s. 257-262, 1982 0360-1323/82/040257-06$03.00/0 Vytištěno ve Velké Británii 1982 Pergamon Press Ltd. Pohyb vody v porézních stavebních materiálech - V. Absorpce

Více

Tepelně vlhkostní posouzení

Tepelně vlhkostní posouzení Tepelně vlhkostní posouzení komínů výpočtové metody Přednáška č. 9 Základní výpočtové teploty Teplota v okolí komína 1 Teplota okolí komína 2 Teplota okolí komína 3 Teplota okolí komína 4 Teplota okolí

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

Program KALKULÁTOR POLOHY HPV

Program KALKULÁTOR POLOHY HPV Program KALKULÁTOR POLOHY HPV Výpočet úrovně hladiny podzemní vody Dokumentace Teoretický základ problematiky Pokyny pro uživatele Jakub Štibinger, Pavel Kovář, František Křovák Praha, 2011 Tato dokumentace

Více

Tepelná technika. Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007

Tepelná technika. Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007 Tepelná technika Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007 Tepelné konstanty technických látek Základní vztahy Pro proces sdílení tepla platí základní

Více

A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5.

A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5. A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5. cvičení) Vypracoval : Martin Dlouhý Osobní číslo : A08B0268P A:Měření

Více

1. Popis problému. Projekt Sanace vlhkého zdiva v RD pana Josefa SKOŘEPY, Procházkova 4, Praha 4 Podolí. 1.1 Situace

1. Popis problému. Projekt Sanace vlhkého zdiva v RD pana Josefa SKOŘEPY, Procházkova 4, Praha 4 Podolí. 1.1 Situace Projekt Sanace vlhkého zdiva v RD pana Josefa SKOŘEPY, Procházkova 4, Praha 4 Podolí. 1. Popis problému 1.1 Situace Zdivo je důležitou součástí stavební konstrukce. Jeho úlohou je především upravovat vnitřní

Více

ZÁPIS Z MÍSTNÍHO ŠETŘENÍ

ZÁPIS Z MÍSTNÍHO ŠETŘENÍ ZÁPIS Z MÍSTNÍHO ŠETŘENÍ posouzení stavu obvodového pláště budovy Kabáty č.p. 44 Objednatel: Ing. Vladimír Duša V Předpolí 1464/17 100 00 Praha 10 Strašnice Zpracovatel: Ing. Jiří Süssland a Ing. Michal

Více

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM Místní ztráty, Tlakové ztráty Příklad č. 1: Jistá část potrubí rozvodného systému vody se skládá ze dvou paralelně uspořádaných větví. Obě potrubí mají průřez

Více

Sanace nosných konstrukcí

Sanace nosných konstrukcí ČVUT v Praze Fakulta stavební Katedra konstrukcí pozemních staveb Sanace nosných konstrukcí Buštěhrad Prezentace byla vytvořena za laskavé podpory grantu FRVŠ 2960/2011. Historie objektu jednotlivé části

Více

Měření odporu ohmovou metodou

Měření odporu ohmovou metodou ěření odporu ohmovou metodou Teoretický rozbor: ýpočet a S Pro velikost platí: Pro malé odpory: mpérmetr však neměří pouze proud zátěže ale proud, který je dán součtem proudu zátěže a proudu tekoucího

Více

Pyrolýza a vznícení připálených materiálu pod přídavným tepelným prouděním

Pyrolýza a vznícení připálených materiálu pod přídavným tepelným prouděním Pyrolýza a vznícení připálených materiálu pod přídavným tepelným prouděním Abstract Experimentální měření byly testovány účinky vnějšího tepelného toku z pyrolýzy a spalovacích připálení materiálů pomocí

Více

MAKROEKONOMIE. Blok č. 4: SPOTŘEBA

MAKROEKONOMIE. Blok č. 4: SPOTŘEBA MAKROEKONOMIE Blok č. 4: SPOTŘEBA Struktura tématu. úvod do nejvýznamnějších teorií spotřeby, kterými jsou: John Maynard Keynes: spotřeba a současný důchod Irving Fisher: mezičasová volba Franco Modigliani:

