Doporučená literatura: Šťastný, Remek: Autoelektrika a autoelektronika. Vlk: Elektrická zařízení motorových vozidel

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Doporučená literatura: Šťastný, Remek: Autoelektrika a autoelektronika. Vlk: Elektrická zařízení motorových vozidel"

Transkript

1 Doporučená literatura: Šťastný, Remek: Autoelektrika a autoelektronika. Vlk: Elektrická zařízení motorových vozidel Vlk: Elektronické systémy motorových vozidel 1 Vlk: Elektronické systémy motorových vozidel 2 Příručky BOSCH žlutá řada

2 Základní rozdělení elektrických zařízení vozidel 1) Zdroje elektrického proudu nezávislé (akumulátory) závislé (dynamo, alternátor) 2) Spotřebiče nutné pro činnost motoru spouštěcí a pomocná zařízení zapalování, žhavení palivové čerpadlo 3) Provozní spotřebiče zařízení usnadňující provoz a zvyšující bezpečnost (osvětlení, blinkly, stěrače, klimatizace) 4) Informační a diagnostická zařízení informace o činnosti motoru a ostatních zařízeních vozidla (chlazení mazání, dobíjení, otáčky, rychlost)

3 Elektronicky řízené systémy Z technického hlediska přináší elektronika do konstrukce vozidla následující významné přednosti: Možnost provedení řídicích a regulačních systémů s vyššími parametry. Ve srovnám s řešením mechanickým to znamená, že elektronika je schopna řídit složité závislosti mezi vstupními a výstupními veličinami s velkou rychlostí, vysokou přesností a to pro velký počet různých signálů. Stálost nastavení parametrů v průběhu používání vozidla a s tím související omezení nebo vyloučení nároků na obsluhu a provozní údržbu, vedoucí ke snížení provozních nákladů. Podstatné zvýšení spolehlivosti elektronicky řízených nebo jen kontrolovaných zařízení při vysokém stupni spolehlivosti vlastních elektronických prvků a zařízení. Hlavní oblasti uplatnění: o Řízení hnacího ústrojí (motor, převodovka, diagnostika) o Bezpečnost provozu (ABS, ASR, ESP, airbagy, kontrola bezpečné vzdálenosti) o Informace a komunikace (autorádio, palubní počítač, telefon, navigace) o Komfort (tempomat, klimatizace, centrální zamykání, el. nastavení sedadel a zrcátek, čidla couvání) Současný trend vývoje nahrazování mechanických systémů systémy X - by Wire. Drive by Wire elektronický pedál plynu Steer by Wire elektronický volant Brake by Wire elektronická brzdová soustava

4 Dynamo Dlouhou dobu byl nejvíce a téměř výhradně používaným generátorem elektrického proudu generátor stejnosměrného proudu, dynamo. Konstrukce a parametry dynama Základní schéma zapojení je na obr. 1. Jedná se o zapojení s vlastním buzením (derivačním neboli paralelním). Zapojení na obr. la se liší od zapojení na obr. lb pouze připojením budicího vinutí. Obr. 1 Zapojení budicího vinutí dynama Vlastnosti derivačních dynam znázorňují charakteristiky, jejichž typické průběhy jsou na obr. 2a,b,c. Na obrázku 2a je charakteristika vnitřní (naprázdno), tj. závislost napětí naprázdno na budicím proudu při konstantních otáčkách, na obrázku 2b je charakteristika vnější (zatěžovací), tj. závislost svorkového napětí na zatěžovacím proudu při konstantních otáčkách, na obrázku 2c je charakteristika otáčková (budicí), tj. závislost napětí naprázdno na rychlosti otáčení rotoru při konstantním odporu v obvodu buzení. Tvar charakteristik závisí na vlastnostech elektrického a magnetického obvodu. Jak je patrné ze základních charakteristik, mění se svorkové napětí dynama jak se zatížením, tak s otáčkami. U G = U i - R a I - U k U i = CΦn U G U i U k R a I C Φ n je svorkové napětí dynama, indukované napětí v rotoru, úbytek napětí mezi kartáči a komutátorem, odpor rotoru, proud procházející rotorem, konstanta stejnosměrného stroje, magnetický tok budicího vinutí, otáčky rotoru

5 Konstrukce automobilového dynama musí být pro nároky na vysokou spolehlivost co nejjednodušší. Podélný řez takovým dynamem je na obr. 3. Stator 5 je tvořen silnostěnnou trubkou, která byla stočena z ocelového plátu a svařena. Pólové nástavce 6 jsou odlity z ocelolitiny a nesou budicí vinutí 4. Rotor dynama je složen z plechů, které jsou nalisovány na hřídeli. V drážkách 1 je uloženo rotorové vinutí 7. Vývody cívek jsou připájeny k lamelám komutátoru 9. V držácích 8 jsou elektrografitové kartáče. Síla přitlačující kartáče se volí asi 5 N. Obr. 3. Podélný řez automobilovým dynamem Vnější kroužek kuličkového ložiska 2 je sevřen v zadním štítu 3 pevně, aby se nemohl axiálně posouvat. V předním štítu 11 je kuličkové ložisko 10 uloženo suvně. Malá dynama jsou dvoupólová. Dynama s výkonem nad 300 W bývají čtyřpólo-vá. Motocyklová dynama s relativně velkým průměrem a s malou délkou mívají i šest pólů. Jejich rotory jsou letmo nasazeny na prodloužený klikový hřídel motoru. Převod mezi spalovacím motorem a dynamem je určen maximálními otáčkami dynama. Bývá 1,2 až 1,7 do rychlá. Otáčky dynama jsou omezeny odstředivými silami, které působí na vinutí rotoru a komutátor a dále komutačními poměry, které se zhoršují se vzrůstajícími otáčkami. Regulační relé Jak je patrné z obr. 2, napětí dynama se mění jak se zatížením dynama, tak s otáčkami. Nezbytným doplňkem dynama je regulační relé, které obstarává tyto tři funkce: a) Reguluje napětí, tj. pracuje tak, aby všechny spotřebiče dostávaly napětí měnící se jen v úzkých mezích, i když otáčky dynama a jeho zatížení se mění ve velkém rozmezí a i když se mění teplota dynama. b) Omezuje proud dodávaný dynamem tak, aby nepřestoupil určitou maximální hodnotu, protože jinak by se mohlo poškodit vinutí dynama. c) Připojuje samočinně dynamo k akumulátoru a tím i ke všem spotřebičům,teprve když napětí U G dynama dosáhne vhodné velikosti. Klesne-li U G na hodnotu nižší než je napětí akumulátoru, odpojí regulační relé samočinně dynamo od akumulátoru a od spotřebičů. Z obr. 2a je zřejmé, že velikost napětí dynama lze měnit velikostí budicího proudu. Činnost regulátoru napětí tedy spočívá v tom, že vhodně mění velikost proudu, který protéká budicím vinutím dynama a udržuje tak napětí dynama na konstantní velikosti. Regulátor napětí je samostatným dílem doplňujícím činnost dynama na stejnosměrný proud. Jádro zvláštní cívky vedoucí proud vyrobený dynamem přitahuje kotvu spojenou s pohyblivým kontaktem zařazeným do obvodu buzení dynama. Podle okamžité hodnoty napětí vzniklého proudu se do buzení dynama zařazuje odpor, popř. při nejvyšších otáčkách dynama se buzení zcela vypíná. Kmitání pohyblivého kontaktu umožňuje velmi rychlé změny v buzení dynama a výsledné napětí dynama se udržuje v požadované toleranci. Při nejnižších otáčkách motoru je buzení dynama neomezené, ve vyšší

6 oblasti otáček pohyblivý kontakt krátkodobě zařazuje do buzení dynama odpor, čímž se výkon dynama snižuje. V oblasti nejvyšších otáček naproti tomu je buzení se zařazeným odporem v krátkých intervalech zcela vypínáno. Podstatnou částí regulačního relé jsou elektromagnety se svými kotvami a kontakty, viz obr. 4. Obr. 4. Konstrukce regulačního relé Na obrázku 5 je schéma zapojení jednostupňového regulátoru napětí, na kterém si vysvětlíme činnost regulace. Do série s budicím vinutím FG je zařazen rezistor R2, který je periodicky spojován nakrátko kontakty Kl a K2. Kontakt Kl je pevný, kontakt K2 upevněný na kotvě elektromagnetu Bl je pohyblivý. Pružina P se snaží kontakty Kl a K2 spojit. Proti ní působí síla elektromagnetu Bl, jehož napěťové vinutí je připojeno ke svorkám dynama G. Obvody jsou navrženy tak, že účinkem elektromagnetu Bl se kontakty Kl a K2 střídavě spojují a rozpojují. Při rychlém periodickém spojování a rozpojování kolísá sice napětí U G mezi hodnotami U Gmin a U Gmax, ale na žárovkách žádné kolísání světla nepozorujeme. Kmitočet vibrace bývá 50 až 500 Hz. Představme si, že napětí dosáhlo hodnoty U Gmax. Síla elektromagnetu Bl přemůže tah pružiny P, kontakty Kl a K2 se rozpojí a tím se zařadí do budicího obvodu rezistor R2. Budicí proud i b se však nezmění skokem, protože indukčnost budicího obvodu se snaží udržet i b na původní výši. Proto klesá i b a U G jen jistou rychlostí. Když U G klesne na U Gmin, přemůže tah pružiny P přítažnou sílu elektromagnetu Bl a kontakty Kl a K2 spojí rezistor R2 nakrátko. Budicí proud i b a napětí U G začne stoupat a když dostoupí U Gmax, celý děj se opakuje znovu. Čas po který jsou kontakty Kl a K2 spojeny, a čas, po který jsou rozpojeny, se samočinně nařizuje tak, že napětí U G je i při velkých změnách otáček a zatížení dynama téměř stálé. Obr. 5 Schéma zapojení jednostupňového regulátoru napětí a průběh budicího proudu při regulaci

