JIHOČESKÁ UNIVERZITA, PEDAGOGICKÁ FAKULTA ÚVOD DO STATISTIKY. Tomáš MRKVIČKA, Vladimíra PETRÁŠKOVÁ

Rozměr: px
Začít zobrazení ze stránky:

Download "JIHOČESKÁ UNIVERZITA, PEDAGOGICKÁ FAKULTA ÚVOD DO STATISTIKY. Tomáš MRKVIČKA, Vladimíra PETRÁŠKOVÁ"

Transkript

1

2 JIHOČESKÁ UNIVERZITA, PEDAGOGICKÁ FAKULTA ÚVOD DO STATISTIKY Tomáš MRKVIČKA, Vladimíra PETRÁŠKOVÁ ČESKÉ BUDĚJOVICE 2006

3 Recenzenti: prof. RNDr. Jindřich Klůfa, CSc., doc. RNDr. Pavel Tlustý, CSc. c Tomáš Mrkvička, Vladimíra Petrášková, 2006 ISBN

4 Obsah 1 Zpracování statistického materiálu Rozloženíčetnostíajejichznázornění Charakteristikypolohy Charakteristikyvariability Teorie pravděpodobnosti Náhodnéveličiny Náhodnévektory Základnírozdělenínáhodnýchveličin Normálnírozděleníarozděleníznějodvozená Pearsonovorozdělení Studentovorozdělení Fisherovo-Snedecorovorozdělení

5 2 OBSAH 2.5 Kritickéhodnoty Náhodný výběr 35 4 Odhady parametrů Intervalové odhady pro parametry normálního rozdělení IntervalovýodhadstředníhodnotypomocíCLV Parametrické testy Jednovýběrovýttest Testorozptylunormálníhorozdělení Párovýttest Dvouvýběrovýttest Testshodnostidvourozptylů Porovnávání středních hodnot při nestejných rozptylech TestostředníhodnotěpomocíCLV Neparametrické testy Znaménkovýtest JednovýběrovýWilcoxonůvtest DvouvýběrovýWilcoxonůvtest... 63

6 OBSAH 3 7 Porovnání více výběrů Analýzarozptylujednoduchéhotřídění Kruskalův-Wallisůvtest Analýzarozptyludvojnéhotřídění Friedmanůvtest Lineární regrese Lineárníregresesjednouvysvětlujícíproměnnou Lineárníregresesvícevysvětlujícímiproměnnými Polynomiálníregrese Nelineárníregrese Korelační analýza Výběrovýkorelačníkoeficient Spearmanůvkorelačníkoeficient Testy dobré shody Pearsonův χ 2 test Testnormality TestPoissonovarozdělení

7 4 OBSAH 10.4 Kolmogorovův-Smirnovůvjednovýběrovýtest Kontingenční tabulky Testnezávislosti Testhomogenitymultinomickýchrozdělení Test χ 2 večtyřpolníchtabulkách Fisherůvfaktoriálovýtest McNemarůvtest Testsymetrie Statistické tabulky 123

8 Předmluva Statistika je v dnešní době nedílnou součástí každodenního života. Setkáváme se s ní na každém kroku(např. při zpracování výsledků sčítání lidu, voleb, při zpracování výsledků získaných laboratorní cestou atd.). Díky množství zpracovávaných dat se dnes do popředí zájmu dostává statistický software, bez kterého bychom se neobešli. Užití statistického softwaru má však svá úskalí. Člověk, který neovládá základy teorie z oblasti statistky a který se zaměří pouze na počítačové zpracování dat(včetně jejich interpretace), může dojít k chybným závěrům. I statistické testy mají totiž své předpoklady, bez jejichž ověření užití testu nemusí vést ke správnému výsledku. Cílem této knihy je podat ucelený přehled o základních statistických testech, které jsou nedílnou součástí každého statistického software. Kniha je určena pro všechny, kteří se chtějí seznámit se základy statistiky. V úvodních částech knihy jsou stručně shrnuty základy teorie pravděpodobnosti. Poté následují parametrické testy a neparametrické testy, základy analýzy rozptylu, korelační analýza, testy dobré shody a základní testy v kontingenčních tabulkách. Jednotlivé kapitoly jsou doprovázeny řešenými příklady, které čtenáři napomohou k lepšímu pochopení dané problematiky. V závěru knihy jsou uvedeny statistické tabulky, které napomáhají tomu, že kniha je relativně samostatná. Autoři chtějí také touto cestou poděkovat recenzentům prof. RNDr. JindřichuKlůfovi,CSc.adoc.RNDr.PavluTlustému,CSc.zapřečtenítextua cenné připomínky. V Českých Budějovicích v listopadu 2006 Tomáš Mrkvička a Vladimíra Petrášková 5

9 6 OBSAH

10 Kapitola 1 Zpracování statistického materiálu Dříve než se začneme zaobírat základními statistickými metodami, definujeme základní pojmy z oblasti zpracování statistického materiálu. Definice 1.1 Definujme následující pojmy: 1.Statistickýmsouboremnazývámesouborreálnýchčíselx 1,...,x n.kterými mohou být například výsledky nějakých měření nebo pokusů. 2. Argumentem statistického souboru budeme nazývat znak příslušející jednotlivým reálným číslům. Například výšku, váhu, IQ Celkový počet(n) všech prvků uvažovaného souboru nazýváme rozsahem souboru. Prostývýpishodnotstatistickéhosouboru x 1,...,x n jeprovětší nzcela nepřehledný, je proto třeba informaci o tomto souboru zkoncentrovat do 7