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

JEDNODUCHÝCH STAVEBNÍCH KONSTRUKCÍ. Ing. Barbora Hrubá, Ing. Jiří Winkler Kat. 225 Pozemní stavitelství 2014

JEDNODUCHÝCH STAVEBNÍCH KONSTRUKCÍ. Ing. Barbora Hrubá, Ing. Jiří Winkler Kat. 225 Pozemní stavitelství 2014 VZDUCHOVÁ NEPRŮZVUČNOST JEDNODUCHÝCH STAVEBNÍCH KONSTRUKCÍ Ing. Barbora Hrubá, Ing. Jiří Winkler Kat. 225 Pozemní stavitelství 2014 AKUSTICKÉ VLASTNOSTI STAVEBNÍCH MATERIÁLŮ A KONSTRUKCÍ Množství akustického

Více

chemického modulu programu Flow123d

chemického modulu programu Flow123d Testovací úlohy pro ověření funkčnosti chemického modulu programu Flow123d Lukáš Zedek, Jan Šembera 20. prosinec 2010 Abstrakt Předkládaná zpráva představuje přehled funkcionalit a výsledky provedených

Více

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky patří: a) grafit b) diamant c) jantar d) modrá skalice Mezi krystalické látky patří: a) rubín

Více

Pohyb vody v porézních stavebních materiálech I. Teorie toku v nenasyceném prostředí a její aplikace

Pohyb vody v porézních stavebních materiálech I. Teorie toku v nenasyceném prostředí a její aplikace Buildin and Environment, svazek 2, 7-25. Peramon Press 977. Vytisknuto ve Velké Británii Pohyb vody v porézních stavebních materiálech I. Teorie toku v nenasyceném prostředí a její aplikace CHRISTOPHER

Více

Kvízové otázky Obecná ekonomie I. Teorie firmy

Kvízové otázky Obecná ekonomie I. Teorie firmy 1. Firmy působí: a) na trhu výrobních faktorů b) na trhu statků a služeb c) na žádném z těchto trhů d) na obou těchto trzích Kvízové otázky Obecná ekonomie I. Teorie firmy 2. Firma na trhu statků a služeb

Více

Vliv opakovaných extrémních zatížení na ohybovou únosnost zdiva

Vliv opakovaných extrémních zatížení na ohybovou únosnost zdiva Vliv opakovaných extrémních zatížení na ohybovou únosnost zdiva Doc. Ing. Daniel Makovička, DrSc. ČVUT v Praze, Kloknerův ústav, 166 08 Praha 6, Šolínova 7 Ing. Daniel Makovička, Jr. Statika a dynamika

Více

STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ

STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ Zadání: 1. Stanovte oxygenační kapacitu a procento využití kyslíku v čisté vodě pro provzdušňovací porézní element instalovaný v plexi válci následujících rozměrů:

Více

Laboratorní úloha Diluční měření průtoku

Laboratorní úloha Diluční měření průtoku Laboratorní úloha Diluční měření průtoku pro předmět lékařské přístroje a zařízení 1. Teorie Diluční měření průtoku patří k velmi používaným nepřímým metodám v biomedicíně. Využívá se zejména tehdy, kdy

Více

Matematické modelování dopravního proudu

Matematické modelování dopravního proudu Matematické modelování dopravního proudu Ondřej Lanč, Alena Girglová, Kateřina Papežová, Lucie Obšilová Gymnázium Otokara Březiny a SOŠ Telč lancondrej@centrum.cz Abstrakt: Cílem projektu bylo seznámení

Více

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vlastnosti molekul kapalin V neustálém pohybu Ve stejných vzdálenostech, nejsou ale vázány Působí na sebe silami: odpudivé x přitažlivé Vlastnosti kapalin

Více

HYDRAULICKÉ PARAMETRY ZVODNĚNÝCH SYSTÉMŮ

HYDRAULICKÉ PARAMETRY ZVODNĚNÝCH SYSTÉMŮ HYDRAULICKÉ PARAMETRY ZVODNĚNÝCH SYSTÉMŮ CHARAKTERIZUJÍ FILTRACI PROSTÉ PODZEMNÍ VODY O URČITÉ KINEMATICKÉ VISKOZITĚ Předpoklad pro stanovení : Filtrační (laminární proudění) Znalost homogenity x heterogenity

