ODHADY NÁVRATOVÝCH HODNOT PRO

Rozměr: px
Začít zobrazení ze stránky:

Download "ODHADY NÁVRATOVÝCH HODNOT PRO"

Transkript

1 ODHADY NÁVRATOVÝCH HODNOT PRO SRÁŽKOVÁ A TEPLOTNÍ DATA Katedra aplikované matematiky Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci Novohradské statistické dny

2 ÚVOD Velká pozornost v analýze extrémních dat (např. záplavy) je věnována odhadům T -leté úrovně (návratová hodnota, T -letá voda). Představa: úroveň opakující se v průměru jednou za T let.

3 ÚVOD Velká pozornost v analýze extrémních dat (např. záplavy) je věnována odhadům T -leté úrovně (návratová hodnota, T -letá voda). Představa: úroveň opakující se v průměru jednou za T let. Z pohledu statistiky: vysoký kvantil rozdělení náhodné veličiny (průtoku). ( u(t )=F ) T P (X >u(t )) = 1 F (u(t )) = 1 T

4 PŘÍKLAD Příklad: Roční maxima teploty vzduchu za období Stanice Liberec Návratová hodnota (roky) GEV rozdělení metoda max. věrohodnosti Maximální dosažená hodnota za sledované období 36.2.

5 ZÁKLADNÍ PRINCIPY Necht X 1,X 2,...jsou nezávislé stejně rozdělené náhodné veličiny s distribuční funkcí F. Necht M n =max(x 1,...,X n ). Předpokládejme, že existuje posloupnost reálných čísel a n > 0 a b n tak, že posloupnost (M n b n )/a n konverguje v distribuci, t.j. P ((M n b n )/a n x) =F n (a n x + b n ) G(x), n, pro nějakou nedegenerovanou d.f. G(x) Jestliže podmínka platí, říkáme, že F je ve sféře přitažlivosti G (maximum domain of attraction), F MDA(G).

6 ZÁKLADNÍ PRINCIPY FISHEROVA-TIPPETTOVA VĚTA (1928) Jestliže F MDA(G) potom { G je typu jedné z následujících tří d.f. 0, x 0 Fréchet Φ 1/γ (x) = exp ( x 1/γ), x > 0 γ>0 { { } exp ( x) 1/γ, x 0 Weibull Ψ 1/γ (x) = 1 x>0 γ>0 Gumbel Λ(x) =exp( e x ), x R.

7 ZÁKLADNÍ PRINCIPY FISHEROVA-TIPPETTOVA VĚTA (1928) Jestliže F MDA(G) potom { G je typu jedné z následujících tří d.f. 0, x 0 Fréchet Φ 1/γ (x) = exp ( x 1/γ), x > 0 γ>0 { { } exp ( x) 1/γ, x 0 Weibull Ψ 1/γ (x) = 1 x>0 γ>0 Gumbel Λ(x) =exp( e x ), x R. GNĚDĚNKO (1943) Limitní rozdělení je zobecněné rozdělení extrémních hodnot. { ( ) exp (1 + γx) 1/γ γ 0 G(x) =G γ (x) = exp( e x ) γ =0, kde 1+γx > 0 G je určena jednoznačně až na parametr polohy a měřítka.

8 METHOD OF BLOCK MAXIMA Předpokládáme, že data rozdělíme do bloků obsahující n (velké) hodnot, bereme maximum v každém bloku a využijeme limitní výsledek, t.j. GEV rozdělení. Užití limitního rozdělení: ( Mn b n P a n ) x G γ (x). y = a n x + b n P (M n y) G γ ( y bn a n ) = G γ,bn,a n (y). Parametry odhadneme, např. metodou maximální věrohodnosti

9 METHOD OF BLOCK MAXIMA pro γ =0 L(b, a, γ) = m log a (1 + 1/γ) L(b, a) = m log a i=1 Neexistuje analytické řešení. m i=1 m i=1 [ 1+γ m ( ) zi b a ( log 1+γ ( zi b a ( )) zi b a )] 1/γ m {( zi b exp a i=1 )}.

