Energie v udržitelném městském plánování

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Energie v udržitelném městském plánování"

Transkript

1 Energie v udržitelném městském plánování Technické znalosti jsou nezbytné při prosazování cílů Eneko Arrizabalaga, Lara Mabe, Xabat Oregi, Patxi Hernandez - TECNALIA Masterclass 2

2 Obsah Co je udržitelná energetika? Proč udržitelná energetika? Úvod do technologií udržitelné energetiky Pasivní opatření (budovy) Solární energetika Fotovoltaická energetika Bioenergetika Větrná energetika Kogenerace Využití odpadního tepla (např. z průmyslu) Vytápění a chlazení za použití tepelných čerpadel Dálkové vytápění Tepelná akumulace energie (krátkodobá a dlouhodobá) Srovnání energetické poptávky a možností dodávky

3 Co je to Udržitelná energetika? Zaměstnanost Přístup k energetice Kvalita života

4 Udržitelnost & životní cykly Cíle životního cyklu Snížení využívání zdrojů a dopadů na životní prostředí, zlepšení sociálněekonomického výkonu během celého životního cyklu. ZABRÁNĚNÍ BŘEMENNÉ ZÁTĚŽE Míří nad rámec tradičního zaměření na výrobní závody a výrobní procesy. Environmentální, sociální a ekonomické dopady výrobku během jeho celého životního cyklu, včetně veškeré spotřeby a konečné fáze použití. Source:

5 Udržitelnost & životní cykly Source: NREL, 2012,Life Cycle Assessment Harmonization Project.

6 Udržitelnost & životní cykly Dopady na životní prostředí Zdroj: IPCC, 2011

7 Udržitelnost & životní cykly Sociální dopady Zdroj: UNEP, Green Economy Report, 2011.

8 New perspective Udržitelnost Refurbishment & životní throughout cykly its life cycle Podle manuálu CEN / TC 350 Udržitelnost stavebních prací analýza energetické náročnosti projektu z hlediska životního cyklu. Zdroj: CEN/TC 350. Sustainability of construction works - Assessment of environmental performance of buildings - Calculation method.

9 Proč Udržitelná energetika? Výhody na lokální/regionální/národní/globální úrovni: Změna klimatu. Bezpečnost dodávek. Konkurenceschopnost. Vytváření lokálních pracovních míst. Nedostatek paliv.

10 Přístup k udržitelné energetice: Trias Energética ÚSPORA ENERGIE (PASIVNÍ OPATŘENÍ)

11 Přístup k udržitelné energetice: Ochrana + účinnost + obnovitelná energie OCHRANA. Pasivní opatření. VYUŽITÍ OBNOVITELNÝCH ZDROJŮ ENERGIE. Solární energetika Fotovoltaika Bioenergetika Větrná energetika EFEKTIVITA VYUŽITÍ ENERGIE. Kogenerace Využití odpadního tepla (např. z průmyslu) Vytápění a chlazení prostřednictvím tepelného čerpadla Dálkové vytápění Tepelná akumulace energie (krátkodobá a dlouhodobá)

12 OCHRANA: Pasivní strategie Typické pasivní strategie Města Budovy Stín. Vegetace. Urbanismus (hustota) Stín. Tepelná energie Přirozené větrání Solární energie Zvlhčování / Odvlhčování Obtížnost definovat hlavní pasivní strategie při tvorbě města Potřeba analyzovat každý případ dle využití, polohy, cíle projektu

13 OCHRANA: Pasivní strategie 1-Analýza klimatu před návrhem analyzovat klimatické podmínky. Nástroje: předpovědi počasí, analýzy apod. DRY BULB TEMPERATURE - San_Sebastian, ESP 2nd June to 1st November C C th 14th 21st 28th 7th 14th 21st 28th 7th 14th 21st 28th 7th 14th 21st 28th 7th 14th 21st 28th Jun Jul Aug Sep Oct Definice prvních hlavních strategií. LEGEND Comfort: Thermal Neutrality Temperature Rel.Humidity Wind Speed Direct Solar Diffuse Solar Cloud Cover Zachytit co největší množství tepla skrz prosklené otvory DAILY CONDITIONS - 11th January (11) C W/ m² Shromažďování tepla zachyceného tepelnou hmotou stavby k k Využití vnitřního tepelného zatížení k k 0 0.2k k

14 2-Solární/stínové analýzy OCHRANA: Pasivní strategie Zdroj: Oregi Isasi, X. Definice prvních hlavních strategií. Oblast Výška budovy, šířka ulice, geometrické proporce Budova orientace, velikost oken, potřeba stínění

15 OCHRANA: Pasivní strategie 2-Solární/stínová analýza potřeba analyzovat v průběhu odlišných podmínek: zimní/letní čas apod. Zdroj: Oregi Isasi, X. 09:00 13:00 17:00 Optimalizace oslunění v průběhu dne.

16 OCHRANA: Pasivní strategie 3-Okna a stíny optimalizace rozměru oken, přizpůsobení staveb povětrnostním podmínkám, lokalizace stavby. Zdroj: Oregi Isasi, X. Tato strategie umožňuje zlepšit pasivní chování budovy: Zabránění přetápění. Využití přirozeného osvětlení. Přirozené větrání otevřenými okny.

17 OCHRANA: Pasivní strategie 4- Analýza teploty vzduchu a vlhkosti (v městském měřítku) Možnost analyzovat a vyhnout se problémům souvisejícím s efektem tepelných městských ostrovů (UHI). -vliv typu zástavby (geometrie). -umístění vegetace. -vliv zelených střech. Vliv:

18 OCHRANA: Pasivní strategie 4- Rychlost proudění vzduchu (v měřítku města/budovy) Schopnost lokalizovat konfliktní místa Zdroj: Aurea Consulting Možnost změny/adaptace geometrie lokality na jiné městské prvky.

19 OCHRANA: Pasivní strategie 4- Tepelná optimalizace budovy Hodnota přístupu (U) přímo souvisí s izolací. Tepelná setrvačnost. Vnitřní zisky. Vlastnosti oken: propustnost a solární faktor. Stavební použití: plán, distribuce. Možnost porozumět termálním vlivům všech parametrů Dynamická simulace

20 Problémy příklady OCHRANA: Pasivní strategie 1- Londýnské budovy rozpouští auta a zakládají ohně

21 Problémy příklady OCHRANA: Pasivní strategie 2- Mikroklimatické dopady: Záře okolo Walt Disney Concert Hall Zdroj: Marc Schiler

22 OCHRANA: Pasivní strategie Strategie pro stávající lokality PASIVNÍ renovace: zlepšení vlastností různých prvků, které mají přímý vliv na energetické náročnosti budov.

23 OCHRANA: Pasivní strategie Refurbishment strategies - passive - insulation Strategie pro stávající lokality Z hlediska přenosu tepla a spotřeby energie je nejvýznamnějším materiálem při renovaci tepelný izolant. Jediná, která splňuje tři požadavky. ŠETŘÍ energii, REDUKUJE emise CO2 a POSKYTUJE více komfortu uživatelům. Nejnižší cena a maximum výhod pro uživatele / vlastníky budov.

24 OCHRANA: Pasivní strategie Strategie pro stávající lokality Důležitost umístění izolace může významně ovlivnit energetickou náročnost rekonstruované budovy. vnitřní plochy jsou udržovány při teplotách blízkých těm v interiéru, aby se zabránilo možné povrchové kondenzaci. veškeré teplo je odváděno na přední straně desky, vytváří tak body s vysokým rizikem zamlžení Analýza tepelných toků v přední části desky Aktuální stav 6 cm zvenčí 6 cm zevnitř Zdroj: Oregi, X. Rehabilitación de edificios residenciales hacia consume casi cero. Máster de Investigación en Eficiencia Energética y Sostenibilidad en Industria, Transporte, Edificación y Urbanismo. EHU, 2012.

25 OCHRANA: Pasivní strategie KOMFORT Pasivní strategie přímo souvisí s komfortními podmínkami. Zdroj: Aurea Consulting - Jaké jsou parametry, které mohou zlepšit nebo optimalizovat projekt rekonstrukce? - Jak důležitý je komfort v běžném životě člověka?

26 OCHRANA: Pasivní strategie OMEZENÍ Pro modernizaci stávajících budov čas změnit názor na rozsah akce a analyzovat potenciál prvků nebo odvětví přilehlých k budově, v lokalitě nebo ve městě. V každém projektu je třeba brát v potaz interní předpisy, historickou hodnotu budovy, oslunění... V mnoha případech jsou limity větší než možnosti.

27 OCHRANA: Pasivní strategie OMEZENÍ V mnoha případech není možné poskytnout pasivní konzervativní řešení Definovat nová řešení pro zlepšení životního prostředí a energetické účinnosti našich měst a budov 1. VYUŽITÍ OBNOVITELNÝCH ZDROJŮ ENERGIE. 2. EFEKTIVNÍ VYUŽITÍ ENERGIE.

