Karnaughovy mapy. Pravdivostní tabulka pro tři vstupní proměnné by mohla vypadat například takto:

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Karnaughovy mapy. Pravdivostní tabulka pro tři vstupní proměnné by mohla vypadat například takto:"

Transkript

1 Karnaughovy mapy Metoda je použitelná již pro dvě vstupní proměnné, své opodstatnění ale nachází až s větším počtem vstupů, kdy návrh takového výrazu přestává být triviální. Prvním krokem k sestavení logického výrazu je příprava pravdivostní tabulky. Každý ze sloupců pravdivostní tabulky představuje jednu vstupní nebo výstupní proměnnou. Pojmenujme si tyto proměnné Xn. Kde n bude pořadové číslo proměnné. Budeme-li tedy chtít sestavit logickou funkci se třemi vstupními a jednou výstupní proměnnou, naše tabulka bude mít čtyři sloupce. Obvykle sloupce řadíme podle čísla n sestupně, tzn. proměnná X s nejvyšším n bude v prvním sloupci tabulky a X1 naopak v posledním. Sloupce pro výstupní proměnné (pojmenujme si je Y) umístíme za sloupce vstupních proměnných. Tabulka má tolik řádků, kolik různých kombinací mohou vstupní proměnné vytvořit - toto číslo lze vypočítat umocněním čísla 2 (počet možných stavů každé ze vstupních proměnných) na počet vstupních proměnných. Pro tři vstupní proměnné tak budeme v pravdivostní tabulce potřebovat osm řádků, pro čtyři vstupní proměnné šestnáct řádků, pro pět proměnných bude řádků 32 atd. Každý z řádků si ještě očíslujme (v desítkové soustavě počínaje číslem 0). Pravdivostní tabulku teď musíme vyplnit. Sloupce vstupních proměnných vyplňujeme tak, aby každý z řádků byl jedinečný. Nejjednodušeji toho dosáhneme převedením pořadového čísla řádku do dvojkové soustavy a vepsáním číslic binární reprezentace do jednotlivých sloupců. Abychom se zbytečně nezdržovali převáděním mezi číselnými soustavami, budeme raději používat pravidlo, které z uvedeného postupu vyplývá: nejprve vyplníme sloupec X1, tedy ten vpravo - jednoduše střídáme hodnoty 0 a 1 (začneme nulou). Postoupíme doleva a ve sloupci X2 píšeme každou hodnotu dvakrát, tzn. 0, 0, 1, 1,... S každým dalším sloupcem se počet hodnot v jedné periodě vždy zdvojnásobí. V prvním sloupci by nakonec první polovina řádků měla být tvořena nulami a druhá polovina jedničkami - pokud ne, někde jsme udělali chybu. Výstupní hodnoty vyplníme sami podle toho, co od hotové logické funkce očekáváme. Jestliže u některé kombinace vstupních hodnot není hodnota výstupní proměnné důležitá, zapisujeme tzv. neurčitý stav (značíme pomlčkou). Pravdivostní tabulka pro tři vstupní proměnné by mohla vypadat například takto: X 3 X 2 X 1 Y Podle této pravdivostní tabulky nyní vytvoříme Karnaughovu mapu. Pro každou výstupní proměnnou budeme potřebovat jednu mapu - v tomto případě tedy postačí jen jedna. Karnaughova mapa má různé tvary podle počtu vstupních proměnných. Popišme si nejprve mapu pro dvě proměnné - je to tabulka o dvou sloupcích a dvou řádcích. Nad pravým

2 sloupcem si nakreslíme vodorovnou čáru, kterou označíme jako X1 a vlevo od dolního řádku nakreslíme svislou čáru, kterou označíme X2. Každou z buněk si v rohu označme čísly 0-3. Při číslování postupujeme po řádcích. A co vlastně znamenají ty čáry nad a vedle mapy? Označují buňky (celý sloupec nebo řádek), kde daná vstupní proměnná nabývá hodnoty 1. Každá buňka této tabulky tak odpovídá jednomu z řádků pravdivostní tabulky a číslo, které jsme si do každé buňky vepsali, je právě číslem řádku z pravdivostní tabulky. Nezáleží tedy na tom, jak čáry okolo mapy uspořádáme; důležité je, aby hodnoty vstupních proměnných pro danou buňku odpovídaly jejímu označení čárami. Už asi tušíte, co bude hlavním obsahem buňek: do každé z nich zapište výstupní hodnotu funkce z řádku, který k této buňce podle čísla náleží. Karnaughova mapa pro tři vstupní proměnné je tabulkou o dvou řádcích a čtyřech sloupcích. Abychom mohli pokrýt všechny možné vstupní hodnoty, musejí vodorovné čáry označovat vždy dva sloupce, přitom jeden sloupec je označen oběma vodorovnými čarami. Obvyklé uspořádání Karnaughovy mapy pro tři, čtyři a pět vstupních proměnných najdete na obrázcích v příloze na konci článku. Všimněte si, že číslování buňek už nejde po řadě, ale některé řádky a sloupce jsou přeházené. Samotná minimalizace se provádí sdružováním jedniček v mapě do skupin, tzv. smyček. Dodržujeme přitom tato pravidla: 1) Do smyčky lze přiřadit pouze vzájemně sousedící jedničky. Přitom první a poslední sloupec (resp. řádek) mapy se také považují za vzájemně sousedící. 2) V jedné smyčce může být pouze takový počet jedniček, který je mocninou čísla 2, tzn. 2, 4, 8, 16,... 3) Každá smyčka musí mít tvar obdélníku nebo čtverce. 4) Každá jednička může být součástí několika smyček (smyčky se mohou překrývat). 5) Snažíme se vytvářet co nejméně smyček. Smyčky by přitom měly být co největší. 6) Neurčitý stav lze považovat za jedničku, pokud to umožní zvětšit některou smyčku. V ostatních případech neurčitý stav považujeme za nulu. 7) Každá jednička musí být uzavřena ve smyčce. Pokud některou jedničku není možné do smyčky uzavřít, považuje se za smyčku obsahující jedinou buňku. Na obrázku vidíte Karnaughovu mapu vyplněnou hodnotami z naší pravdivostní tabulky s vyznačenými smyčkami. V tuto chvíli již zbývá jen vyhodnotit mapu a interpretovat logický výraz do potřebné podoby. V našem příkladu bylo možné vytvořit dvě smyčky - na obrázku označené modře a červeně. Při vyhodnocování mapy postupujeme po jednotlivých smyčkách a díváme se, ve kterých