11 8 KAPITOLA 1. ZPRACOVÁNÍ STATISTICKÉHO MATERIÁLU menšího počtu ukazatelů. K tomuto účelu můžeme využít četnosti a jejich znázornění. Nebo různé popisné charakteristiky, které shrnují vlastnosti statistického souboru do jednoho čísla. Nejdůležitějšími charakteristikami jsou charakteristiky popisující polohu a rozptýlení souboru. 1.1 Rozložení četností a jejich znázornění Definice 1.2 Nechť a je minimální hodnota argumentu X, b je maximální hodnotaargumentuxdanéhostatistickéhosouboru,tj. x min = a, x max = b. 1.Interval < a,b >nazývámevariačnímoborem(nebotéžoboremvariability, intervalem variability) argumentu X daného statistického souboru. 2.Rozdíl x = b anazývámevariačnímrozpětímargumentuxdaného statistického souboru. 3.Variačníobor < a,b >rozkládámenamenšíčástinazývanétřídy(popř. třídní intervaly) argumentu X. 4. Šířkou(délkou) h třídy příslušného třídního intervalu a, b nazýváme číslo h = b k a k.číslo 1 2 (a k + b k )nazývámestředemtřídy,číslo a k dolníhranicíuvažovanétřídy,číslo b k horníhranicíuvažovanétřídy. 5.Hodnotu x k argumentux,kterájezpravidladánastředem k-tétřídyazastupuje všechny hodnoty patřící do této třídy, nazýváme třídním znakem k-té třídy. Při rozkladu variačního oboru a, b na třídy budeme dbát zpravidla těchto zásad:

12 1.1. ROZLOŽENÍ ČETNOSTÍ A JEJICH ZNÁZORNĚNÍ 9 1. Obsahuje-li soubor jen malý počet hodnot argumentu X, volíme každou hodnotu x k tohotoargumentuzasamostatnoutřídu.pokudstatistický soubormáznačněvelkýpočetrůznýchhodnot x k argumentu X(popř. je jich nekonečně mnoho), sdružujeme hodnoty argumentu v třídy. Přitom šířky tříd volíme obvykle stejně velké. Pro výpočet šířky h lze použítpřibližnéhovzorce h 8 (b a). 100 Přivolběpočtutřídníchintervalůsedoporučuje,abyjichbylo8až20. Záleží na rozsahu souboru a účelu statistické tabulky. Počet k třídních intervalůvolímenapř. k 3,3log(n)nebo k n,kde njerozsah souboru. Dvě pozorování považujeme za ekvivalentní, jakmile padnou do téhož třídního intervalu. 2. Jestliže na hranici dvou sousedních tříd padne více hodnot argumentu, zařazujeme polovinu z nich do nižší třídy a druhou polovinu do třídy vyšší. Zbyla-li ještě jedna hodnota(toto odpovídá lichému počtu hodnot ležících na hranic), rozhodneme o její příslušnosti k dané třídě losem. Není vhodné zařazovat stereotypně takové hraniční hodnoty vždy dovyšší,popř.nižšítřídy,neboťbysetímmohlzkreslitcelkovýobraz rozložení uvažovaného souboru ve prospěch vyšších, popř. nižších tříd. 3. Vyskytuje-li se v hraničních třídách velmi málo hodnot argumentu X, je vhodné tyto třídy spojit se sousední třídou v třídu jedinou. Definice 1.3 Druhy četností: 1. Počet prvků souboru patřících do k-té třídy nazýváme absolutní četností argumentu v k-té třídě nebo absolutní třídní četností(stručně četností)k-tétřídyaznačímejej f k. 2.Je-li f k absolutnítřídníčetnost k-tétřídyanrozsahuvažovanéhosouboru, potom

13 10 KAPITOLA 1. ZPRACOVÁNÍ STATISTICKÉHO MATERIÁLU a) f k n nazývámerelativníčetnostík-tétřídy, b) 100 f k n nazývámeprocentnírelativníčetnostík-tétřídy. 3.Kumulativní(součtovou)absolutníčetností F k k-tétřídynazýváme součetvšechčetností f j aždok-tétřídyvčetně,tj. F k = k f j. j=1 4.Kumulativnírelativníčetností R k k-tétřídynazývámesoučet R k = k j=1 f j n = F k n. Poznámka 1.1 Pro četnosti platí některé vlastnosti(uvažujeme statistický souborrozsahun,kterýjerozdělendortříd) r f k = n k=1 F r = n 3. r k=1 f k n = 1 Definice 1.4 Tabulkou rozložení četností daného statistického souboru nazýváme tabulku, v níž jsou uvedeny hodnoty argumentu(popř. třídní znaky) s příslušnými absolutními, popř. relativními četnostmi.

14 1.1. ROZLOŽENÍ ČETNOSTÍ A JEJICH ZNÁZORNĚNÍ 11 Příklad 1.1 Na telefonní stanici zaznamenávali počet telefonních výzev za dobu1min.běhemjednéhodinybylovurčitédennídobědosaženotěchto výsledků(v každém řádku jsou hodnoty získané během 10 minut): 3,2,2,3,1,1,0,4,2,1 1,4,0,1,2,3,1,2,5,2 3,0,2,4,1,2,3,0,1,2 1,3,1,2,0,7,3,2,1,1 4,0,0,1,4,2,3,2,1,3 2,2,3,1,4,0,2,1,1,5. Sestavte tabulku rozložení daného statistického souboru. Počet telefonních výzev za 1 min Absolutní četnost Relativní četnost , , ,016 Celkem 60 1 Tabulka 1.1: Tabulka rozložení četností Argument statistického souboru představuje náhodnou veličinu X. Ze zákona velkýchčísel(podrobnějivizvěta3.2)plyne,žerelativníčetnost f k n udává (přibližně)pravděpodobnost,že X padnedo k-tétřídy,takžeplatí p k = P(a k X b k ) f k n,přičemžinterval a k,b k je k-toutřídou. Definice 1.5 Typy znázornění absolutních či relativních četností:

15 12 KAPITOLA 1. ZPRACOVÁNÍ STATISTICKÉHO MATERIÁLU 1. Histogram rozložení absolutních(relativních) četností sestavíme tak, že na osu x vyneseme středy jednotlivých tříd a nad každou úsečkou zobrazující určitou třídu(šířky h) sestrojíme obdélník s výškou rovnou příslušnéabsolutníčetnosti f k,popř.relativníčetnosti f k n.horníobrazpravoúhelníka představuje histogram rozložení četností. Histogram relativních četností aproximuje hustotu rozdělení spojité náhodné veličiny X. 2. Úsečkový diagram(nebo graf) rozložení absolutních(relativních) četností dostaneme, jestliže na ose x zobrazíme středy jednotlivých tříd a vkaždémznichsestrojímevesměruosy yúsečkuodélcerovnépříslušnéabsolutníčetnosti f k,popř.relativníčetnosti f k n. 3. Polygon rozložení četností(spojnicový diagram) dostaneme, jestliže koncové body úsečkového diagramu rozložení četnosti spojíme úsečkami a vytvoříme tak lomenou čáru, která pak představuje hledaný polygon neboli spojnicový diagram. 4. Graf, polygon nebo histogram kumulativních četností dostaneme analogickyjakovbodech1,2a3. 5. Ogivní křivku(stručně ogivu) dostaneme, sestrojíme-li polygon kumulativních relativních četností. Ogiva aproximuje graf distribuční funkce uvažované náhodné veličiny X. 1.2 Charakteristiky polohy Charakteristiky polohy neboli střední hodnoty počítáme nejčastěji pomocí aritmetického, popř. harmonického, popř. geometrického průměru nebo mediánu a modusu.

16 1.2. CHARAKTERISTIKY POLOHY Obrázek 1.1: Histogram a ogiva dat z příkladu 1.1 Definice 1.6 Nechť je dán statistický soubor, jehož argument X nabývá hodnot x 1,x 2,...,x n,kteréjsoupopř.roztříděnydortříd,přičemž f k značíabsolutní četnost k-té třídy. 1.Aritmetickýprůměr Xjedefinovánvztahy X = 1 n n x k = 1 n k=1 r f i x i. (1.1) i=1 2.Geometrickýprůměr X g jedefinovánvztahem X g = n x 1 x 2... x n (1.2) 3.Harmonickýprůměr X h jedefinovánvztahy X h = 1 A,kde A = 1 n n k=1 1 x k = 1 n r i=1 f i x i. (1.3) Ve vztazích 1.1, 1.3 jsou uvedeny dva tvary. První tvar odpovídá souboru neroztříděnému a druhý tvar roztříděnému. Geometrický průměr nelze použít, pokud argument X nabývá nulové hodnoty, popř. hodnoty záporné. Harmonický průměr lze použít tehdy, má-li smysl součet reciprokých hodnot.

17 14 KAPITOLA 1. ZPRACOVÁNÍ STATISTICKÉHO MATERIÁLU Věta 1.1 Pro libovolný statistický soubor X platí: X h X g X. Nechťjedánstatistickýsoubor,jehožargumentXnabýváhodnotx 1,x 2,...,x n. Setřídíme-li hodnoty podle velikosti, dostaneme tzv. setříděný statistický soubor X (1),X (2),...,X (n), kdex (1) označujenejmenšíhodnotu,x (2) označujedruhounejmenšíhodnotu,...obecně X (i) označuje i-toupořadovouhodnotu. Definice 1.7 Medián netříděného souboru je určen dvěma způsoby, v závislosti na počtu prvků statistického souboru. V případě lichého počtu hodnot vezmeme za medián x prostřední hodnotu setříděného souboru x = X ([ n 2]+1). Pokud X má sudý počet hodnot, vezmeme za medián x aritmetický průměr prostředních dvou hodnot setříděného souboru x = X ([ n 2]) +X ([ n 2]+1). 2 Medián je speciálním případem výběrového kvantilu. Výběrovým kvantilem nazýváme hodnotu zvolenou tak, že pozorování, která jsou menší než tato hodnota, tvoří předepsaný díl výběru(např. 10% výběrový kvantil označuje hodnotu, která je větší než 10% hodnot statistického souboru a menší než 90% hodnot statistického souboru). Rozeznáváme tři speciální případy výběrového kvantilu: 25% výběrový kvantil se nazývá dolní výběrový kvartil, 50% výběrový kvantil je medián a 75% výběrový kvantil se nazývá horní výběrový kvartil.

18 1.3. CHARAKTERISTIKY VARIABILITY 15 Definice 1.8 Nechť argument statistického souboru může nabývat pouze konečně mnoha hodnot. Pak modus je hodnota argumentu s největší absolutní četností. Modus nemusí být určen jednoznačně. Příklad 1.2 Uvažujme následující hypotetický příklad. Ve firmě F existují 4 platové třídy s platy uvedenými v následující tabulce. Počet zaměstnanců udává, kolik zaměstnanců je v dané platové třídě. třída zařazení plat v Kč počet zaměstnanců 1. výkonná síla mistr náměstek ředitel Tabulka 1.2: Tabulka četností příjmu zaměstnanců ve firmě F. Spočtěme některé charakteristiky polohy. Aritmetický průměr X = , geometrickýprůměr X g = ,harmonickýprůměr X h = Jelikož máme 44 hodnot, bude medián průměr 22. a 23. pořadové hodnoty, tedy x = Dolnívýběrovýkvartilbudeprůměr11.a12.pořadové hodnoty, tj a horní výběrový kvartil je Každá charakteristika polohy nám dává jen parciální informaci o statistickém souboru, zatímco grafy rozložení četností nám dávají úplnou informaci o statistickém souboru. 1.3 Charakteristiky variability Definice 1.9 Charakteristiky variability: 1.Rozptylem (disperzí) s 2 statickéhosouborusrozsahem nnazýváme aritmetickýprůměrkvadratickýchodchylek (x k X) 2 hodnotargumentu