7 Na obr. 6 je znázorněné reálné zapojení regulačního relé, které obsahuje regulátor napětí (cívka B1), omezovač proudu (cívka B2) a zpětný spínač (cívka B3). Obr. 6. Schéma zapojení trojcívkového regulačního relé Všechny regulační cívky pracují na stejném principu - jakmile přesáhne sledovaná veličina (napětí nebo proud) mezní hodnotu, je proveden zásah do budicího obvodu a hlídaná veličina se vrátí do požadovaných mezí. Polovodičová regulace dynam Polovodičové regulátory u dynam se vyskytují ojediněle. Snad proto, že v době, kdy se začaly polovodičové součástky masově vyrábět a jejich cena začala být přijatelná, začal se v motorových vozidlech používat alternátor s usměrňovačem. Princip bezkontaktního polovodičového regulátoru je na obr. 7. Prvkem, který zde udržuje napětí na žádané výši, je Zenerova dioda ZD, která pracuje v závěrném směru. Stoupne- li napětí nad hodnotu závěrného napětí U B začne diodou procházet proud v závěrném směru, jehož velikost je omezena odporem v obvodu. Zenerova dioda je čidlo, podle kterého lze nastavit regulátor na požadovanou hodnotu provozního napětí. Tranzistory v polovodičovém regulátoru pracují ve spínacím režimu. To znamená, že buď je tranzistor zcela zavřen (má velký odpor - vypnuto), nebo je zcela otevřen, je v saturaci (má velmi malý odpor - zapnuto). Tranzistor pracující ve spínacím režimu pracuje jako mechanický kontakt, ale bez nežádoucích vlastností, který každý kontaktní systém má (jiskření, kmitání, opalování apod.). Obr. 7 Schéma zapojení polovodičového regulátoru dynama Pokud je výkonový tranzistor T1 otevřen, jde budicím vinutím FG jako budicí proud kolektorový proud I C1 cestou: + pól dynama, emitor T1, kolektor T1, vinutí FG a - pól dynama. Jakmile stoupne napětí U G dynama na U Gmax, stoupne i napětí U z na Zenerově diodě tak, že tato dioda

8 začne propouštět proud, jehož obvod je: + pól, emitor a báze tranzistoru T2, Zenerova dioda, rezistor R6, - pól. Tímto proudem I E2 se otevře tranzistor T2 a stane se vodivým. Napětí U EB1 klesne tak, že se uzavře tranzistor T1. Přestane procházet kolektorový proud I C1. Budicí proud i b, jehož obvod se uzavírá přes nulovou diodu Dl, začne klesat. Při napětí U Gmin přestane Zenerova dioda ZD propouštět proud. Přestane procházet emitorový proud I E2, tranzistor T2 se uzavře a stane se nevodivým. Vznikne napětí U EB1 a proud I E1 otevře tranzistor T1. Začne stoupat i b a U G a celý děj se znovu opakuje. Regulace napětí v závislosti na odebíraném proudu se dosáhne využitím spádu napětí IR 4 na rezistoru R4. Toto napětí též napájí přes rezistor R3 emitorový obvod tranzistoru T2. Stoupá-li zátěžný proud I, otevírá se více tranzistor T2, zavírá se tranzistor T1 a tím se zmenšuje budicí proud I b. Zpětný spínač je nahrazen diodou D2, která propouští proud pouze směrem z dynama do akumulátoru. Alternátor Jako primárního zdroje proudu se v nynější době používá téměř výhradně generátorů střídavého proudu, alternátorů. a) Alternátor s usměrňovačem lze navrhnout tak, že akumulátor je nabíjen i při běhu naprázdno spalovacího motoru nebo dokonce při ještě menších otáčkách. To je důležitá výhoda pro dnešní velkoměstský provoz, kdy vozidlo 25 % času prostojí na křižovatkách, jede většinou pomalu a nejvýše asi 40 % svého času může jet rychlostí nad 55 km/h. Život akumulátoru nabíjeného alternátorem s usměrňovačem je delší než akumulátoru nabíjeného dynamem. Hlavní příčinou, proč alternátor může nabíjet při nižších otáčkách motoru než dynamo je, že alternátor lze navrhnout na vyšší obvodové rychlosti rotoru a zpřevodovat ho do rychla, kdežto u dynama jsme omezeni ohledy na jakost komutace a odstředivé síly. Alternátor je též buzen přímo z akumulátoru ihned po zapnutí zapalování. Na obrázku 8 je porovnána charakteristika dynama a alternátoru přibližně stejného výkonu. Dynamo nedává při otáčkách l/min ještě výkon, kdežto alternátor dává již 13 A. b) Téměř žádná údržba. Většina alternátorů má sice kroužky a kartáče, ale těmi se přivádí do rotoru jen slabý budicí proud, takže jejich opotřebení je velmi malé. c) Jednodušší regulace. Protože usměrňovač propouští proud jen jedním směrem, odpadá zpětný spínač. Odpadá však i omezovač proudu. Proud alternátoru je omezen reaktancí vinutí statoru a nemůže překročit jisté hodnoty. Reaktance X G = 2π (pn/60)l statorového vinutí, tj. odpor pro průchod střídavého proudu se mění lineárně s otáčkami a tak samočinně, bez jakéhokoliv regulačního zásahu, s rostoucími otáčkami roste nejen indukované vnitřní napětí, ale i vnitřní impedance (zdánlivý odpor) alternátoru. d) Vetší provozní spolehlivost. e) Menší hmotnost a rozměry. \jz& volit vyšší otáčky, odpadá komutátor. Konstrukce je jednodušší. Průměr alternátoru je sice větší než průměr dynama, avšak celkově je menší. f) Protože odpadá jiskření na komutátoru, je odrušení jednodušší. g) Souprava alternátor - usměrňovač dává proud stále stejné polarity nezávisle na smyslu otáčení, kdežto dynamo se může přepólovat. h) Jistou nevýhodou je vznik přepětí při náhlém odlehčení alternátoru, není-li připojen akumulátor. Pak dojde k nebezpečnému zvýšení inverzního napětí, poněvadž pracovní vinutí alternátoru má značnou indukčnost Obr. 8 Porovnání charakteristik dynama a alternátoru

9 Alternátor s budicím vinutím U větších motorových vozidel, kde je potřebný větší výkon alternátoru, se používají alternátory se stejnosměrným buzením, u nichž je nezbytná regulace napětí. Používá se tu většinou alternátorů s tzv. drápkovým rotorem, jehož schéma je na obr. 9. Obr. 9 Alternátor s drápkovým rotorem Stator je stejný jako stator vícepólového asynchronního motoru. V drážkách statorového paketu 1 složeného z dynamových plechů, izolovaných na jedné straně, je uloženo trojfázové vinutí 2 pro 2p pólů. Na rotoru jsou dvě lisované nebo frézované hvězdice 4, 8 z měkké oceli. Každá z nich má na vnějším obvodě P drápkových pólů (např. 6). Do mezery mezi drápkovými póly jedné hvězdice zasahují drápkové póly druhé hvězdice, takže ve vzduchové mezeře působí 2p drápkových pólů. Budicí cívka 9 prstencového tvaru, která je napájena přes kroužky 12, budí všechny póly tak, že na obvodě se severní a jižní póly střídají. Hvězdice 4 nese jen samé severní póly a hvězdice 8 jen samé jižní póly. Magnetický tok vycházející např. ze severního pólu projde vzduchovou mezerou do statoru, vyvolá v něm magnetický tok a vrací se přes vzduchovou mezeru do jižního pólu statoru. Drápkové póly mají lichoběžníkový tvar, aby se při otáčení měnil magnetický tok pozvolna a indukované napětí bylo blízké sinusovce. Usměrňovač Můstkové zapojení usměrňovače podle obr. 10 využívá obou půlvln napětí alternátoru, jehož vinutí je pak nejlépe využito. Na obrázku 11 jsou zakresleny zjednodušené průběhy proudů. V můstkovém zapojení jde proud vždy jednou diodou anodové skupiny (diody 1, 2, 3) a jednou diodou katodové skupiny (diody 4, 5, 6). Komutují (předávají si proud) vždy mezi sebou diody stejné skupiny. Například v bodě A přestává procházet proud diodou 1 a začíná procházet diodou 2. V bodě B přestává proud procházet diodou 6 a

10 začíná procházet diodou 4. Zanedbáme-li reaktanci alternátoru, nastává komutace okamžitě. Obr. 10 Můstkové zapojení třífázového usměrňovače Obr. 11 Průběh napětí a proudů u třífázového můstkového usměrňovače Horní tři diody D1, D2 a D3 tvoří tzv. trojpulzní usměrňovač, který usměrňuje kladná napětí z alternátoru (horní obálka V L ). Dolní diody D4, D5 a D6 pak usměrňují záporná napětí (spodní obálka V K ). Výsledkem je tzv. šestipulzní usměrněné napětí, jehož okamžitou velikost dostaneme jako rozdíl obou napětí V L - V K. Ze tří kladných fázových napětí a tří záporných vznikne ve výstupním

11 usměrněném napětí šest pulzů ( kopečků ) za jednu periodu. Velikost usměrněného napětí je možno odvodit ve tvaru U = 1,35 U = 2,34 1S U 1f kde U je střední hodnota usměrněného napětí, U 1S je sdružené napětí alternátoru a U 1f je fázové napětí alternátoru. Regulace alternátoru U všech větších vozidel, kde se vyskytují různé spotřebiče, se mění zatížení alternátoru podle jejich připojení. Zejména tam, kde je ve vozidle akumulátorová baterie, musí být alternátor vybaven regulátorem. Regulace alternátoru je podstatně jednodušší než regulace dynama. Odpadá zde regulace proudu, protože alternátor je schopen dávat proud jen určité velikosti a rovněž odpadá zpětný spínač, protože usměrňovač propouští proud jen jedním směrem z vinutí alternátoru ke spotřebičům a akumulátorové baterii. Proud, který propouštějí usměrňovací diody v závěrném směru, je nepatrný a můžeme ho zanedbat. Regulátor pro alternátor má tedy tu funkci, že udržuje výstupní napětí alternátoru na konstantní velikosti. Regulace napětí alternátoru, buzeného stejnosměrným proudem, je na zcela stejném principu jako napěťová regulace dynam. Regulační relé mění proud do budicího vinutí alternátoru tak, že při různých otáčkách motoru i při různém odběru proudu zůstává napětí na stejné velikosti. Nejrozšířenějšími regulátory byly donedávna regulátory vibrační, které jsou v dnešní době vytlačovány modernějšími a přesněji pracujícími regulátory polovodičovými. Obr. 12. Schéma zapojení třífázového devítidiodového alternátoru s vibračním regulátorem Na obrázku 12 je schéma zapojení tzv. devítidiodového alternátoru. Pro buzení a vibrační regulátor napětí je použito odděleného usměrňovače, sestávajícího z menších diod D7, D8, D9, které s diodami D4, D5, D6 tvoří trojfázový můstek. Alternátor se při malých otáčkách nemůže sám nabudit, proto je budicí obvod při nízkých otáčkách vždy napájen z akumulátorové baterie. Předbuzení je proudem z akumulátorové baterie BA přes spínač V, přes kontrolní žárovku H a k ní paralelně připojený rezistor R3, sepnuté kontakty Kl, K2 ke svorce M a přes kroužky do budicího vinutí. Polovodičová regulace alternátoru V posledních letech, kdy výrazně poklesla cena polovodičových součástí, používají výrobci motorových vozidel téměř výhradně regulátory polovodičové. Při výrobě velikých sérií je cena polovodičového regulátoru srovnatelná či dokonce nižší než cena regulátoru vibračního. Velkou výhodou polovodičového regulátoru je velmi malý zástavbový prostor. Nejnovější regulátory se vyrábějí technologií integrovaných obvodů a tvoří obvykle jeden celek s držákem kartáčů alternátoru (obr. 13). Princip činnosti polovodičového regulátoru je patrný z obr. 14. Referenčním prvkem je opět Zenerova dioda ZD, jejíž anoda je připojena k odporovému děliči, tvořenému rezistory R3, R6 a odporovým trimrem R4, kterým je možné nařizovat výši žádaného napětí. Paralelně k rezistoru R6 je připojen