10 L-MOMENTOVÁ METODA Necht X 1,X 2,...X n je náhodný výběr s distribuční funkcí F (x) a kvantilovou funkcí Q(u) a necht X 1:n X 2:n X n:n jsou pořádkové statistiky. L-momenty: EX j:r = λ r = 1 r 1 ( ) r 1 ( 1) k EX r k:r, r =1, 2,... r k k=0 r! (j 1)!(r j)! λ 1 = EX = x (F (x)) j 1 (1 F (x)) r j df (x) 1 λ 2 = 1 2 E(X 2:2 X 1:2 )= λ 3 = 1 3 E(X 3:3 2X 2:3 + X 1:3 )= 0 1 Q(u)du Q(u)(2u 1)du Q(u)(6u 2 6u +1)du

11 L-MOMENTOVÁ METODA Příklady L-momentů některých rozdělení: Rovnoměrné na (a, b) λ 1 = 1 2 (a + b),λ 2 = 1 6 (b a),τ 3 =0,τ 4 =0 Normální N (µ, σ 2 ) λ 1 = µ, λ 2 = σ π,τ 3 =0,τ 4 = Gumbelovo rozdělení F (x) =exp[ exp( (x ξ)/α)] λ 1 = ξ + αγ, λ 2 = α log 2,τ 3 =0.1699, τ 4 =0.1504,γ = konst. Zobecněné rozdělení F (x) =exp[ (1 k(x ξ)/α) 1 k ] extrémních hodnot λ 1 = ξ + α(1 Γ(1 + k))/k, (GEV) λ 2 = α(1 2 k )Γ(1 + k)/k, τ 3 =2(1 3 k )/(1 2 k ) 3,τ 4 =... k> 1, Γ(.) označuje gamma funkci

12 L-MOMENTOVÁ METODA Odhady: Výběrový L moment: r =1, 2,...,n. Speciálně: ( ) 1 n l r =... r 1 ( ) r 1 r 1 ( 1) k r k 1 i 1<i 2<...<i r n k=0 l 1 = 1 n X ir k :n, n X i, l 2 = 1 ( ) 1 n (Xi:n X j:n ) 2 2 i=1 i>j l 3 = 1 ( ) 1 n (Xi:n 2X j:n + X k:n ) 3 3 i>j>k l 4 = 1 ( ) 1 n (Xi:n 3X j:n +3X k:n X l:n ) 4 4 i>j>k>l

13 L-MOMENTOVÁ METODA Odhady paramterů L-momentová metoda Rovnoměrné na (a, b) â = l 1 3l 2, â = l 1 +3l 2 Normální N (µ, σ 2 ) ˆµ = l 1, =ˆσ = π 1/2 l 2 Gumbelovo rozdělení F (x) =exp[ exp( (x ξ)/α)] ˆξ = l 1 ˆαγ, ˆα = l 2 / log 2 γ = konst. Zobecněné rozdělení F (x) =exp[ (1 k(x ξ)/α) 1 k ] extrémních hodnot z =2/(3 + t 3 ) log 2/ log 3, (GEV) ˆk =7.8590z z 2, ˆα = l 2ˆk/[(1 2 ˆk)Γ(1 + ˆk)], ˆξ = l 1 +ˆα[Γ(1 + ˆk) 1]/ˆk

14 L-MOMENTOVÁ METODA Výhody: Pro malé a střední rozsahy výběrů odhady mohou mít lepší vlastnosti než metoda maximální věrohodnosti např. simulační studie (Hosking, Wallis, Wood) ukazuje, že pro všechna k GEV z intervalu (-0.5,0.5) a rozsah výběru do 100 mají odhady menší či srovnatelnou střední kvadratickou chybu ve srovnání s odhady maximální věrohodností Výpočetně jednoduchá, metoda maximální věrohodnosti pro některá rozdělení obtížně aplikovatelná Ve srovnání s konvenční metodou momentů méně citlivá na odlehlá pozorování (u vyšších momentů), Neexistence vyšších konvenčních momentů, L-momenty ano. např. GEV pro k< 1/3 neexistují třetí a čtvrté momenty