19 16 KAPITOLA 1. ZPRACOVÁNÍ STATISTICKÉHO MATERIÁLU Xodaritmetickéhoprůměru X s 2 = 1 n n (x k X) 2 = 1 n k=1 r f i (x i X) 2. (1.4) i=1 2. Směrodatnou odchylkou s nazýváme s2 = s 0. (1.5) 3.Průměrnouodchylkou dnazývámearitmetickýprůměrabsolutníchhodnotodchylekodaritmetickéhoprůměru X,tj. d = 1 n n x k X = 1 n k=1 r f i x i X. (1.6) i=1 4. Variační koeficient v statistického souboru je definován jako v = s X. (1.7) Poznámka 1.2 Rozptyl je definován vzorcem(1.4), pro jeho výpočet se však častěji používá vzorce s 2 = 1 n n (x 2 k) X 2 = 1 n k=1 r f i x 2 i X 2. (1.8) i=1 Poznámka 1.3 Hodnoty argumentu statistického souboru jsou realizace nějaké náhodné veličiny. Např. počet telefonních hovorů na ústředně za 1 minutu (viz příklad 1.1) je náhodná veličina, která má Poissonovo rozdělení X Po(λ). Všechny charakteristiky polohy aproximují střední hodnotu náhodné veličiny EX = λ. Podobně rozptyl statistického souboru aproximuje rozptyl náhodné veličiny VarX = λ.

20 1.3. CHARAKTERISTIKY VARIABILITY 17 Poznámka 1.4 Rozptyl uvedený ve vzorcích(1.4) a(1.8) rozptyl náhodné veličiny podhodnocuje, proto se k výpočtu rozptylu častěji používá vzorců: S 2 = 1 n 1 S 2 = 1 n 1 n k=1 n k=1 ( xk X ) 2 = 1 n 1 (x 2 k) n n 1 X 2 = 1 n 1 r ( f i xi X ) 2, (1.9) i=1 r i=1 f i x 2 i n n 1 X 2. (1.10) Tyto vzorce již teoretickou hodnotu nepodhodnocují(podrobněji viz věta 3.1). Poznámka 1.5 Variační koeficient slouží k srovnání variability dvou a více statistických souborů, které mají výrazně odlišnou polohu znaku nebo jsou vyjádřeny v různých měrových jednotkách. Příklad 1.3 Uvažujme produkci ve dvou firmách. Produkce firmy A se vykazujevkusechafirmybvtunách.posuďte,vekterézfirembylaběhem sledovaného období 10 dnů výroba rovnoměrnější([4]). Den Celkem FirmaA(1000ks) x i FirmaB(tuny) y i Tabulka1.3:TabulkaprodukcefiremAaB. NejdřívevypočtemevariačníkoeficientproprodukcifirmyA:Průměr X = 2,3,směrodatnáodchylka s X = 1atudížvariačníkoeficient v X = s X / X = 0,4. AnalogickyvypočtemevariačníkoeficientprofirmuB:Průměr Ȳ = 6,směrodatnáodchylka s Y = 1,55atudížvariačníkoeficient v Y = s Y /Ȳ = 0,25. TedyrovnoměrnějšíjevdanédekáděvýrobavefirměB.

21 18 KAPITOLA 1. ZPRACOVÁNÍ STATISTICKÉHO MATERIÁLU

22 Kapitola 2 Teorie pravděpodobnosti V této kapitole shrneme základní pojmy a tvrzení z teorie pravděpodobnosti, které budeme potřebovat pro další studium matematické statistiky. Pro hlubší studium teorie pravděpodobnosti doporučujeme čtenáři knihy[3] a[5]. 2.1 Náhodné veličiny Uvažujme pravděpodobnostní prostor (Ω, A, P). Ω je neprázdná množina všech výsledků náhodného pokusu, výsledky označujeme ω. A je σ-algebra sestrojenána Ω. P : A 0,1 Rjefunkcepřiřazujícíkaždémnožině A A její pravděpodobnost. Této funkci se říká pravděpodobnostní míra. Pro podrobnější zavedení těchto pojmů je možno nahlédnout např. do[3]. Definice 2.1 Náhodnou veličinou rozumíme každé měřitelné zobrazení X z (Ω,A,P)do R. 19

23 20 KAPITOLA 2. TEORIE PRAVDĚPODOBNOSTI Jinak řečeno, měřitelné zobrazení je takové zobrazení, které zobrazuje měřitelnémnožiny(tj.tycoležívσ-algebře A)naměřitelnémnožinyvR.Toto zavedení nám pomůže eliminovat problémy s neměřitelnými množinami. Definice 2.2 Distribuční funkce F náhodné veličiny X je dána vzorcem F(x) = P(ω : X(ω) < x). Zkráceně píšeme F(x) = P(X < x). Příklad2.1Uvažujmenáhodnýpokus-hodkostkou Ω = {1,2,3,4,5,6}, P(ω) = 1/6.Sestrojmenáhodnouveličinu,kteráukazuje,zdapadlo6činěco jiného. X(6) = 1,jinak X(ω) = 0.Distribučnífunkce F jepakdefinována takto: F(x) = 0,pokud x 0, F(x) = 5/6,pokud 0 < x 1aF(x) = 1, pokud x > 1. Uvažujme jiný náhodný pokus- náhodně vybereme studenta. Ω je tudíž množina všech studentů. Nechť náhodná veličina X ukazuje výšku studenta ωvmetrech,tudíž X(ω) (0,3). V předchozím příkladě si můžeme povšimnout, že existují dva typy náhodných veličin. Pokud množina možných výsledků náhodné veličiny je diskrétní (množina obsahuje konečně mnoho hodnot nebo spočetně), pak hovoříme o diskrétní náhodné veličině nebo o diskrétním rozdělení náhodné veličiny. Pokud množina možných výsledků náhodné veličiny je interval(množina obsahuje nespočetně mnoho hodnot), pak hovoříme o spojité náhodné veličině nebo o spojitém rozdělení náhodné veličiny. Náhodné veličiny mohou být i kombinací těchto dvou typů, ovšem takové veličiny se v praxi vyskytují velmi zřídka a proto se jimy zabývat nebudeme.