12 termistor R5. Klesne-li teplota, stoupne odpor termistoru a zvýší se potenciál bodu C, takže je třeba vyšší napětí, aby se Zenerova dioda ZD otevřela. Nareguluje se tedy vyšší napětí alternátoru. Jinak působí tento regulátor obdobně jako bezkontaktní regulátory, které jsme poznali u dynam. Je-li napětí malé, nepropouští ZD proud, na rezistoru R2 nevzniká žádný napěťový spád. Emitorový obvod tranzistoru T2 není napájen. Prakticky si můžeme představit, že T2 je zavřen a přívody k němu jsou rozpojeny. Emitorem hlavního spínacího tranzistoru T1 jde proud a to cestou: přípojnice +, emitor T1, báze T1, rezistor Rl, záporný pól. Tranzistor T1 se otevře a jeho kolektorový proud i C1 jde přes kartáčky a kroužky do budicího vinutí FG alternátoru, jehož napětí stoupá. Při jisté velikosti napětí U_ je rozdíl mezi potenciálem přípojnice + a bodem C tak veliký, že se otevře Zenerova dioda ZD. Začne jí procházet proud, jehož cesta je: přípojnice +, rezistor R2, Zenerova dioda ZD, rezistory R4 R6 a termistor R5. Na rezistoru R2 vznikne napětí, které otevře tranzistor T2. Tím se přiblíží potenciál bodu A k potenciálu přípojnice + a klesne proud obvodu emitor-báze tranzistoru T1, který se uzavře. Poněvadž u tohoto zapojení je regulátor a budicí obvod napájen z hlavního usměrňovače, je nutné, aby regulátor byl od akumulátoru odělen diodou D3. Ta zamezí tomu, aby při nepracujícím alternátoru byl napájen regulační a budicí obvod z akumulátoru. Předbuzení alternátoru je zajištěno přes kontrolní žárovku dobíjení a k ní paralelně připojený rezistor R7. Obr. 13 Polovodičové regulátory alternátoru Obr. 14 Schéma zapojení polovodičového regulátoru

13 Alternátor s permanentním buzením Nejjednodušší a nejspolehlivější zdroje proudu pro motorová vozidla jsou alternátory, kde magnetický tok, který je nutný ke vzniku elektrického proudu, je vytvářen stálými, tj. permanentními magnety. Dnešní technologie výroby těchto magnetů je na takové úrovni, že se vyrábějí materiály, které vytvářejí značně silný a s časem se neměnící magnetický tok. Alternátory s permanentními magnety bývají nejčastěji uspořádány tak, že v magnetickém obvodu statoru je uloženo pracovní vinutí, ze kterého se odebírá potřebný proud pro provoz vozidla a na rotoru je upevněno několik párů permanentních magnetů tak, že se vždy střídá severní a jižní pól magnetu. Takovéto uspořádání je např. u provedení alternátoru s vnějším rotorem. Vnější rotor má velký moment setrvačnosti a působí u dvoudobých motorů jako setrvačník pro plynulejší chod motoru. Tyto alternátory tvoří obvykle jeden celek s magnetovým zapalováním. Alternátory s buzením permanentním magnetem mají nespornou výhodu v tom, že nevyžadují regulaci, avšak jejich použití je možné pouze pro menší vozidla s málo proměnnou spotřebou. U jednostopých vozidel se v provozu vyskytují v podstatě jen dvě velikosti zátěže. Při jízdě v noci pracuje alternátor jen pro osvětlení, ve dne přes tlumivku a usměrňovač dobíjí akumulátor, pokud na vozidle je. Nejnovější způsob regulace u alternátorů s permanentním buzením pro větší výkony je regulace řízenými usměrňovači. Řízený usměrňovač pracuje podobně jako usměrňovač diodový, ale místo diod je sestaven s tyristorů, což je součástka, jejíž okamžik sepnutí je možno řídit. Obr. 15 Schéma zapojení třífázového alternátoru s permanentním magnetem

14 Startovací baterie Elektrický proud vzniká přeměnou některé formy energie na energii elektrickou. U motorových vozidel se jedná o přeměnu části mechanické energie produkované motorem prostřednictvím zařízení zvaného alternátor. Při funkci elektrické sítě rozlišujeme dva základní stavy: 1. Motor je v chodu a alternátor dobíjí baterii a napájí elektrickým proudem zapalování a všechny zapnuté elektrické spotřebiče. Proud z alternátoru rozděluje regulátor napětí na dobíječi, který proudí do baterie a na napájecí, který proudí do ostatních spotřebičů. 2. Motor, a tedy alternátor, stojí. Regulátor napětí uzavírá cestu k alternátoru a vede proud z baterie do zapnutých elektrospotřebičů. Vzhledem k tomu, že elektrickou energii je třeba akumulovat, používá se u motorových vozidel proud stejnosměrný. Jmenovitá napětí jsou stanovena na hodnoty 6 V (u malých motocyklů a skútrů), 12 V a 24 V. Typickým znakem elektrické instalace na motorovém vozidle je připojení spotřebičů ke zdroji jedním izolovaným vodičem, druhý vodič je nahrazen kovovou kostrou vozidla. Tím se celá instalace zjednoduší a navíc se sníží cena i hmotnost. V současnosti době bývá s kostrou vozidla spojen záporný pól zdrojů. Pro akumulátory se používá rovněž názvu akumulátorová baterie nebo startovací baterie. Akumulátor, jak již napovídá jeho název, je zásobníkem elektrické energie ve vozidle. Základními technickými parametry akumulátoru jsou jeho napětí, kapacita a hmotnost. Pokud při nízkých otáčkách motoru nestačí k napájení elektrické sítě výkon alternátoru (např. je zapnuto mnoho silných spotřebičů), musí alternátoru pomáhat baterie. Z tohoto důvodu při poklesu napětí zapíná regulátor napětí do sítě i baterii. Regulátor zapíná baterii i v případě, kdy stojí motor a je zapnuté zapalování, světla, houkačka apod. Nejvíce se využívá baterie při startování motoru, protože musí napájet startér, který je největším spotřebičem v motorovém vozidle. Ze všech provozů, ve kterých se akumulátory uplatňují, jsou při použití v motorovém vozidle nejtvrdší podmínky. Jsou to velké spouštěcí proudy, velká rozmezí provozních teplot, otřesy a rychlé střídání nabíjení a vybíjení, pravděpodobnost neodborné údržby atd. Až na malé výjimky se používá vesměs akumulátorů olověných, jejichž elektrolytem je zředěná kyselina sírová. Alkalické NiCd (niklokadmiové akumulátory) mají sice až sedmkrát delší dobu života než olověné akumulátory, jsou odolné proti otřesům, zkratům, přebíjení i úplnému vybití, ale jsou mnohonásobně dražší než olověné akumulátory. Uplatní se jen u některých zvláštních, např. speciálních vozidel, která musí být stále v pohotovosti, i když jsou delší dobu mimo provoz. Nevýhodou je též velký rozdíl mezi nabíjecím napětím a vybíjecím napětím a potřeba časté kontroly elektrolytu, kterým je hydroxid draselný KOH. Stříbrozinkové akumulátory mají kladné desky z porézního sintrovaného stříbra a záporné ze sloučenin zinku. Elektrolytem je vodný roztok hydroxidu draselného. Stříbrozinkové akumulátory jsou o 70 % lehčí a objemově asi o 60 % menší než olověné akumulátory, ale jsou drahé a mají krátkou dobu života. Uplatňují se jen u zvláštních závodních strojů. Pro motorová vozidla se používají převážně olověné akumulátory s kyselým elektrolytem. Každý článek (obr. 1) tvoří soustava mřížkovaných olověných desek záporné a kladné polarity, vzájemně od sebe oddělených tzv. separátory, které zamezují přímému dotyku sousedních desek. Desky jsou v nádobě z plastické hmoty nebo tvrzené pryže ponořeny do zředěné kyseliny sírové, která tvoří elektrolyt. Jeden článek má napětí cca 2 V, takže pro 12 V baterii jich musíme spojit 6 do série. Elektrody jsou provedeny jako mřížky odlité z olova, legovaného různými přísadami, zejména antimonem (tvrdé olovo). Přísady slouží rovněž pro zvýšení chemické odolnosti a vazby s činnou hmotou. Mřížky slouží jako nosiče činné hmoty. Základní tvar je zvolen tak, aby činný materiál byl pevně zachycen s co nejlepším elektrickým stykem a aby neodpadával při provozních vibracích a při pnutí, které vzniká objemovými změnami činných hmot při nabíjení a vybíjení. Desky jsou kladné a