28 TECHNOLOGIE OBNOVITELNÉ ENERGETIKY: Solární/Termální Tradičně se používá k výrobě tepla ze slunečního záření s cílem pokrytí energetických potřeb budovy k ohřevu vody. Dnes se technologie zlepšila a její aplikace má široký rozsah (vytápění, elektřina, solární chlazení) Výhody: Jsou kompatibilní téměř se všemi systémy tepelných podpory. Hlavní náklady jsou při počáteční investici. Kolísání cen ropy, zemního plynu nebo elektřiny mají malý vliv. Vytváří regionální i lokální pracovní místa - solární zdroj je prakticky neomezený a je vhodný pro většinu Evropy. častečně vhodné pro: komunitní centra, domovy důchodců, sociální byty, školy a sportovní centra. Nevýhody: Zdroj je rozptýlen v čase a prostoru. Problémy při sezónním skladování tepla Vysoká variabilita ekonomické návratnosti v závislosti na umístění Externí faktor: sklon (40-50 ), orientace, tvar, prostor Vnitřní faktor: prostor a nezávislé topení

29 TECHNOLOGIE OBNOVITELNÉ ENERGETIKY: Solární Termální Plochý kolektor prosklený plochý kolektor neprosklený solární kolektor (Zdroj: Victoria Sustainability.) Kolektory vyprazdňování trubic Solární teplovzdušné vytápění/chlazení (Zdroj: Franz Mauthner and Werner Weiss. Solar Heat Worldwide. Markets and Contribution to the Energy Supply IEA Solar Heating & Cooling Programme, May 2013)

30 TECHNOLOGIE OBNOVITELNÉ ENERGETIKY: Solární Termální - využití Aktivní solární vytápění/chlazení Systémy s přírodním a nuceným oběhem Solární ohřev TUV v budovách. Solární kombinované systémy pro ohřev vody a vytápění. Ohřev bazénu. Velkoplošné solární systémy a sluneční dálkové vytápění. Solární vytápění za pomocí průmyslu. Úprava vody a odsolování mořské vody. Solární teplo pro chladící aplikace. (Zdroj: IEA. Solar Heating and Cooling Technology Roadmap)

31 TECHNOLOGIE OBNOVITELNÉ ENERGETIKY: Solární Termální - využití Pasivní technologie využívající denní světlo

32 TECHNOLOGIE OBNOVITELNÉ ENERGETIKY: Solární Termální - informace Solární radiace ve městě (Bilbao) : 1300 kwh /m2 za rok

33 TECHNOLOGIE OBNOVITELNÉ ENERGETIKY: Solární Termální - příklad Solární systém předehřátí teplé vody Qsol,out,m = ( ay + bx + cy² + dx² + ey3 + fx3 ) Qsol,us,m [kwh] - Qsol,us,m je měsíční spotřeba tepla aplikovaná na tepelnou sluneční soustavu [kwh] - a, b, c, d, e, jsou korelační faktory související s typem zásobníku. [-] - f je nový korelační faktor specifický pro přímé sluneční záření. - X a Y jsou bezrozměrná čísla X = A Uloop ηloop ΔΤ fst tm / (Qsol,us,m 1 000) Y = A IAM η0 ηloop Im tm / (Qsol,us,m 1 000) Pomocná spotřeba energie (čerpadla) Wsol,aux,m = Paux,nom taux,m / 1000 Systémové tepelné ztráty Tepelné ztráty solárního zásobníku Tepelné ztráty v distribuci mezi tepelnou sluneční soustavou a záložním ohřívačem -A je plocha kolektoru -Uloop je koeficient ztráty tepla v kolektorovém okruhu [W/(m² K)] -ηloop je faktor efektivity kolektorového okruhu s ohledem na vliv tepelného výměníku. -ΔT je referenční teplotní rozdíl -fst je korekční faktor skladovací nádrže. [-] -tm je délka měsíce [h]; -Q sol,us,m je měsíční spotřeba tepla aplikovaná na tepelnou sluneční soustavy [kwh] -IAM je modifikátor úhlu dopadu kolektoru -η0 je koeficient účinnosti nulové ztráty kolektoru -Im je průměrné sluneční záření na plochém kolektoru během sledovaného období. [W/m2]

34 TECHNOLOGIE OBNOVITELNÉ ENERGETIKY: Solární Termální - příklad

35 TECHNOLOGIE OBNOVITELNÉ ENERGETIKY: Solární Termální - výdaje Solární systémy teplé užitkové vody stojí v Evropě EUR / MWh tepla. Jsou obvykle dražší než teplo vyráběné ze zemního plynu v městských oblastech, ale často dokážou konkurovat maloobchodním cenám elektřiny. U solárních kombinovaných systémů je cena asi EUR/MWh. Tyto náklady by se měly snížit do roku 2030 : EUR za MWh u solárních systémů ohřevu vody, EUR za MWh u kombinovaných systémů, za MWh u aplikací většího rozsahu (>1MWth). Zdroj: IEA Renewable Energy Essentials: Solar Heating and Cooling

36 TECHNOLOGIE OBNOVITELNÉ ENERGETIKY: Fotovoltaika

37 TECHNOLOGIE OBNOVITELNÉ ENERGETIKY: Fotovoltaika Fotovoltaické (PV) solární technologie vytváří elektřinu za pomoci fotovoltaického jevu. Výhody; - Celkové sluneční záření na zemský povrch je E12 TJ za rok (obnovitelné zdroje). - Přeměna solární energie nemá žádné emise během provozu - Téměř bez potřeby údržby - Aplikace možná v mnoha řádech (od mw až po MW). - Přímé a difúzní záření - Křemík je druhý nejhojnější prvek na Zemi a není toxický. Je možné použít v budovách. Nevýhody; - Nízká hustota energie. - Výroba je závislá na povětrnostních podmínkách a ozařování. - nevyhovující skladovací prostory. - Čištění křemíku je energeticky náročný (a nákladný) proces. - Zabírá velké plochy

38 TECHNOLOGIE OBNOVITELNÉ ENERGETIKY: Fotovoltaika současné technologie a budoucí trendy Moduly na krystalické bázi Single-krystalické křemíkové buňky: účinnost13-18% Multikrystalické křemíkové buňky: účinnost 11-16% Křemíkové technologie Ribbon : účinnost 10-14% Tenký povrch Amorfní křemík (a-si) Telurid kadmia (CdTe) účinnost 6-9% Měď-indium-galium-selenid (CIGS) (Zdroj: Frankl, Menichetti and Raugei, 2008) (Zdroj: M. de Wild-Scholten (ECN), Sustainability: Keeping the Thin Film Industry green, presented at the 2nd EPIA International Thin Film Conference in Munich on November 12, 2009.)

39 TECHNOLOGIE OBNOVITELNÉ ENERGETIKY: Fotovoltaika - využití Mřížková aplikace Izolovaná aplikace (Zdroj. IEA- PVPS T1-21:2012) Izolované systémy (off-grid aplikace) pro výrobu elektřiny nezávisle na elektrizační soustavě: Izolované systémy při domácím použití Izolované systémy při instalaci mimo domov Izolované centralizované PV mini-systémy

40 TECHNOLOGIE OBNOVITELNÉ ENERGETIKY: Fotovoltaika - využití Síťové systémy (On-grid applications) jsou napojeny k elektrické síti a nahrazují sílu, kterou by jinak bylo možné čerpat z rozvodné sítě. * Součástí budov * Sklon, orientace, stín a prostor Zasíťované distribuované systémy Zasíťované centralizované systémy

41 TECHNOLOGIE OBNOVITELNÉ ENERGETIKY: Fotovoltaika - výdaje Fotovoltaické systémy generují vysoké investiční náklady. Očekává se však, že dojde k jejich snížení v průběhu příštích let, a to díky postupnému pronikání tenkovrstvých modulů na trh, dále díky rozvoji výrobních procesů a zvyšujícímu se stupni integrace modulů na budovách.

42 TECHNOLOGIE OBNOVITELNÉ ENERGETIKY: Geotermální - zdroje

43 TECHNOLOGIE OBNOVITELNÉ ENERGETIKY: Větrné elektrárny - typy podle velikosti: Malé - domácí/rekreační. Velké komerční. podle umístění: Na souši. Na moři. V městské zástavbě.

44 TECHNOLOGIE OBNOVITELNÉ ENERGETIKY: Větrné elektrárny - Úvahy Větrný zdroj Přístup k síti Smlouvy o nákupu elektřiny Součástí procesu plánování Estetika & Marketing

45 TECHNOLOGIE OBNOVITELNÉ ENERGETIKY: Větrné elektrárny životní prostředí ve městě (přizpůsobení regulacím)

46 TECHNOLOGIE OBNOVITELNÉ ENERGETIKY: Větrné elektrárny místní úřady Mapy povětrnostních podmínek a zdrojů Důležité téma při rozvoji komunit Pozitivní postoj / proaktivní přístup

47 TECHNOLOGIE OBNOVITELNÉ ENERGETIKY : Biomasa neutrální CO2?

48 TECHNOLOGIE OBNOVITELNÉ ENERGETIKY : Biomasa Paliva Farmová paliva Plantáže Sláma Odpadní paliva Průmyslový odpad (pila) Lesní odpad Komunální odpad Zpracované palivo Pelety Brikety

49 TECHNOLOGIE OBNOVITELNÉ ENERGETIKY : Vytápění pomocí biomasy Klíčové faktory Teplárna Systém spalování biomasy. Zatížení topného systému. Volitelný záložní systém. Zásobování teplem Dodávky studené a horké vody. Systém vytápění jedné budovy, dálkový systém vytápění. Zásobování palivem Příjem paliva, skladování a dopravní zařízení. Automatizovaný převod paliva před spalováním. Zdroj : RETSCREEN

50 TECHNOLOGIE OBNOVITELNÉ ENERGETIKY : Technologie vytápění biomasou Pec na dřevo Mokré dřevo, dřevěný odpad čipované Doprava Vytápění ve velkém 1MWth boiler / 300,000 Návratnost ~ 5 let Pily, velké komerční budovy, velké hotely, dálkové vytápění

51 TECHNOLOGIE OBNOVITELNÉ ENERGETIKY : Technologie vytápění biomasou Peletová pec Zpracované pelety Jednoduché na transport Skladování Lze využít jakoukoli velikost Cena: 300kW / 75,000 Návratnost: >3 years Zdroj paliva

52 TECHNOLOGIE OBNOVITELNÉ ENERGETIKY : Biomasa Místní úřady Použití biomasy v zásobování energií v budovách obecních úřadů: Vytápění a/nebo elektřina? Kolik energie? Jaké palivo je (potenciálně) k dispozici? Koordinace s dodavateli biomasy Farmáři, lesní spolky a skupiny, zdroje odpadního dřeva Diskutovat, co je udržitelným zdrojem biomasy: regionální / národní / mezinárodní měřítko

53 TECHNOLOGIE OBNOVITELNÉ ENERGETIKY : Bioplyn

54 EFEKTIVNÍ TECHNOLOGIE: Tepelná čerpadla Tepelná čerpadla jsou schopna transformovat energii z nízké úrovně teploty na vyšší úroveň. Aby se přenos tepla z tepelného zdroje dostal tam, kam má, je potřeba pohon tepelného čerpadla (externí energie). Tepelná čerpadla lze využít pro vytápění nebo chlazení. Kompresní tepelné čerpadlo Absorpční tepelné čerpadlo

55 Hlavní typy čerpadel zahrnují: EFEKTIVNÍ TECHNOLOGIE: Tepelná čerpadla Hlavní typy Kompresní tepelná čerpadla; Mohou být použity pro vytápění nebo chlazení, jejich nejčastější použití v chladicích systémech, lednička, atd. COP u tepelných čerpadel je definováno jako poměr tepelného výkonu na energetické vstupy. U kompresních tepelných čerpadel lze dosáhnout COP až 6. Absorpční tepelná čerpadla; U tohoto typu tepelného čerpadla je kompresor nahrazen absorbérem a generátorem, ve kterém cirkuluje směs chladící směsi a absorbérem. Stupeň účinnosti je definován jako poměr tepelného výkonu na přívodu tepla. Moderní absorpční tepelná čerpadla mohou dosáhnout tepelné účinnosti až 1,5. Použití tohoto systému má smysl jen tehdy, pokud je využita odpadní energie či energie z obnovitelných zdrojů. V závislosti na vytápění a chlazení lze využít různých zdrojů vytápění a chlazení: vzduch-vzduch, vzduch-voda, voda-vzduch, země-vzduch a zeměvoda.