24 2.1. NÁHODNÉ VELIČINY 21 Diskrétní náhodné veličiny Nechť náhodná veličina X může nabývat nejvýše spočetně mnoha hodnot x 1,x 2,...Označme P(X = x i ) = p i 0, i = 1,2,...Zřejměplatí p i = 1. Distribučnífunkce Fmávhodnotách x i skoky p i, i = 1,2,...Vostatních bodechje Fkonstantní.Pravděpodobnost,že Xpadnedomnožiny B R, udává vzorec P(X B) = p i. i:x i B Střední hodnota X neboli též očekávaná hodnota náhodné veličiny je dána vzorcem EX = i x i p i. (2.1) Někdy je nezbytné počítat střední hodnotu z nějaké funkce náhodné veličiny X.Např.nechťnáhodnáveličina Xudávávýslednéčíslovruletěasázkyje možné uzavírat jen na jedno číslo. Nás bude zajímat střední hodnota naší výhry, kde výhra představuje funkci g aplikovanou na výsledek náhodné veličiny X. Eg(X) = i g(x i )p i. (2.2) Spojité náhodné veličiny Nechť náhodná veličina X nabývá nespočetně mnoha hodnot. Potom nemůžeme každé hodnotě přiřadit její pravděpodobnost výskytu, ale přiřadíme jí funkční hodnotu f(x), která udává relativní pravděpodobnost výskytu x jako výsledku náhodné veličiny. Tato funkce se nazývá hustota náhodné veličiny. Distribuční funkce F(x) = x f(t)dt.

25 22 KAPITOLA 2. TEORIE PRAVDĚPODOBNOSTI Zřejměplatí f(x)dx = 1.Pravděpodobnost,že X padnedomnožiny B R,udávávzorec P(X B) = f(x)dx. Střední hodnota X je dána vzorcem EX = Střední hodnota funkce náhodné veličiny X Eg(X) = B xf(x)dx. (2.3) g(x)f(x)dx. (2.4) Nejpoužívanější charakteristika polohy náhodné veličiny je střední hodnota, existují ovšem i další charakteristiky polohy. Medián µ náhodné veličiny X je definován vztahy: P(X µ) 1 2, P(X µ) 1 2. Modus µ náhodné veličiny X je nejpravděpodobnější hodnota výsledku náhodné veličiny X. Pro spojité náhodné veličiny je modus definován vztahem µ =argmax x (f(x)).prodiskrétnínáhodnéveličinyjemodusdefinovánvztahem µ =argmax i (p i ). Rozptyl X(základní charakteristika rozptýlení náhodné veličiny) se vypočte jako VarX = E(X EX) 2 = EX 2 (EX) 2. Rozptylseněkdyoznačujesymbolem σ 2,veličině σ = VarXpakříkáme směrodatná odchylka. Věta2.1Nechť Y = a+bx.existuje-li EX,pak EY = a+bex.je-linavíc EX 2 <,pak VarY = b 2 VarX.

26 2.2. NÁHODNÉ VEKTORY Náhodné vektory Mějmenáhodnéveličiny X 1,...,X n,kteréjsoudefinovanénastejnémpravděpodobnostnímprostoru (Ω,A,P).Pak X = (X 1,...,X n ) T senazývánáhodný vektor. Distribuční funkcí náhodného vektoru rozumíme funkci F(x 1,...,x n ) = P(X 1 < x 1,...,X n < x n ). Středníhodnotanáhodnéhovektoruje EX = (EX 1,...,EX n ) T. Pro jednoduchost se nyní zabývejme pouze dvěma náhodnými veličinami X, Y. Pro libovolný, konečný počet náhodných veličin se všechny vztahy v tomto odstavci odvodí analogicky. Diskrétní případ: Sdružené rozdělení náhodného vektoru je dáno pravděpodobnostmi P(X = (x i,y j )) = p ij, i = 1,2,...,j = 1,2,... Marginální rozdělení je rozdělení pouze části vektoru. V případě dvou náhodných veličin existují pouze marginální rozdělení náhodných veličin X, Y. Zaveďme p i = p ij, p j = p ij. j i Tudíž marginální rozdělení jsou dána vztahy: P(X = x i ) = p i, P(Y = y j ) = p j, i = 1,2,...,j = 1,2,... Střední hodnota funkce náhodného vektoru je dána vzorcem Eg(X) = i,j g(x i,y j )p ij. Spojitý případ: Sdružené rozdělení náhodného vektoru je dáno hustotou f X (x,y), x,y R.

27 24 KAPITOLA 2. TEORIE PRAVDĚPODOBNOSTI Distribuční funkce F(x,y) = x y f(u, v)dudv. Hustoty marginálních rozdělení jsou dány vztahy f X (x) = f(x,y)dy, x R, f Y (y) = f(x,y)dx, y R. R R Střední hodnota funkce náhodného vektoru je dána vzorcem Eg(X) = g(x, y)f(x, y)dxdy. R R Kovariancí náhodných veličin X a Y rozumíme výraz Cov(X,Y) = E(X EX)(Y EY) = EXY EXEY. Jezřejmé,že VarX = Cov(X,X).Kovariancenáhodnýchveličin Xa Y se častooznačuje σ XY. Věta2.2Nechť Xa Y jsounáhodnéveličiny,potom Var(X +Y) = VarX +2Cov(X,Y)+VarY, pokud všechny výrazy na pravé straně existují. Řekneme, že dvě náhodné veličiny X a Y jsou nezávislé, jestliže jejich sdružená distribuční funkce je rovna součinu marginálních distribučních funkcí F X,Y (x,y) = F X (x)f Y (y). Jsou-li náhodné veličiny X a Y diskrétní, pak jsou nezávislé, jestliže pro jejich sdružené a marginální rozdělení platí vztah p ij = p i p j i,j.