15 PŘÍKLAD Příklad: Roční maxima teploty vzduchu za období Stanice Liberec Návratová hodnota (roky) GEV rozdělení metoda max. věrohodnosti L-momentová metoda Maximální dosažená hodnota za sledované období 36.2.

16 PŘÍKLAD Příklad: Roční maxima teploty vzduchu za období Stanice Liberec Návratová hodnota (roky) GEV rozdělení metoda max. věrohodnosti L-momentová metoda Gumbelovo rozdělení metoda max. věrohodnosti L-momentová metoda Maximální dosažená hodnota za sledované období 36.2.

17 PŘÍKLAD Maximální třídenní úhrny srážek v letech ve Valašském Mezi říčí

18 SRÁŽKY -LIBERECKO Stanice srpen 2010 roky (bez) roky (s) Hejnice ( ) ( ) Mníšek ( ) ( ) Chrastava ( x10 6 ) ( ) Mařenice ( x10 6 ) ( ) Bedřichov ( ) ( ) Liberec ( ) ( )

19 SRÁŽKY -LIBERECKO

20 POT METODA Necht X 1,X 2,...jsou nezávislé stejně rozdělené náhodné veličiny s ditr. funkcí F. Je "rozumné" zahrnovat všechny hodnoty překračující daný vysoký práh (threshold) u. Chování extrémních událostí je dáno podmíněnou pravděpodobností P (X i >y X i >u) a P (X i <y X i >u) H(y), u u end, zobecněné Paretovo rozdělení H(x) = 1 ( 1+γ ( x µ σ )) 1/γ γ 0 x µ 1 e ( σ ) γ =0, kde 1+γ ( ) x µ σ > 0. Uvažujeme hodnoty větší než dostatečně vysoký práh (threshold) a předpokládáme, že asymptotický výsledek je přibližně pravdivý, tj. užijeme zobecněné Paretovo rozdělení jako vhodný model. Metoda je známa jako peaks-over-threshold (POT).

21 POT Příklad: Roční maxima teploty vzduchu za období Stanice Liberec Návratová hodnota (roky) GEV rozdělení L-momentová metoda POT treshold treshold Maximální dosažená hodnota za sledované období 36.2.

22 TREND V DATECH When a significant trend is present in the data, no fixed threshold in the POT models is suitable over longer periods of time: there are either too few (or no) exceedances over the threshold in an earlier part of records or too many exceedances towards the end of the examined period.

23 TREND V DATECH Studovány maximální denní teploty v Evropě v letech za účelem odhadnout vysoké kvantily vysokých teplot. Použity výstupy ze dvou GCMs ( Global Climate Models CM2.0 and CM2.1.) - denní simulovaná data pokrývající období CM2.0 a CM2.1 jsou modely NOAA Geophysical Fluid Dynamics Laboratory. Mají horizontální rozlišení (délka x šířka) a 24 vertikálních úrovní. Předpokládají vzrůst koncentrace skleníkových plynů - uvažuje se několik (7) scénářů. Pro každý uzlový bod a každý scénář za období byl threshold odhadnut jako 95% regresní kvantil. Soustředili jsme se 20-ti letou teplotu (20-yr return values), tj. na 95% kvantil (1-1/20) a srovnávali s "klasickými" POT modely uvažující 30leté periody a (jako threshold brán obvyklý 95% kvantil z dat daného období)

24 TREND V DATECH Mean annual number of exceedances above the threshold (averaged over gridpoints) for the 95% regression quantile and the 95% quantile.