56 EFEKTIVNÍ TECHNOLOGIE: Tepelná čerpadla Tepelné čerpadlo se svislým zemním vrtem (GSHP) Je otázkou, zda je GSHP skutečně relevantní aplikací geotermální energie. Požívá se při velmi nízkých teplotách zdrojů (nižší než 30 C) Výhody; - sezónní výkyvy počasí nemá vliv -Aplikace pro vytápění a chlazení a ohřev teplé vody -Kompatibilita s centralizovanou i distribuovanou výrobou energie -Dostupnost zdrojů ve všech světových regionech, a to zejména k přímému použití (Zdroj: Renewable Energy Essentials: Geothermal Nevýhody; -vysoké náklady -Využití elektrické energie pro výrobu tepla

57 EFEKTIVNÍ TECHNOLOGIE: GSHP Typy propojení se zemí Vertikální (GCHP) Horizontální (GCHP) Podzemní vody(gchp) -5-6 m mezi jednotlivými vrty -specializovaná instalace -nízké požadavky na povrch -dobré při přítomnosti vlhké zeminy -nespecializovaná instalace -potřeba velkých ploch -snížení nákladů -snížení dopadů -nová technologie. Má změna teploty nějaký efekt? Termoaktivní základy (GCHP) Zdroj: Zdroj : Geothermal Energy. Clauser. 2006)

58 EFEKTIVNÍ TECHNOLOGIE: GSHP Příklad GSHP systém je instalován ve veřejné budově ve Španělsku(C1) Požadavek na vytápění; -1000m2 58W/m h vytápění ACS poptávka 5KW Délka potrubí= Síla tepelného čerpadla [W]/ Tepelná kapacita terénu[w/m] Délka potrubí = [W]/45 [W/m]=989 m 10 vrtů o délce/hloubce 100m Potrubý: PE 100 2x U. D32mm D vrt= 150mm

59 EFEKTIVNÍ TECHNOLOGIE: GSHP Výdaje - Investiční náklady zemních tepelných čerpadel velmi závisí na zvoleném systému : Ceny GSHP se pohybují mezi / kwh - Nízké náklady na údržbu - V Evropě stojí geotermální dálkové vytápění celkem /MWh, v závislosti na trhu s elektřinou a provozních hodinách. (Zdroj; IEA Heat Pump Implementing Agreement, Navigant Consulting, Ecodesign Hot Water Task 4.) (IEA. Renewable Energy Essentials: Geothermal)

60 EFEKTIVNÍ TECHNOLOGIE: Dálkové vytápění - REKUPERACE ODPADNÍHO TEPLA - KOGENERACE - OBNOVITELNÉ ZDROJE (STES, SOLÁRNÍ TERMÁLNÍ ELEKTRÁRNY, BIOMASA ATD.) Tepelné elektrárny. Centralizované výroba teplo a/nebo chlazení ve velkých zařízeních, které vytváří tepelnou energii potřebnou k uspokojení poptávky všech uživatelů. Tepelná energie může být generována turbínovými motory, kombinovaný systém, odpadní teplo a/nebo solární elektrárny. Rozvodová potrubní síť. Potrubní síť umožňuje přívod tekutin (teplých a/nebo studených) a je tvořena izolovanými trubkami za účelem minimalizace tepelných ztrát. Obvykle jsou trubky přiváděny podzemními drény, které kopírují rozložení ulic v městských oblastech. Rozvodny. Přenos tepla mezi distribuční sítí a spotřebiteli (budovy nebo domy) se provádí přes rozvodny. Skládají se z výměníku tepla, prvků, které regulují a kontrolují správnou funkci a dále z měřících prvků účtující energii.

61 EFEKTIVNÍ TECHNOLOGIE: Dálkové vytápění - Výhody Šetří užitečný prostor v budovách, jelikož není nutná přítomnost vlastního systému výroby energie Umožňuje využívání obnovitelných zdrojů energie, nakládání s odpady, lokální a účinnější technologie (např. kogenerace) Úspory nákladů pro uživatele: - redukce účtů - netřeba investic do vybavení, údržby a / nebo renovací Zařízení jsou energeticky účinnější díky centralizované správě a údržbě. To snižuje dopad na životní prostředí a primární spotřebu energie. Nevýhody Účinnost je závislá na následujících parametrech: Teplota sítě: pokud je teplota vody nižší, čistá energetická účinnost tohoto systému je vyšší. Hustota čtvrti: spolu se zvýšením hustoty zastavěné plochy se realizace systémů dálkového vytápění stává výhodnější Velikost čtvrti: musí být zaručen minimální počet uživatelů připojených k síti Vysoké investiční náklady: návratnost až po dlouhé době Poptávka po vytápění: kvůli velmi nízké poptávce po teple, není realizovatelné dálkové vytápění

62 EFEKTIVNÍ TECHNOLOGIE: Dálkové vytápění Případová studie Čtvrť domovů/bytů Délka sítě: 612 m Ekvivalentní zastavitelnost oblasti : 3.75 Buildings Poptávka po vytápění: 100 kwh/m2 Celková poptávka: GWh Tepelná síla: 11 MW Celková poptávka po vytápění Tepelná elektrárna Boilery Síť Kogenerace čtvrť Elektřina Sklad Tepelná elektrárna Dva kogenerační systémy: 664 kw Dva kotle na zemní plyn 3 MW Termální sklad 150 m3 Teplota sítě: 95/62ºC

63 EFEKTIVNÍ TECHNOLOGIE: Dálkové vytápění Návratnost investic Očekávaná doba návratnosti dle obchodního modelu je 13.6 let. Toto je považováno za přijatelné pro tento typ investice. Návratnost je přímo závislá na prodejní míře vytápění: - Na dobu určitou 8 / měsíc - Variabilní termín 6 centů / kwh

64 EFEKTIVNÍ TECHNOLOGIE: Využití odpadního tepla Přítomnost nízkých teplot může být znovu využita pro účely vytápění Dálkové vytápění? Dobré pro výměnu tepla: rezidenční budovy terciérní sektor veřejné budovy průmysl Chlazení: Simultánně s vytápěním tepelná čerpadla! Absorpční zařízení se solárním nebo zbytkovým teplem.

65 EFEKTIVNÍ TECHNOLOGIE: Využití odpadního tepla Případová studie Cementárny Energetická bilance v celém slínku předehřívač-pecchladicího systému. Sankey diagram ENERGETICKÉ VSTUPY Palivo do pece Palivo ve výměníku Ropa Chlazení vzduchu Primární vzduch do hlavního spalovače Primární vzduch do hořáku pyrocycle Vzduch v hlavě Vzduch v předehřívači ENERGETICKÉ VÝSTUPY Teplota vznikajícího slínku Výstup předehřívače plynu Průtok vzduchu z chladiče slínku Slínek Vlhkost ropy Vlhkost paliva Radiační a konvekční ztráty na povrchu předehřívače, pece a chladiče slínku

66 EFEKTIVNÍ TECHNOLOGIE: Využití odpadního tepla Případová studie Cementárny Řešení: Organic Rankine Cyklus (ORC) Tepelná síla ORC: 11 MW Náklady ORC: 1.8 M Náklady na konstrukci a tepelné výměníky: 2.6 M. Celkové náklady, zahrnující 10% projekt management činí 4.8 M. - Roční produkce: tun slínku (8000 provozních hodin za rok) výroba elektřiny MWh (4% spotřeba cementárny) - Roční tržby z prodeje elektřiny: centů / kwh - Údržba činí: / rok (15% investic) Doba návratnosti investice je 8.4 roků.