Více

Návrh složení cementového betonu. Laboratoř stavebních hmot

Návrh složení cementového betonu. Laboratoř stavebních hmot Návrh složení cementového betonu. Laboratoř stavebních hmot Schéma návrhu složení betonu 2 www.fast.vsb.cz 3 www.fast.vsb.cz 4 www.fast.vsb.cz 5 www.fast.vsb.cz 6 www.fast.vsb.cz Informativní příklady

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

Experimentální metody EVF I.: Vysokovakuová čerpací jednotka

Experimentální metody EVF I.: Vysokovakuová čerpací jednotka Experimentální metody EVF I.: Vysokovakuová čerpací jednotka Vypracovali: Štěpán Roučka, Jan Klusoň, Vratislav Krupař Zadání Seznámit se s obsluhou vysokovakuové aparatury čerpané rotační a difúznívývěvouauvéstjidochodu.

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita

Více

www.pedagogika.skolni.eu

www.pedagogika.skolni.eu 2. Důležitost grafů v ekonomických modelech. Náležitosti grafů. Typy grafů. Formy závislosti zkoumaných ekonomických jevů a jejich grafické znázornění. Grafy prezentují údaje a zachytávají vztahy mezi

Více

www.decoen.cz VLIV PERFOTACE KONTAKTNÍHO ZATEPLOVACÍHO SYSTÉMU NA VLHKOSTNÍ CHOVÁNÍ KONSTRUKCE

www.decoen.cz VLIV PERFOTACE KONTAKTNÍHO ZATEPLOVACÍHO SYSTÉMU NA VLHKOSTNÍ CHOVÁNÍ KONSTRUKCE VLIV PERFOTACE KONTAKTNÍHO ZATEPLOVACÍHO SYSTÉMU NA VLHKOSTNÍ CHOVÁNÍ KONSTRUKCE Influence Perforations thermal Insulation Composite System onto Humidity behavior of Structures Ing. Petr Jaroš, Ph.D.,

Více

Měřicí přístroje a měřicí metody

Měřicí přístroje a měřicí metody Měřicí přístroje a měřicí metody Základní elektrické veličiny určují kvalitativně i kvantitativně stav elektrických obvodů a objektů. Neelektrické fyzikální veličiny lze převést na elektrické veličiny

Více

Computerized Measuring System for Analysis of Chosen Characteristics and Processes in Porous Environment by EIS Method E!4981, EIS method PEM

Computerized Measuring System for Analysis of Chosen Characteristics and Processes in Porous Environment by EIS Method E!4981, EIS method PEM Computerized Measuring System for Analysis of Chosen Characteristics and Processes in Porous Environment by EIS Method E!4981, EIS method PEM Projekt č. E!4981 programu EUREKA Automatizovaný systém pro

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice REKONSTRUKCE DOKONČOVACÍCH PRACÍ Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

ROVNOMĚRNĚ ZRYCHLENÝ POHYB

ROVNOMĚRNĚ ZRYCHLENÝ POHYB ROVNOMĚRNĚ ZRYCHLENÝ POHYB Pomůcky: LabQuest, sonda čidlo polohy (sonar), nakloněná rovina, vozík, který se může po nakloněné rovině pohybovat Postup: Nakloněnou rovinu umístíme tak, aby svírala s vodorovnou

Více

Trumf, renovace a sanace, s.r.o.

Trumf, renovace a sanace, s.r.o. Trumf, renovace a sanace, s.r.o. Posouzení objektu K zámku 214, Praha 9 Dolní Počernice z hlediska vlhkosti a vlhkostních projevů a možné postupy a návrhy řešení Zpracovatel: Zadavatel: TRUMF, renovace

Více

Proudění podzemní vody

Proudění podzemní vody Podpovrchová voda krystalická a strukturní voda vázaná fyzikálně-chemicky adsorpční vázaná molekulárními silami na povrchu částic hygroskopická (pevně vázaná) obalová (volně vázaná) volná voda kapilární