15 záporné. Jednotlivé desky jsou vzájemně spojeny pólovými můstky. Kladná a záporná sada jsou do sebe zasunuty tak, že kladné a záporné desky se vzájemně střídají. Vnější desky jsou vždy záporné. Činnými hmotami jsou oxid olovičitý PbO 2 na kladné elektrodě a houbovité olovo Pb na záporné elektrodě. Elektrolytem je kyselina sírová zředěná vodou. Vlastnosti separátorů mají velký vliv na vlastnosti akumulátoru, zvláště na jeho vlastnosti při nízkých teplotách. Separátory nesmějí bránit snadnému průchodu iontů, nesmějí se dotýkat desek v příliš velké ploše, aby byl ponechán prostor pro elektrolyt a snadno se vyrovnávala jeho hustota. Separátory musí odolávat velmi agresivnímu prostředí. Zhotovují se ze skelné tkaniny a nových hmot v různých kombinacích a provedeních. Značné zlepšení vlastností akumulátorů při nízkých teplotách umožnily zejména mikroporézní separátory z nových hmot a separátory ze speciálních papírů. Kyselina sírová H 2 SO 4 se pro plnění akumulátorů ředí na předepsanou hustotu destilovanou vodou. V našich klimatických podmínkách se předpisuje měrná hustota 1,26 až 1,285 g/cm. Použije-li se elektrolyt větší hustoty, je svorkové napětí i kapacita akumulátoru větší, avšak při překročení horní meze 1,285 g/cm 3 je nebezpečí napadání desek kyselinou. Obr. 1 Konstrukce jednoho článku akumulátoru 1 kladná mřížka 2 kladná elektroda 3 obálkový separátor 4 záporná mřížka 5 záporná elektroda 6 pólový můstek 7 pólový vývod 8 článek

16 Chemické pochody v olověném akumulátoru Ve vodném roztoku kyseliny sírové H 2 SO 4 jsou některé molekuly disociovány na kation vodíku 2H a anion kyseliny sírové SO 4. Kation je atom, který ztratil ze své valenční sféry jeden nebo několik elektronů a je tedy kladně nabitým iontem. Anion připoutal k sobě několik volných elektronů a je tedy záporně nabitým iontem. Tyto ionty jsou pohyblivé a mohou být nositeli proudu. Při vybíjení jde uvnitř akumulátoru proud od záporné elektrody ku kladné elektrodě. Kationty vodíku migrují ke kladné elektrodě, kde spolupůsobením kyseliny sírové vzniká síran olovnatý. PbO 2 + 2H + + H 2 SO 4 ionty kyseliny sírové migrují k záporné elektrodě Pb + SO 4 2- PbSO H 2 O +2(+náboje) PbSO (náboje) Z rovnic vidíme, že se při vybíjení vylučuje voda a elektrolyt řídne. Na deskách se usazuje síran olovnatý PbSO 4 a postupně je ucpává. Při nabíjení jde elektrolytem proud od kladné elektrody k záporné elektrodě a nese kationty vodíku. Na záporné elektrodě probíhá pochod: PbSO 4 + 2H (-náboj) Pb + H 2 SO 4 Anionty kyseliny sírové migrují od záporné elektrody ke kladné, na níž probíhá při současném působení vody chemická reakce: PbSO 4 + SO H 2 O + 2(+ náboj) Pb O H 2 SO 4 Původní výchozí látka, síran olovnatý PbSO 4, se tedy nabíjením mění na kladné desce zpět na oxid olovičitý PbO 2 a na záporné desce na houbovité olovo Pb. Hustota elektrolytu stoupá, protože se při chemickém pochodu vytváří kyselina sírová H 2 SO 4. Elektrická energie se spotřebovává na převedení nábojů proti elektrochemickému potenciálu a na přeměnu molekul síranu olovnatého na molekuly Pb a PbO 2. Popsané pochody probíhají jen tak dlouho, dokud je k dispozici dostatek činné hmoty na tuto přeměnu. Když už se na kladné desce všechen síran olovnatý přeměnil na oxid olovičitý PbO 2 a na záporné desce se všechen proměnil na olovo Pb a když by se nabitý článek dále zbytečně nabíjel, probíhaly by pochody: Kladná elektroda: 2 H 2 O + 2 SO 4 + 4(+ náboje) 2 H 2 SO 4 + O 2 Záporná elektroda: 4 H + 4 (- náboje) 2 H 2 Výsledná reakce: 2 H 2 SO H 2 O 2 H 2 SO 4 + O 2 + 2H 2 Za ionty, které jsou disociovány z molekuly kyseliny sírové, vzniká na kladné elektrodě zase molekula kyseliny sírové, takže hustota kyseliny se už nemění. Na kladné elektrodě vzniká kyslík, na záporné vodík, čili elektrolyt ubývá. Přebíjení tedy není vhodné. Akumulátor je plně nabit, když: 1. hustota elektrolytu dosáhla 1,28 g/cm 3 a po dvě hodiny se již nemění, 2. když při nabíjení dosáhlo napětí 2,6 až 2,7 V pro článek a po dvě hodiny již nestoupá, 3. když všechny články plynují. Za několik hodin po odpojení od nabíječe klesne napětí na klidovou hodnotu 2,0 až 2,15 V na článek. Charakteristické hodnoty akumulátoru Kapacita akumulátoru je elektrický náboj (množství) v ampérhodinách, který může akumulátor za určitých podmínek vydat. Není to hodnota stálá, mění se s podmínkami. Z hlediska provozních vlastností je důležitá především její závislost na velikosti vybíjecího proudu a na teplotě.

17 Jmenovitá kapacita je srovnávací údaj pro hodnocení akumulátorů za stejných podmínek. Bývá udávána pro vybití plně nabitého akumulátoru při stanovených podmínkách za deset nebo dvacet hodin. V souhlase s mezinárodní dohodou se nejčastěji udává 20-hodinová kapacita a předpisuje ji i naše norma. Pro určitý typ akumulátoru udává výrobce jmenovitou kapacitu nebo konstruuje akumulátor tak, aby jeho kapacita byla v souhlase s odstupňováním podle norem. Jmenovitá dvacetihodinová kapacita C 20 se podle naší normy vztahuje na vybíjení při teplotě elektrolytu +25 C proudem 0,05 C 20 (A) do snížení napětí na 1,75 V na článek. Skutečná dvacetihodinová kapacita akumulátoru se určí tak, že akumulátor nabitý předepsaným způsobem se vybíjí bez přerušení proudem 0,05 C 20, dokud se svorkové napětí při tomto zatížení nezmenší u šestičlánkového (12 V) na 10,5 V. Skutečná kapacita akumulátoru je pak součin vybíjecího proudu a doby vybíjení. Vnitřní odpor akumulátoru. Složkami vnitřního odporu akumulátoru jsou odpor činné hmoty, odpor jejího spojení s mřížkou, vlastnosti přechodové vrstvy a separátorů. Značný vliv na vnitřní odpor má hustota a teplota elektrolytu. Počet a vlastnosti jednotlivých složek způsobují, že vnitřní odpor akumulátoru je velmi proměnnou veličinou, kterou není možno obecně vyjádřit stálým činitelem ani jednoduchým vztahem. Pro zjištění odporu nebo charakteristiky se měří napětí při dvou různých velikostech proudu a z naměřených hodnot se buď přímo nakreslí charakteristika nebo se vypočítá odpor: Akumulátor v provozu U R = I 1 Doba života akumulátoru závisí na provozních podmínkách. Pro ověřovací laboratorní zkoušky udává norma kolik úplných cyklů nabití a vybití musí akumulátor za stanovených podmínek vydržet do poklesu na 40 % jmenovité kapacity. Pro různé druhy akumulátorů mohou být požadavky odlišné, u akumulátorů pro vozidla se požaduje nejméně 15O.cyklů. Silné vybíjení a nedostatečné nabíjení zkracuje dobu života. Je-li akumulátor dlouhodobě nedostatečně nabíjen, nebo je-li nenabitý delší dobu mimo provoz, dochází k sulfataci desek. Desky se pokrývají bílými skvrnami, tvrdnou a bortí se. Vzniká to tím, že rozpustnost síranu v kyselině se mění s teplotou. Síran, který při zvětšení rozpustnosti při běžném kolísání teploty přejde z činné hmoty do roztoku, se nevrací při snížení rozpustnosti na původní místa a vytváří krystaly. Kompaktní síran má podstatně zmenšený činný povrch, a proto jsou reakce pomalejší, mimoto narůstající krystaly uzavírají póry a trhají činnou hmotu. Rozpustnost síranu v kyselině je malá, takže tyto pochody jsou poměrně pomalé, jsou však tím rychlejší, čím více je akumulátor vybit a čím více síranu je na činném povrchu. Není-li sulfatace příliš pokročilá, je možno vrstvu kompaktního síranu odstranit dlouhodobým nabíjením malým proudem ve zředěném elektrolytu a s výměnami elektrolytu. Pokročilou sulfataci není možno odstranit. Je nutné si uvědomit, že i dobrý akumulátor se sám vybíjí, i když je v klidu. Každý den ztrácí přibližně 1 % své kapacity. Takže zcela nabitý akumulátor, který je ponechán v klidu, je přibližně za 3 měsíce vybitý. U nových bezúdržbových akumulátorů udává výrobce samovolnou ztrátu kapacity jen 0,3 % za 24 hodin. Dobře seřízená nabíjecí soustava vozidla udržuje akumulátor blízko plně nabitému stavu. Systematické přebíjení i nedobíjení akumulátoru škodí a zkracuje délku jeho života. 2 U I 1 2

