Kmitavý pohyb trochu jinak

Rozměr: px
Začít zobrazení ze stránky:

Download "Kmitavý pohyb trochu jinak"

Transkript

1 Kmitavý pohyb trochu jinak JIŘÍ ESAŘ, PER BAROŠ Katedra fyziky, Pedaoická fakuta, JU České Budějovice Kmitavý pohyb patří mezi zákadní fyzikání děje. Většinou se tato část fyziky redukuje na matematický popis děje. Z hediska motivačního je ae třeba žáky a studenty všech typů ško nejprve seznámit se zajímavými experimenty této obasti fyziky a až poté provést jejich kvaitativní a kvantitativní anaýzu. Na tuto probematiku je nutné také vhodně připravit budoucí učitee fyziky. Kmitavý pohyb vodního soupce v U-trubici Obr. 1 Vemi jednoduchý experiment můžeme provést s U trubicí, ve které rozkmitáme vodní soupec. Z hediska vizuaizace je dobré vodu obarvit (např. potravinářskou barvou). rubice může být skeněná nebo z vhodné průhedné hadice upevněná v stabiních stojanech (držácích). Déka jednoho ramene trubice by měa být cca 1,5 m, aby doba kmitu bya v přijatených hodnotách (Obr. 1). Napníme-i trubici přibižně do pooviny její výšky vodou a pomaým fouknutím docííme porušení rovnováhy v U-trubici, dojde po násedném otevření konce trubice k rozkmitání vodního soupce. ento pohyb se však v důsedku tření kapainy o stěnu trubice ryche utumí a v podstatě není možné provést dostatečně přesné měření. Proto je nutné do vody přidat trochu saponátu, abychom snížii tření kapainy o stěny trubice a docíii menšího útumu. Fyzikání rozbor kmitavého pohybu v U-trubici Snížením hadiny na jedné straně trubice dojde k jejímu stejnému zvýšení na druhé straně trubice, čímž dojde k porušení rovnováhy si (Obr. ). Výsedná sía působící na ceý objem kapainy, tj. sía způsobující kmitavý pohyb kapainy, je určena tíhovou siou kapainy v trubci mezi horní a doní hadinou. ato tíhová sía (F ) je určena rozdíem výšek hadin v obou trubicích (y), průřezem trubice, hustotou kapainy (ρ) a tíhovým zrychením (). Veikost této síy můžeme určit vztahem: F = π r y ρ Znaménko mínus vyjadřuje opačnou orientaci výchyky y a působící síy F. Po dosazení do. Newtonova zákona a někoika jednoduchých úpravách dostaneme diferenciání rovnici. řádu s konstantními koeficienty, která představuje rovnici kmitavého pohybu: 0

2 Obr. d y + 0 y = dt Z řešení této rovnice získáme vztah pro periodu tohoto kmitavého pohybu: = π Z výsedného vztahu vypývá, že perioda tohoto kmitavého pohybu záeží pouze na déce vodního soupce. Samozřejmě, že tento vztah patí přesně pouze pro netumené kmity. Vzhedem k maé hodnotě koeficientu útumu můžeme ae s přijatenou mírou přesnosti říci, že v tomto případě je perioda tumených a netumených kmitů stejná. Experimentání ověření Změření periody je záežitost poměrně jednoduchá, určení ampitudy výchyky je vzhedem k vysoké frekvenci kmitů třeba nacvičit a až poté provést vastní měření. Nejépe je v průběhu kmitavého pohybu označit popisovačem na jedné straně trubice všechny ampitudy a až po dokmitání kapainy změřit jejich veikost, zaznamenat je do vhodné tabuky a sestrojit raf. (Obr. 3) K ověření patnosti vztahu pro periodu je nutné určit déku vodního soupce. u určíme z objemu kapainy v trubici a z průměru trubice pomocí vztahu pro objem. Všechny naměřené hodnoty potom zpracujeme do tabuek a vyhodnotíme. Výpočet periody: V = 550 m; d = 19, 5 mm = 1,84 m = 1,9 s Naměřené hodnoty periody: 10 (s) 19,3 19,3 19,4 19, 19,4 = 1,9 s Koeficient útumu Z naměřených ampitud určíme koeficient útumu pode známého vztahu: An n An + 1 b =, pro naše měření vychází: b = 0,161 s -1 Násedně můžeme tuto hodnotu dosadit do vztahu pro tumené kmity: bt y = A e sin( ω t+ ϕ) a sestrojit raf tumených kmitů vodního soupce (Obr. 4). 1