Více

Materiály charakteristiky potř ebné pro navrhování

Materiály charakteristiky potř ebné pro navrhování 2 Materiály charakteristiky potřebné pro navrhování 2.1 Úvod Zdivo je vzhledem k velkému množství druhů a tvarů zdicích prvků (cihel, tvárnic) velmi různorodý stavební materiál s rozdílnými užitnými vlastnostmi,

Více

Ocelobetonové stropní konstrukce vystavené požáru Jednoduchá metoda pro požární návrh

Ocelobetonové stropní konstrukce vystavené požáru Jednoduchá metoda pro požární návrh Ocelobetonové stropní konstrukce vystavené požáru požární návrh Cíl návrhové metody požární návrh 2 požární návrh 3 Obsah prezentace za požáru ocelobetonových desek za běžné Model stropní desky Druhy porušení

Více

Kondenzace vlhkosti na oknech

Kondenzace vlhkosti na oknech Kondenzace vlhkosti na oknech Úvod: Problematika rosení oken je věčným tématem podzimních a zimních měsíců. Stále se nedaří vysvětlit jev kondenzace vlhkosti na zasklení široké obci uživatelů plastových

Více

C p. R d dielektrické ztráty R sk odpor závislý na frekvenci C p kapacita mezi přívody a závity

C p. R d dielektrické ztráty R sk odpor závislý na frekvenci C p kapacita mezi přívody a závity RIEDL 3.EB-6-1/8 1.ZADÁNÍ a) Změřte indukčnosti předložených cívek ohmovou metodou při obou možných způsobech zapojení měřících přístrojů. b) Měření proveďte při kmitočtech měřeného proudu 50, 100, 400

Více

Popis zeminy. 1. Konzistence (pro soudržné zeminy) měkká, tuhá apod. Ulehlost (pro nesoudržné zeminy)

Popis zeminy. 1. Konzistence (pro soudržné zeminy) měkká, tuhá apod. Ulehlost (pro nesoudržné zeminy) Klasifikace zemin Popis zeminy 1. Konzistence (pro soudržné zeminy) měkká, tuhá apod. Ulehlost (pro nesoudržné zeminy) kyprá, hutná 2. Struktura (laminární) 3. Barva 4. Velikost částic frakc 5. Geologická

Více

ErP nařízení žádá vysokou účinnost, EU se zaměřila na zelené ventilátory

ErP nařízení žádá vysokou účinnost, EU se zaměřila na zelené ventilátory ErP nařízení žádá vysokou účinnost, EU se zaměřila na zelené ventilátory V plnění Kyotského protokolu se Evropská Unie zavázala redukovat CO2 emise nejméně o 20 % do roku 2020. Jeden způsob k dosažení

Více

11 Manipulace s drobnými objekty

11 Manipulace s drobnými objekty 11 Manipulace s drobnými objekty Zpracování rozměrově malých drobných objektů je zpravidla spojeno s manipulací s velkým počtem objektů, které jsou volně shromažďovány na různém stupni uspořádanosti souboru.

Více

Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha

Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha Názvosloví páry Pro správné pochopení funkce parních systémů musíme znát základní pojmy spojené s párou. Entalpie Celková energie, příslušná danému

Více

MECHANIKA HORNIN A ZEMIN

MECHANIKA HORNIN A ZEMIN MECHANIKA HORNIN A ZEMIN podklady k přednáškám doc. Ing. Kořínek Robert, CSc. Místnost: C 314 Telefon: 597 321 942 E-mail: robert.korinek@vsb.cz Internetové stránky: fast10.vsb.cz/korinek Konsolidace zemin

Více

Filtrace 18.9.2008 1

Filtrace 18.9.2008 1 Výpočtový ý seminář z Procesního inženýrství podzim 2008 Filtrace 18.9.2008 1 Tématické okruhy principy a instrumentace bilance filtru kalolis filtrace za konstantní rychlosti filtrace za konstantního

Více

Detail nadpraží okna

Detail nadpraží okna Detail nadpraží okna Zpracovatel: Energy Consulting, o.s. Alešova 21, 370 01 České Budějovice 386 351 778; 777 196 154 roman@e-c.cz Autor: datum: leden 2007 Ing. Roman Šubrt a kolektiv Lineární činitelé

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

Dodatečné zesilování a stabilizace tlačených stěn z cihelného zdiva pásy uhlíkové tkaniny