18 SPOUŠTĚCÍ ZAŘÍZENÍ Pod tímto souhrnným pojmem se rozumí nejen vlastní elektrické spouštěče sloužící k přímému mechanickému uvedení motoru do pohybu, ale i pomocná spouštěcí zařízení, jejichž použití je pro spuštění motoru vhodné nebo nezbytně nutné. Aby mohl spalovací motor sám pracovat, musí se roztočit a uvést do stavu, kdy sám svým spalovacím dějem překonává všechny odpory, které působí proti jeho činnosti. Odpory vznikají třením, momenty potřebnými k pohonu pomocných zařízení, ventilačními ztrátami, působením sil souvisejících s pracovním cyklem a vlivem setrvačných sil při zrychlování U zážehového motoru je třeba dosáhnout otáček 40 až 150 1/min. U vznětového motoru s nepřímým vstřikem (komůrkového), který má žhavicí svíčky, je třeba dosáhnout otáček 80 až 200 1/min. Při stejném objemu válců vyžaduje vznětový motor spouštěč o větším výkonu než zážehový motor. Pro motorová vozidla jsou nejvhodnějšími elektrické spouštěče hlavně pro svou pohotovost, snadnou ovladatelnost, malé rozměry a i proto, že akumulátor jako zásobník energie slouží i pro ostatní elektrickou výstroj. Obvykle se používá jako spouštěč elektrický motor s ozubeným pastorkem, jímž zabírá do ozubeného věnce na setrvačníku motoru. Z hlediska elektrotechniky je spouštěč jednoduchý stejnosměrný sériový motor s velkým momentem při malých otáčkách. Po mechanické stránce je však zařízením, které musí splňovat mnoho protikladných požadavků: 1. V klidu musí být pastorek bezpečně zajištěn mimo záběr s ozubeným věncem setrvačníku. 2. Při zasouvání do záběru musí být zajištěno, aby se zasunutí podařilo i tehdy, přijde-li zub pastorku proti zubu věnce. 3. Dokud pastorek není v dostatečném záběru, nesmí být točivý moment spouštěče tak velký, že by došlo k poškození zubů. 4. V plném záběru musí být mechanismus schopen přenést celý točivý moment, přitom však musí být chráněn před přetížením při zpětném zážehu spalovacího motoru. 5. Pastorek musí zůstat v záběru tak dlouho, dokud řidič spojení nezruší nebo dokud motor spolehlivě nepracuje. 6. Je-li ozubení v záběru a rozběhne-li se motor, musí se spojení ozubení s motorem spouštěče samočinně uvolnit. 7. Přestane-li řidič působit na ovládací ústrojí, musí se spouštěcí obvod rozpojit, pastorek se musí vrátit do klidové polohy a co nejdříve zastavit, aby spouštěč byl připraven pro další použití. Výkony spouštěčů bývají od 0,22 do 25 kw. VLASTNOSTI SPOUŠTĚCÍ SOUPRAVY K roztočení spalovacího motoru na potřebné otáčky se nejlépe hodí stejnosměrný sériový motor. To je motor, který má zapojeno budicí vinutí do série s rotorem. Výkon spouštěče závisí nejen na charakteristice samotného spouštěče, ale i na vlastnostech akumulátoru a propojovacího vedení. Náhradní schéma pracovní soustavy je na obr. 1.

19 Obr. 1 Náhradní schéma spouštěcí soustavy R S je odpor spínače, R P - odpor přívodů, R M - odpor motoru, R B - odpor baterie, U M - napětí motoru, U B0 - napětí baterie Odebírá-li spouštěč v určitém okamžiku proud i, je na jeho svorkách napětí: U M = U B0 - (R S + R P + R B ) i Je tedy zřejmé, že proud do startéru bude tím nižší, čím vyšší budou všechny odpory v obvodu. Je tedy nutné celý obvod startéru udržovat v dobrém stavu. Pro uživatele vozidla to znamená především starostlivost o akumulátor a jeho dokonalé připojení (dobré utažení svorek a jejich čistota). Obr. 2 Závislost momentu, výkonu a otáček na proudu spouštěče Průběh momentu spouštěče má parabolický průběh. Při nulových otáčkách (a současně nejvyšším proudu) dosahuje nejvyšší hodnoty a po rozběhu klesá. Výkon spouštěče má parabolický průběh s maximem, které nastává při proudu I K /2. I K je proud, který teče do stojícího spouštěče ( na obr. 1 je I K cca 320 A). Tytéž veličiny v závislosti na otáčkách jsou na obr. 3 Obr. 3 Závislost momentu, výkonu a proudu na otáčkách spouštěče

20 KONSTRUKCE SPOUŠTĚCE Z požadavků, kladených na spouštěč je patrné, že spojení jednoduchého stejnosměrného motoru s klikovým hřídelem spalovacího motoru bude vyžadovat složitější mechanismus. Z množství různých řešení, která se v průběhu postupného vývoje elektrických spouštěčů objevila, zůstaly v širším používání tři základní soustavy se zasouváním pastorku do ozubeného věnce ve směru osy: 1. systém Bendix, 2. posuvná kotva, 3. posuvný pastorek V malém rozsahu se používají jako dvouúčelové stroje i dynamospouštěče, zpravidla jsou spojeny bez převodů přímo s klikovým hřídelem motoru. Systém Bendix K zasunutí pastorku do záběru u spouštěčů soustavy Bendix (obr. 4) se využívá setrvačnosti samotného pastorku. Pastorek 1 má na vnitřním průměru plochý nebo lichoběžníkový závit a v rozmezí dvou dorazů je lehce pohyblivý po šroubovém závitu pouzdra 2 poháněného spouštěcím motorem pomocí unášeče 3, který tlumí nárazy. Při zapojení proudu do spouštěcího motoru se neurychlí pastorek, pohyblivý volně na šroubovici, tak rychle jako rotor spouštěče, a pohybuje se po závitu pouzdra směrem do záběru s ozubeným věncem setrvačníku. Přijde-li zub do mezery, pohybuje se pastorek po šroubu ve směru osy až na doraz a spouštěč začne otáčet motorem. Dosedne-li zub na zub, nemůže se pastorek pohybovat ve směru osy a je stržen šroubovici ze zubu do mezery. Protože v okamžiku, v němž se pastorek posune do plného záběru na doraz, otáčí se rotor spouštěče již značnou rychlostí, snižuje se náraz pružinou nebo lamelovou spojkou. Obr. 4 Spouštěč se systémem BENDIX Jakmile se spouštěný motor rozeběhne a pastorek se otáčí rychleji než rotor spouštěče, vyšroubuje se ze záběru s věncem a setrvačností doběhne až na klidový doraz pouzdra. Kdysi to byl vůbec nejrozšířenější základní typ, vyráběný v mnoha konstrukčních obměnách a velmi dlouho se udržel, protože byl jednoduchý a výrobně levný. V jednoduchém provedení měl několik nevýhodných vlastností, jako samovolné vybíhání ze záběru při přechodných zrychleních motoru, větší poškozování zubů, možnost zpříčení při dosedu zubu na zub, poruchovost tlumicích pružin apod. V propracovanějších provedeních ztrácel svou hlavní výhodu tj. jednoduchost, a proto se postupně nahrazoval konstrukcemi s posuvným pastorkem.

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Registrační číslo: CZ.1.07/1. 5.00/34.0084 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada:

Více

1. Spouštění asynchronních motorů

1. Spouštění asynchronních motorů 1. Spouštění asynchronních motorů při spouštěni asynchronního motoru je záběrový proud až 7 krát vyšší než hodnota nominálního proudu tím vznikají v síti velké proudové rázy při poměrně malém záběrovém

Více

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky Tématické okruhy teoretických zkoušek Part 66 1 3.1 Teorie elektronu 1 1 1 Struktura a rozložení elektrických nábojů uvnitř: atomů, molekul, iontů, sloučenin; Molekulární struktura vodičů, polovodičů a

Více

SYNCHRONNÍ MOTOR. Konstrukce

SYNCHRONNÍ MOTOR. Konstrukce SYNCHRONNÍ MOTOR Konstrukce A. stator synchronního motoru má stejnou konstrukci jako stator asynchronního motoru na svazku statorových plechů je uloženo trojfázové vinutí, potřebné k vytvoření točivého

Více

Princip alternátoru. Usměrňování, chod, chlazení automobilového alternátoru.

Princip alternátoru. Usměrňování, chod, chlazení automobilového alternátoru. Princip alternátoru. Usměrňování, chod, chlazení automobilového alternátoru. Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Zdeněk Vala. Dostupné z Metodického portálu www.rvp.cz;

Více

ZDROJE ELEKTRICKÉ ENERGIE MOTOROVÝCH VOZIDEL

ZDROJE ELEKTRICKÉ ENERGIE MOTOROVÝCH VOZIDEL ZDROJE ELEKTRICKÉ ENERGIE MOTOROVÝCH VOZIDEL Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Zdeněk Vala. Dostupné z Metodického portálu www.rvp.cz; ISSN 1802-4785, financovaného z

Více

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem Praktické příklady z Elektrotechniky. Střídavé obvody.. Základní pojmy.. Jednoduché obvody se střídavým proudem Příklad : Stanovte napětí na ideálním kondenzátoru s kapacitou 0 µf, kterým prochází proud

Více

musí být odolný vůči krátkodobým zkratům při zkratovém přenosu kovu obloukem,

musí být odolný vůči krátkodobým zkratům při zkratovém přenosu kovu obloukem, 1 SVAŘOVACÍ ZDROJE PRO OBLOUKOVÉ SVAŘOVÁNÍ Svařovací zdroj pro obloukové svařování musí splňovat tyto požadavky : bezpečnost konstrukce dle platných norem a předpisů, napětí naprázdno musí odpovídat druhu

Více

Dioda jako usměrňovač

Dioda jako usměrňovač Dioda A K K A Dioda je polovodičová součástka s jedním P-N přechodem. Její vývody se nazývají anoda a katoda. Je-li na anodě kladný pól napětí a na katodě záporný, dioda vede (propustný směr), obráceně

Více

200W ATX PC POWER SUPPLY

200W ATX PC POWER SUPPLY 200W ATX PC POWER SUPPLY Obecné informace Zde vám přináším schéma PC zdroje firmy DTK. Tento zdroj je v ATX provedení o výkonu 200W. Schéma jsem nakreslil, když jsem zdroj opravoval. Když už jsem měl při

Více

Schémata elektrických obvodů

Schémata elektrických obvodů Schémata elektrických obvodů Schémata elektrických obvodů Číslo linie napájení Elektrický obvod 30 Propojení s kladným pólem akumulátorové baterie 31 Kostra 15, 15a Propojení s kladným pólem akumulátorové

Více

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 17. 4. 2009 Číslo: Kontroloval: Datum: 5 Pořadové číslo žáka: 24

Více

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud v kovech Elektrický proud = usměrněný pohyb

Více

Název: Téma: Autor: Číslo: Prosinec 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Název: Téma: Autor: Číslo: Prosinec 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Inovace a zkvalitnění výuky prostřednictvím ICT Elektrický proud střídavý Elektronický oscilátor