3 Dáe je možné provést porovnání mezi vypočtenou periodou netumených kmitů vodního soupce a tumených kmitů, které charakterizuje vypočtený koeficient útumu. Pro výpočet periody tumených kmitů patí vztah: = π 4π b 0 Obr. 3 Obr. 4, kde 0 je perioda netumených kmitů a b koeficient útumu. Po dosazení výše uvedených (naměřených a vypočtených) hodnot se potvrdi náš původní předpokad: = 0 = 1, 9 s Kmitavý pohyb tyčky na rotujících kotoučích Daší jednoduchý a zajímavý experiment můžeme provést s rotujícími kotouči, na které poožíme tyčku. Pokud se kotouče otáčejí proti sobě vivem různých veikostí třecích si mezi jednotivými kotouči a tyčkou dojde k jejímu rozkmitání. (Obr. 5) Jak konkrétně sestavit vhodné zařízení? Pro pohon kotoučů je třeba motorek o dostatečném výkonu, který má maé otáčky. Dáe je nutné zajistit, aby se oba kotouče pohybovay stejnou rychostí a v opačném směru. oho docííme např. překřížením poháněcího umového řemínku mezi oběma kotouči nebo vytvořením ozubeného soukoí s různým počtem koeček. V našem případě jsme zvoii první variantu a jako pohon použii motorek z automobiových stěračů. Obr. 5 Fyzikání rozbor kmitavého pohybu tyčky na rotujících kotoučích Poožíme-i tyčku o déce a hmotnosti m mírně asymetricky na kotouče, působí na ni tíhová sía F, která se rozkádá do dvou normáových si v bodech dotyku s rotujícími kotoučky. Protože kotoučky rotují opačně, vznikají v bodech dotyku

4 Obr. 6 opačně orientované třecí síy F 1 a F. Výsedná sía, která způsobuje pohyb tyčky, je dána rozdíem těchto třecích si, tj. patí: F = F 1 - F. Je zřejmé, že tato sía má opačný směr než je výchyka y těžiště od osy symetrie (Obr. 6). Vyjdeme-i z označení na obrázku, a ze vztahu pro výpočet třecí síy dostaneme pro cekovou síu F vztah: m m m m F = y µ + y µ m µ F = y Znaménko mínus vyjadřuje opačnou orientaci výchyky y a působící síy F. Po dosazení do. Newtonova zákona a někoika jednoduchých úpravách dostaneme diferenciání rovnici. řádu s konstantními koeficienty, která představuje rovnici kmitavého pohybu: d y µ + y = 0 dt Z řešení této rovnice vypývá vztah pro periodu tohoto kmitavého pohybu: = π µ kde = déka tyčky a µ = součinite tření mezi tyčkou a kotoučem. Z výsedného vztahu vypývá, že perioda tohoto kmitavého pohybu závisí pouze na déce tyčky a koeficientu tření. Samozřejmě, že tento vztah patí pouze v případě, kdy koeficient tření µ nezávisí na rychosti pohybu kotoučů a tyčky, kdy tyčka vykonává harmonický kmitavý pohyb. Paradoxem se zdá být skutečnost, že perioda tyčky nezávisí na její hmotnosti. Můžeme zde naeznout anaoii s nezávisostí periody na hmotnosti závaží na kmitající pružině, resp. hmotnosti závaží u matematického kyvada. Experimentání ověření Vzhedem k tomu, že perioda tyčky je poměrně maá (pro déku tyče 0,3 0,9 m cca 1 sekundy) je vhodné měřit čas 10 period a potom určit jednu periodu. Výpočet periody: = 0,507 m; µ = 0,65 = 1,5 s 3

5 Naměřené hodnoty periody: 10 (s) 1,73 1,50 1,46 1,64 1,47 = 1,6 s Didaktický rozbor uvedených experimentů S žáky a studenty provedeme fyzikání rozbor uvažovaného jevu. V první řadě musí dojít k poznatku, že se jedná o periodický pohyb. Dáe si ujasnit, je-i tento pohyb tumený či netumený. Nejdůežitějším úkoem je zjistit, proč k tomuto kmitavému pohybu dochází (porušení rovnováhy si vychýením hadin, resp. rozdíné třecí síy na kotoučích). Dáe je vhodné diskutovat o parametrech ovivňujících veikost periody. Žáci zřejmě budou kromě déky vodního soupce také uvádět průřez trubice, případně hustotu kapainy a u rotujících kotoučů potom také hmotnost tyče, resp. počet otáček kotoučů. Na střední škoe sděíme vztah pro periodu bez odvozování a ukážeme jeho anaoii se vztahem pro periodu matematického kyvada. Z hediska experimentáních dovedností můžeme procvičit měření periody. Před vastním měřením provedeme odhad déky periody, který násedně ověříme měřením stopkami. Protože doba jedné periody je u obou pokusů poměrně maá, je vhodné změřit např. 10 period a z naměřené hodnoty určit dobu jedné periody. Aby mohi budoucí učiteé fyziky pnit své posání, musí být řádně připraveni především po fyzikáně didaktické stránce. Proto při anaýze uvedených experimentů provedeme fyzikání rozbor a na jeho zákadě sestavíme pohybovou rovnici, odvodíme vztah pro periodu kmitu a určíme koeficient útumu a daší závisosti. Získané vztahy potom ověříme experimentáně. Kromě kvaitativního a kvantitativního řešení úohy si musí adepti učiteství na této úoze také osvojit didaktické zásady provedení demonstračního experimentu, jeho vyhodnocení pomocí výpočetní techniky a zpracování protokou. yto experimenty ze pojmout jako kompexní úohu v semináři didaktiky fyziky nebo zadat jako projekt. Závěr Cíem tohoto příspěvku byo ukázat kompexní přístup k dvěma netradičním experimentům na kmitavý pohyb. Fyzikání a didaktická anaýza uvedených jevů pak ukazuje jednu z možných variant, jak se této probematiky zhostit. 4