Dodatečné zesilování a stabilizace tlačených stěn z cihelného zdiva pásy uhlíkové tkaniny 146 Dodatečné zesilování a stabilizace tlačených stěn z cihelného zdiva pásy uhlíkové tkaniny prof. Ing. Jiří WITZANY, DrSc., dr. h. c. doc. Ing. Tomáš ČEJKA, Ph.D. Ing. Radek ZIGLER, Ph.D. Ing. Jan KUBÁT

Více

Konsolidace zemin Stlačení vrstev zeminy je způsobené změnou napětí v zemině např. vnesením vnějšího zatížení do zeminy

Konsolidace zemin Stlačení vrstev zeminy je způsobené změnou napětí v zemině např. vnesením vnějšího zatížení do zeminy Sedání Konsolidace zemin Stlačení vrstev zeminy je způsobené změnou napětí v zemině např. vnesením vnějšího zatížení do zeminy vytěsnění vody z pórů přemístění zrn zeminy deformace zrn zeminy Zakládání

Více

Praktikum II Elektřina a magnetismus

Praktikum II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF K Praktikum II Elektřina a magnetismus Úloha č. V Název: Měření osciloskopem Pracoval: Matyáš Řehák stud.sk.: 13 dne: 1.1.28 Odevzdal dne:...

Více

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová Vícefázové reaktory Probublávaný reaktor plyn kapalina katalyzátor Zuzana Tomešová 2008 Probublávaný reaktor plyn - kapalina - katalyzátor Hydrogenace méně těkavých látek za vyššího tlaku Kolony naplněné

Více

Tepelná izolace soklu

Tepelná izolace soklu Tepelná izolace soklu univerzální řešení pro jednovrstvé i vícevrstvé stěny Při návrhu i vlastním provádění detailu soklu dochází často k závažným chybám a to jak u jednovrstvých, tak u vícevrstvých zateplených

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. IV Název: Měření fotometrického diagramu. Fotometrické veličiny a jejich jednotky Pracoval: Jan Polášek stud.

Více

1 Použité značky a symboly

1 Použité značky a symboly 1 Použité značky a symboly A průřezová plocha stěny nebo pilíře A b úložná plocha soustředěného zatížení (osamělého břemene) A ef účinná průřezová plocha stěny (pilíře) A s průřezová plocha výztuže A s,req

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

Suchá maltová směs je složena z anorganických pojiv (cement) a kameniva. doba zpracovatelnosti směsi Z

Suchá maltová směs je složena z anorganických pojiv (cement) a kameniva. doba zpracovatelnosti směsi Z TECHNICKÝ LIST SAKRET ZM 10 cementová malta Suchá maltová směs. Odpovídá obyčejné maltě pro zdění G třídy M 10 dle ČSN EN 998-2, ZA příloha. Odpovídá obyčejné maltě pro vnitřní a vnější omítky GP dle ČSN

Více

Tavení skel proces na míru?

Tavení skel proces na míru? Laboratoř anorganických materiálů Společné pracoviště Ústavu anorganické chemie AVČR, v.v.i a Vysoké školy chemicko-technologick technologické v Praze Technická 5, 166 28 Praha 6, Česká Republika Tavení

Více

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf.

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf. Experimentáln lní měření průtok toků ve VK EMO XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký Systém měření průtoku EMO Měření ve ventilačním komíně

Více

Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce

Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce Článek se zabývá problematikou vlivu kondenzující vodní páry a jejího množství na stavební konstrukce, aplikací na střešní pláště,

Více

Role experimentu ve vědecké metodě

Role experimentu ve vědecké metodě Role experimentu ve vědecké metodě Erika Mechlová Ostravská univerzita v Ostravě Obsah Úvod 1. Pozorování 2. Uvedení a formulace problému. Sbírání informací 3. Stanovení hypotéz řešení problému 4. Provedení

Více

Numerická simulace přestupu tepla v segmentu výměníku tepla

Numerická simulace přestupu tepla v segmentu výměníku tepla Konference ANSYS 2009 Numerická simulace přestupu tepla v segmentu výměníku tepla M. Kůs Západočeská univerzita v Plzni, Výzkumné centrum Nové technologie, Univerzitní 8, 306 14 Plzeň Abstract: The article

Více

1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 345 K metodou bublin.