Více

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to

Více

Opel Vectra B Chybové kódy řídící jednotky (ECU)

Opel Vectra B Chybové kódy řídící jednotky (ECU) Opel Vectra B Chybové kódy řídící jednotky (ECU) 0100 Chybný signál od váhy vzduchu 0101 Chybný signál od váhy vzduchu 0102 Signál od váhy vzduchu nízký 0103 Signál od váhy vzduchu za vysoký 0104 Chybný

Více

23-41-M/01 Strojírenství. Celkový počet týdenních vyuč. hodin: 3 Platnost od: 1.9.2009

23-41-M/01 Strojírenství. Celkový počet týdenních vyuč. hodin: 3 Platnost od: 1.9.2009 Učební osnova vyučovacího předmětu elektrotechnika Obor vzdělání: 23-41-M/01 Strojírenství Délka a forma studia: 4 roky, denní studium Celkový počet týdenních vyuč. hodin: 3 Platnost od: 1.9.2009 Pojetí

Více

Mezinápravová spojka Haldex 4. generace zajišťuje pohon všech kol u nového modelu Superb 4x4 (od KT 36/08) a u modelu Octavia Combi 4x4

Mezinápravová spojka Haldex 4. generace zajišťuje pohon všech kol u nového modelu Superb 4x4 (od KT 36/08) a u modelu Octavia Combi 4x4 EZINÁPRAVOVÁ SPOJKA HALDEX 4. GENERACE ezinápravová spojka Haldex 4. generace ezinápravová spojka Haldex 4. generace zajišťuje pohon všech kol u nového modelu Superb 4x4 (od KT 36/08) a u modelu Octavia

Více

EM Brno s.r.o. DYNAMOSPOUŠTĚČ SDS 08s/F LUN 2132.02-8 LUN 2132.03-8

EM Brno s.r.o. DYNAMOSPOUŠTĚČ SDS 08s/F LUN 2132.02-8 LUN 2132.03-8 EM Brno s.r.o. DYNAMOSPOUŠTĚČ SDS 08s/F LUN 2132.02-8 a LUN 2132.03-8 Dynamospouštěč LUN 2132.02-8 Označení dynamospouštěče SDS 08s/F pro objednání: Dynamospouštěč LUN 2132.02-8 1. Dynamospouštěč LUN 2132.02-8,

Více

Rozdělení transformátorů

Rozdělení transformátorů Rozdělení transformátorů Druh transformátoru Spojovací Pojízdné Ohřívací Pecové Svařovací Obloukové Rozmrazovací Natáčivé Spouštěcí Nevýbušné Oddělovací/Izolační Bezpečnostní Usměrňovačové Trakční Lokomotivní

Více

SPRINKLEROVÁ CERPADLA s certifikátem VdS 2100

SPRINKLEROVÁ CERPADLA s certifikátem VdS 2100 SPRINKLEROVÁ CERPADLA s certifikátem VdS 2100 Datum vydání: 2009 Řada: U a LT SPECK provedení s elektromotorem provedení s dieselmotorem R 0 Popis : Odstředivá čerpadla Speck pro sprinklerová zařízení,

Více

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ MEII - 3.2.2 MĚŘENÍ NA AKTIVNÍCH SOUČÁSTKÁCH

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ MEII - 3.2.2 MĚŘENÍ NA AKTIVNÍCH SOUČÁSTKÁCH Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: MEII - 3.2.2 MĚŘENÍ NA AKTIVNÍCH SOUČÁSTKÁCH Obor: Mechanik elektronik Ročník: 2. Zpracoval(a): Bc. Josef Mahdal Střední průmyslová škola Uherský Brod, 2010

Více

Nepřímé vstřikování benzínu Mono-Motronic

Nepřímé vstřikování benzínu Mono-Motronic Předmět: Ročník: Vytvořil: Datum: Silniční vozidla třetí NĚMEC V. 18.12.2013 Název zpracovaného celku: Nepřímé vstřikování benzínu Mono-Motronic Vstřikováním paliva dosáhneme kvalitnější přípravu směsi

Více

Základní technický popis...10. Homologace a identifikace vozidla...12 Identifikace podle čísla motoru...13

Základní technický popis...10. Homologace a identifikace vozidla...12 Identifikace podle čísla motoru...13 Obsah Úvodem...9 Základní technický popis...10 Škoda Felicia se představuje...10 Homologace a identifikace vozidla...12 Identifikace podle čísla motoru...13 Údržba a kontrola technického stavu...14 Pravidelná

Více

NÁVOD K OBSLUZE. Zimní sada SWK-20

NÁVOD K OBSLUZE. Zimní sada SWK-20 NÁVOD K OBSLUZE Zimní sada SWK-20 - plynulá regulace otáček ventilátoru - ovládání ohřívače podle okolní teploty -alarm při vysoké kondenzační teplotě - zobrazení aktuální teploty - mikroprocesorové řízení

Více

1 Jednoduchý reflexní přijímač pro střední vlny

1 Jednoduchý reflexní přijímač pro střední vlny 1 Jednoduchý reflexní přijímač pro střední vlny Popsaný přijímač slouží k poslechu rozhlasových stanic v pásmu středních vln. Přijímač je napájen z USB portu počítače přijímaný signál je pak připojen na

Více

DOPRAVNÍ A ZDVIHACÍ STROJE

DOPRAVNÍ A ZDVIHACÍ STROJE OBSAH 1 DOPRAVNÍ A ZDVIHACÍ STROJE (V. Kemka).............. 9 1.1 Zdvihadla a jeřáby....................................... 11 1.1.1 Rozdělení a charakteristika zdvihadel......................... 11 1.1.2

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje MODUL 03- TP ing. Jan Šritr 1) Hydrodynamický měnič

Více

ZAPALOVÁNÍ TEORIE ZAPALOVÁNÍ

ZAPALOVÁNÍ TEORIE ZAPALOVÁNÍ ZAPALOVÁNÍ U spalovacích motorů se prakticky používají dva způsoby zapalování paliva v pracovním prostoru. U vznětových motorů je to zapalování kompresním teplem a u zážehových motorů se jedná o zapalování

Více

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ60 Jméno autora: Třída/ročník: Mgr. Alena Krejčíková

Více

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec ISŠT Mělník Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace CZ.1.07/1.5.00/34.0061 VY_32_INOVACE_H.3.18 Integrovaná střední škola technická Mělník, K učilišti 2566,

Více

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník ELEKTRICKÝ PROUD V KOVECH Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Elektrický proud Uspořádaný pohyb volných částic s nábojem Směr: od + k ( dle dohody - ve směru kladných

Více

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,

Více

1.1 Usměrňovací dioda

1.1 Usměrňovací dioda 1.1 Usměrňovací dioda 1.1.1 Úkol: 1. Změřte VA charakteristiku usměrňovací diody a) pomocí osciloskopu b) pomocí soustavy RC 2000 2. Ověřte vlastnosti jednocestného usměrňovače a) bez filtračního kondenzátoru

Více

Základní definice el. veličin

Základní definice el. veličin Stýskala, 2002 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala, Jan Dudek Oddíl 1 Určeno pro studenty komb. formy FBI předmětu 452081 / 06 Elektrotechnika Základní definice el. veličin Elektrický

Více

Palivová soustava zážehového motoru Tvorba směsi v karburátoru

Palivová soustava zážehového motoru Tvorba směsi v karburátoru Předmět: Ročník: Vytvořil: Datum: Silniční vozidla třetí NĚMEC V. 28.11.2013 Název zpracovaného celku: Palivová soustava zážehového motoru Tvorba směsi v karburátoru Úkolem palivové soustavy je dopravit

Více

Aplikace měničů frekvence u malých větrných elektráren

Aplikace měničů frekvence u malých větrných elektráren Aplikace měničů frekvence u malých větrných elektráren Václav Sládeček VŠB-TU Ostrava, FEI, Katedra elektroniky, 17. listopadu 15, 708 33 Ostrava - Poruba Abstract: Příspěvek se zabývá možnostmi využití

Více

Podélná RO působení při i R > i nast = 10x % I n, úplné mžikové vypnutí

Podélná RO působení při i R > i nast = 10x % I n, úplné mžikové vypnutí Ochrany alternátorů Ochrany proti zkratům a zemním spojení Vážné poruchy zajistit vypnutí stroje. Rozdílová ochrana Podélná RO porovnává vstup a výstup objektu (častější) Příčná RO porovnává vstupy dvou

Více

Elektrický proud 2. Zápisy do sešitu

Elektrický proud 2. Zápisy do sešitu Elektrický proud 2 Zápisy do sešitu Směr elektrického proudu v obvodu 1/2 V různých materiálech vedou elektrický proud různé částice: kovy volné elektrony kapaliny (roztoky) ionty plyny kladné ionty a

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava atedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - T Ostrava 9. TRASFORMÁTORY. Princip činnosti ideálního transformátoru. Princip činnosti skutečného transformátoru 3. Pracovní

Více

NÁHRADNÍ ZDROJE ELEKTRICKÉ ENERGIE

NÁHRADNÍ ZDROJE ELEKTRICKÉ ENERGIE Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB-TU Ostrava NÁHRADNÍ ZDROJE ELEKTRICKÉ ENERGIE Úvod 1. Rozdělení náhradních zdrojů 2. Stejnosměrné náhradní zdroje 3. Střídavé náhradní

Více

FYZIKA II. Petr Praus 6. Přednáška elektrický proud

FYZIKA II. Petr Praus 6. Přednáška elektrický proud FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní

Více

Elektrotechnika SOUBOR PŘÍPRAV PRO 3. R. OBORU 23-41-M/01 Strojírenství

Elektrotechnika SOUBOR PŘÍPRAV PRO 3. R. OBORU 23-41-M/01 Strojírenství STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Ing. Petr Vlček Elektrotechnika SOUBOR PŘÍPRAV PRO 3. R. OBORU 23-41-M/01 Strojírenství Vytvořeno v

Více

Historie elektromobil ekonal jako první v z na sv v roce 1899 hranici 100 km/h

Historie elektromobil ekonal jako první v z na sv v roce 1899 hranici 100 km/h Elektromobily Historie Za nejstarší elektromobil je uváděn elektrický vozík Skota Roberta Andersona sestrojený mezi lety 1832-1839. Vznik opravdové tržní nabídky se však např. v USA datuje až k roku 1893,

Více

Návrh a realizace regulace otáček jednofázového motoru

Návrh a realizace regulace otáček jednofázového motoru Středoškolská technika 2015 Setkání a prezentace prací středoškolských studentů na ČVUT Návrh a realizace regulace otáček jednofázového motoru Michaela Pekarčíková 1 Obsah : 1 Úvod.. 3 1.1 Regulace 3 1.2

Více

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější.