Název: Studium kmitání matematického kyvadla

Název: Studium kmitání matematického kyvadla Název: Studium kmitání matematického kyvada Autor: Doc. RNDr. Mian Rojko, CSc. Název škoy: Gymnázium Jana Nerudy, škoa h. města Prahy Předmět, mezipředmětové vztahy: fyzika, biooie Ročník: 3. (1. ročník

Více

2.1 Stáčivost v závislosti na koncentraci opticky aktivní látky

2.1 Stáčivost v závislosti na koncentraci opticky aktivní látky 1 Pracovní úkoy 1. Změřte závisost stočení poarizační roviny na koncentraci vodního roztoku gukozy v rozmezí 0 500 g/. Pro jednu zvoenou koncentraci proveďte 5 měření úhu stočení poarizační roviny. Jednu

Více

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úlohač.19 Název: Měření s torzním magnetometrem

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úlohač.19 Název: Měření s torzním magnetometrem Odděení fyzikáních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. úohač.19 Název: Měření s torzním magnetometrem Pracova: Lukáš Ledvina stud.skup.14 dne:16.10.2009 Odevzdadne: Možný počet

Více

1. Stanovení modulu pružnosti v tahu přímou metodou

1. Stanovení modulu pružnosti v tahu přímou metodou . Stanovení moduu pružnost v tahu přímou metodou.. Zadání úohy. Určte modu pružnost v tahu přímou metodou pro dva vzorky různých materáů a výsedky porovnejte s tabukovým hodnotam.. Z naměřených hodnot

Více

STRUKTURA A VLASTNOSTI KAPALIN

STRUKTURA A VLASTNOSTI KAPALIN I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í STUKTUA A VLASTNOSTI KAPALIN. Povrchové napětí a) yzikání jev Povrch kapain se chová jako napjatá pružná membrána (důkaz vodoměrka, maé kapičky koue)

Více

Modelování kmitavých soustav s jedním stupněm volnosti

Modelování kmitavých soustav s jedním stupněm volnosti Modeování kmitavých soustav s jedním stupněm vonosti Zpracova Doc. RNDr. Zdeněk Haváč, CSc 1. Zákadní mode Zákadním modeem kmitavé soustavy s jedním stupněm vonosti je tzv. diskrétní podéně kmitající mode,

Více

Měření momentu setrvačnosti prstence dynamickou metodou

Měření momentu setrvačnosti prstence dynamickou metodou Měření momentu setrvačnosti prstence dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=13 Tato úloha patří zejména svým teoretickým základem k nejobtížnějším. Pojem momentu setrvačnosti dělá

Více

7 Mezní stavy použitelnosti

7 Mezní stavy použitelnosti 7 Mezní stavy použitenosti Cekové užitné vastnosti konstrukcí mají spňovat dva zákadní požadavky. Prvním požadavkem je bezpečnost, která je zpravida vyjádřena únosností. Druhým požadavkem je použitenost,

Více

Úvod do problematiky ochrany proti hluku v dřevostavbách by

Úvod do problematiky ochrany proti hluku v dřevostavbách by OCHRANA PROTI HLUKU V DŘEVOSTAVBÁCH Úvod do probematiky ochrany proti huku v dřevostavbách by mě projektantům, zhotoviteům a investorům v obasti dřevostaveb poskytnout všeobecný zákad pro diskuzi a objasnění

Více

Mechanické kmitání - určení tíhového zrychlení kyvadlem

Mechanické kmitání - určení tíhového zrychlení kyvadlem I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 9 Mechanické kmitání - určení

Více

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. katedra fyziky ZÁKLADY FYZIKY II. Pro obory DMML, TŘD a AID prezenčního studia DFJP

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. katedra fyziky ZÁKLADY FYZIKY II. Pro obory DMML, TŘD a AID prezenčního studia DFJP UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ katedra fyziky ZÁKLADY FYZIKY II Pro obory DMML, TŘD a AID prezenčního studia DFJP RNDr Jan Z a j í c, CSc, 005 4 MAGNETICKÉ JEVY 4 NESTACIONÁRNÍ ELEKTROMAGNETICKÉ

Více

I Stabil. Lepený kombinovaný nosník se stojnou z desky z orientovaných plochých třísek - OSB. Navrhování nosníků na účinky zatížení podle ČSN 73 1701

I Stabil. Lepený kombinovaný nosník se stojnou z desky z orientovaných plochých třísek - OSB. Navrhování nosníků na účinky zatížení podle ČSN 73 1701 I Stabi Lepený kombinovaný nosník se stojnou z desky z orientovaných pochých třísek - OSB Navrhování nosníků na účinky zatížení pode ČSN 73 1701 Část A Část B Část C Část D Výchozí předpokady, statické

Více

Inovace předmětů studijních programů strojního inženýrství v oblasti teplotního namáhání