1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 345 K metodou bublin. 1 Pracovní úkoly 1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 35 K metodou bublin. 2. Měřenou závislost znázorněte graficky. Závislost aproximujte kvadratickou

Více

8. Komponenty napájecí části a příslušenství

8. Komponenty napájecí části a příslušenství Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT HYDRAULICKÉ A PNEUMATICKÉ MECHANISMY 8. Komponenty napájecí části

Více

HELUZ Family 2in1 důležitá součást obálky budovy

HELUZ Family 2in1 důležitá součást obálky budovy 25.10.2013 Ing. Pavel Heinrich 1 HELUZ Family 2in1 důležitá součást obálky budovy Ing. Pavel Heinrich Technický rozvoj heinrich@heluz.cz 25.10.2013 Ing. Pavel Heinrich 2 HELUZ Family 2in1 Výroba cihel

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

Stanovení oxygenační kapacity pro aerační trubici PUM 68 při vybraném zatížení průtokem vzduchu

Stanovení oxygenační kapacity pro aerační trubici PUM 68 při vybraném zatížení průtokem vzduchu Pöyry Environment a.s. 9. 7. 21 Stanovení oxygenační kapacity pro aerační trubici PUM 68 při vybraném zatížení průtokem vzduchu Zpráva pum68.doc strana 1 PODPISOVÝ LIST PRO CHEMICKÉ A TECHNOLOGICKÉ PRÁCE

Více

PROTOKOL O PROVEDENÉM MĚŘENÍ

PROTOKOL O PROVEDENÉM MĚŘENÍ Vysoké učení technické v Brně Ústav procesního a ekologického inženýrství Procter & Gamble Professional Určení efektivity žehlení PROTOKOL O PROVEDENÉM MĚŘENÍ Vypracovali: Ing. Martin Pavlas, ÚPEI FSI

Více

Vliv protiprašných sítí na dispersi pevných částic v blízkosti technologického celku (matematické modelování - předběžná zpráva)

Vliv protiprašných sítí na dispersi pevných částic v blízkosti technologického celku (matematické modelování - předběžná zpráva) Vliv protiprašných sítí na dispersi pevných částic v blízkosti technologického celku (matematické modelování - předběžná zpráva) Byl sestaven zjednodušený matematický model pro dvojrozměrné (2D) simulace

Více

PROSTŘEDKY AUTOMATICKÉHO ŘÍZENÍ

PROSTŘEDKY AUTOMATICKÉHO ŘÍZENÍ NS / PROSTŘEDKY AUTOMATICKÉHO ŘÍZENÍ Úloha č. - Dvoupolohová regulace teploty Vypracoval: Ha Minh.. Spolupracoval: Josef Dovrtěl I. Zadání ) Zapojte laboratorní úlohu dle schématu. ) Zjistěte a zhodnoťte

Více

WiFi: název: InternetDEK heslo: netdekwifi. Školení DEKSOFT Tepelná technika

WiFi: název: InternetDEK heslo: netdekwifi. Školení DEKSOFT Tepelná technika WiFi: název: InternetDEK heslo: netdekwifi Školení DEKSOFT Tepelná technika Program školení 1. Blok Legislativa Normy a požadavky Představení aplikací pro tepelnou techniku Představení dostupných studijních

Více

Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo.

Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo. PROMOTE MSc POPIS TÉMATU FYZKA 1 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubov@upol.cz Popis

Více

4 Měření nelineárního odporu žárovky

4 Měření nelineárního odporu žárovky 4 4.1 Zadání úlohy a) Změřte proud I Ž procházející žárovkou při různých hodnotách napětí U, b) sestrojte voltampérovou charakteristiku dané žárovky, c) z naměřených hodnot dopočítejte hodnoty stejnosměrného

Více

Měření magnetické indukce elektromagnetu

Měření magnetické indukce elektromagnetu Měření magnetické indukce elektromagnetu Online: http://www.sclpx.eu/lab3r.php?exp=1 V tomto experimentu jsme využili digitální kuchyňské váhy, pomocí kterých jsme určovali sílu, kterou elektromagnet působí