3 sloupcích a řádcích se nachází. Pro každou smyčku napíšeme logický výraz podle těchto pravidel: Jestliže buňky náležející některé proměnné obsahují celou smyčku, zapíšeme tuto proměnnou do výrazu. Jestliže buňky náležející některé proměnné neobsahují žádnou část smyčky, zapíšeme do výrazu tuto proměnnou v negaci (logická funkce NOT). Jestliže buňky náležející některé proměnné obsahují jen část smyčky, tuto proměnnou ignorujeme. Jednotlivé proměnné zapsané do výrazu mezi sebou logicky násobíme (funkce AND). Dostaneme tedy tolik logických výrazů, kolik máme smyček. Čím větší smyčky se nám podařilo vytvořit, tím jednodušší tyto výrazy jsou. Námi hledaná logická funkce je logickým součtem (funkce OR) všech těchto výrazů. A jaký je výsledek našeho příkladu? Všechny buňky modré smyčky patří do sloupců X1, proto do výsledného výrazu zapíšeme tuto proměnnou. Proměnné X2 i X3 budeme ignorovat, protože se v nich nachází vždy jen část modré smyčky. Výraz pro modrou smyčku je pak jen X1. Červená smyčka leží částečně v buňkách proměnné X1, proto ji budeme ignorovat. Leží však zcela mimo X2 a X3, proto obě proměnné zapíšeme do výrazu negované.

4 Obvyklé tvary Karnaughových map pro tři, čtyři a pět vstupních proměnných Literatura:

5 Podle následující tabulky zapište logické funkce, vytvořte Karnaughovy mapy a pomocí nich funkce minimalizujte. x2 x1 Př.1 Př x3 x2 x1 Př.1 Př.2 Př.3 Př x4 x3 x2 x1 Př.1 Př.2 Př.3 Př.4 Př

Střední škola informačních technologií a sociální péče, Brno, Purkyňova 97. Vybrané části Excelu. Ing. Petr Adamec

Střední škola informačních technologií a sociální péče, Brno, Purkyňova 97. Vybrané části Excelu. Ing. Petr Adamec INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Střední škola informačních technologií a sociální péče, Brno, Purkyňova 97 Vybrané části Excelu Ing. Petr Adamec Brno 2010 Cílem předmětu je seznámení se s programem Excel

Více

PROTOKOL O LABORATORNÍM CVIČENÍ

PROTOKOL O LABORATORNÍM CVIČENÍ STŘENÍ PRŮMYSLOVÁ ŠKOL V ČESKÝH UĚJOVIÍH, UKELSKÁ 3 ÚLOH: ekodér binárního kódu na sedmisegmentový displej 0.. Zadání PROTOKOL O LORTORNÍM VIČENÍ Navrhněte a realizujte dekodér z binárního kódu na sedmisegmentovku.

Více

Operační výzkum. Přiřazovací problém.

Operační výzkum. Přiřazovací problém. Operační výzkum Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ..7/2.2./28.326

Více

Základy číslicové techniky. 2 + 1 z, zk

Základy číslicové techniky. 2 + 1 z, zk Základy číslicové techniky 2 + 1 z, zk Ing. Vít Fábera, K614 e-mail: fabera@fd.cvut.cz K508, 5. patro, laboratoř, 2 2435 9555 Ing. Tomáš Musil, Ph.D., K620 e-mail: musil@asix.cz K508, 5. patro, laboratoř,

Více

2 Spojité modely rozhodování

2 Spojité modely rozhodování 2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A

Více

Jak pracovat s absolutními hodnotami

Jak pracovat s absolutními hodnotami Jak pracovat s absolutními hodnotami Petr Matyáš 1 Co to je absolutní hodnota Absolutní hodnota čísla a, dále ji budeme označovat výrazem a, je jeho vzdálenost od nuly na ose x, tedy je to vždy číslo kladné.