28 2.3. ZÁKLADNÍ ROZDĚLENÍ NÁHODNÝCH VELIČIN 25 Jsou-li náhodné veličiny X a Y spojité, pak jsou nezávislé, jestliže jejich sdružená hustota je rovna součinu marginálních hustot f X,Y (x,y) = f X (x)f Y (y). Toto je matematická definice termínu nezávislosti, který se užívá i v běžné řeči. Věta2.3Nechť Xa Y jsounezávislénáhodnéveličinyskonečnýmistředními hodnotami. Pak platí E(XY) = (EX)(EY). Věta 2.4 Nechť X a Y jsou nezávislé náhodné veličiny s konečnými rozptyly. Pak platí Cov(X,Y) = 0. Platí-li Cov(X, Y) = 0, pak říkáme, že náhodné veličiny jsou nekorelované. Z nekorelovanosti ještě neplyne nezávislost! Ovšem předchozího tvrzení se často využívá při testech nezávislosti dvou náhodných veličin. Místo kovariance se v nich využívá její normovaný tvar, kterému říkáme korelační koeficient: ρ = Cov(X,Y) VarX VarY. Věta2.5Platí 1 ρ 1.Navíc ρ = 1,právětehdy,když Y = a + bx, b > 0, ρ = 1,právětehdy,když Y = a+bx, b < Základní rozdělení náhodných veličin Alternativní rozdělení A(p) představuje úspěch/neúspěch pokusu s pravděpodobností 0 < p < 1. To znamená, že alternativní rozdělení nabývá pouze

29 26 KAPITOLA 2. TEORIE PRAVDĚPODOBNOSTI dvouhodnot:úspěch-1,neúspěch-0. P(X = 1) = p, P(X = 0) = 1 p. EX = p, Var(X) = p(1 p). Binomické rozdělení Bi(n, p) představuje počet úspěchů v n nezávislých pokusech, přičemž pravděpodobnost úspěchu je 0 < p < 1. Jinak řečeno, binomické rozdělení je součet n nezávislých alternativních rozdělení. P(X = k) = ( ) n p k (1 p) n k, k = 0,1,...,n. k EX = np, Var(X) = np(1 p). Hypergeometrické rozdělení HGeom(n, M, N) se používá místo binomického rozdělení v experimentech, ve kterých n představuje počet tahů bez vracení(u binomického je n počet tahů s vracením) z osudí majícího N prvků, z nichž M prvků představuje při vytažení úspěch(u binomického by M/N = p) Hypergeometrické rozdělení pak představuje počet úspěchů v tomto experimentu. ( M N M ) P(X = k) = k)( n k ( N, k = 0,1,...,n. n) EX = n M N, Var(X) = nm N ( 1 M ) N n N N 1. Poissonovo rozdělení Po(λ) λ > 0 představuje počet událostí, které nastanou za určitý čas. P(X = k) = e λλk k!. EX = λ, Var(X) = λ.

30 2.3. ZÁKLADNÍ ROZDĚLENÍ NÁHODNÝCH VELIČIN 27 Geometrické rozdělení Geom(p) představuje počet neúspěšných nezávislých pokusů, které nastanou před prvním úspěchem, přičemž pravděpodobnostúspěchuje 0 < p < 1. P(X = k) = p(1 p) k. EX = 1 p 1 p, Var(X) =. p p 2 MultinomickérozděleníM(n,p 1,...,p k ) jepatrněnejdůležitějšímdiskrétním mnohorozměrným rozdělením. Mějme urnu a v ní kuličky k různých barev.nechťpravděpodobnostvytaženíkuličkyi-tébarvyjerovna p i,i= 1,2,...,k,přičemž 0 < p i < 1, p p k = 1.Ztétourny n-krátnezávisle na sobě vytáhneme po jedné kuličce. Kuličku po vytažení vždy vracíme zpětdourny.počtykuličeki-tébarvy,kterétaktobylyvybránypo ntazích označme X i.paksdruženérozdělenínáhodnýchveličin X 1,...,X k jedáno vzorcem P(X 1 = x 1,...,X k = x k ) = n! x 1!...x k! px p x k k, kde x i {0,1,...,n} i = 1,2,...,k, x x k = n. EX i = np i, Var(X i ) = np i (1 p i ) i = 1,...k, Cov(X i,x j ) = np i p j, i j. Marginálnírozdělení X i jebinomickérozděleníbi(n,p i ). Rovnoměrné rozdělení na intervalu A, B, U[A, B]. Všechny body intervalu A, B mají stejnou pravděpodobnost výskytu. f(x) = 1, pro x [A,B], f(x) = 0, jinak. B A EX = A+B, Var(X) = (B A)2.

31 28 KAPITOLA 2. TEORIE PRAVDĚPODOBNOSTI Exponenciální rozdělení Exp(λ) představuje dobu čekání do určité události, např. dobu do poruchy určitého zařízení. f(x) = 1 λ e x/λ, pro x > 0, f(x) = 0, jinak. EX = λ, Var(X) = λ Normální rozdělení a rozdělení z něj odvozená Normálnírozdělenísestředníhodnotou µarozptylem σ 2 značímen(µ,σ 2 ) a toto rozdělení má hustotu [ ] 1 f(x) = exp (x µ)2, x R. 2πσ 2 2σ Obrázek 2.1: Graf hustoty normálního rozdělení- plná čára N(0,1), čárkovaná N(0,2), tečkovaná N(0,1/2). Nejčastěji budeme pracovat s normovaným normálním rozdělením N(0,1). Jeho hustotu budeme označovat φ(x) = 1 2π e x2 /2, x R