Inovace předmětů studijních programů strojního inženýrství v oblasti teplotního namáhání Grantový projekt FRVŠ MŠMT č.97/7/f/a Inovace předmětů studijních programů strojního inženýrství v obasti tepotního namáhání Některé apikace a ukázky konkrétních řešení tepeného namáhání těes. Autorky:

Více

1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy

1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy MěřENÍ MOMENTU SETRVAčNOSTI KOLA TEREZA ZÁBOJNÍKOVÁ 1. Teorie Moment setrvačnosti kola lze měřit dvěma metodami. 1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy otáčení

Více

3.1.7 Kyvadlo. Předpoklady: 3106

3.1.7 Kyvadlo. Předpoklady: 3106 37 Kyvado ředpokady: 306 edaoická poznámka: Ceý obsah hodiny není možné stihnout za 45 minut Je třeba se ozhodnout, co je podstatné: testování vzoce paktickým sestojováním kyvade, povídání o kyvadových

Více

S plnou silou do náročných úkolů

S plnou silou do náročných úkolů S pnou siou do náročných úkoů Pro téměř každé průmysové použití se najde ten správný stroj z řady Kärcher IC a I s výkom od,4 do 7,5 a nádobou o objemu a 00. ýkonné a spoehivé vysavače jsou skvěe vhodné

Více

Měření modulů pružnosti G a E z periody kmitů pružiny

Měření modulů pružnosti G a E z periody kmitů pružiny Měření modulů pružnosti G a E z periody kmitů pružiny Online: http://www.sclpx.eu/lab2r.php?exp=2 V tomto experimentu vycházíme z pojetí klasického pokusu s pružinovým oscilátorem. Z periody kmitů se obvykle

Více

Téma 4 Výpočet přímého nosníku

Téma 4 Výpočet přímého nosníku Stavební statika, 1.ročník bakaářského studia Téma 4 Výpočet přímého nosníku Výpočet nosníku v osové úoze Výpočet nosníku v příčné úoze ve svisé a vodorovné havní rovině Výpočet nosníku v krutové úoze

Více

Mechanické kmitání (oscilace)

Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

REALIZACE SKLÁPĚNÍ A ŘÍZENÍ ZDVIHOVÉHO MECHANISMU JEŘÁBU DERIKOVÉHO TYPU THE REALIZATION DUMPING AND CONTROL OF THE LIFTING DEVICE OF DERRICK CRANE

REALIZACE SKLÁPĚNÍ A ŘÍZENÍ ZDVIHOVÉHO MECHANISMU JEŘÁBU DERIKOVÉHO TYPU THE REALIZATION DUMPING AND CONTROL OF THE LIFTING DEVICE OF DERRICK CRANE Ročník 9, Číso I., duben 04 REAIZACE SKÁPĚNÍ A ŘÍZENÍ ZDVIHOVÉHO MECHANISMU JEŘÁBU DERIKOVÉHO TYPU THE REAIZATION DUMPING AND CONTRO OF THE IFTING DEVICE OF DERRICK CRANE eopod Hrabovský Anotace: Předmětem

Více

Měření logaritmického dekrementu kmitů v U-trubici

Měření logaritmického dekrementu kmitů v U-trubici Měření logaritmického dekrementu kmitů v U-trubici Online: http://www.sclpx.eu/lab2r.php?exp=17 Tento experiment, autorem publikovaný v [31] a [32], je z pohledu středoškolského učiva opět nadstavbový

Více

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 2: Měření modulu pružnosti v tahu a ve smyku. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 2: Měření modulu pružnosti v tahu a ve smyku. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úoha : Měření moduu pružnosti v tahu a ve smyku Datum měření: 9. 10. 009 Jméno: Jiří Sabý Pracovní skupina: 1 Ročník a kroužek:. ročník, 1. kroužek, pátek 13:30 Spoupracovaa:

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Název: Studium kmitů na pružině

Název: Studium kmitů na pružině Název: Studium kmitů na pružině Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Mechanické kmitání

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzita omáše Bati ve Zíně LABORAORNÍ CVIČENÍ Z FYZIKY II Název úohy: Měření tíhového zrychení reverzním a matematickým kyvadem Jméno: Petr Luzar Skupina: I II/1 Datum měření: 3.října 007 Obor: Informační

Více

MĚŘ, POČÍTEJ A MĚŘ ZNOVU

MĚŘ, POČÍTEJ A MĚŘ ZNOVU MĚŘ, POČÍTEJ A MĚŘ ZNOVU Václav Piskač Gymnázium tř.kpt.jaroše, Brno Abstrakt: Příspěvek ukazuje možnost, jak ve vyučovací hodině propojit fyzikální experiment a početní úlohu způsobem, který výrazně zvyšuje

Více

Fyzikální veličiny. Převádění jednotek

Fyzikální veličiny. Převádění jednotek Fyzikální veličiny Vlastnosti těles, které můžeme měřit nebo porovnávat nazýváme fyzikální veličiny. Značka fyzikální veličiny je písmeno, kterým se název fyzikální veličiny nahradí pro zjednodušení zápisu.