Více

Tabulkové processory MS Excel (OpenOffice Calc)

Tabulkové processory MS Excel (OpenOffice Calc) Maturitní téma: Tabulkové processory MS Excel (OpenOffice Calc) Charakteristika tabulkového editoru Tabulkový editor (sprematuritníadsheet) se používá všude tam, kde je třeba zpracovávat data uspořádaná

Více

Úloha 1A (5 bodů): vyhovuje Úloha 2A (6 bodů): Obrázek 1 Přelévání mléka

Úloha 1A (5 bodů): vyhovuje Úloha 2A (6 bodů): Obrázek 1 Přelévání mléka Kategorie mladší Úloha 1A (5 bodů): Jako první využijeme Žofinčin postřeh. Díky němu se nám totiž celá úloha podstatně zjednoduší. Žofinka říká, ať nehledáme 6 nezávislých cifer, ale pouze 3. Poznávací

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška Disjunktivní a konjunktivní normáln lní tvar formule 2.přednáška Disjunktivní normáln lní forma Definice Řekneme, že formule ( A ) je v disjunktivním normálním tvaru (formě), zkráceně v DNF, jestliže je

Více

12. Booleova algebra, logická funkce určitá a neurčitá, realizace logických funkcí, binární kódy pro algebraické operace.

12. Booleova algebra, logická funkce určitá a neurčitá, realizace logických funkcí, binární kódy pro algebraické operace. 12. Booleova algebra, logická funkce určitá a neurčitá, realizace logických funkcí, binární kódy pro algebraické operace. Logická proměnná - proměnná nesoucí logickou hodnotu Logická funkce - funkce přiřazující

Více

STRUKTURA POČÍTAČŮ JIŘÍ HRONEK, JIŘÍ MAZURA KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO

STRUKTURA POČÍTAČŮ JIŘÍ HRONEK, JIŘÍ MAZURA KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO STRUKTURA POČÍTAČŮ JIŘÍ HRONEK, JIŘÍ MAZURA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM

Více

LOGICKÉ OBVODY J I Ř Í K A L O U S E K

LOGICKÉ OBVODY J I Ř Í K A L O U S E K LOGICKÉ OBVODY J I Ř Í K A L O U S E K Ostrava 2006 Obsah předmětu 1. ČÍSELNÉ SOUSTAVY... 2 1.1. Číselné soustavy - úvod... 2 1.2. Rozdělení číselných soustav... 2 1.3. Polyadcké číselné soustavy... 2

Více

Predispozice pro výuku IKT (2015/2016)

Predispozice pro výuku IKT (2015/2016) Konzervatoř P. J. Vejvanovského Kroměříž Predispozice pro výuku IKT (15/16) Základní algoritmy pro počítání s celými a racionálními čísly Adam Šiška 1 Sčítání dvou kladných celých čísel Problém: Jsou dána

Více

Přejmenování listu Dvakrát klepněte na pojmenování listu, napište nový název a potvrďte klávesu ENTER.

Přejmenování listu Dvakrát klepněte na pojmenování listu, napište nový název a potvrďte klávesu ENTER. Výplň a ohraničení tabulky Označte text, z nabídky vyberte Formát Buňky Ohraničení (nejdříve vyberte typ, pak barvu a nakonec typ ohraničení (dole, vnitřní atd...). Změna formátu písma (styl, velikost,

Více

Protokol č. 3. Morfologie ležícího kmene

Protokol č. 3. Morfologie ležícího kmene Protokol č. 3 Morfologie ležícího kmene Zadání: Stanovte vhodný analytický tvar morfologické křivky kmene včetně výpočtu parametrů, dále stanovte postupnou a celkovou sbíhavost kmene. Měřené a modelové

Více

Příklad bezprostředně navazuje na předchozí příklad č. 17. Bez zvládnutí příkladu č. 17 není možné pokračovat

Příklad bezprostředně navazuje na předchozí příklad č. 17. Bez zvládnutí příkladu č. 17 není možné pokračovat Příklad zahrnuje Textová editace buněk Základní vzorce Vložené kliparty Propojené listy Grafi cká úprava buněk Složitější vzorce Vložené externí obrázky Formuláře Úprava formátu Vysoce speciální funkce

Více

Postup: Nejprve musíme vyplnit tabulku. Pak bude vypadat takto:

Postup: Nejprve musíme vyplnit tabulku. Pak bude vypadat takto: Úkol: Jednoduchá tabulka v Excelu Obrázky jsou vytvořené v Excelu verze 2003 CZ. Postupy jsou platné pro všechny běžně dostupné české verze Excelu s výjimkou verze roku 2007. Postup: Nejprve musíme vyplnit

Více

5 Tabulky a seznamy dat Příklad 3 Excel 2010

5 Tabulky a seznamy dat Příklad 3 Excel 2010 TÉMA: Jednoduchá a rozšířená filtrace dat Ne vždy potřebujeme při běžné práci s tabulkami pracovat se všemi záznamy. Sekretářka společnosti Naše zahrada zpracovává seznamy prodejců, zaměstnanců a zboží

Více

Nápovědy k numerickému myšlení TSP MU

Nápovědy k numerickému myšlení TSP MU Nápovědy k numerickému myšlení TSP MU Numerické myšlení 2011/var. 01 26. Ciferné součty čísel v každém z kruhů mají tutéž hodnotu. Pozor, hledáme číslo, které se nehodí na místo otazníku. Jedná se o dvě

Více

Pravda jako funkce - ano, nebo ne?

Pravda jako funkce - ano, nebo ne? Pravda jako funkce - ano, nebo ne? Nehledě na to, jestli jsou pravidla pro logickou platnost zabudována v našem myšlení, nebo nikoliv, máme velmi silné intuice o platnosti a neplatnosti nejrůznějších úsudků.