Více

PROBLEMATICKÉ SVAROVÉ SPOJE MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ

PROBLEMATICKÉ SVAROVÉ SPOJE MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ PROBLEMATICKÉ SVAROVÉ SPOJE MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ doc. Ing. Petr Mohyla, Ph.D. Fakulta strojní, VŠB TU Ostrava 1. Úvod Snižování spotřeby fosilních paliv a snižování škodlivých emisí vede k

Více

Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost

Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost Výňatek z normy ČSN EN ISO 13370 Tepelně technické vlastnosti zeminy Použijí se hodnoty odpovídající skutečné lokalitě, zprůměrované pro hloubku. Pokud je druh zeminy znám, použijí se hodnoty z tabulky.

Více

Návrh a posouzení plošného základu podle mezního stavu porušení ULS dle ČSN EN 1997-1

Návrh a posouzení plošného základu podle mezního stavu porušení ULS dle ČSN EN 1997-1 Návrh a posouzení plošného základu podle mezního stavu porušení ULS dle ČSN EN 1997-1 1. Návrhové hodnoty účinků zatížení Účinky zatížení v mezním stavu porušení ((STR) a (GEO) jsou dány návrhovou kombinací

Více

Flyback converter (Blokující měnič)

Flyback converter (Blokující měnič) Flyback converter (Blokující měnič) 1 Blokující měnič patří do rodiny měničů se spínaným primárním vinutím, což znamená, že výstup je od vstupu galvanicky oddělen. Blokující měniče se používají pro napájení

Více

5. VDI4707 2009. Tab. 2: Spektrum zatížení dle VDI4707: Zatížení v % jmen. zatížení Množství jízd v % 0 % 50 % 25 % 30 % 50 % 10 % 75 % 10 % 100 % 0 %

5. VDI4707 2009. Tab. 2: Spektrum zatížení dle VDI4707: Zatížení v % jmen. zatížení Množství jízd v % 0 % 50 % 25 % 30 % 50 % 10 % 75 % 10 % 100 % 0 % 5. VDI4707 2009 VDI4707 určuje velikost potřebného výkonu v klidovém stavu (všech komponentů) a tzv. specifickou spotřebu jízdy (účinnost jízdy). A výsledná známka je vypočítána z těchto dvou hodnot v

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009.

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. XXVI Název: Vláknová optika Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009 Odevzdal dne: Možný počet bodů

Více

Vliv změn využití pozemků na povodně a sucha. Sestavili: L.Kašpárek a A.Vizina VÚV T.G.Masaryka, v.v.i.

Vliv změn využití pozemků na povodně a sucha. Sestavili: L.Kašpárek a A.Vizina VÚV T.G.Masaryka, v.v.i. Vliv změn využití pozemků na povodně a sucha Sestavili: L.Kašpárek a A.Vizina VÚV T.G.Masaryka, v.v.i. Jak se měnily rozlohy využití pozemků Příklad pro povodí Labe v Děčíně Data byla převzata ze zdroje:

Více

Gel. AGM baterie. baterie % baterie %

Gel. AGM baterie. baterie % baterie % ové a AGM www.victronenergy.com 1. VRLA technologie VRLA je zkratkou pro Valve Regulated Lead Acid, což znamená, že jsou uzavřené. Plyn uniká přes bezpečnostní ventily pouze v případě selhání článku nebo

Více

č.. 6: Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018

č.. 6: Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Pedologické praktikum - téma č.. 6: Práce v pedologické laboratoři - půdní fyzika Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Půdní

Více

Dosah γ záření ve vzduchu

Dosah γ záření ve vzduchu Dosah γ záření ve vzduchu Intenzita bodového zdroje γ záření se mění podobně jako intenzita bodového zdroje světla. Ve dvojnásobné vzdálenosti, paprsek pokrývá dvakrát větší oblast povrchu, což znamená,

Více

8 NEZAMĚSTNANOST. 8.1 Klíčové pojmy

8 NEZAMĚSTNANOST. 8.1 Klíčové pojmy 8 NEZAMĚSTNANOST 8.1 Klíčové pojmy Ekonomicky aktivní obyvatelstvo je definováno jako suma zaměstnaných a nezaměstnaných a míra nezaměstnanosti je definovaná jako procento ekonomicky aktivního obyvatelstva,

Více

Užití země v České republice v letech 1994 až 2012 Karel Matějka IDS, Na Komořsku 2175/2a, 143 00 Praha 4, Česká republika matejka@infodatasys.