67 EFEKTIVNÍ TECHNOLOGIE: Kogenerace Kombinovaná výroba elektřiny a tepla Několik kogeneračních technologií V závislosti na místních předpisech Trigenerace (je potřeba při vytápění a chlazení) HP pára Kotel Turbína Palivo kondenzace Proces LP Pára

68 EFEKTIVNÍ TECHNOLOGIE: Výhody kogenerace Zvýšená účinnost přeměny a využití energie (~ 85%) Nižší emise, zejména CO2 Schopnost využívat odpadní teplo Velké úspory nákladů Příležitost k decentralizaci výroby elektřiny Podpora liberalizace trhů s energiemi Ztráty Účinnost = 55% Energetická bilance - Kogenerace Účinnost = 90% Termální energie Primární energie Elektrická energie Termální energie Primární energie Primární energie Termální elektrárna Mix energií Elektrická energie Losses Ztráty

69 Vysoce účinná kombinovaná výroba (kogenerace). Současná výroba tepla a elektřiny. Vysoce účinnou kombinovanou výrobou by měly být definovány úsporami energie dosaženými kombinovanou výrobou namísto výroby tepla a elektřiny. (DIRECTIVE 2012/27/EU on Energy Efficiency) EFEKTIVNÍ TECHNOLOGIE: Kogenerace Výpočet úspor primární energie (PES): - CHP Hη je účinnost tepla pocházejícího z kombinované výroby definované jako roční výstup užitečného tepla děleno spotřebou paliva použitého k výrobě objemu výstupu užitečného tepla a elektřiny pocházejících z kombinované výroby. - Ref Hη je referenční hodnota účinnosti pro oddělenou výrobu tepla. -CHP Eη je elektrická účinnost kombinované výroby definovaná jako roční výroba elektřiny vyráběná kombinovanou formou děleno spotřebou paliva použitého k výrobě objemu výstupu užitečného tepla a elektřiny pocházející z kombinované výroby. - Ref Eη je referenční hodnota účinnosti pro oddělenou výrobu elektřiny. Kogenerace 1MW motoru a pomocných systémů, jako jsou výměníky tepla, čerpací zařízení, potrubní vedení a uvedení do provozu. Náklady: ~

70 EFEKTIVNÍ TECHNOLOGIE: Skladování sezónní tepelné energie (STES) Solární termální STES. Neckarsulm, Německo. 4 MW solární instalovaný výkon - 63,000 m3 STES do půdy. Solární tepelná zařízení pro dálkové vytápění, Kungälv, Švédsko. 7 MW solární instalovaný výkon - 1,000 m3 ocelová nádrž. Solární termální STES. Maarstal, Dánsko. 13 MW solární instalovaný výkon - 10,000m3 PIT. Solární tepelná zařízení pro dálkové vytápění v rakouském Grazu. 1 MW solární energie.

71 EFEKTIVNÍ TECHNOLOGIE: Skladování sezónní tepelné energie (STES) 1) Vodní nádrže: jsou postaveny z ocele nebo železobetonových betonových nádrží. Většinou stojí na zemi a jsou a izolovány. Užitný objem se naplní vodou. Ve srovnání se 4 uvedenými alternativami je nádrž na vodu velmi drahá, ale zároveň jde o systém, který vyžaduje menší objem. 2) Vrty: trubky ve tvaru U jsou vloženy do svislých vrtů. Vytvářejí tak velké výměník tepla. Izolace je pouze v horní části trubek. Je to nejméně nákladná technologie, ale klade vysoké nároky na skladování. 3) PIT: systém podobný vodním nádržím, ale méně nákladný. Hlavním důvodem je to, že nevyžaduje ocelovou nebo betonovou konstrukci. Stěny jsou samy o sobě dostatečně silné pro potřeby mechanického zatížení. Systém je izolován a postaven pod zemí. Obsah se naplní vodou nebo směsí štěrku a vody. 4) Kolektor: kolektory mohou být také použity jako sklad tepelné energie. Nevýhodou je, že jsou omezeny na konkrétní typ zemského povrchu a jsou závislé na geotechnických podmínkách. Mohou být použity pouze za určitých podmínek,.

72 EFEKTIVNÍ TECHNOLOGIE: Případová studie: STES & Kogenerace & Dálkové vytápění Výroba elektřiny kogeneračních systémů je omezena použitím vyrobeného tepla. V létě, kdy je poptávka po vytápění budov na nejnižších úrovních, se roční spotřeba elektrické energie postupně zvyšuje po celém světě, zejména v důsledku používání klimatizací. V létě tedy není poměr potřeby elektřiny/tepla pro kombinovanou výrobu nejpříznivější. Sezónní tepelná akumulace energie je strategickou technologií pro její integraci v rámci kogeneračních systémů, jelikož umožňuje nepřetržitou výrobu elektrické energie v průběhu celého roku.

73 EFEKTIVNÍ TECHNOLOGIE: Případová studie: STES & Kogenerace & Dálkové vytápění Zdroj: Seasonal Thermal Energy Storage: a strategic technology for cogeneration systems. Epelde M, Sotil A, Saiz S.

74 EFEKTIVNÍ TECHNOLOGIE: Případová studie: STES & Kogenerace & Dálkové vytápění

75 EFEKTIVNÍ TECHNOLOGIE: Případová studie: STES & Kogenerace & Dálkové vytápění

76 EFEKTIVNÍ TECHNOLOGIE: Případová studie: STES & Kogenerace & Dálkové vytápění - Náklady kogeneračního systému = 750 / kw (kromě kogenerační jednotky jsou zahrnuty i další pomocná zařízení a náklady) - STES systém nákladů = 35 / m3 - Náklady na biomasu = 0,018 / kwh - Prodejní cena elektřiny = 0,16 / kwh - Ostatní = (tato položka zahrnuje pomocné zařízení jako jsou tepelné výměníky, čerpadla, hydraulické obvody,... atd., stejně jako instalace sítě dálkového vytápění) - Roční nárůst nákladů biomasy = 3% / year

77 EFEKTIVNÍ TECHNOLOGIE: Případová studie: STES & Kogenerace & Dálkové vytápění Návratnost investic: Případ 1: 8.5 let Případ 2: 10 let

78 Srovnání energetické poptávky a možností dodávky OCHRANA + ÚČINNOST + OBNOVITELNÉ ZDROJE Potřeba integrovaného přístupu

79 Přijetí veřejností estetická kvalita... Jak aktivní/pasivní energie ovlivňují: Poptávku Dodávku Tepelné ostrovy (Heat Islands) Estetiku Vnímání veřejnosti Sociální aspekty vytváření lokálních pracovních pozic Geneze místních příjmů: daně / peníze Prostorové omezení: oslunění

80 Dotazy?

81 European Green Cities Network (EGCN) APEA Alberto Lopez T Burgos José María Diez T EAV Hana Zábranská T M European Green Cities Network (EGCN) Elsebeth Terkelsen M ISOCARP Martin Dubbeling T M Master of Urban & Area Development (MUAD) Sil Bruijsten T M Stadsregio Arnhem Nijjmegen Ron Josten T M Tecnalia Patxi Hernandez T M Emilia Romagna region Guido Croce T IURS Karel Bařinka M ODMH Brenda Schuurkamp T Sogesca Federico De Filippi T M W/E adviseurs Erik Alsema T M Gate21 Poul Erik Lauridsen T M Limassol Municipality Christina Constantinou Zanti T / Province of Treviso Valentina Mattara T Stratagem Alexis Violaris T M

Rozvoj na nových lokalitách

Rozvoj na nových lokalitách Rozvoj na nových lokalitách Cesta k nulové spotřebě energie v nových lokalitách Karel Barinka IURS, Esther Roth, W/E consultants Lekce 4 První část programu - Představení několika lokalit, které byly řešeny

Více

MAS Opavsko směřuje k energetické nezávislosti

MAS Opavsko směřuje k energetické nezávislosti MAS Opavsko směřuje k energetické nezávislosti Ing. Jiří Krist předseda sdružení MAS Opavsko Bc. Petr Chroust - manažer MAS Opavsko www.masopavsko.cz Energetická koncepce území MAS Opavsko Podklad pro

Více

Energetický audit a energetická náročnost budov, legislativa, seznámení s předmětem

Energetický audit a energetická náročnost budov, legislativa, seznámení s předmětem České vysoké učení technické v Fakulta stavební Katedra technických zařízení budov Energetický audit a energetická náročnost budov, legislativa, seznámení s předmětem prof.ing.karel 1 Energetický audit

Více

Efektivní využití OZE v budovách. Tomáš Matuška RP2 Energetické systémy budov Univerzitní centrum energeticky efektivních budov ČVUT v Praze

Efektivní využití OZE v budovách. Tomáš Matuška RP2 Energetické systémy budov Univerzitní centrum energeticky efektivních budov ČVUT v Praze Efektivní využití OZE v budovách Tomáš Matuška RP2 Energetické systémy budov Univerzitní centrum energeticky efektivních budov ČVUT v Praze OBNOVITELNÉ ZDROJE TEPLA sluneční energie základ v podstatě veškerého

Více

Vliv zdrojů elektrické energie na životní prostředí

Vliv zdrojů elektrické energie na životní prostředí Klimatické změny odpovědnost generací Hotel Dorint Praha Don Giovanni 11.4.2007 Vliv zdrojů elektrické energie na životní prostředí Tomáš Sýkora ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická

Více

KOMBINACE TEPELNÝCH ČERPADEL A FOTOVOLTAICKO TEPELNÝCH KOLEKTORŮ

KOMBINACE TEPELNÝCH ČERPADEL A FOTOVOLTAICKO TEPELNÝCH KOLEKTORŮ Konference Vytápění Třeboň 2013 14. až 16. května 2013 KOMBINACE TEPELNÝCH ČERPADEL A FOTOVOLTAICKO TEPELNÝCH KOLEKTORŮ Tomáš Matuška, Bořivoj Šourek ANOTACE V příspěvku je představena energetická analýza

Více

Pokrytí potřeby tepla na vytápění a ohřev TV (90-95% energie užité v domě)

Pokrytí potřeby tepla na vytápění a ohřev TV (90-95% energie užité v domě) méně solárních zisků = více izolace ZÁKLADNÍ POŽADAVKY NA PASIVNÍ DŮM PRO NZU TEPELNÉ ZISKY SOLÁRNÍ ZISKY orientace hlavních prosklených ploch na jih s odchylkou max. 10, minimum oken na severní fasádě

Více

Požadavky tepelných čerpadel

Požadavky tepelných čerpadel Požadavky tepelných čerpadel na přípravu, pravu, návrh, projekt a stavební dokumentaci seminář ASPIRE v Rožnově pod Radhoštěm Ing. Tomáš Straka, Ph.D. 0 2000 4000 6000 8000 10000 12000 14000 1973 1979

Více

S l eznam ana ý yzovan ch t opa ř í en a j ji e ch l ik og a výbě ýb ru Petr Vogel Kolektiv výzkumného úkolu V AV- VAV SP- SP 3g5-3g5 221-221 07