Více

1.1.10 Součtové trojúhelníky

1.1.10 Součtové trojúhelníky ..0 Součtové trojúhelníky Předpoklady: 0009 Př. : Uskupení čísel na obrázku se nazývá součtový trojúhelník. Zformuluj pravidlo, které splňují čísla v trojúhelníku. 9 20 Doplň podle stejného pravidla následující

Více

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) LINEÁRNÍ ALGEBRA Úvod vektor Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) Kartézský souřadnicový systém -je taková soustava

Více

Pracujeme s programem Excel (interní učební text pro potřeby školy) (verze 1.0)

Pracujeme s programem Excel (interní učební text pro potřeby školy) (verze 1.0) SSOŠ A SOU BEAN, ČESKOBRODSKÁ 32a, 190 01 PRAHA 9 Pracujeme s programem Excel (interní učební text pro potřeby školy) (verze 1.0) Ing. Cyril Kotulič 2003-2004 Excel učební text Tento učební text jenom

Více

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly Matice Matice typu (m, n) je uspořádaná m-tice prvků z řádky matice.. Jednotlivé složky této m-tice nazýváme Matice se zapisují Speciální typy matic Nulová matice všechny prvky matice jsou nulové Jednotková

Více

Vysoké učení technické v Brně. Fakulta strojního inženýrství. Matematika. Příručka pro přípravu k přijímacím zkouškám

Vysoké učení technické v Brně. Fakulta strojního inženýrství. Matematika. Příručka pro přípravu k přijímacím zkouškám Vysoké učení technické v Brně Fakulta strojního inženýrství Matematika Příručka pro přípravu k přijímacím zkouškám Doc. PaedDr. Dalibor Martišek, Ph.D. RNDr. Milana Faltusová 5 Autoři: Lektorovala: Doc.

Více

Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě.

Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě. Základy teorie pravděpodobnosti Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě. Náhodný jev jakékoli tvrzení

Více

Tabulkový editor MS Excel II

Tabulkový editor MS Excel II Tabulkový editor MS Excel II Informatika Graf Graf se vkládá se pomocí nabídky Vložení a poté volbou příslušného typu grafu. Označíme celou základní tabulku, a to i s názvy sloupců a řádků, ale bez součtů

Více

1 z 7 18.6.2012 8:14. 1. otázka. Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem čísla 25? 2. otázka

1 z 7 18.6.2012 8:14. 1. otázka. Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem čísla 25? 2. otázka Stonožka 9 - M 2011 - náhled testu http://ib.scio.cz/test?t=ceow8rrhgtr79v2xq7/zcppky1fbxbzulq... 1 z 7 18.6.2012 8:14 1. otázka Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem

Více

ZBIERKA ZÁKONOV SLOVENSKEJ REPUBLIKY. Ročník 1945. Vyhlásené: 20.10.1945 Časová verzia predpisu účinná od: 20.10.1945

ZBIERKA ZÁKONOV SLOVENSKEJ REPUBLIKY. Ročník 1945. Vyhlásené: 20.10.1945 Časová verzia predpisu účinná od: 20.10.1945 ZBIERKA ZÁKONOV SLOVENSKEJ REPUBLIKY Ročník 1945 Vyhlásené: 20.10.1945 Časová verzia predpisu účinná od: 20.10.1945 Obsah tohto dokumentu má informatívny charakter. 92. V y h l á š k a m i n i s t r a

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Výrazy Operátory Výrazy Verze pro akademický rok 2012/2013 1 Operace, operátory Unární jeden operand, operátor se zapisuje ve většině případů před operand, v některých případech

Více

Normalizovaná úprava písemností ČSN 01 6910 TABULKY

Normalizovaná úprava písemností ČSN 01 6910 TABULKY Normalizovaná úprava písemností ČSN 01 6910 TABULKY www.zlinskedumy.cz Pravidla pro úpravu jednotlivých částí tabulky Nadpis tabulky Zpravidla se píše doprostřed nad tabulku. Začíná velkým písmenem, nekončí

Více

skladbu obou směsí ( v tunách komponenty na 1 tunu směsi):

skladbu obou směsí ( v tunách komponenty na 1 tunu směsi): Klíčová slova: simplexová metoda 1 Simplexová metoda Postup výpočtu: 1. Nalezení výchozího řešení. 2. Test optima: pokud je řešení optimální výpočet končí, jinak krok 3. 3. Iterační krok, poté opět test

Více

PREZENTACE DAT: SLOŽITĚJŠÍ GRAFY

PREZENTACE DAT: SLOŽITĚJŠÍ GRAFY PREZENTACE DAT: SLOŽITĚJŠÍ GRAFY V kombinační tabulce 8.7 jsme roztřídili soubor pracovníků dle znaku pracovní kategorie na 4 třídy dělníci, techničtí pracovníci, hospodářští pracovníci, provozní a obsluhující

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 9 Vícerozměrná data a jejich zpracování 9.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěmi, případně více náhodnými veličinami. V praxi pracujeme

Více

ROČNÍKOVÁ PRÁCE Tříúběžníková perspektiva

ROČNÍKOVÁ PRÁCE Tříúběžníková perspektiva Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Tříúběžníková perspektiva Vypracoval: Zdeněk Ovečka Třída: 4. C Školní rok: 2011/2012 Seminář: Deskriptivní geometrie Prohlášení Prohlašuji,

Více

Office 2013. podrobný průvodce. Tomáš Šimek

Office 2013. podrobný průvodce. Tomáš Šimek Office 2013 podrobný průvodce Tomáš Šimek Seznámení se společnými postupy při práci s dokumenty Office Popis základních a pokročilejších postupů při práci s Wordem, Excelem, PowerPointem a OneNote Možnosti