Více

MAGNETICKÉ POLE. 1. Stacionární magnetické pole I I I I I N S N N

MAGNETICKÉ POLE. 1. Stacionární magnetické pole I I I I I N S N N MAGETCKÉ POLE 1. Stacionární magnetické poe V E S T C E D O R O Z V O J E V Z D Ě L Á V Á Í je část prostoru, kde se veičiny popisující magnetické poe nemění s časem. Vzniká v bízkosti stacionárních vodičů

Více

INTERFERENCE SVTLA. Obr. 1: Interference svtla. Troška historie

INTERFERENCE SVTLA. Obr. 1: Interference svtla. Troška historie INTERFERENCE SVTLA Každý z nás již jist vid oejové skvrny na mokré vozovce nebo mýdové bubiny. Píinou jejich duhového zbarvení je jev, který nazýváme interference svta a patí mezi zákadní jevy tzv. vnové

Více

1.9.1 Vyjádření neznámé ze vzorce I

1.9.1 Vyjádření neznámé ze vzorce I .9. Vyjádření neznámé ze vzorce I Předpokady: 75, 85 Pedagogická poznámka: Ačkoiv v normání učebnici zabírá vyjadřování ze vzorce jenom tři stránky, věnova jsem ji ceou podkapitou, z někoika důvodů: Autor

Více

Vakuová fyzika 1 1 / 40

Vakuová fyzika 1 1 / 40 Měření tlaku Měření celkových tlaků Měření parciálních tlaků Rozdělení měřících metod Vakuová fyzika 1 1 / 40 Absolutní metody - hodnota tlaku je určena přímo z údaje měřícího přístroje, nebo výpočtem

Více

PŘÍČNÉ LISOVANÉ ZTUŽIDLO VE STŘEŠNÍ ROVINĚ KONSTRUKCÍ Z DŘEVĚNÝCH

PŘÍČNÉ LISOVANÉ ZTUŽIDLO VE STŘEŠNÍ ROVINĚ KONSTRUKCÍ Z DŘEVĚNÝCH PŘÍČNÉ LISOVANÉ ZTUŽIDLO VE STŘEŠNÍ ROVINĚ KONSTRUKCÍ Z DŘEVĚNÝCH VAZNÍKŮ S KOVOVÝMI DESKAMI S PROLISOVANÝMI TRNY Petr Kukík 1, Micha Grec 2, Aeš Tajbr 3 Abstrakt Timber trusses with punched meta pate

Více

Tlumené kmitání tělesa zavěšeného na pružině

Tlumené kmitání tělesa zavěšeného na pružině Tlumené kmitání tělesa zavěšeného na pružině Kmitavé pohyby jsou důležité pro celou fyziku a její aplikace, protože umožňují relativně jednoduše modelovat řadu fyzikálních dějů a jevů. V praxi ale na pohybující

Více

Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte.

Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte. Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte. Pozn.: Na konci je uvedena stručná verze výpočtu, aby se vešla na jednu stránku. Začneme silovým rozborem. Na první

Více

ZKOUŠENÍ TEXTILIÍ PŘEDNÁŠKA 10 KONSTRUKČNÍ PARAMETRY PLOŠNÝCH TEXTILIÍ

ZKOUŠENÍ TEXTILIÍ PŘEDNÁŠKA 10 KONSTRUKČNÍ PARAMETRY PLOŠNÝCH TEXTILIÍ ZKOUŠENÍ TEXTILIÍ PŘEDNÁŠKA 10 KONSTRUKČNÍ PARAMETRY PLOŠNÝCH TEXTILIÍ KONSTRUKČNÍ PARAMETRY PLOŠNÝCH TEXTILIÍ U tkanin: Vazba Dostava Pošná hmotnost Objemová měrná hmotnost Pórovitost Toušťka Setkání

Více

Stanovení hustoty pevných a kapalných látek

Stanovení hustoty pevných a kapalných látek 55 Kapitola 9 Stanovení hustoty pevných a kapalných látek 9.1 Úvod Hustota látky ρ je hmotnost její objemové jednotky, definované vztahem: ρ = dm dv, kde dm = hmotnost objemového elementu dv. Pro homogenní

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

VY_52_INOVACE_2NOV42. Autor: Mgr. Jakub Novák. Datum: 15. 11. 2012 Ročník: 8.

VY_52_INOVACE_2NOV42. Autor: Mgr. Jakub Novák. Datum: 15. 11. 2012 Ročník: 8. VY_52_INOVACE_2NOV42 Autor: Mgr. Jakub Novák Datum: 15. 11. 2012 Ročník: 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Zvukové děje, Energie Téma: Kmitání kyvadla Metodický

Více

charakteristika skautingu

charakteristika skautingu ZÁKLADNÍ CHARAKTERISTIKA SKAUTINGU Zákadní charakteristika skautingu OBSAH n Podí na výchově madých idí... 58 n pomocí systému postupné sebevýchovy... 64 n zaožené na souboru hodnot... 73 n Hnutí... 75

Více

Měřicí a řídicí technika Bakalářské studium 2007/2008. odezva. odhad chování procesu. formální matematický vztah s neznámými parametry

Měřicí a řídicí technika Bakalářské studium 2007/2008. odezva. odhad chování procesu. formální matematický vztah s neznámými parametry MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1 Střední průmysová škoa a Vyšší odborná škoa technická Brno, Sokoská 1 Šabona: Inovace a zkvaitnění výuky prostřednictvím ICT Název: Téma: Autor: Číso: Anotace: echanika, pružnost pevnost Nosníky stejné