S l eznam ana ý yzovan ch t opa ř í en a j ji e ch l ik og a výbě ýb ru Petr Vogel Kolektiv výzkumného úkolu V AV- VAV SP- SP 3g5-3g5 221-221 07 Seznam analyzovaných opatření a jejich ji logika výběru Petr Vogel Kolektiv výzkumného úkolu VAV-SP-3g5-221-07 Oblasti analýz výzkumu Energetika původních PD ve zkratce Problémy dnešních rekonstrukcí panelových

Více

Hybridní fotovoltaicko-tepelné kolektory a možnosti jejich využití. Tomáš Matuška Ústav techniky prostředí, Fakulta strojní, ČVUT v Praze

Hybridní fotovoltaicko-tepelné kolektory a možnosti jejich využití. Tomáš Matuška Ústav techniky prostředí, Fakulta strojní, ČVUT v Praze Hybridní fotovoltaicko-tepelné kolektory a možnosti jejich využití Tomáš Matuška Ústav techniky prostředí, Fakulta strojní, ČVUT v Praze Proč hybridní FVT kolektory? integrace fotovoltaických systémů do

Více

Průkaz energetické náročnosti budovy

Průkaz energetické náročnosti budovy PROTOKOL PRŮKAZU Účel zpracování průkazu Nová budova užívaná orgánem veřejné moci Prodej budovy nebo její části Pronájem budovy nebo její části Větší změna dokončené budovy Jiný účel zpracování : Základní

Více

Vyhodnocení programu Efekt 2007

Vyhodnocení programu Efekt 2007 Vyhodnocení programu Efekt 2007 Program EFEKT (dále jen Program) je součástí Státního programu na podporu úspor energie a využití obnovitelných zdrojů energie vyhlašovaného každoročně vládou ČR. Program

Více

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D.

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D. ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Spalování paliv - Kotle Ing. Jan Andreovský Ph.D. Kotle Úvod do problematiky Základní způsoby získávání energie Spalováním

Více

Energetické systémy pro nízkoenergetické stavby

Energetické systémy pro nízkoenergetické stavby Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií Ústav elektroenergetiky Energetické systémy pro nízkoenergetické stavby Systémy pro vytápění a přípravu TUV doc. Ing. Petr

Více

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY vydaný podle záko č. 406/2000 Sb., o hospodaření energií, a vyhlášky č. 78/2013 Sb., o energetické náročnosti budov Ulice, číslo: PSČ, místo: Typ budovy: Plocha obálky

Více

ZELENÁ ÚSPORÁM PRO RODINNÉ DOMY DOTACE POUŽITO MATERIÁLŮ Z: WWW. ZELENAUSPORAM.CZ

ZELENÁ ÚSPORÁM PRO RODINNÉ DOMY DOTACE POUŽITO MATERIÁLŮ Z: WWW. ZELENAUSPORAM.CZ ZELENÁ ÚSPORÁM PRO RODINNÉ DOMY DOTACE POUŽITO MATERIÁLŮ Z: WWW. ZELENAUSPORAM.CZ KDO MŮŽE ŽÁDAT a co je možné žádat Program Zelená úsporám podporuje realizaci opatření vedoucích k úsporám energie a využití

Více

Energetický audit a hodnocení energetické náročnosti budov

Energetický audit a hodnocení energetické náročnosti budov České vysoké učení technické v Praze Fakulta stavební Katedra technických zařízení budov Energetický audit a hodnocení energetické náročnosti budov prof.ing.karel Kabele,CSc. Globální oteplování Výchozí

Více

Technologická řešení přechodu na ekologická vytápění

Technologická řešení přechodu na ekologická vytápění Technologická řešení přechodu na ekologická vytápění Miroslav Šafařík PORSENNA o.p.s. Konference Znečištění ovzduší a možnosti řešení v malých obcích, Ostrava 16.2. 2011 Několik údajů na zahřátí Zadluženost

Více

10. Energeticky úsporné stavby

10. Energeticky úsporné stavby 10. Energeticky úsporné stavby Klíčová slova: Nízkoenergetický dům, pasivní dům, nulový dům, aktivní dům, solární panely, fotovoltaické články, tepelné ztráty objektu, součinitel prostupu tepla. Anotace

Více

Protokol k průkazu energetické náročnosti budovy

Protokol k průkazu energetické náročnosti budovy Protokol k průkazu energetické náročnosti budovy (1) Protokol a) identifikační údaje budovy Adresa budovy (místo, ulice, číslo, PSČ): Účel budovy: Kód obce: Kód katastrálního území: Parcelní číslo: Vlastník

Více

Vícepalivový tepelný zdroj

Vícepalivový tepelný zdroj Vícepalivový tepelný zdroj s kombinovanou výrobou elektrické energie a tepla z biomasy systémem ORC v Třebíči Historie projektu vícepalivového tepelného zdroje s kombinovanou výrobou el. energie a tepla

Více

Technická data. Technická data. Technická data

Technická data. Technická data. Technická data Technická data Tepelné čerpadlo vzduch-voda Hydro-box HWS- HWS- 802H-E 802XWH**-E 1102H-E 1402XWH**-E 1402H-E 1402XWH**-E Topný výkon Jmenovitý příkon topení Účinnost topení COP Chladící výkon Jmenovitý

Více

Ověřovací nástroj PENB MANUÁL

Ověřovací nástroj PENB MANUÁL Ověřovací nástroj PENB MANUÁL Průkaz energetické náročnosti budovy má umožnit majiteli a uživateli jednoduché a jasné porovnání kvality budov z pohledu spotřeb energií Ověřovací nástroj kvality zpracování

Více

Statutární město Brno Dominikánské náměstí 196/1, Brno-město, 60167 Brno. Energetický specialista:

Statutární město Brno Dominikánské náměstí 196/1, Brno-město, 60167 Brno. Energetický specialista: PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY penzion s byty pro důchodce Vychodilova 3077/20, 616 00 BrnoŽabovřesky parc.č.:5423/2, 5477/11, 5423/3, 5423/4 dle Vyhl. 78/2013 Sb. Zadavatel: Statutární město Brno

Více

Energetická politika a rozvoj města Litoměřice. Podnikatelské Fórum Ústeckého kraje Ústí nad Labem, 21. září 2015

Energetická politika a rozvoj města Litoměřice. Podnikatelské Fórum Ústeckého kraje Ústí nad Labem, 21. září 2015 Energetická politika a rozvoj města Litoměřice Podnikatelské Fórum Ústeckého kraje Ústí nad Labem, 21. září 2015 Strategický plán rozvoje Strat města Litoměřice Činnosti energetického managementu a ochrany

Více

Energetický management města Litoměřice. Praha, 12. května 2015

Energetický management města Litoměřice. Praha, 12. května 2015 Energetický management města Litoměřice Praha, 12. května 2015 Strategický plán rozvoje Strat města Litoměřice Činnosti energetického managementu a ochrany klimatu A Energetický plán města Geotermální

Více

MODERNÍ SYSTÉM. Inteligentní zařízení pro teplovzdušné vytápění a větrání s rekuperací tepla s tepelným čerpadlem vzduch-voda. Výstup.

MODERNÍ SYSTÉM. Inteligentní zařízení pro teplovzdušné vytápění a větrání s rekuperací tepla s tepelným čerpadlem vzduch-voda. Výstup. MODERNÍ SYSTÉM NOVINKA Inteligentní zařízení pro teplovzdušné vytápění a větrání s rekuperací tepla s tepelným čerpadlem vzduch-voda. Odsávání znečištěného Výstup čerstvého 18 C - 15 C Vstup čerstvého

Více

EKONOMICKÉ HODNOCENÍ PASIVNÍ DOMY ING. MICHAL ČEJKA. PORSENNA o.p.s.

EKONOMICKÉ HODNOCENÍ PASIVNÍ DOMY ING. MICHAL ČEJKA. PORSENNA o.p.s. EKONOMICKÉ HODNOCENÍ PASIVNÍ DOMY ING. MICHAL ČEJKA PORSENNA o.p.s. Projekt je realizován za finanční podpory Státního programu na podporu úspor energie a využití obnovitelných zdrojů energie pro rok 2012

Více

Smart Prague - chytré město začíná infrastrukturou

Smart Prague - chytré město začíná infrastrukturou Smart Prague - chytré město začíná infrastrukturou Praze CLAM GALLASŮV PALÁC 2.10.2014 Koncept Smart Prahy Vytváření vzájemných synergií mezi různými síťovými odvětvími jako je doprava, energetika, bezpečnost,

Více

Tepelné čerpadlo vzduch. voda

Tepelné čerpadlo vzduch. voda Tepelné čerpadlo vzduch voda Tepelné čerpadlo Váš krok správným směrem! Budoucnost patří ekologickému vytápění a chlazení! Tepelné čerpadlo získává teplo ze svého okolí v tomto případě ze vzduchu a transportuje

Více

Současný stav využívání biomasy ve Zlínském kraji

Současný stav využívání biomasy ve Zlínském kraji Ing. Libor Lenža Regionální energetické centrum, o. p. s. Současný stav využívání biomasy ve Zlínském kraji Odborný seminář Biomasa jako zdroj energie 6. 7. června 2006 Ostravice Zlínský kraj Proč biomasa?

Více

Energetické zdroje budoucnosti

Energetické zdroje budoucnosti Energetické zdroje budoucnosti Energie a společnost Jakýkoliv živý organismus potřebuje dodávku energie (potrava) Lidská společnost dále potřebuje značné množství energie k zabezpečení svých aktivit Doprava

Více

Topení a chlazení pomocí tepla z odpadní vody - HUBER ThermWin

Topení a chlazení pomocí tepla z odpadní vody - HUBER ThermWin WASTE WATER Solutions Topení a chlazení pomocí tepla z odpadní vody - HUBER ThermWin Zpětné získávání tepelné energie z komunálních a průmyslových odpadních vod Uc Ud Ub Ua a stoka b šachta s mechanickým

Více

Podpora využívání obnovitelných zdrojů energie v ČR. Juraj Krivošík / Tomáš Chadim SEVEn, Středisko pro efektivní využívání energie, o.p.s.