Více

Microsoft Office. Excel vyhledávací funkce

Microsoft Office. Excel vyhledávací funkce Microsoft Office Excel vyhledávací funkce Karel Dvořák 2011 Vyhledávání v tabulkách Vzhledem ke skutečnosti, že Excel je na mnoha pracovištích používán i jako nástroj pro správu jednoduchých databází,

Více

Základní ovládání aplikace

Základní ovládání aplikace Základní ovládání aplikace Základem ovládání aplikace je jednoduchý toolbar (panel nástrojů) ve spodní části obrazovky, který umožňuje přepínání mezi jednotlivými obrazovkami aplikace. Jsou zde zobrazeny

Více

(příručka pro dobrovolné knihovníky)

(příručka pro dobrovolné knihovníky) (příručka pro dobrovolné knihovníky) M ě s t s k á k n i h o v n a J i h l a v a Útvar regionálních služeb 2004 OBSAH: Úvod.. 3 Doplňování knihovního fondu 4 Označení vlastnictví 4 Přírůstkový seznam.

Více

FORMÁTOVÁNÍ ODSTAVCE

FORMÁTOVÁNÍ ODSTAVCE FORMÁTOVÁNÍ ODSTAVCE Autor: Mgr. Dana Kaprálová Datum (období) tvorby: srpen 2013 Ročník: šestý Vzdělávací oblast: Informatika a výpočetní technika 1 Anotace: Žák se orientuje v prostředí aplikace WORD.

Více

Kirchhoffovy zákony. Kirchhoffovy zákony

Kirchhoffovy zákony. Kirchhoffovy zákony Kirchhoffovy zákony 1. Kirchhoffův zákon zákon o zachování elektrických nábojů uzel, větev obvodu... Algebraický součet všech proudů v uzlu se rovná nule Kirchhoffovy zákony 2. Kirchhoffův zákon zákon

Více

GRAFY A GRAFOVÉ ALGORITMY

GRAFY A GRAFOVÉ ALGORITMY KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO GRAFY A GRAFOVÉ ALGORITMY ARNOŠT VEČERKA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ

Více

Uživatelský manuál Radekce-Online.cz

Uživatelský manuál Radekce-Online.cz Uživatelský manuál Radekce-Online.cz (revize 06/2011) V prvním kroku třeba vstoupit do administrace na adrese www.redakce-online.cz kterou naleznete na záložce Administrace / Vstup do Administrace, pro

Více

Aritmetika s velkými čísly na čipové kartě

Aritmetika s velkými čísly na čipové kartě Aritmetika s velkými čísly na čipové kartě Ivo Rosol ředitel divize vývoje OKsystem s.r.o. Praha, 23.5.2013 Spojujeme software, technologie a služby Čísla v kryptografii V kryptografii se zásadně pracuje

Více

MANUÁL K OBSLUZE REDAKČNÍHO SYSTÉMU / wordpress

MANUÁL K OBSLUZE REDAKČNÍHO SYSTÉMU / wordpress MANUÁL K OBSLUZE REDAKČNÍHO SYSTÉMU / wordpress www.webdevel.cz Webdevel s.r.o. IČ 285 97 192 DIČ CZ28597192 W www.webdevel.cz E info@webdevel.cz Ostrava Obránců míru 863/7 703 00 Ostrava Vítkovice M 603

Více

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice.

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice. [] Definice determinantu BI-LIN, determinant, 9, P Olšák [2] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A 0 pro singulární matici, det A 0 pro regulární matici používá

Více

Rozmístěte na šachovnici 6 6 čtyři tchýně 1 tak, aby se navzájem neohrožovaly a právě jedno volné pole zůstalo neohrožené.

Rozmístěte na šachovnici 6 6 čtyři tchýně 1 tak, aby se navzájem neohrožovaly a právě jedno volné pole zůstalo neohrožené. Úlohy na šachovnici 3. podzimní série Vzorové řešení Úloha 1. Rozmístěte na šachovnici 6 6 čtyři tchýně 1 tak, aby se navzájem neohrožovaly a právě jedno volné pole zůstalo neohrožené. (Martin Töpfer)

Více

Sbírka příkladů. verze 1.0 2.1.2005

Sbírka příkladů. verze 1.0 2.1.2005 Sbírka příkladů verze 1.0 2.1.2005 Rudolf Kryl Sbírka má pomoci studentům k přípravě na praktický test. Student, který umí programovat, umí ladit a zvládne algoritmicky úlohy této sbírky by neměl mít s

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

MAPA ŠKOLY. pro základní školy

MAPA ŠKOLY. pro základní školy MAPA ŠKOLY pro základní školy Tento materiál obsahuje výsledky dotazníkového šetření Mapa školy pro základní školy, které probíhalo od 24. ledna do 27. února 2011. Každá škola, která se šetření zúčastnila,

Více

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 5, 5.1 a 5.2 8/14

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 5, 5.1 a 5.2 8/14 ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2014 5, 5.1 a 5.2 8/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 18 0:40 Algoritmus Algoritmem by se dal nazvat

Více

Microsoft Excel kopírování vzorců, adresování, podmíněný formát. Mgr. Jan Veverka Střední odborná škola sociální Evangelická akademie

Microsoft Excel kopírování vzorců, adresování, podmíněný formát. Mgr. Jan Veverka Střední odborná škola sociální Evangelická akademie Microsoft Excel kopírování vzorců, adresování, podmíněný formát Mgr. Jan Veverka Střední odborná škola sociální Evangelická akademie Kopírování vzorců v mnoha případech je třeba provést stejný výpočet

Více

Intervalové stromy. Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme. 1. Změna jednoho čísla v posloupnosti.