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Nejjednodušší prvek. Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Vodík tvoří dvouatomové molekuly, je lehčí než

Více

Polovodičové usměrňovače a zdroje

Polovodičové usměrňovače a zdroje Polovodičové usměrňovače a zdroje Druhy diod Zapojení a charakteristiky diod Druhy usměrňovačů Filtrace výstupního napětí Stabilizace výstupního napětí Zapojení zdroje napětí Závěr Polovodičová dioda Dioda

Více

A přece se točí. Galileo Galilei.

A přece se točí. Galileo Galilei. A přece se točí. Je veřejně známá věta, kterou v 17.století prohlásil italský astronom,filozof a fyzik Galileo Galilei. Citaci známého fyzika bychom rád okrajově přenesl do ožehavého téma problematiky

Více

Osnova přípravného studia k jednotlivé zkoušce Předmět - Elektrotechnika

Osnova přípravného studia k jednotlivé zkoušce Předmět - Elektrotechnika Osnova přípravného studia k jednotlivé zkoušce Předmět - Elektrotechnika Garant přípravného studia: Střední průmyslová škola elektrotechnická a ZDVPP, spol. s r. o. IČ: 25115138 Učební osnova: Základní

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

NÍZKOFREKVENČNÍ GENERÁTOR BG3

NÍZKOFREKVENČNÍ GENERÁTOR BG3 NÍZKOFREKVENČNÍ GENERÁTOR BG3 Popis a provoz zařízení bg3 Jiří Matějka, Čtvrtky 702, Kvasice, 768 21, e-mail: podpora@wmmagazin.cz Obsah: 1. Určení výrobku 2. Technické parametry generátoru 3. Indikační

Více

Rozměry vozidla... 11 Hmotnosti vozidla... 14 Motor a jeho parametry... 15 Spojka... 19. Technika jízdy... 27

Rozměry vozidla... 11 Hmotnosti vozidla... 14 Motor a jeho parametry... 15 Spojka... 19. Technika jízdy... 27 Obsah Úvodem............................................................ 9 Seznámení s vozidlem........................................... 10 Technický popis Škody Fabia..........................................

Více

DÍLENSKÁ PŘÍRUČKA EBZA ESE-2H

DÍLENSKÁ PŘÍRUČKA EBZA ESE-2H DÍLENSKÁ PŘÍRUČKA Technické, montážní a seřizovací pokyny pro EBZA ESE-2H Elektronické bezkontaktní zapalování http://trabant.jinak.cz EBZA ESE-2H Elektronické bezkontaktní zapalování (Elektronische Batterie

Více

Účinky měničů na elektrickou síť

Účinky měničů na elektrickou síť Účinky měničů na elektrickou síť Výkonová elektronika - přednášky Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Definice pojmů podle normy ČSN

Více

Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2)

Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2) Předmět: Ročník: Vytvořil: Datum: AUTOMATIZACE DRUHÝ ZDENĚK KOVAL Název zpracovaného celku: 27. 3. 2013 Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2) 5.5 REGULOVANÉ SOUSTAVY Regulovaná

Více

TECHNICKÝ LIST. - s vodním chlazením - se vzduchovým chlazením

TECHNICKÝ LIST. - s vodním chlazením - se vzduchovým chlazením TECHNICKÝ LIST POPIS VÝROBKU: Tepelně hladinové generátory: - s vodním chlazením - se vzduchovým chlazením Jedná se o elektrické zařízení, které dokáže vyrobit elektrickou energii na základě rozdílu tepelných

Více

Obsah. Úvod... 11 Seznámení s vozidlem... 14. Příprava vozidla před jízdou... 29. Ovládáte správně svůj automobil?... 39

Obsah. Úvod... 11 Seznámení s vozidlem... 14. Příprava vozidla před jízdou... 29. Ovládáte správně svůj automobil?... 39 Obsah Úvod.............................................................. 11 Seznámení s vozidlem........................................... 14 Všeobecný technický popis...........................................

Více

Startéry a alternátory Bosch: Kompletní program od jediného dodavatele

Startéry a alternátory Bosch: Kompletní program od jediného dodavatele Startéry a alternátory Bosch: Kompletní program od jediného dodavatele Rozsáhlý program pro osobní vozidla, užitková vozidla, zemědělské stroje a speciální stroje Startéry a alternátory Bosch Náhradní

Více

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (40) Zveřejněno 31 07 79 N

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (40) Zveřejněno 31 07 79 N ČESKOSLOVENSKÁ SOCIALISTICKÁ R E P U B L I K A (19) POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ 196670 (11) (Bl) (51) Int. Cl. 3 H 01 J 43/06 (22) Přihlášeno 30 12 76 (21) (PV 8826-76) (40) Zveřejněno 31 07

Více

2. Jaké jsou druhy napětí? Vyberte libovolný počet možných odpovědí. Správná nemusí být žádná, ale také mohou být správné všechny.

2. Jaké jsou druhy napětí? Vyberte libovolný počet možných odpovědí. Správná nemusí být žádná, ale také mohou být správné všechny. Psaní testu Pokyny k vypracování testu: Za nesprávné odpovědi se poměrově odečítají body. Pro splnění testu je možné využít možnosti neodpovědět maximálně u šesti o tázek. Doba trvání je 90 minut. Způsob

Více

Výkonová elektronika. Polovodičový stykač BF 9250

Výkonová elektronika. Polovodičový stykač BF 9250 Výkonová elektronika Polovodičový stykač BF 9250 BF 9250 do 10 A BF 9250 do 25 A podle EN 60 947-4-2, IEC 60 158-2, VDE 0660 část 109 1-, 2- a 3-pólová provedení řídící vstup X1 s malým příkonem proudu

Více

Elektrický proud v kapalinách

Elektrický proud v kapalinách Elektrický proud v kapalinách Kovy obsahují volné (valenční) elektrony a ty způsobují el. proud. Látka se chemicky nemění (vodiče 1. třídy). V polovodičích volné náboje připravíme uměle (teplota, příměsi,

Více

Skripta. Školní rok : 2005 / 2006 ASYNCHRONNÍ MOTORY

Skripta. Školní rok : 2005 / 2006 ASYNCHRONNÍ MOTORY INTEGROVANÁ STŘEDNÍ ŠKOLA Jméno žáka: CENTRUM ODBORNÉ PŘÍPRAVY 757 01 Valašské Meziříčí, Palackého49 Třída: Skripta Školní rok : 2005 / 2006 Modul: elementární modul: ELEKTRICKÉ STROJE skripta 9 ASYNCHRONNÍ

Více

STYKAČE ST, velikost 12

STYKAČE ST, velikost 12 STYKAČE ST, velikost 1 Vhodné pro spínání motorů i jiných zátěží. V základním provedení stykač obsahuje jeden pomocný zapínací kontakt (1x NO). Maximální spínaný výkon 3-fázového motoru P [kw] Jmenovitý

Více

HYDROGENERÁTORY V3 (série 30 a 40)

HYDROGENERÁTORY V3 (série 30 a 40) REGULAČNÍ LAMELOVÉ KT 1015 12/11 Jmem. velikost 12; 25; 40; 63 do pn 10 MPa Vg 8,5; 19; 32; 47 cm3/ot automatické odvzdušnění umožňuje snadné uvedení do provozu nízká hlučnost hydrodynamické mazání zajišťuje

Více

Potřebné vybavení motoru 4 válce, plná verze

Potřebné vybavení motoru 4 válce, plná verze Potřebné vybavení motoru 4 válce, plná verze 1) Ozubené kódové kolo + Snímač otáček Kódové kolo slouží k určení polohy natočení klikové hřídele, od čehož se odvíjí řízení předstihu a počátku vstřiku paliva.

Více

01 Motor s krytem 02 Čerpadlo 12 03 Rozvaděč 04 Rozvod pohonných hmot 05 Benzínová nádrž 06 Vývěva s ovládáním 07 Vývěva 12 08 Chlazení motoru 09

01 Motor s krytem 02 Čerpadlo 12 03 Rozvaděč 04 Rozvod pohonných hmot 05 Benzínová nádrž 06 Vývěva s ovládáním 07 Vývěva 12 08 Chlazení motoru 09 01 Motor s krytem 02 Čerpadlo 12 03 Rozvaděč 04 Rozvod pohonných hmot 05 Benzínová nádrž 06 Vývěva s ovládáním 07 Vývěva 12 08 Chlazení motoru 09 Chladič 10 Čistič 11 Zapalování - úplné 12 Přístrojová

Více

24V 3A SS ZDROJ ZD243, ZD2430 (REL)

24V 3A SS ZDROJ ZD243, ZD2430 (REL) 24V 3A SS ZDROJ ZD243, ZD2430 (REL) www.elso-ostrava.cz NÁVOD PRO OBSLUHU Technická specifikace zahrnující popis všech elektrických a mechanických parametrů je dodávána jako samostatná součást dokumentace.