25 TREND V DATECH Differences between 20-yr return values of TMAX estimated using non-stationary POT model for year 2050 and stationary POT model over Large (small) crosses mark gridpoints in which the estimated 90% (80%) CIs do not overlap.

26 TREND V DATECH Differences between 20-yr return values of TMAX estimated using non-stationary POT model for year 2100 and stationary POT model over Large (small) crosses mark gridpoints in which the estimated 90% (80%) CIs do not overlap.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X

Více

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y) 5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =

Více

Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. 11 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Bodové odhady a intervaly spolehlivosti Vilém Vychodil KMI/PRAS, Přednáška 10 Vytvořeno v rámci projektu 963/011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 10) Bodové odhady a intervaly

Více

Kvantifikace operačního rizika v rámci Přistupu distribuce ztrát

Kvantifikace operačního rizika v rámci Přistupu distribuce ztrát Kvantifikace operačního rizika v rámci Přistupu distribuce ztrát Jiří Havlický 1 Abstrakt Článek je zaměřen na stanovení a zhodnocení citlivosti výše očekávané a neočekávané ztráty plynoucí z podstupovaného

Více

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 Opakování t- vs. neparametrické Wilcoxonův jednovýběrový test Opakování

Více

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina.

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina. Parametrické metody odhadů z neúplných výběrů 2 1 Metoda maximální věrohodnosti pro cenzorované výběry 11 Náhodné cenzorování Při sledování složitých reálných systémů často nemáme možnost uspořádat experiment

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ

ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ Ročník LII 6 Číslo 3, 2004 Gasser-Müllerův odhad J. Poměnková Došlo: 8.

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

MODELOVÁNÍ KATASTROFICKÝCH ŠKOD

MODELOVÁNÍ KATASTROFICKÝCH ŠKOD MODELOVÁNÍ KATASTROFICKÝCH ŠKOD MODELLING OF CATASTROPHIC LOSSES Viera Pacáková, Lukáš Kubec Abstract: Catastrophe modelling is a risk management tool that uses computer technology to help insurers, reinsurers

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb

Více

Způsobilost systému měření podle normy ČSN ISO doc. Ing. Eva Jarošová, CSc.

Způsobilost systému měření podle normy ČSN ISO doc. Ing. Eva Jarošová, CSc. Způsobilost systému měření podle normy ČSN ISO 22514-7 doc. Ing. Eva Jarošová, CSc. Předmět normy Postup validace měřicího systému a procesu měření (ověření, zda daný proces měření vyhovuje požadavkům

Více

Tvorba nelineárních regresních modelů v analýze dat

Tvorba nelineárních regresních modelů v analýze dat Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Tvorba nelineárních regresních modelů v analýze dat Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

0.1 Úvod do matematické analýzy

0.1 Úvod do matematické analýzy Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost

Více

Pomůcka pro cvičení: 3. semestr Bc studia

Pomůcka pro cvičení: 3. semestr Bc studia Pomůcka pro cvičení: 3. semestr Bc studia Statistika Základní pojmy balíček: Statistics Pro veškeré výpočty je třeba načíst balíček Statistic. Při řešení můžeme použít proceduru infolevel[statistics]:=1,

Více

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal! Testování statistických hypotéz kvalitativní odezva kvantitativní chí-kvadrát test homogenity,

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1.

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1. 2. Některá důležitá rozdělení Diskrétní rozdělení. Alternativní rozdělení Ap) Bernoulli) je diskrétní rozdělení, kdy náhodná veličina X nabývá pouze dvou hodnot a a pro její pravděpodobnostní funkci platí:

Více

TEPELNÁ ZÁTĚŽ, TEPLOTNÍ REKORDY A SDĚLOVACÍ PROSTŘEDKY

TEPELNÁ ZÁTĚŽ, TEPLOTNÍ REKORDY A SDĚLOVACÍ PROSTŘEDKY Rožnovský, J., Litschmann, T. (ed.): XIV. Česko-slovenská bioklimatologická konference, Lednice na Moravě 2.-4. září 2002, ISBN 80-85813-99-8, s. 242-253 TEPELNÁ ZÁTĚŽ, TEPLOTNÍ REKORDY A SDĚLOVACÍ PROSTŘEDKY