Užití země v České republice v letech 1994 až 2012 Karel Matějka IDS, Na Komořsku 2175/2a, 143 00 Praha 4, Česká republika matejka@infodatasys. Užití země v České republice v letech 1994 až 2012 Karel Matějka IDS, Na Komořsku 2175/2a, 143 00 Praha 4, Česká republika matejka@infodatasys.cz Po roce 19 došlo k výrazné změně hospodářských poměrů v

Více

Stanovení hustoty pevných a kapalných látek

Stanovení hustoty pevných a kapalných látek 55 Kapitola 9 Stanovení hustoty pevných a kapalných látek 9.1 Úvod Hustota látky ρ je hmotnost její objemové jednotky, definované vztahem: ρ = dm dv, kde dm = hmotnost objemového elementu dv. Pro homogenní

Více

BL06 - ZDĚNÉ KONSTRUKCE

BL06 - ZDĚNÉ KONSTRUKCE BL06 - ZDĚNÉ KONSTRUKCE Vyučující společné konzultace, zkoušky: - Ing. Rostislav Jeneš, tel. 541147853, mail: jenes.r@fce.vutbr.cz, pracovna E207, individuální konzultace a zápočty: - Ing. Pavel Šulák,

Více

6 Měření transformátoru naprázdno

6 Měření transformátoru naprázdno 6 6.1 Zadání úlohy a) změřte charakteristiku naprázdno pro napětí uvedená v tabulce b) změřte převod transformátoru c) vypočtěte poměrný proud naprázdno pro jmenovité napětí transformátoru d) vypočtěte

Více

PŘÍSTROJOVÉ SYSTÉMY. Elektrické rozváděče NN Oteplení v důsledku výkonových ztrát el. přístrojů

PŘÍSTROJOVÉ SYSTÉMY. Elektrické rozváděče NN Oteplení v důsledku výkonových ztrát el. přístrojů PŘÍSTROJOVÉ SYSTÉMY Elektrické rozváděče NN Oteplení v důsledku výkonových ztrát el. přístrojů Vnitřní teplota rozváděče jako důležitý faktor spolehlivosti Samovolný odvod tepla na základě teplotního rozdílu

Více

Krátkodobá rovnováha na trhu peněz

Krátkodobá rovnováha na trhu peněz Makroekonomická analýza přednáška 9 1 Krátkodobá rovnováha na trhu peněz Funkce poptávky po penězích Poptávka po penězích je úměrná cenové hladině (poptávka po penězích je poptávka po reálných penězích).

Více

Úprava naměřených stavů

Úprava naměřených stavů Návod na používání autorizovaného software Úprava naměřených stavů V Ústí nad Labem 8. 10. 2010 Vytvořil: doc. Ing., Ph.D. Návod pro úpravu stavů_v1 1 z 9 8.10.2010 Obsah 1Úvod...3 2Instalace...4 3Spuštění

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Ing. Tomáš Matuška,

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

LABORATORNÍ ZKOUŠKY VZORKY LABORATORNÍ ZKOUŠKY. Postup laboratorních zkoušek

LABORATORNÍ ZKOUŠKY VZORKY LABORATORNÍ ZKOUŠKY. Postup laboratorních zkoušek LABORATORNÍ ZKOUŠKY Jednou z hlavních součástí grantového projektu jsou laboratorní zkoušky elastomerových ložisek. Cílem zkoušek je získání pracovního diagramu elastomerových ložisek v tlaku a porovnání

Více

Měření tlaku v závislosti na nadmořské výšce KET/MNV

Měření tlaku v závislosti na nadmořské výšce KET/MNV Měření tlaku v závislosti na nadmořské výšce KET/MNV Vypracoval : Martin Dlouhý Osobní číslo : A08B0268P 1. Zadání Změřte hodnotu atmosférického tlaku v různých nadmořských výškách (v několika patrech

Více