Více

POKUTOVÉ BLOKY. Samostatné oddělení 904 Správní činnosti Září 2012

POKUTOVÉ BLOKY. Samostatné oddělení 904 Správní činnosti Září 2012 POKUTOVÉ BLOKY Samostatné odděení 904 Správní činnosti Září 2012 Zákadní informace Ustanovení 85 zákona č. 200/1990 Sb., o přestupcích, ve znění pozdějších předpisů (dáe jen zák. č. 200/1990 Sb. ), stanoví

Více

6.1.4 Kontrakce délek

6.1.4 Kontrakce délek 6..4 Kontrake déek Předpokady: 603 Existuje na Zemi jev, na kterém je diatae času opravdu vidět? Př. :Částie mion má poočas rozpadu (doba, za kterou se rozpadne přibižně poovina části) 2,2µs. Vysvěti,

Více

ZOL, ZTL SIGMA PUMPY HRANICE ZUBOVÁ MONOBLOKOVÁ ÈERPADLA 426 1.99 21.02

ZOL, ZTL SIGMA PUMPY HRANICE ZUBOVÁ MONOBLOKOVÁ ÈERPADLA 426 1.99 21.02 SIGMA UMY HRANICE ZUBOVÁ MONOBLOKOVÁ ÈERADLA SIGMA UMY HRANICE, s.r.o. Tovární 60, 0 Hranice te.: 8 66, fax: 8 602 8 Emai: sigmahra@sigmahra.cz ZOL, ZTL 426.99.02 Zubová monoboková èerpada ZOLZTL oužití

Více

Couloumbuv zákon stejne jako vetsina zakonu elektrostatiky jsou velmi podobna zakonum gravitacniho pole.

Couloumbuv zákon stejne jako vetsina zakonu elektrostatiky jsou velmi podobna zakonum gravitacniho pole. 1) Eektrostaticke poe, Cooumbuv zákon, Permitivita kazde dve teesa nabite eektrickym nabojem Q na sebe pusobi vzajemnou siou. Ta je vysise pomoci Couombovyho zákona: F = 1 4 Q Q 1 2 r r 2 0 kde první cast

Více

Název: Matematické kyvadlo

Název: Matematické kyvadlo Název: Matematické kyvadlo Výukové materiály Téma: Harmonické kmitání a vlnění Úroveň: střední škola Tematický celek: Obecné zákonitosti přírodovědných disciplin a principy poznání ve vědě Předmět (obor):

Více

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný

Více

Scia Engineer - popis modulu

Scia Engineer - popis modulu Scia Engineer - popis moduu Nástroje produktivity esa.06 Nástroje produktivity nabízejí řadu funkcí pro usnadnění práce a zvýšení produktivity. Ty zasahují do všech částí návrhu konstrukce - definování

Více

Univerzita obrany. Měření součinitele tření potrubí K-216. Laboratorní cvičení z předmětu HYDROMECHANIKA. Protokol obsahuje 14 listů

Univerzita obrany. Měření součinitele tření potrubí K-216. Laboratorní cvičení z předmětu HYDROMECHANIKA. Protokol obsahuje 14 listů Univerzita obrany K-216 Laboratorní cvičení z předmětu HYDROMECHANIKA Měření součinitele tření potrubí Protokol obsahuje 14 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování:5.5.2011

Více

Hydromechanické procesy Hydrostatika

Hydromechanické procesy Hydrostatika Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice

Více

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A MECHANICKÉ KMITÁNÍ Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A Kinematika kmitavého pohybu Mechanický oscilátor - volně kmitající zařízení Rovnovážná poloha Výchylka Kinematika kmitavého pohybu Veličiny charakterizující

Více

Obsah MECHANIKA PRUŽNÉHO TĚLESA. Tabulka III. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral.

Obsah MECHANIKA PRUŽNÉHO TĚLESA. Tabulka III. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Tabuka III Mechanické vastnosti některých křehkých konstrukčních materiáů Pevnost v tahu Pevnost v taku Pevnost v ohybu Materiá σ pt/mpa σ pd /MPa σ po/mpa Šedá itina 4 4 1 10 500 80 Šedá itina 4 4 4 40

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

Změna skupenství, Tání a tuhnutí, Sublimace a desublimace Vypařování a kapalnění Sytá pára, Fázový diagram, Vodní pára

Změna skupenství, Tání a tuhnutí, Sublimace a desublimace Vypařování a kapalnění Sytá pára, Fázový diagram, Vodní pára Zěny skupenství átek Zěna skupenství, Tání a tuhnutí, Subiace a desubiace Vypařování a kapanění Sytá pára, Fázový diagra, Vodní pára Zěna skupenství = fyzikání děj, při které se ění skupenství átky Skupenství

Více

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace. STUDUM OTÁčENÍ TUHÉHO TěLESA TEREZA ZÁBOJNÍKOVÁ 1. Pracovní úkol (1) Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. (2) Určete složky jednotkového vektoru ve směru zadané obecné