Více

3 Bodové odhady a jejich vlastnosti

3 Bodové odhady a jejich vlastnosti 3 Bodové odhady a jejich vlastnosti 3.1 Statistika (Skripta str. 77) Výběr pořizujeme proto, abychom se (více) dověděli o souboru, ze kterého jsme výběr pořídili. Zde se soustředíme na situaci, kdy známe

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme,

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme, Úloha 1: V naší studii se zabýváme poptávkovou funkcí životního pojištění, vycházíme z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové

Více

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška:

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška: Přednášky: Mgr. Radek Výrut, Matematika I katedra matematiky, UL-605, rvyrut@kma.zcu.cz tel.: 377 63 2658 Zkouška: Písemná část zkoušky - příklady v rozsahu zápočtových prací Ústní část zkoušky - základní

Více

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

7. Analýza rozptylu.

7. Analýza rozptylu. 7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a

Více

SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI. 7. cvičení

SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI. 7. cvičení SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI 7. cvičení Intenzita poruch Funkce modelující dobu do výskytu události životnost, dobu do poruchy, dobu do relapsu (návratu onemocnění), apod. používáme spolu s distribuční

Více

Derivace a průběh funkce.

Derivace a průběh funkce. Derivace a průběh funkce. Robert Mařík 14. října 2008 Obsah 1 Základní myšlenky. 2 2 Přesné věty a definice 10 3 Okolí nevlastních bodů. 16 4 Sestrojení grafu funkce. 19 1 Základní myšlenky. y x Uvažujme

Více

y = 0, ,19716x.

y = 0, ,19716x. Grafické ověřování a testování vybraných modelů 1 Grafické ověřování empirického rozdělení Při grafické analýze empirického rozdělení vycházíme z empirické distribuční funkce F n (x) příslušné k náhodnému

Více

Pojistná matematika 2 KMA/POM2E

Pojistná matematika 2 KMA/POM2E Pojistná matematika 2 KMA/POM2E RNDr. Ondřej Pavlačka, Ph.D. pracovna 5.052 tel. 585 63 4027 e-mail: ondrej.pavlacka@upol.cz web: http://aix-slx.upol.cz/~pavlacka (informace + podkladové materiály) Konzultační

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Nekonečné číselné řady. January 21, 2015

Nekonečné číselné řady. January 21, 2015 Nekonečné číselné řady January 2, 205 IMA 205 Příklad 0 = 0 + 0 +... + 0 +... =? n= IMA 205 Příklad n= n 2 + n = 2 + 6 + 2 +... + n 2 +... =? + n s = 2 s 2 = 2 3... s 3 = 3 4 IMA 205 Příklad (pokr.) =

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru

Více

Poznámky k předmětu Aplikovaná statistika, 11. téma

Poznámky k předmětu Aplikovaná statistika, 11. téma Poznámky k předmětu Aplikovaná statistika, 11. téma Testy založené na χ 2 rozdělení V přehledu významných rozdělení jsme si uvedli, že Poissonovým rozdělením se modeluje počet událostí, které nastanou

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 3 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz. Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení

Více

Náhodná veličina a rozdělení pravděpodobnosti

Náhodná veličina a rozdělení pravděpodobnosti 3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro

Více

5. B o d o v é o d h a d y p a r a m e t r ů

5. B o d o v é o d h a d y p a r a m e t r ů 5. B o d o v é o d h a d y p a r a m e t r ů Na základě hodnot náhodného výběru z rozdělení určitého typu odhadujeme parametry tohoto rozdělení, tak aby co nejlépe odpovídaly hodnotám výběru. Formulujme