Více

RPEH5-16. Popis konstrukce a funkce HC 4023 9/2014. 4/2, 4/3 rozváděče s elektrohydraulickým ovládáním. Nahrazuje HC 4023 6/2012

RPEH5-16. Popis konstrukce a funkce HC 4023 9/2014. 4/2, 4/3 rozváděče s elektrohydraulickým ovládáním. Nahrazuje HC 4023 6/2012 /, /3 rozváděče s elektrohydraulickým ovládáním RPEH5-16 HC 03 9/01 D n 16 p max 350 bar / 0 bar Q max 300 dm 3 min -1 Nahrazuje HC 03 6/01 Rozváděče s elektrohydraulickým ovládáním RPEH Rozváděče s hydraulickým

Více

Potenciostat. Potenciostat. stav 03.2009 E/04

Potenciostat. Potenciostat. stav 03.2009 E/04 Všeobecně V moderních vodárnách, bazénech a koupalištích je třeba garantovat kvalitu vody pomocí automatických měřicích a regulačních zařízení. Měřicí panel PM 01 slouží ke zjišťování parametrů volného

Více

Měření výkonu motorů

Měření výkonu motorů 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Anotace: Inovace a zkvalitnění výuky prostřednictvím ICT Kontrola a měření strojních zařízení

Více

Základy elektrotechniky a výkonová elektrotechnika (ZEVE)

Základy elektrotechniky a výkonová elektrotechnika (ZEVE) Základy elektrotechniky a výkonová elektrotechnika (ZEVE) Studijní program Vojenské technologie, 5ti-leté Mgr. studium (voj). Výuka v 1. a 2. semestru, dotace na semestr 24-12-12 (Př-Cv-Lab). Rozpis výuky

Více

Přenosný zdroj PZ-1. zdroj regulovaného proudu a napětí měření časového zpoždění relé, ochran a jiných přístrojů

Přenosný zdroj PZ-1. zdroj regulovaného proudu a napětí měření časového zpoždění relé, ochran a jiných přístrojů zdroj regulovaného proudu a napětí měření časového zpoždění relé, ochran a jiných přístrojů Použití: Přenosný zdroj PZ1 se používá jako zdroj regulovaného proudu nebo napětí a měření časového zpoždění

Více

Třífázové stejnosměrné odporové svařovací lisy 100 KVA typ 6101 6103

Třífázové stejnosměrné odporové svařovací lisy 100 KVA typ 6101 6103 Třífázové stejnosměrné odporové svařovací lisy 100 KVA typ 101 103 Třífázové stejnosměrné odporové svařovací lisy 100 KVA Odporové stejnosměrné svařovací lisy Tecna řady 1xx jsou především vhodné pro použití

Více

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENI

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENI ČESKOSLOVENSKA SOCIALISTICKÁ R E P U B L I K A ( 19 > POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENI (6i) (23) Výstavní priorita (22) Přihlášeno 20 11 80 (21) PV 7893-80 216 026 (П) (Bl) (51) Int Cl. 1 G 21 С 7/20

Více

Testy byly vypsany ze vsech pdf k 20.1.2012 zde na foru. Negarantuji 100% bezchybnost

Testy byly vypsany ze vsech pdf k 20.1.2012 zde na foru. Negarantuji 100% bezchybnost 1. Jakmile je postižený při úrazu elektrickým proudem vyproštěn z proudového obvodu je zachránce povinen - Poskytnou postiženému první pomoc než příjde lékař 2. Místo názvu hlavní jednotky elektrického

Více

MONTÁŽNÍ A PROVOZNÍ PŘEDPISY ELEKTRICKÝCH OHŘÍVAČU VZDUCHU

MONTÁŽNÍ A PROVOZNÍ PŘEDPISY ELEKTRICKÝCH OHŘÍVAČU VZDUCHU MONTÁŽNÍ A PROVOZNÍ PŘEDPISY ELEKTRICKÝCH OHŘÍVAČU VZDUCHU 2011 - 1 - Tento předpis platí pro montáž, provoz a údržbu elektrických ohřívačů vzduchu EO : Do dodaného potrubí Kruhové potrubí s přírubou Kruhové

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

NÁVOD K OBSLUZE A INSTALACI

NÁVOD K OBSLUZE A INSTALACI NÁVOD K OBSLUZE A INSTALACI LXDC SET 1-4kW 1-6kW Výrobce: LOGITEX spol. s.r.o., Športovcov 884/4, SK - 02001 Púchov tel. +421/42/4710200 fax.: +421/42/4642300 logitex@logitex.sk Vyrobeno v: IMAO eletric,

Více

Proudové zrcadlo. Milan Horkel

Proudové zrcadlo. Milan Horkel roudové zrcadlo MLA roudové zrcadlo Milan Horkel Zdroje proudu jsou při konstrukci integrovaných obvodů asi stejně důležité, jako obyčejný rezistor pro běžné tranzistorové obvody. Zdroje proudu se často

Více

KIA GARANT pojištění prodloužené záruky

KIA GARANT pojištění prodloužené záruky KIA GARANT pojištění prodloužené záruky Vážená paní, vážený pane, blahopřejeme Vám k pořízení vozidla KIA. Velmi nám záleží na Vaší spokojenosti. Proto vozidlo poskytujeme s mimořádnou prodlouženou zárukou.

Více

Transformátor trojfázový

Transformátor trojfázový Transformátor trojfázový distribuční transformátory přenášejí elektricky výkon ve všech 3 fázích v praxi lze použít: a) 3 jednofázové transformátory větší spotřeba materiálu v záloze stačí jeden transformátor

Více

4. Výboje v plynech. 4.1. Jiskrový výboj

4. Výboje v plynech. 4.1. Jiskrový výboj 4. Výboje v plynech Plyny jsou za obvyklých podmínek nevodivé. Ionizujeme-li je, stanou se prostřednictvím kladných iontů a elektronů vodivými a pokud se nacházejí v elektrickém poli, vzniká elektrický

Více

Akumulátory Bosch pro osobní vozidla

Akumulátory Bosch pro osobní vozidla Akumulátory Bosch pro osobní vozidla Perfektní energie pro každé osobní vozidlo Akumulátory Bosch v přehledu V moderních osobních vozidlech je stále více komponentů, které spotřebovávají elektrickou energii.

Více

Elektrotechnika - test

Elektrotechnika - test Základní škola, Šlapanice, okres Brno-venkov, příspěvková organizace Masarykovo nám. 1594/16, 664 51 Šlapanice www.zsslapanice.cz MODERNÍ A KONKURENCESCHOPNÁ ŠKOLA reg. č.: CZ.1.07/1.4.00/21.2389 Elektrotechnika

Více

NÁVOD K OBSLUZE A INSTALACI. LXDC SET 1-4kW

NÁVOD K OBSLUZE A INSTALACI. LXDC SET 1-4kW NÁVOD K OBSLUZE A INSTALACI LXDC SET 1-4kW Výrobce: LOGITEX spol. s.r.o., Športovcov 884/4, SK - 02001 Púchov tel. +421/42/4710200 fax.: +421/42/4642300 logitex@logitex.sk Vyrobeno v: IMAO eletric, s.r.o

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

Záruční doklady, které obdržíte při uzavření prodloužené záruky CarGarantie, mají skutečné výhody:

Záruční doklady, které obdržíte při uzavření prodloužené záruky CarGarantie, mají skutečné výhody: BEZSTAROSTNÁ JÍZDA Profitujte z dlouhodobé záruky. Váš prodejce Opel Vám nabízí optimální jistotu. Díky prodloužené záruce pro nové vozy Opel budete jezdit i po uplynutí dvouleté výrobní záruky i nadále

Více

Teplotní profil průběžné pece

Teplotní profil průběžné pece Teplotní profil průběžné pece Zadání: 1) Seznamte se s měřením teplotního profilu průběžné pece a s jeho nastavením. 2) Osaďte desku plošného spoje SMD součástkami (viz úloha 2, kapitoly 1.6. a 2) 3) Změřte

Více

Zdroje elektrického napětí

Zdroje elektrického napětí Anotace Učební materiál EU V2 1/F15 je určen k výkladu učiva zdroje elektrického napětí fyzika 8. ročník. UM se váže k výstupu: žák uvede hlavní jednotku elektrického napětí, její násobky a díly Zdroje

Více

Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody

Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody Přírodní vědy moderně a interaktivně FYZIKA 2. ročník šestiletého studia Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody G Gymnázium Hranice Přírodní vědy moderně a interaktivně

Více

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1 Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice Číslo úlohy : 1 Název úlohy : Vypracoval : ročník : 3 skupina : F-Zt Vnější podmínky měření : měřeno dne : 3.. 004 teplota : C tlak

Více

SMĚŠOVACÍ SYSTÉMY OLEJ VZDUCH PRO VŘETENA

SMĚŠOVACÍ SYSTÉMY OLEJ VZDUCH PRO VŘETENA SMĚŠOVACÍ SYSTÉMY OLEJ VZDUCH PRO VŘETENA POUŽITÍ Mazací systémy olej - vzduch jsou užívány pro trvalé, pravidelné mazání a chlazení směsí oleje a vzduchu různých strojů, strojních technologií a zařízení

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XI Název: Charakteristiky diody Pracoval: Pavel Brožek stud. skup. 12 dne 9.1.2009 Odevzdal

Více

Počítačový napájecí zdroj

Počítačový napájecí zdroj Počítačový napájecí zdroj Počítačový zdroj je jednoduše měnič napětí. Má za úkol přeměnit střídavé napětí ze sítě (230 V / 50 Hz) na napětí stejnosměrné, a to do několika větví (3,3V, 5V, 12V). Komponenty

Více

TR 2 T R 2 1 0 1 POPIS TYPOVÝ KLÍČ. TLAKOVÉ RELÉ KT 7009 1/12 4 MPa 10 MPa 32 MPa

TR 2 T R 2 1 0 1 POPIS TYPOVÝ KLÍČ. TLAKOVÉ RELÉ KT 7009 1/12 4 MPa 10 MPa 32 MPa TR 2 TLAKOVÉ RELÉ KT 7009 1/12 4 MPa 10 MPa 32 MPa jednoduchá konstrukce nízká hmotnost tři druhy možného zapojení na hydraulický obvod malý zástavbový prostor připojení konektorovou zásuvkou dle DIN 43

Více

Technický list pro tepelné čerpadlo země-voda HP3BW-model B

Technický list pro tepelné čerpadlo země-voda HP3BW-model B Technický list pro tepelné čerpadlo země-voda HP3BW-model B Technický popis TČ Tepelné čerpadlo země-voda, voda-voda s označením HPBW B je kompaktní zařízení pro instalaci do vnitřního prostředí, které

Více

Jawa 50 typ 550. rok výroby 1955-1958

Jawa 50 typ 550. rok výroby 1955-1958 Jawa 50 typ 550. rok výroby 1955-1958 1 Motor ležatý dvoudobý jednoválec Chlazení vzduchem Ø 38 mm 44 mm ový objem 49,8 cm 3 Kompresní poměr 6,6 : 1 Největší výkon 1,5k (1,1 kw)/5000 ot/min. Rozvod pístem

Více