Více

Stacionární magnetické pole

Stacionární magnetické pole Stacionání magnetické poe Vzájemné siové působení vodičů s poudem a pemanentních magnetů Magnetické jevy - známy od středověku, přesnější poznatky 19. stoetí. Stacionání magnetické poe: zdojem je nepohybující

Více

OTÁZKY Z TEORIE ELEKTROMAGNETICKÉHO POLE Letní semestr 2003/2004 poslední úprava 25. června 2004

OTÁZKY Z TEORIE ELEKTROMAGNETICKÉHO POLE Letní semestr 2003/2004 poslední úprava 25. června 2004 OTÁZKY Z TEORIE ELEKTROMAGNETICKÉHO POLE Letní semestr 2003/2004 posední úprava 25. června 2004 1. ía současně působící na eektrický náboj v eektrickém a magnetickém poi (Lorentzova sía) [ ] F m = Q E

Více

3.9. Energie magnetického pole

3.9. Energie magnetického pole 3.9. nergie agnetického poe 1. Uět odvodit energii agnetického poe cívky tak, aby bya vyjádřena poocí paraetrů obvodu (I a L).. Znát vztah pro energii agnetického poe cívky jako funkci veičin charakterizujících

Více

TEPLOMĚRY, HUSTOMĚRY

TEPLOMĚRY, HUSTOMĚRY TEPOMĚRY, HUSTOMĚRY 67 Tepoměry aboratorní Určení Jsou určeny pro všeobecné použití při měření tepoty v průmysu, zeměděství, ve vědě i výzkumu. Konstrukční provedení je vhodné přednostně pro použití v

Více

Clemův motor vs. zákon zachování energie

Clemův motor vs. zákon zachování energie Clemův motor vs. zákon zachování energie (c) Ing. Ladislav Kopecký, 2009 V učebnicích fyziky se traduje, že energii nelze ani získat z ničeho, ani ji zničit, pouze ji lze přeměnit na jiný druh. Z této

Více

2.5.7 Šetříme si svaly I (kladka)

2.5.7 Šetříme si svaly I (kladka) 2.5.7 Šetříme si svay I (kadka) Předpokady: 020501 Pomůcky: kadky, akoěá rovia, šroub, smotateá akoěá rovia, švihada (ao), dvě košťata Př. 1: Uveď příkad situace, ve které se používá páka a: a) většeí

Více

MECHANICKÉ KMITÁNÍ A VLNĚNÍ VLASTNÍ KMITÁNÍ MECHANICKÉHO OSCILÁTORU

MECHANICKÉ KMITÁNÍ A VLNĚNÍ VLASTNÍ KMITÁNÍ MECHANICKÉHO OSCILÁTORU Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 9. 6. 2013 Název zpracovaného celku: MECHANICKÉ KMITÁNÍ A VLNĚNÍ VLASTNÍ KMITÁNÍ MECHANICKÉHO OSCILÁTORU Kmitavý pohyb Je periodický pohyb

Více

MĚŘENÍ PRŮTOKU A PROTEKLÉHO MNOŽSTVÍ

MĚŘENÍ PRŮTOKU A PROTEKLÉHO MNOŽSTVÍ MĚŘENÍ PRŮTOKU A PROTEKLÉHO MNOŽSTVÍ Výsedek ěření průtoku ůže být udáván buď jako hotnostní nebo jako objeový průtok: d d t dv d t Q [ kg.s ] [ 3.s ] Měřida průtoku vybavená integrační zařízení udávají

Více

Netlumené kmitání tělesa zavěšeného na pružině

Netlumené kmitání tělesa zavěšeného na pružině Netlumené kmitání tělesa zavěšeného na pružině Kmitavý pohyb patří k relativně jednoduchým pohybům, které lze analyzovat s použitím jednoduchých fyzikálních zákonů a matematických vztahů. Zároveň je tento

Více

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda SÍLY A JEJICH VLASTNOSTI Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vzájemné působení těles Silové působení je vždy vzájemné! 1.Působení při dotyku 2.Působení na dálku prostřednictvím polí gravitační pole

Více

Mechanické vlastnosti kapalin hydromechanika

Mechanické vlastnosti kapalin hydromechanika Mechanické vlastnosti kapalin hydromechanika Vlastnosti kapalných látek nemají vlastní tvar, mění tvar podle nádoby jsou tekuté, dají se přelévat jejich povrch je vodorovný se Zemí jsou téměř nestlačitelné

Více

Relativistická fyzika. Galileův princip relativity

Relativistická fyzika. Galileův princip relativity 3.4.3. Předpokady a důsedky speiání teorie reatiity Reatiistiká fyzika A.Einstein 95 Speiání teorie reatiity 95 Obená teorie reatiity Shrnutí prinipů kasiké mehaniky pohyb těes nemá i na běh času, jejih

Více

5 Měření tokových vlastností

5 Měření tokových vlastností 5 Měření tokových vlastností K měření tokových vlastností se používají tzv. reometry. Vzhledem k faktu, že jednotlivé polymerní procesy probíhají při rozdílných rychlostech smykové deformace (Obr. 5.1),

Více

NÁKLONĚNÁ ROVINA A KYVADLO ROZUMÍME JIM?