Více

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část Matematika I 1/15 2/15 Organizace Zápočet: test 6. + 11. týden semestru (pátek) 80 bodů 50 79 bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část www.vscht.cz/mat Výuka www.vscht.cz/mat/jana.nemcova

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

Algoritmy komprese dat

Algoritmy komprese dat Algoritmy komprese dat Úvod do teorie informace Claude Shannon (1916 2001) 5.11.2014 NSWI072-7 Teorie informace Informace Co je to informace? Můžeme informaci měřit? Existují teoretické meze pro délku

Více

Příklady na testy hypotéz o parametrech normálního rozdělení

Příklady na testy hypotéz o parametrech normálního rozdělení Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost

Více

TESTY A ODHADY PARETOVA INDEXU

TESTY A ODHADY PARETOVA INDEXU ROBUST 2004 c JČMF 2004 TESTY A ODHADY PARETOVA INDEXU Jan Pice Klíčová slova: Paretův index, rozdělení extrémních hodnot, sféra přitažlivosti, Hillův odhad. Abstrat:Nechť X 1, X 2,...jsounezávisléstejněrozdělenénáhodnéveličiny

Více

VaV/650/6/03 DÚ 06 Statistická analýza řad maximálních průtoků DÚ 06 Statistical analysis of series of peak discharges

VaV/650/6/03 DÚ 06 Statistická analýza řad maximálních průtoků DÚ 06 Statistical analysis of series of peak discharges Vliv, analýza a možnosti využití ochranné funkce údolních nádrží pro ochranu před povodněmi v povodí Labe The influence, analysis and possibilities of utilization of the dam protective function for flood

Více

správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.

správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B. Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná

Více

Použití derivací. V této části budou uvedena některá použití derivací. LEKCE08-PRU. Použití derivací. l Hospital

Použití derivací. V této části budou uvedena některá použití derivací. LEKCE08-PRU. Použití derivací. l Hospital V této části budou uvedena některá použití derivací. a derivace a derivace -zbytek L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT Tvrzení je uvedeno pro jednostrannou limitu zprava. Samozřejmě obdobné tvrzení platí

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.) Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik

Více

Matematická analýza III.

Matematická analýza III. 1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )

Více

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená.

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená. Datum:... Jméno:... Přijímací řízení pro akademický rok 28/9 na magisterské studijní obor Finanční informatiky a statistika Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd se získávají

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

Využití a zneužití statistických metod v medicíně

Využití a zneužití statistických metod v medicíně Využití a zneužití statistických metod v medicíně Martin Hynek Gennet, Centre for Fetal Medicine, Prague EuroMISE Centre, First Faculty of Medicine of Charles University in Prague Statistika Existují tři

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

REGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD

REGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD Politická ekonomie 45: (2), str. 281-289, VŠE Praha, 1997. ISSN 0032-3233. (Rukopis) REGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD Josef ARLT, Vysoká škola ekonomická, Praha 1. Úvod Pro modelování

Více

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Milan Holický Kloknerův ústav ČVUT v Praze 1. Úvod 2. Kvantil náhodné veličiny 3. Hodnocení jedné veličiny 4. Hodnocení modelu 5. Příklady -

Více

Reálné posloupnosti 1. Reálné posloupnosti

Reálné posloupnosti 1. Reálné posloupnosti Reálné posloupnosti Reálné posloupnosti Intervaly otevřený interval (a, b) = {x R, a < x < b}; polouzavřený interval (a, b = {x R, a < x b}; uzavřený interval a, b = {x R, a x b}; otevřený neomezený interval

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

Simulace systému hromadné obsluhy Nejčastější chyby v semestrálních pracích

Simulace systému hromadné obsluhy Nejčastější chyby v semestrálních pracích Simulace systému hromadné obsluhy Nejčastější chyby v semestrálních pracích Nedostatešný popis systému a jeho modelu vstupy S výstupy Systém Část prostředí, kterou lze od jeho okolí oddělit fyzickou nebo