Podpora využívání obnovitelných zdrojů energie v ČR. Juraj Krivošík / Tomáš Chadim SEVEn, Středisko pro efektivní využívání energie, o.p.s. Podpora využívání obnovitelných zdrojů energie v ČR Juraj Krivošík / Tomáš Chadim SEVEn, Středisko pro efektivní využívání energie, o.p.s. OZE v ČR: Základní fakta 6000 Spotřeba OZE: 4,7 % celkové spotřeby

Více

PODPOŘENO NORSKÝM GRANTEM

PODPOŘENO NORSKÝM GRANTEM PODPOŘENO NORSKÝM GRANTEM V RÁMCI NORSKÉHO FINANČNÍHO MECHANISMU ÚVOD Projekt PERSPEKTIS 21 obnovitelné zdroje perspektiva pro 21. Století vznikl za podpory norského grantu prostřednictvím Norského Finančního

Více

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Říjen 2009 Pracovní materiály pro seminář Tepelná čerpadla Vývoj Principy Moderní technická řešení Vazba na energetické systémy budov Navrhování

Více

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY www.budovyprukaz.cz PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY Bytový dům V Lázních čp. 357359, 252 42 Jesenice PODLE VYHLÁŠKY č. 78/2013 Sb. www.budovyprukaz.cz Zodpovědný projektant: Ing. Jan Kvasnička ČKAIT

Více

1. Úvod 2. Teorie tepelného čerpadla

1. Úvod 2. Teorie tepelného čerpadla NÁVRH TEPELNÉHO ČERPADLA PRO NÍZKOENERGETICKÝ DŮM Robin Fišer Střední průmyslová škola stavební Máchova 628, Valašské Meziříčí 1. Úvod 2. Teorie tepelného čerpadla 2.1. Proč Tepelné čerpadlo 2.2. Princip

Více

ENERGETICKÉ ZDROJE PRO 21. STOLETÍ

ENERGETICKÉ ZDROJE PRO 21. STOLETÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ENERGETICKÉ ZDROJE PRO 21. STOLETÍ

Více

Ohřev teplé vody pomocí technologie SANDEN AquaEco

Ohřev teplé vody pomocí technologie SANDEN AquaEco Ohřev teplé vody pomocí technologie SANDEN AquaEco Technologie ECO CUTE ECO CUTE Nová japonská technologie pro tepelná čerpadla vzduch/voda Využívá přírodního neškodného chladiva CO 2 Hlavní výhody Výstupní

Více

PŘEDSTAVENÍ PROJEKTU EUROPEAN BUSINESS & TECHNOLOGY CENTRE IN INDIA

PŘEDSTAVENÍ PROJEKTU EUROPEAN BUSINESS & TECHNOLOGY CENTRE IN INDIA PŘEDSTAVENÍ PROJEKTU EUROPEAN BUSINESS & TECHNOLOGY CENTRE IN INDIA Brno, 10. 12. září 2012 www.ebtc.eu EBTC Představení projektu Hospodářská komora České republiky vyhrála výběrové řízení na tzv. Contact

Více

Solární soustavy pro centrální zásobování teplem

Solární soustavy pro centrální zásobování teplem Solární soustavy pro centrální zásobování teplem IEE 2008-2012 Project SDHtake-off - Solar District Heating in Europe The sole responsibility for the content of this document lies with the authors. It

Více

Optimalizace energetického hospodářství obcí a měst

Optimalizace energetického hospodářství obcí a měst Optimalizace energetického hospodářství obcí a měst Bronislav Bechník Czech RE Agency V. Setkání starostů a místostarostů Moravskoslezského kraje 25.02.2010 Ostrava Clarion Congress Nevládní nezisková

Více

Protokol k průkazu energetické náročnosti budovy

Protokol k průkazu energetické náročnosti budovy Protokol k průkazu energetické náročnosti budovy str. 1 / 16 Protokol k průkazu energetické náročnosti budovy Účel zpracování průkazu Nová budova Prodej budovy nebo její části Budova užívaná orgánem veřejné

Více

Prezentace: Aktivní dům. Jiří Hirš. Vysoké učení technické v Brně, Fak. stavební. Konference Building Efficiency 7. června 2012, Praha www.beffa.

Prezentace: Aktivní dům. Jiří Hirš. Vysoké učení technické v Brně, Fak. stavební. Konference Building Efficiency 7. června 2012, Praha www.beffa. Prezentace: Aktivní dům Jiří Hirš Vysoké učení technické v Brně, Fak. stavební Konference Building Efficiency 7. června 2012, Praha www.beffa.eu Ak#vní dům Jiří Hirš FAST VUT v Brně Vývoj energe+ckých

Více

Vitocal: využijte naši špičkovou technologii tepelných čerpadel pro vaše úspory.

Vitocal: využijte naši špičkovou technologii tepelných čerpadel pro vaše úspory. Zvýhodněné sestavy tepelných čerpadel Topné systémy skládající se z tepelného čerpadla v kombinaci se zásobníkovým ohřívačem teplé vody a dalším instalačním příslušenstvím. Vitocal: využijte naši špičkovou

Více

Technologie zplyňování biomasy

Technologie zplyňování biomasy Technologie zplyňování biomasy Obsah prezentace Profil společnosti Proces zplyňování Zplyňovací technologie Generátorový plyn Rozdělení technologií Typy zplyňovacích jednotek Čištění plynu Systém GB Gasifired

Více

Pasivní panelák a to myslíte vážně?

Pasivní panelák a to myslíte vážně? Centre for renewable energy and energy efficiency Pasivní panelák a to myslíte vážně? Ing. Karel Srdečný Výzvy blízké budoucnosti Č. Budějovice listopad 2012 Krátké představení výzkumného úkolu a použité

Více

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY PODLE VYHLÁŠKY č. 78/2013 Sb. BYTOVÝ DŮM Nad Rokoskou 2361/2a, 182 00 Praha Energetický specialista: Ing. Jan Kvasnička ČKAIT 0300688, AT pozemní stavby MPO č. oprávnění:

Více

Možnosti využití sluneční energie v soustavách CZT. 2. Sluneční podmínky v ČR a možnosti jejich využití

Možnosti využití sluneční energie v soustavách CZT. 2. Sluneční podmínky v ČR a možnosti jejich využití Možnosti využití sluneční energie v soustavách CZT Ing.Zdeněk Pistora, CSc. www.zdenekpistora.cz 1 Úvod Po období uměle vyvolaného boomu fotovoltaických elektráren se pomalu vracíme ke stavu, kdy možnosti

Více

Úvod: Co je to kogenerace?

Úvod: Co je to kogenerace? Obsah: Úvod:... 2 Co je to kogenerace?... 2 Jak pracuje kogenerační jednotka?... 3 Výhody kogenerace... 4 Možnosti nasazení... 4 Typické oblasti nasazení kogeneračních jednotek... 5 Možnosti energetického

Více

Bariéry decentralizované energetiky

Bariéry decentralizované energetiky Bariéry decentralizované energetiky 1 Ing. Ivan Beneš, CityPlan spol. s r.o. Energetická bezpečnost a decentralizace Heinrich-Böll-Stiftung, Green Circle, Praha, 26.11.2008 Vize budoucnosti SMARTGRIDS

Více

Větrání v rekonstrukcích, zahraniční příklady a komunikace s uživateli

Větrání v rekonstrukcích, zahraniční příklady a komunikace s uživateli Větrání v rekonstrukcích, zahraniční příklady a komunikace s uživateli Ing. Juraj Hazucha Centrum pasivního domu juraj.hazucha@pasivnidomy.cz tel. 511111813 www.pasivnidomy.cz Výchozí stav stávající budovy

Více

EKONOMICKÉ HODNOCENÍ PASIVNÍ DOMY ING. MICHAL ČEJKA. PORSENNA o.p.s.

EKONOMICKÉ HODNOCENÍ PASIVNÍ DOMY ING. MICHAL ČEJKA. PORSENNA o.p.s. EKONOMICKÉ HODNOCENÍ PASIVNÍ DOMY ING. MICHAL ČEJKA PORSENNA o.p.s. 1 ZÁKLADNÍ PARAMETRY PASIVNÍ DŮM JE BUDOVA, KTERÁ DÍKY SVÉ KONSTRUKCI ZARUČUJE KVALITNÍ VNITŘNÍ PROSTŘEDÍ V LÉTĚ I V ZIMĚ, BEZ TRADIČNÍHO

Více

Úspory energie v pasivním domě. Hana Urbášková

Úspory energie v pasivním domě. Hana Urbášková Úspory energie v pasivním domě Hana Urbášková Struktura spotřeby energie budovy Spotřeba Zdroj energie Podíl ENERGETICKÁ BILANCE vytápění Výroba tepla Tepelné zisky Odpadové teplo Vnější Vnitřní Ze vzduchu

Více

Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy

Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy Ing. arch. Tereza Vojancová Technický poradce tech.poradce@uralita.com 602 439 813 www.ursa.cz OBSAH 1 ÚVOD 2 ENERGETICKY

Více

Kotle na biopaliva. KSM-Multistoker XXL 350 1000 kw. dřevní štěpka, pelety, brikety

Kotle na biopaliva. KSM-Multistoker XXL 350 1000 kw. dřevní štěpka, pelety, brikety Kotle na biopaliva dřevní štěpka, pelety, brikety KSM-Multistoker XXL 350 1000 kw Plně automatické kotle na štěpku, dřevěné a slaměné pelety a brikety s výkonem 350 1000 kw Kotle značky KSM-Stoker vyrábí

Více

Integrovaná soustava získávání energie využitím domácích obnovitelných a alternativních zdrojů

Integrovaná soustava získávání energie využitím domácích obnovitelných a alternativních zdrojů Integrovaná soustava získávání energie využitím domácích obnovitelných a alternativních zdrojů Prof. Ing. Petr Stehlík, CSc. Vysoké učení technické v Brně Ústav procesního a ekologického inženýrství Ing.