32 2.4. NORMÁLNÍ ROZDĚLENÍ A ROZDĚLENÍ Z NĚJ ODVOZENÁ 29 a distribuční funkci budeme označovat Φ(x) = x φ(u)du. Funkce φjesudá,ztohoplyne Φ( x) = 1 Φ(x). Normované normální rozdělení je významné především následujícím tvrzením: součet nezávislých náhodných veličin, jehož střední hodnotu posuneme do0arozptylupravímena1,seblížíprozvětšujícísepočetnáhodných veličin k normovanému normálnímu rozdělení. Věta2.6CentrálnílimitnívětaNechť X 1,...,X n jeposloupnostnezávislých, stejně rozdělených náhodných veličin se střední hodnotu µ a konečným rozptylem σ 2.Pak n i=1 X i nµ nσ 2 má při n asymptoticky rozdělení N(0,1). Příklad 2.2 Jaká je pravděpodobnost, že ze 120 hodů kostkou, padne alespoň 14 šestek? Označme X i A(1/6)náhodnouveličinu,kterápředstavujeto,zdanám padne6činikolivi-témhodukostkou.pro X i platí,že EX i = 1/6, σ 2 = 5/36. Tudíž je třeba vypočíst: P ) X i 14. ( 120 i=1 Spočtěmetentopříkladnejprvepřímo.Náhodnáveličina X = 120 i=1 X imá binomické rozdělení Bi(120, 1/6). Pomocí počítače a definice binomického rozdělení spočteme, že P (X 14) = 1 13 k=0 p k = 1 13 k=0 ( 120 k ) (1/6) k (5/6) (120 k) = 0,95.

33 30 KAPITOLA 2. TEORIE PRAVDĚPODOBNOSTI Nyní spočtěme tento příklad pomocí aproximace CLV. Použití CLV spočívá v úpravě výrazu do podoby, ve které se nachází výraz asymptoticky se blížící normálnímu rozdělení. ( 120 ) P X i 14 = P Výraz U = tedy psát, že i=1 120 i=1 np nσ 2 P ( 120 ( 120 i=1 np nσ 2 ) 14 np. nσ 2 mápodleclvasymptotickynormálnírozdělenímůžeme ) ( ) X i 14 = P U / /36 i=1 Podle definice distribuční funkce normálního rozdělení máme ( 120 ) P X i 14 = 1 P (U < 1,47) = 1 Φ( 1,47). i=1 V tabulkách nebo ve statistickém softwaru najdeme hodnotu distribuční funkce Φ( 1, 47) = 0, 07. Hledaná pravděpodobnost je podle aproximace CLV rovna 0,93. Příklad 2.3 Kolikrát musíme hodit kostkou, aby pravděpodobnost, že padne alespoň 10 šestek, byla větší nebo rovna 0,95. Obdobnějakovminulémpříkladěoznačme X i A(1/6)náhodnouveličinu, kterápředstavujeto,zdanámpadne6činikolivi-témhodukostkou.pro X i platí,že EX i = 1/6, σ 2 = 5/36.Problémmůžemepřepsatnanerovnici ( n ) P X i 10 0,95, i=1 kdeneznámáje n-počethodůkostkou.použitíclvspočívávúpravěnerovnice do podoby, ve které se nachází výraz asymptoticky se blížící normálnímu rozdělení. P ( n i=1 X i n/6 5n/36 10 n/6 5n/36 ) 0,95.

34 2.4. NORMÁLNÍ ROZDĚLENÍ A ROZDĚLENÍ Z NĚJ ODVOZENÁ 31 Výraz U = n i=1 X i n/6 5n/36 mápodleclvasymptotickynormálnírozdělení. P ( U 10 n/6 5n/36 ) = 0,95 Tímto předpisem je ovšem definována kritická hodnota normálního rozdělení u(0,05) = 1,64(vizodstavec2.5).Tedy 10 n/6 5n/36 = 1,64 Tutokvadratickourovnicisnadnovyřešímeavyjdenám n = 96.Nebolimusíme hodit nejméně 96-krát kostkou, abychom měli 95% pravděpodobnost, že padne alespoň deset šestek. Pro vyjádření dalších rozdělení si zopakujme definice Gama a Beta funkce. Γ(a) = Vlastnosti: Γ(a+1) = a Γ(a), Γ( 1 2 ) = π 0 x a 1 e x dx, a > 0 B(a,b) = Γ(a) Γ(b) Γ(a+b) Pearsonovo rozdělení Nechťnáhodnéveličiny U 1, U 2,..., U k jsounezávisléamajínormovanénormální rozdělením N(0,1). Pak χ 2 k = k i=1 mátzv.rozdělení χ 2 (čtětechikvadrát)skstupnivolnostiashustotou(pro u > 0)tvaru f k (u) = U 2 i 1 Γ(k/2) 2 k/2 u(k/2) 1 e u/2, u > 0.

35 32 KAPITOLA 2. TEORIE PRAVDĚPODOBNOSTI Eχ 2 k = k, Var χ 2 k = 2k Obrázek2.2:GrafhustotyPearsonovarozdělení-plnáčára χ 2 10,čárkovaná χ 2 20,tečkovaná χ Studentovo rozdělení Mějme dvě nezávislé náhodné veličiny, a to náhodnou veličinu U s normovanýmnormálnímrozdělenímn(0,1)anáhodnouveličinu V srozdělením χ 2 s k stupni volnosti. Pak veličina T k = U V k má Studentovo rozdělení t s hustotou tvaru f k (t) = s k stupni volnosti. 1 B( 1 2, k 2 ) k (1+ t2 k ) (k+1)/2, t R ET k = 0, Var T k = k k 2, t k k Φ.