Více

VaR analýza citlivosti, korekce

VaR analýza citlivosti, korekce VŠB-TU Ostrava, Ekonomická fakulta, katedra financí.-. září 008 VaR analýza citlivosti, korekce František Vávra, Pavel Nový Abstrakt Práce se zabývá rozbory citlivosti některých postupů, zahrnutých pod

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Pravděpodobně skoro správné. PAC učení 1

Pravděpodobně skoro správné. PAC učení 1 Pravděpodobně skoro správné (PAC) učení PAC učení 1 Výpočetní teorie strojového učení Věta o ošklivém kačátku. Nechť E je klasifikovaná trénovací množina pro koncept K, který tvoří podmnožinu konečného

Více

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové

Více

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Numerické metody jednorozměrné minimalizace Vedoucí bakalářské práce: RNDr. Horymír

Více

5. PŘEDNÁŠKA EKONOMETRICKÝ MODEL REGRESNÍ ANALÝZA DUMMIES VÍCENÁSOBNÁ REGRESE

5. PŘEDNÁŠKA EKONOMETRICKÝ MODEL REGRESNÍ ANALÝZA DUMMIES VÍCENÁSOBNÁ REGRESE 5. PŘEDNÁŠKA EKONOMETRICKÝ MODEL REGRESNÍ ANALÝZA DUMMIES VÍCENÁSOBNÁ REGRESE 1 STRUKTURA PŘEDNÁŠKY - DNES - Formulace a strukturace problému za pomoci teorie; data; ekonometrický model; identifikační

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

AVDAT Mnohorozměrné metody, metody klasifikace

AVDAT Mnohorozměrné metody, metody klasifikace AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,

Více

Vybrané poznámky k řízení rizik v bankách

Vybrané poznámky k řízení rizik v bankách Vybrané poznámky k řízení rizik v bankách Seminář z aktuárských věd Petr Myška 7.11.2008 Obsah přednášky Oceňování nestandartních instrumentů finančních trhů Aplikace analytických vzorců Simulační techniky

Více

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu)

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Frank Wilcoxon (1892 1965): Americký statistik a chemik Nechť X 1,..., X n je náhodný výběr ze

Více

7.1 Extrémy a monotonie

7.1 Extrémy a monotonie KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

Značení 1.1 (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů,

Značení 1.1 (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů, Rekurentní jevy Značení. (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů, kde každý má tutéž konečnou nebo spočetnou množinu výsledků E, E,...}. Pak E j,..., E jn } značí

Více

Kapitola 4: Průběh funkce 1/11

Kapitola 4: Průběh funkce 1/11 Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

Lucie Mazurová. 9.1 Operační riziko v rámci koncepce Basel II

Lucie Mazurová. 9.1 Operační riziko v rámci koncepce Basel II 9. Modelování operačního rizika Lucie Mazurová Operační riziko lze chápat obecně jako riziko ztráty v důsledku provozních nedostatků a chyb, resp. jako riziko plynoucí z operací firmy. Operační riziko

Více

Průběh průměrných ročních teplot vzduchu (ºC) v období na stanici Praha- Klementinum

Průběh průměrných ročních teplot vzduchu (ºC) v období na stanici Praha- Klementinum Změna klimatu v ČR Trend změn na území ČR probíhá v kontextu se změnami klimatu v Evropě. Dvě hlavní klimatologické charakteristiky, které probíhajícím změnám klimatického systému Země nejvýrazněji podléhají

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

Nestranný odhad Statistické vyhodnocování exp. dat M. Čada

Nestranný odhad Statistické vyhodnocování exp. dat M. Čada Nestranný odhad 1 Parametr θ Máme statistický (výběrový) soubor, který je realizací náhodného výběru 1, 2, 3,, n z pravděpodobnostní distribuce, která je kompletně stanovena jedním nebo více parametry

Více