Více

EKONOMICKÉ HODNOCENÍ PASIVNÍ DOMY ING. MICHAL ČEJKA. PORSENNA o.p.s.

EKONOMICKÉ HODNOCENÍ PASIVNÍ DOMY ING. MICHAL ČEJKA. PORSENNA o.p.s. EKONOMICKÉ HODNOCENÍ PASIVNÍ DOMY ING. MICHAL ČEJKA PORSENNA o.p.s. 1 ZÁKLADNÍ PARAMETRY PASIVNÍ DŮM JE BUDOVA, KTERÁ DÍKY SVÉ KONSTRUKCI ZARUČUJE KVALITNÍ VNITŘNÍ PROSTŘEDÍ V LÉTĚ I V ZIMĚ, BEZ TRADIČNÍHO

Více

Dotační program Zelená úsporám. Program podpory obnovitelných zdrojů a úspor energie v obytných budovách

Dotační program Zelená úsporám. Program podpory obnovitelných zdrojů a úspor energie v obytných budovách Dotační program Zelená úsporám Program podpory obnovitelných zdrojů a úspor energie v obytných budovách Rámec mezinárodních dohod a české legislativy - Kjótský protokol umožňuje zemím, které dosáhnou

Více

Nízkoenergetické. Nízkoenergetické. bývanie. bývanie. architektúra, materiály, technológie... cena 79, SK/KČ www.stavebnictvoabyvanie.

Nízkoenergetické. Nízkoenergetické. bývanie. bývanie. architektúra, materiály, technológie... cena 79, SK/KČ www.stavebnictvoabyvanie. Nízkoenergetické bývanie Nízkoenergetické architektúra, materiály, technológie... cena 79, SK/KČ www.stavebnictvoabyvanie.sk bývanie Snižování energetické náročnosti v obsluze budov V obsluze budov se

Více

ENERGETICKÝ POTENCIÁL REKONSTRUKCÍ PD TECHNICKÁ A EKONOMICKÁ KRITÉRIA Kolektiv výzkumného úkolu VAV-SP-3g5-221-07

ENERGETICKÝ POTENCIÁL REKONSTRUKCÍ PD TECHNICKÁ A EKONOMICKÁ KRITÉRIA Kolektiv výzkumného úkolu VAV-SP-3g5-221-07 ENERGETICKÝ POTENCIÁL REKONSTRUKCÍ PD TECHNICKÁ A EKONOMICKÁ KRITÉRIA Kolektiv výzkumného úkolu VAV-SP-3g5-221-07 Krátké představení výzkumného úkolu a použité metody Rámcový popis opatření Ekonomika opatření

Více

Perspektivy využití tenkovrstvých technologií

Perspektivy využití tenkovrstvých technologií Perspektivy využití tenkovrstvých technologií Bronislav Bechník zakládající člen Moderní tenkovrstvé technologie ve fotovoltaice Výhody a použití v projektech FVE Praha 13. 5. 2010 Czech RE Agency Czech

Více

II. diskusní fórum. Jaké je ideální řešení vytápění a příprava teplé vody? VZDĚLÁVACÍ MATERIÁL O DISKUTOVANÉM TÉMATU

II. diskusní fórum. Jaké je ideální řešení vytápění a příprava teplé vody? VZDĚLÁVACÍ MATERIÁL O DISKUTOVANÉM TÉMATU II. diskusní fórum K projektu Cesty na zkušenou Na téma Jaké je ideální řešení vytápění a příprava teplé vody? které se konalo dne 9. prosince 2013 od 12:30 do 17 hodin v místnosti H108 v areálu Fakulty

Více

EVECO Brno, s.r.o. ZAŘÍZENÍ PRO EKOLOGII A ENERGETIKU

EVECO Brno, s.r.o. ZAŘÍZENÍ PRO EKOLOGII A ENERGETIKU EVECO Brno, s.r.o. ZAŘÍZENÍ PRO EKOLOGII A ENERGETIKU Sídlo/kancelář: Březinova 42, Brno Pobočka: Místecká 901, Paskov Česká Republika eveco@evecobrno.cz www.evecobrno.cz INTRODUCTION Společnost EVECO

Více

Návod k výpočtovému nástroji pro hodnocení soustav s tepelnými čerpadly

Návod k výpočtovému nástroji pro hodnocení soustav s tepelnými čerpadly Návod k výpočtovému nástroji pro hodnocení soustav s tepelnými čerpadly Úvod Výpočtový nástroj má sloužit jako pomůcka pro posuzovatele soustav s tepelnými čerpadly. List 1/2 slouží pro zadání vstupních

Více

ENERSOL 2015 VZDĚLÁVACÍ PROJEKT NA TÉMATA OBNOVITELNÝCH ZDROJŮ ENERGIE, ÚSPORY ENERGIÍ A SNIŽOVÁNÍ EMISÍ V DOPRAVĚ STŘEDOČESKÝ KRAJ

ENERSOL 2015 VZDĚLÁVACÍ PROJEKT NA TÉMATA OBNOVITELNÝCH ZDROJŮ ENERGIE, ÚSPORY ENERGIÍ A SNIŽOVÁNÍ EMISÍ V DOPRAVĚ STŘEDOČESKÝ KRAJ ENERSOL 2015 VZDĚLÁVACÍ PROJEKT NA TÉMATA OBNOVITELNÝCH ZDROJŮ ENERGIE, ÚSPORY ENERGIÍ A SNIŽOVÁNÍ EMISÍ V DOPRAVĚ STŘEDOČESKÝ KRAJ Kategorie projektu: Enersol a praxe Jméno, příjmení žáka: Kateřina Čermáková

Více

ÚVOD... 4 OBNOVITELNÉ ZDROJE ENERGIE... 5 ENERGIE ZE SLUNCE...

ÚVOD... 4 OBNOVITELNÉ ZDROJE ENERGIE... 5 ENERGIE ZE SLUNCE... 1. ÚVOD... 4 2. OBNOVITELNÉ ZDROJE ENERGIE... 5 3. ENERGIE ZE SLUNCE... 6 PROJEVY SLUNEČNÍ ENERGIE... 6 4. HISTORIE SLUNEČNÍ ENERGIE... 7 5. TYPY VYUŽITÍ SLUNEČNÍ ENERGIE... 8 PŘÍMÉ... 8 NEPŘÍMÉ... 8 VYUŽITÍ

Více

Comfort space PRUKAZ ENERGETICKE NAROCNOSTIBUDOVY. Novostavba rodinného domu. Varianta LIFE. dle prováděcí vyhlášky 148/2007 Sb. , v.

Comfort space PRUKAZ ENERGETICKE NAROCNOSTIBUDOVY. Novostavba rodinného domu. Varianta LIFE. dle prováděcí vyhlášky 148/2007 Sb. , v. o, PRUKAZ ENERGETICKE, v NAROCNOSTIBUDOVY dle prováděcí vyhlášky 148/2007 Sb. Novostavba rodinného domu Varianta LIFE Comfort space ARGENTINSKÁ 1027/20, PRAHA 7, IČ:285 90 228 říjen 2011 Průkaz energetické

Více

Administrativní budova a školicí středisko v energeticky pasivním standardu

Administrativní budova a školicí středisko v energeticky pasivním standardu Administrativní budova a školicí středisko v energeticky pasivním standardu? Představení společnosti Vznik společnosti r. 1992 Počet zaměstnanců 50 Centrum pasivního domu (CPD) Moravskoslezského energetického

Více

Můžeme být energeticky soběstační a svobodní? Ing. Jiří Krist ARES

Můžeme být energeticky soběstační a svobodní? Ing. Jiří Krist ARES Můžeme být energeticky soběstační a svobodní? Ing. Jiří Krist ARES 1 všech ploch celkem 1 455 hektarů Kategorie ploch Procento z celkové plochy Plocha Energeticky využitelná produkce Zemědělská půda 678

Více

Projekt EPC v Národním divadle aneb snížení nákladů s garancí. Ivo Slavotínek

Projekt EPC v Národním divadle aneb snížení nákladů s garancí. Ivo Slavotínek Projekt EPC v Národním divadle aneb snížení nákladů s garancí Ivo Slavotínek Modernizace energetického hospodářství Národního divadla 2 Budovy a zázemí Národního divadla Národní divadlo tvoří 4 nadzemní

Více

TEPELNÁ ČERPADLA. vytápění ohřev vody řízené větrání

TEPELNÁ ČERPADLA. vytápění ohřev vody řízené větrání Š V É D S K Á TEPELNÁ ČERPADLA vytápění ohřev vody řízené větrání TEPELNÁ ČERPADLA vzduch/voda Pro vytápění a ohřev teplé užitkové vody Vzduch je všude kolem nás a je nejsnáze dostupným zdrojem energie.

Více

Fe AKU TV 300 400 600 750 850 1000 1200 1350 1650 2000

Fe AKU TV 300 400 600 750 850 1000 1200 1350 1650 2000 Odvzdušnění nádrže Výstup TUV (teplé užitkové vody) Plastový kryt TUV z oceli 1.4404 Ochranný vnější obal Vstup topné vody do nádrže Teploměr 0-120 C Ocelová nádrž Max. provozní tlak: 0,6MPa Propojovací

Více

NELUMBO ENERGY TEPELNÁ ČERPADLA OHŘEV + CHLAZENÍ

NELUMBO ENERGY TEPELNÁ ČERPADLA OHŘEV + CHLAZENÍ NELUMBO ENERGY TEPELNÁ ČERPADLA OHŘEV + CHLAZENÍ Solární tepelné čerpadlo! Nejnovější solární hybridní technologie, přímý solární ohřev chladiva TČ: TF > 5,0! Kvalitní značkové kompresory, stabilní provoz

Více

znění pozdějších předpisů. 3 ) Vyhláška č. 475/2005 Sb., kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů, ve

znění pozdějších předpisů. 3 ) Vyhláška č. 475/2005 Sb., kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů, ve Cenové rozhodnutí Energetického regulačního úřadu č. 8/2008 ze dne 18. listopadu 2008, kterým se stanovuje podpora pro výrobu elektřiny z obnovitelných zdrojů energie, kombinované výroby elektřiny a tepla

Více

PŘÍLOHA Č. I/2. Podmínky poskytování podpory v jednotlivých oblastech

PŘÍLOHA Č. I/2. Podmínky poskytování podpory v jednotlivých oblastech A. Úspory energie na vytápění A.1 Celkové zateplení PŘÍLOHA Č. I/2 Podmínky poskytování podpory v jednotlivých oblastech V této oblasti jsou podporována opatření (mj. zateplení obvodových případně vnitřních

Více

PROSUN BIOPLYNOVÉ STANICE BIOFERM. alternative energy systems s.r.o.