Intervalové stromy. Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme. 1. Změna jednoho čísla v posloupnosti. Intervalové stromy Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme průběžně provádět tyto dvě operace: 1. Změna jednoho čísla v posloupnosti. 2. Zjištění součtu čísel

Více

Matice se v některých publikacích uvádějí v hranatých závorkách, v jiných v kulatých závorkách. My se budeme držet zápisu s kulatými závorkami.

Matice se v některých publikacích uvádějí v hranatých závorkách, v jiných v kulatých závorkách. My se budeme držet zápisu s kulatými závorkami. Maticové operace Definice Skalár Představme si nějakou množinu, jejíž prvky lze sčítat a násobit. Pěkným vzorem jsou čísla, která už známe od mala. Prvky takové množiny nazýváme skaláry. Matice Matice

Více

MS Wodrd pro pokročilé

MS Wodrd pro pokročilé 1.14.3 TABULÁTORY V dialogovém okně Tabulátory si můžete zadat sami umístění zarážek tabulátorů způsob jejich zarovnání, vodící znak atd. V případě, že potřebujete zarovnat čísla, je vhodné nastavit tabulátor

Více

MATLAB V ANALÝZE NAMĚŘENÝCH DAT PRŮMYSLOVÉHO PODNIKU.

MATLAB V ANALÝZE NAMĚŘENÝCH DAT PRŮMYSLOVÉHO PODNIKU. MATLAB V ANALÝZE NAMĚŘENÝCH DAT PRŮMYSLOVÉHO PODNIKU. J. Šípal Fakulta výrobních technologií a managementu; Univerzita Jana Evangelisty Purkyně Abstrakt Příspěvek představuje model popisující dodávku tepelené

Více

Sedmikráskový náramek

Sedmikráskový náramek Sedmikráskový náramek 41 Sedmikráskový náramek Dodejte svému tkaní něco květinového půvabu! Utkejte pásek z květů sedmikrásek a ozdobte jím své zápěstí či kotník, nebo ho použijte třeba jako řetízek ke

Více

PREZENTACE DAT: JEDNODUCHÉ GRAFY

PREZENTACE DAT: JEDNODUCHÉ GRAFY PREZENTACE DAT: JEDNODUCHÉ GRAFY V tabulce 8.1 uvádíme přehled některých ukazatelů fiktivní firmy Alfa Blatná. Tabulka 8.1 je prostá, je v ní navíc časové srovnání hodnot v roce 2011 a v roce 2012. a)

Více

TABULKY U STÁTNÍCH ZKOUŠEK

TABULKY U STÁTNÍCH ZKOUŠEK TABULKY U STÁTNÍCH ZKOUŠEK Obsah Co říká norma:... 2 Nadpis... 2 Měrná jednotka... 2 Hlavička tabulky...2 Sloupce... 2 Řádky... 3 Součty... 3 Obecná poznámka... 3 Zvláštní poznámky...3 Značky v tabulce...

Více

5.2.4 POMĚRNÁ ČÍSLA SPLNĚNÍ PLÁNU

5.2.4 POMĚRNÁ ČÍSLA SPLNĚNÍ PLÁNU Druhy poměrných čísel Aleš Drobník strana 1 5.2.4 POMĚRNÁ ČÍSLA SPLNĚNÍ PLÁNU Poměrná čísla neboli poměrní ukazatelé : Získáme srovnáním (podílem) 2 veličin stejnorodých. Srovnávaná veličina (čitatel)

Více

8. Posloupnosti, vektory a matice

8. Posloupnosti, vektory a matice . jsou užitečné matematické nástroje. V Mathcadu je často používáme například k rychlému zápisu velkého počtu vztahů s proměnnými parametry, ke zpracování naměřených hodnot, k výpočtům lineárních soustav

Více

Operace s maticemi Sčítání matic: u matic stejného typu sečteme prvky na stejných pozicích: A+B=(a ij ) m n +(b ij ) m n =(a ij +b ij ) m n.

Operace s maticemi Sčítání matic: u matic stejného typu sečteme prvky na stejných pozicích: A+B=(a ij ) m n +(b ij ) m n =(a ij +b ij ) m n. 1 Sylvestrova věta Platí: Nechť A je symetrická matice řádu n, označme a 11 a 12... a 1i a D i = 21 a 22... a 2i.... a i1 a i2... a ii Pak A(a příslušná KF) je pozitivně definitní, právěkdyž D i >0provšechna

Více

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j. Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak

Více

Gilda. Po spuštění programu v základním seznamu vidíte veřejné zakázky za Váš odbor.