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

2 ) 4, Φ 1 (1 0,005)

2 ) 4, Φ 1 (1 0,005) Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje

Více

Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně

Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu)

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Frank Wilcoxon (1892 1965): Americký statistik a chemik Nechť X 1,..., X n je náhodný výběr ze

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

5. T e s t o v á n í h y p o t é z

5. T e s t o v á n í h y p o t é z 5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

Jana Vránová, 3. lékařská fakulta UK

Jana Vránová, 3. lékařská fakulta UK Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace

Více

Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11

Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11 Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:

Více

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak. 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

1 Rozptyl a kovariance

1 Rozptyl a kovariance Rozptyl a kovariance Nechť X je náhodná veličina s konečnou střední hodnotou EX Potom rozptyl náhodné veličiny X definujeme jako: DX E(X EX, pokud střední hodnota na pravé straně existuje Podobně jako

Více

Diskrétní náhodná veličina

Diskrétní náhodná veličina Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné

Více

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 Opakování t- vs. neparametrické Wilcoxonův jednovýběrový test Opakování

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

Náhodný vektor a jeho charakteristiky

Náhodný vektor a jeho charakteristiky Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich

Více

Náhodná veličina a rozdělení pravděpodobnosti

Náhodná veličina a rozdělení pravděpodobnosti 3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro

Více

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,

Více

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 202 Založeno na materiálech doc. Michala Kulicha Náhodný vektor často potřebujeme

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné

Více

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B

TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

Opakování. Neparametrické testy. Pořadí. Jednovýběrový Wilcoxonův test. t-testy: hypotézy o populačním průměru (střední hodnoty) předpoklad normality

Opakování. Neparametrické testy. Pořadí. Jednovýběrový Wilcoxonův test. t-testy: hypotézy o populačním průměru (střední hodnoty) předpoklad normality Opakování Opakování: Testy o střední hodnotě normálního rozdělení 1 jednovýběrový t-test 2 párový t-test 3 dvouvýběrový t-test jednovýběrový Wilcoxonův test párový Wilcoxonův test dvouvýběrový Wilcoxonův

Více

10. N á h o d n ý v e k t o r

10. N á h o d n ý v e k t o r 10. N á h o d n ý v e k t o r 10.1. Definice: Náhodný vektor. Uspořádanou n tici (X 1, X 2,..., X n ) náhodných veličin X i, 1 i n, nazýváme náhodným vektorem. Poznámka: Pro jednoduchost budeme zavádět

Více

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y) 5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz. Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud

Více

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru

Více

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé. 1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,

Více

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.) Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký, 2011 Pravděpodobnost

Více

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet? Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

NÁHODNÝ VEKTOR. 4. cvičení

NÁHODNÝ VEKTOR. 4. cvičení NÁHODNÝ VEKTOR 4. cvičení Náhodný vektor Náhodným vektorem rozumíme sloupcový vektor X=(X, X,, X n ) složený z náhodných veličin X, X,, X n, který je charakterizován sdruženým rozdělením pravděpodobnosti.

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

23. Matematická statistika

23. Matematická statistika Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,

Více

Rozdělení náhodné veličiny

Rozdělení náhodné veličiny Rozdělení náhodné veličiny Náhodná proměnná může mít - diskrétní rozdělení (nabývá jen určitých číselných hodnot) - spojité rozdělení (nabývá libovolných hodnot z určitého intervalu) Fyzikální veličiny

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,

Více

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Cvičení ze statistiky - 5. Filip Děchtěrenko

Cvičení ze statistiky - 5. Filip Děchtěrenko Cvičení ze statistiky - 5 Filip Děchtěrenko Minule bylo.. Začali jsme pravděpodobnost Klasická a statistická definice pravděpodobnosti Náhodný jev Doplněk, průnik, sjednocení Podmíněná pravděpodobnost

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých

Více

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu. 6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami

Více

Poznámky k předmětu Aplikovaná statistika, 5.téma

Poznámky k předmětu Aplikovaná statistika, 5.téma Poznámky k předmětu Aplikovaná statistika, 5.téma 5. Některá významná rozdělení A. Diskrétní rozdělení (i) Diskrétní rovnoměrné rozdělení na množině {,..., n} Náhodná veličina X, která má diskrétní rovnoměrné

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2009/2010 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

Poznámky k předmětu Aplikovaná statistika, 11. téma

Poznámky k předmětu Aplikovaná statistika, 11. téma Poznámky k předmětu Aplikovaná statistika, 11. téma Testy založené na χ 2 rozdělení V přehledu významných rozdělení jsme si uvedli, že Poissonovým rozdělením se modeluje počet událostí, které nastanou

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b

Více

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a

Více

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA I

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA I PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA I RNDr. Tomáš Mrkvička, Ph.D. 16. března 2009 Literatura [1] J. Anděl: Statistické metody, Matfyzpress, Praha 1998 [2] V. Dupač, M. Hušková: Pravděpodobnost a matematická

Více

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33 1 / 33 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA doc. RNDr. Tomáš Mrkvička, Ph.D. November 17, 2015 Bibliography [1] J. Anděl: Statistické metody, Matfyzpress, Praha 1998 [2] V. Dupač, M. Hušková: Pravděpodobnost

Více

ÚVOD. Rozdělení slouží: K přesnému popisu pravděpodobnostního chování NV Střední hodnota, rozptyl, korelace atd.

ÚVOD. Rozdělení slouží: K přesnému popisu pravděpodobnostního chování NV Střední hodnota, rozptyl, korelace atd. ROZDĚLENÍ NV ÚVOD Velké skupiny náhodných pokusů vykazují stejné pravděpodobnostní chování Mince panna/orel Výška mužů/žen NV mohou být spojeny s určitým pravděpodobnostním rozdělení (již známe jeho hustotu

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

1. Přednáška. Ing. Miroslav Šulai, MBA

1. Přednáška. Ing. Miroslav Šulai, MBA N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě

Více

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE Testy dobré shody Vedoucí diplomové práce: RNDr. PhDr. Ivo

Více

Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci

Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické

Více

Přednáška X. Testování hypotéz o kvantitativních proměnných

Přednáška X. Testování hypotéz o kvantitativních proměnných Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody

Více