PROSUN BIOPLYNOVÉ STANICE BIOFERM. alternative energy systems s.r.o. PROSUN alternative energy systems s.r.o. Přes 17let zkušeností v oboru tepelné a elektrické energie nyní využíváme v oblasti instalace solárních systémů, plynových kondenzačních kotelen, tepelných čerpadel

Více

maximum z vaší energie

maximum z vaší energie Pomáháme me vám získat maximum z vaší energie Úspory energií: krok za krokem reálným provozem Energetické dilema Skutečnost Nutnost Energetická poptávka do r. 2050 Na elektrickou energii do r. 2030 vs

Více

Protokol k průkazu energetické náročnosti budovy

Protokol k průkazu energetické náročnosti budovy Protokol k průkazu energetické náročnosti budovy (1) Protokol a) identifikační údaje budovy Adresa budovy (místo, ulice, číslo, PSČ): Účel budovy: Kód obce: 535389 Kód katastrálního území: 793353 Parcelní

Více

Stropní systémy pro vytápění a chlazení Komfortní a energeticky úsporné. Vytápění Chlazení Čerstvý vzduch Čistý vzduch

Stropní systémy pro vytápění a chlazení Komfortní a energeticky úsporné. Vytápění Chlazení Čerstvý vzduch Čistý vzduch Stropní systémy pro vytápění a chlazení Komfortní a energeticky úsporné Vytápění Chlazení Čerstvý vzduch Čistý vzduch Zehnder vše pro komfortní, zdravé a energeticky úsporné vnitřní klima Vytápění, chlazení,

Více

rekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva

rekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva rekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva Jiří Novák činnost technických poradců v oblasti stavebnictví květen 2006 Obsah Obsah...1 Zadavatel...2

Více

Aktualizace Státní energetické koncepce

Aktualizace Státní energetické koncepce Aktualizace Státní energetické koncepce XXIV. Seminář energetiků Valašské Klobouky, 22. 01. 2014 1 Současný stav energetiky Vysoký podíl průmyslu v HDP + průmyslový potenciál, know how - vysoká energetická

Více

TECHNICKÁ ZAŘÍZENÍ BUDOV

TECHNICKÁ ZAŘÍZENÍ BUDOV Katedra prostředí staveb a TZB TECHNICKÁ ZAŘÍZENÍ BUDOV Přednášky pro bakalářské studium studijního oboru Příprava a realizace staveb Přednáška č. 9 Zpracoval: Ing. Zdeněk GALDA Nové výukové moduly vznikly

Více

Energie z hlubin. Teplo z nitra země je přenášeno na povrch vodou nebo párou.

Energie z hlubin. Teplo z nitra země je přenášeno na povrch vodou nebo párou. Geotermální energie Energie z hlubin Teplo z nitra země je přenášeno na povrch vodou nebo párou. Zemské teplo jako zdroj vytápění lze využít v místech geotermální anomálie, kde prostupuje k povrchu s mnohem

Více

(Úspory energie a obnovitelné zdroje

(Úspory energie a obnovitelné zdroje Možnosti technické pomoci při zlepšov ování environmentáln lní výkonnosti (Úspory energie a obnovitelné zdroje energie v ubytovacích ch zařízen zeních) Jaroslav Jakubes, ENVIROS Obsah prezentace Kontext

Více

Vzor průkazu energetické náročnosti budovy

Vzor průkazu energetické náročnosti budovy Vzor průkazu energetické náročnosti budovy Příloha č. 4 k vyhlášce č. 148/2007 Sb. (1) Protokol a) identifikační údaje budovy Adresa budovy (místo, ulice, popisné číslo, PSČ): Účel budovy: Kód obce: Kód

Více

Nové energetické trendy v budovách. Maximum z vaší energie:

Nové energetické trendy v budovách. Maximum z vaší energie: Nové energetické trendy v budovách Maximum z vaší energie: Celosvětové spotřeby energií 31% Průmysl & Infrastruktura < 2% Datacentra &Sítě 18% Budovy 21% Obytné budovy 28% Transport 100% 90% 80% 70% 16%

Více

ECO TEPELNÁ ČERPADLA VZDUCH/VODA Pro novostavby, nízkoenergetické a pasivní domy

ECO TEPELNÁ ČERPADLA VZDUCH/VODA Pro novostavby, nízkoenergetické a pasivní domy ECO TEPELNÁ ČERPADLA VZDUCH/VODA Pro novostavby, nízkoenergetické a pasivní domy OCHSNER ELW - ECO VZDUCH/VODA Tepelná čerpadla pro vytápění Ideální systém pro každé použití Tepelné čerpadlo OCHSNER ELW

Více

Srovnání využití energetických zdrojů v hospodářství ČR. Ing. Vladimír Štěpán. ENA s.r.o. Listopad 2012

Srovnání využití energetických zdrojů v hospodářství ČR. Ing. Vladimír Štěpán. ENA s.r.o. Listopad 2012 Srovnání využití energetických zdrojů v hospodářství ČR Ing. Vladimír Štěpán ENA s.r.o. Listopad 2012 Spotřeba HU a ZP v ČR Celková spotřeba hnědého uhlí a zemního plynu v ČR v letech 2002-2011 2 Emise

Více

jako trumfová karta v účinném řešení proti globálnímu oteplování

jako trumfová karta v účinném řešení proti globálnímu oteplování jako trumfová karta v účinném řešení proti globálnímu oteplování Koki Watanabe 9. června 2010 Japonské středisko pro tepelná čerpadla a technologii ukládání tepelné energie 1. O nás Obsah 2. Co je tepelné

Více

PROSUN KOGENERAČNÍ JEDNOTKY ESS. alternative energy systems s.r.o.

PROSUN KOGENERAČNÍ JEDNOTKY ESS. alternative energy systems s.r.o. PROSUN alternative energy systems s.r.o. Přes 17let zkušeností v oboru tepelné a elektrické energie nyní využíváme v oblasti instalace solárních systémů, plynových kondenzačních kotelen, tepelných čerpadel

Více

Globální úvěr Zelená energie

Globální úvěr Zelená energie Globální úvěr Zelená energie Program Zaměření na úspory energií Kombinace bankovního financování s dotačními granty Vyřízení úvěru i grantu se odehrává na jednom místě Veškerá administrativa s vyřízením

Více

solární systémy Brilon SUNPUR Trubicové solární kolektory www.brilon.cz

solární systémy Brilon SUNPUR Trubicové solární kolektory www.brilon.cz solární systémy Brilon SUNPUR Trubicové solární kolektory www.brilon.cz Proč zvolit vakuové solární kolektory Sunpur? Vakuové kolektory SUNPUR jsou při srovnání s tradičními plochými kolektory mnohem účinnější,

Více

KOGENERACE CHYTRÁ VOLBA! Proč a jak může kogenerace zvýšit rentabilitu a energetickou efektivitu vašeho podniku?

KOGENERACE CHYTRÁ VOLBA! Proč a jak může kogenerace zvýšit rentabilitu a energetickou efektivitu vašeho podniku? Cogeneration Observatory and Dissemination Europe Proč a jak může kogenerace zvýšit rentabilitu a energetickou efektivitu vašeho podniku? KOGENERACE CHYTRÁ VOLBA! Obsah 1 PROČ JE KOGENERACE EFEKTIVNÍM

Více

Investice do Vaší budoucnosti. Projekt je spolufinancován Evropskou Unií prostřednictvím Evropského fondu pro regionální rozvoj

Investice do Vaší budoucnosti. Projekt je spolufinancován Evropskou Unií prostřednictvím Evropského fondu pro regionální rozvoj EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO TEPELNÁ ČERPADLA ekonomika provozu a dimenzování Jiří Čaloun, DiS Investice do Vaší budoucnosti Projekt je spolufinancován Evropskou Unií prostřednictvím

Více

PASIVNÍ DŮM TROCHU JINAK VYTÁPĚNÍ (ENERGIE)

PASIVNÍ DŮM TROCHU JINAK VYTÁPĚNÍ (ENERGIE) EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO PASIVNÍ DŮM TROCHU JINAK VYTÁPĚNÍ (ENERGIE) Ing. arch. Jaroslav Tachecí - studio JATA Investice do Vaší budoucnosti Projekt je spolufinancován Evropskou

Více

Tepelná čerpadla MATOUŠ FOREJTEK 1.S

Tepelná čerpadla MATOUŠ FOREJTEK 1.S Tepelná čerpadla MATOUŠ FOREJTEK 1.S Úvod Stroj který čerpá teplo z jednoho místa na druhé pomocí vnější práce. Princip tepelného čerpadla je znám už velmi dlouho. Tato technologie je v mnoha zařízeních.

Více

SAMSUNG Eco Heating System. Vzduch-voda

SAMSUNG Eco Heating System. Vzduch-voda -voda Je nejideálnějším, nákladově efektivním vytápěcím systémem, v němž se zdroj tepla ve formě venkovního vzduchu používá k vytápění podlah a vody v domácnostech. Podlahové vytápění Radiátor Teplá voda

Více

TEPELNÁ ČERPADLA VZUCH - VODA

TEPELNÁ ČERPADLA VZUCH - VODA TEPELNÁ ČERPADLA VZUCH - VODA www.hokkaido.cz Budoucnost patří ekologickému a ekonomickému vytápění Tepelné čerpadlo vzduch - voda Omezení emisí CO 2 Spotřeba energie Životní prostředí Principem každého

Více