Gilda. Po spuštění programu v základním seznamu vidíte veřejné zakázky za Váš odbor. Gilda Program spustíme na webové stránce Intranetové a internetové aplikace městského úřadu, nebo odkazem z plochy vašeho PC. Konkrétní adresa: GILDA Pokud Vám odkaz nebude fungovat, pravděpodobně nemáte

Více

Cyklické změny v dynamice sluneční konvektivní zóny

Cyklické změny v dynamice sluneční konvektivní zóny Cyklické změny v dynamice sluneční konvektivní zóny P. Ambrož, Astronomický ústav AVČR, Ondřejov, pambroz @asu.cas.cz Abstrakt Na základě analýzy rozsáhlého materiálu evoluce fotosférických pozaďových

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu / Druh CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT

Více

8 A (strana 1) Soubory a složky, procházení, orientace

8 A (strana 1) Soubory a složky, procházení, orientace 8 A (strana ) Logické členění dat v počítači: V počítači je uloženo velmi mnoho dat. Některá jsou důležitá pro běh Windows, tedy tzv. operačního systému, což je základ naší práce s počítačem. Jiná data

Více

ANALYTICKÁ ZPRÁVA. Mapa školy leden a únor 2015. kód školy: EISU1

ANALYTICKÁ ZPRÁVA. Mapa školy leden a únor 2015. kód školy: EISU1 ANALYTICKÁ ZPRÁVA Mapa školy leden a únor 2015 kód školy: EISU1 typ školy: 1. 9. ročník Tento materiál obsahuje výsledky dotazníkového šetření Mapa školy pro základní školy, které probíhalo od 19. ledna

Více

3. Středoškolská stereometrie v anaglyfech

3. Středoškolská stereometrie v anaglyfech 3. Středoškolská stereometrie v anaglyfech V předchozích dvou kapitolách jsme zjistili, jak se zobrazují tělesa ve středovém promítání a hlavně v lineární perspektivě, a jak pomocí těchto promítání vytvořit

Více

ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647

ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 Název vzdělávacího materiálu: Anotace: Vzdělávací oblast: VY_32_INOVACE_ARITMETIKA+ALGEBRA17 Rovnice

Více

Návod pro zadávání zápisů o utkání do BLMFis

Návod pro zadávání zápisů o utkání do BLMFis Návod pro zadávání zápisů o utkání do BLMFis Přihlášení do BLMFisu Každý registrovaný uživatel (zástupce družstva) již získal (nebo bude zasláno) uživatelské jméno a heslo. Tímto jménem a heslem provede

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gmnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro základní vzdělávání Vzdělávací oblast: Matematika a její aplikace Tematický okruh:

Více

Pravidla pro sestavování regulačních výkazů pro držitele licence na výrobu elektřiny skupina 11

Pravidla pro sestavování regulačních výkazů pro držitele licence na výrobu elektřiny skupina 11 Pravidla pro sestavování regulačních výkazů pro držitele licence na výrobu elektřiny skupina 11 A) Pravidla pro sestavování regulačních výkazů pro držitele licence na výrobu elektřiny skupina 11 se součtovým

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu / Druh CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT

Více

10. Editor databází dotazy a relace

10. Editor databází dotazy a relace 10. Editor databází dotazy a relace Dotazy Dotazy tvoří velkou samostatnou kapitolu Accessu, která je svým významem téměř stejně důležitá jako oblast návrhu a úpravy tabulek. Svým rozsahem je to ale oblast

Více

3. D/A a A/D převodníky

3. D/A a A/D převodníky 3. D/A a A/D převodníky 3.1 D/A převodníky Digitálně/analogové (D/A) převodníky slouží k převodu číslicově vyjádřené hodnoty (např. v úrovních TTL) ve dvojkové soustavě na hodnotu nějaké analogové veličiny.

Více

5. Maticová algebra, typy matic, inverzní matice, determinant.

5. Maticová algebra, typy matic, inverzní matice, determinant. 5. Maticová algebra, typy matic, inverzní matice, determinant. Matice Matice typu m,n je matice složená z n*m (m >= 1, n >= 1) reálných (komplexních) čísel uspořádaných do m řádků a n sloupců: R m,n (resp.

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT1

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT1 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT1 1. Porovnejte mezi sebou normy zadaných vektorů p =(1,-3), q =(2,-2,2), r =(0,1,2,2). (A) p

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic 7 Matice. Determinant Soustavy lineárních rovnic 7.1 Matice Definice 1. Matice typu (m, n) jesoustavam n reálných čísel uspořádaných do m řádků a n sloupců a 11, a 12, a 13,..., a 1n a 21, a 22, a 23,...,

Více

Úvod do problematiky ÚPRAVY TABULKY

Úvod do problematiky ÚPRAVY TABULKY Úvod do problematiky ÚPRAVY TABULKY Zaměříme se na úpravy, které určují finální grafickou úpravu tabulky (tzv. formátování.). Měnit můžeme celou řadu vlastností a ty nejdůležitější jsou popsány v dalším

Více

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116.

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. Cykly a pole Tato část sbírky je tvořena dalšími úlohami na práci s cykly. Na rozdíl od předchozího oddílu se zde již v řešeních úloh objevuje více cyklů, ať už prováděných po sobě nebo vnořených do sebe.

Více

Program Montážky manuál uživatele

Program Montážky manuál uživatele Program Montážky manuál uživatele -1- v 1.0 Obsah 1. Úvod... 3 2. Technické informace... 3 2.1. Systémové požadavky... 3 2.2. Instalace programu... 3 2.3. Zkušební verze programu... 3 2.4. Přechod na plnou

Více

ENÍ (ZALOŽENÍ) PREZENTACE...

ENÍ (ZALOŽENÍ) PREZENTACE... PowerPoint - program pro návrh prezentace, - kvalitní grafická a estetická prezentace, - pro ztvárnění a následné spuštění prezentace, - jde o jednotlivé obrazovky doplněné o animace, triky a multimediální

Více

Popis postupu při zpracování atletických závodů dle programu ATLETICKÁ KANCELÁŘ ( Manuál II.část )

Popis postupu při zpracování atletických závodů dle programu ATLETICKÁ KANCELÁŘ ( Manuál II.část ) Popis postupu při zpracování atletických závodů dle programu ATLETICKÁ KANCELÁŘ ( Manuál II.část ) Různé samostatné části : 1 -Připojení k AK - 2x kliknout na Internet Explorer - kliknout na pracovat offline

Více

Číselné soustavy: Druhy soustav: Počítání ve dvojkové soustavě:

Číselné soustavy: Druhy soustav: Počítání ve dvojkové soustavě: Přednášející : Ing. Petr Haberzettl Zápočet : práce na doma hlavně umět vysvětlit Ze 120 lidí udělá maximálně 25 :D Literatura : Frištacký - Logické systémy Číselné soustavy: Nevyužíváme 10 Druhy soustav:

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. procvičení a zapamatování počítání a měření úhlů

Svobodná chebská škola, základní škola a gymnázium s.r.o. procvičení a zapamatování počítání a měření úhlů METODICKÝ LIST DA50 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Úhly II. - Počítání a měření úhlů Astaloš Dušan Matematika šestý frontální,

Více

Komisionální přezkoušení 1T (druhé pololetí) 2 x. 1) Z dané rovnice vypočtěte neznámou x:. 2) Určete, pro která x R není daný výraz definován:

Komisionální přezkoušení 1T (druhé pololetí) 2 x. 1) Z dané rovnice vypočtěte neznámou x:. 2) Určete, pro která x R není daný výraz definován: 1) Z dané rovnice vypočtěte neznámou :. ) Určete, pro která R není daný výraz definován: 3) Určete obor hodnot funkce Komisionální přezkoušení 1T (druhé pololetí) f : y 4 3. 4 8 5 1 4) Vyšetřete vzájemnou

Více

Tabulkový editor MS Excel

Tabulkový editor MS Excel Tabulkový editor MS Excel Informatika Tabulkový procesor nejen umožní poskládat data do úpravné formy (například při zpracování protokolu z fyziky), ale spočítá i výsledky, součty a průměry. A co víc umí

Více

Školení obsluhy PC stručný manuál obsluhy pro používání PC

Školení obsluhy PC stručný manuál obsluhy pro používání PC Školení obsluhy PC stručný manuál obsluhy pro používání PC tabulkový procesor MS EXCEL Zpracoval: mgr. Ježek Vl. Str. 1 MS EXCEL - základy tabulkového procesoru Tyto programy jsou specielně navrženy na

Více

Seznámení s parakordem

Seznámení s parakordem kapitola 1 Seznámení s parakordem Co je parakord? Slovo parakord, součást slovní zásoby profesionální mluvy a internetu, je z angličtiny převzaté označení pro padákovou šňůru. Její pevnost a odolnost se

Více

Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11

Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11 Gymnázium, Brno Matice Závěrečná maturitní práce Jakub Juránek 4.A Školní rok 2010/11 Konzultant: Mgr. Aleš Kobza Ph.D. Brno, 2011 Prohlášení Prohlašuji, že jsem předloženou práci zpracoval samostatně

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu / Druh CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Název školy: Střední zdravotnická škola a Obchodní akademie, Rumburk, příspěvková organizace Registrační číslo projektu: CZ.1.07/1.5.00/34.0649

Více

Projekt Atlasu znečištění ovzduší

Projekt Atlasu znečištění ovzduší Projekt Atlasu znečištění ovzduší Tak jak bylo zmíněno na konci první kapitoly, budeme v následujících cvičeních pracovat na samostatném projektu. Cílem projektu je vytvořit jednoduchý atlas znečištění

Více

8. Formátování. Úprava vzhledu tabulky

8. Formátování. Úprava vzhledu tabulky 8. Formátování Úprava vzhledu tabulky Výšku řádku nastavíme tak, že kurzorem najedeme na rozhraní mezi políčky s čísly řádků. Kurzor se změní na křížek s dvojšipkou. Stiskneme levé tlačítko a tahem myší

Více

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1 Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky

Více

2 Trochu teorie. Tab. 1: Tabulka pˇrepravních nákladů

2 Trochu teorie. Tab. 1: Tabulka pˇrepravních nákladů Klíčová slova: Dopravní problém, Metody k nalezení výchozího ˇrešení, Optimální ˇrešení. Dopravní problém je jednou z podskupin distribuční úlohy (dále ještě problém přiřazovací a obecná distribuční úloha).

Více

Zlatý řez nejen v matematice

Zlatý řez nejen v matematice Zlatý řez nejen v matematice Zlaté číslo a jeho vlastnosti In: Vlasta Chmelíková author): Zlatý řez nejen v matematice Czech) Praha: Katedra didaktiky matematiky MFF UK, 009 pp 7 Persistent URL: http://dmlcz/dmlcz/40079

Více

Studijní opory k předmětu 6AA. 6AA Automatizace. Studijní opory k předmětu. Ing. Petr Pokorný 1/40 6AA AUTOMATIZACE 6AA - cvičení

Studijní opory k předmětu 6AA. 6AA Automatizace. Studijní opory k předmětu. Ing. Petr Pokorný 1/40 6AA AUTOMATIZACE 6AA - cvičení 6AA Automatizace Studijní opory k předmětu Ing. Petr Pokorný 1/40 6AA Obsah: Logické řízení - Boolova algebra... 4 1. Základní logické funkce:... 4 2. Vyjádření Booleových funkcí... 4 3. Zákony a pravidla

Více