NÁKLONĚNÁ ROVINA A KYVADLO ROZUMÍME JIM? NÁKLONĚNÁ ROVINA A KYVADLO ROZUMÍME JIM? Václav Piskač Gymnázium tř.kpt. Jaroše, Brno Abstrakt: příspěvek je zaměřen na dva běžně používané fyzikální modely nakloněnou rovinu a matematické kyvadlo. U obou

Více

SCLPX 07 2R Ověření vztahu pro periodu kyvadla

SCLPX 07 2R Ověření vztahu pro periodu kyvadla Klasické provedení a didaktické aspekty pokusu U kyvadla, jakožto dalšího typu mechanického oscilátoru, platí obdobně vše, co bylo řečeno v předchozích experimentech SCLPX-7 a SCLPX-8. V současném pojetí

Více

Design floors. Návod k instalaci. click. Základní podmínky. Podklad - všeobecně

Design floors. Návod k instalaci. click. Základní podmínky. Podklad - všeobecně Design foors cick 1 2 Návod k instaaci Bahopřejeme Vám k zakoupení Vaší nové podahy Design Foors. Podaha je navržena tak, aby poskytovaa dokonaý pohed na detaiy a přírodní krásu, avšak s použitím ryché

Více

PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE

PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE Jméno: Třída: Úloha: F-VI-1 Izotermický děj Spolupracovník: Hodnocení: Datum měření: Úkol: Experimentálně ověřte platnost Boyle-Mariottova zákona. Pomůcky: Teorie:

Více

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #9 Základní experimenty akustiky Jméno: Ondřej Finke Datum měření: 3.11.014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě spočítejte,

Více

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní

Více

Stanovení měrného tepla pevných látek

Stanovení měrného tepla pevných látek 61 Kapitola 10 Stanovení měrného tepla pevných látek 10.1 Úvod O teple se dá říci, že souvisí s energií neuspořádaného pohybu molekul. Úhrnná pohybová energie neuspořádaného pohybu molekul, pohybu postupného,

Více

ÚVOD NÁVRH DĚLIČE. Frekvence vysílání [MHz] Frekvence přijmu [MHz] 876-915 921-960. Standard. GSM 900 (Evropa) Využívané mobilní frekvence

ÚVOD NÁVRH DĚLIČE. Frekvence vysílání [MHz] Frekvence přijmu [MHz] 876-915 921-960. Standard. GSM 900 (Evropa) Využívané mobilní frekvence Ročník Číso I Širokopásmový děič výkonu pro pásma mobiních komunikací L. Tejmova, J. Sebesta Fakuta eektrotechniky a komunikačních technoogií VUT v Brně, Ústav radioeektroniky, Purkyňova 8, Brno E-mai

Více

Klasické a inovované měření rychlosti zvuku

Klasické a inovované měření rychlosti zvuku Klasické a inovované měření rychlosti zvuku Jiří Tesař katedra fyziky, Pedagogická fakulta JU Klíčová slova: Rychlost zvuku, vlnová délka, frekvence, interference vlnění, stojaté vlnění, kmitny, uzly,

Více

Jak efektivně přednášet v době e-learningu

Jak efektivně přednášet v době e-learningu ČVUT v Praze Fakulta elektrotechnická Jak efektivně přednášet v době e-learningu David Vaněček Masarykův ústav vyšších studií Katedra inženýrské pedagogiky Evropský sociální fond Praha & EU: Investujeme

Více

1. Měřením na rotačním viskozimetru zjistěte, zda jsou kapaliny připravené pro měření newtonovské.

1. Měřením na rotačním viskozimetru zjistěte, zda jsou kapaliny připravené pro měření newtonovské. 1 Pracovní úkol 1. Měřením na rotačním viskozimetru zjistěte, zda jsou kapaliny připravené pro měření newtonovské. 2. Pomocí rotačního viskozimetru určete viskozitu newtonovské kapaliny. 3. Pro nenewtonovskou

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 4: Měření dutých objemů vážením a kompresí plynu Datum měření: 23. 10. 2009 Měření Poissonovy konstanty vzduchu Jméno: Jiří Slabý Pracovní skupina: 1 Ročník

Více

Výpočtová dokumentace pro montážní přípravek oběžného kola Peltonovy turbíny

Výpočtová dokumentace pro montážní přípravek oběžného kola Peltonovy turbíny Výpočtová dokumentace pro montážní přípravek oběžného kola Peltonovy turbíny Parametry Jako podklady pro výpočtovou dokumentaci byly zadavatelem dodány parametry: -hmotnost oběžného kola turbíny 2450 kg

Více

pv = nrt. Lord Celsius udržoval konstantní tlak plynu v uzavřené soustavě. Potom můžeme napsat T, tedy V = C(t t0) = Ct Ct0, (1)

pv = nrt. Lord Celsius udržoval konstantní tlak plynu v uzavřené soustavě. Potom můžeme napsat T, tedy V = C(t t0) = Ct Ct0, (1) 17. ročník, úloha I. E... absolutní nula (8 bodů; průměr 4,03; řešilo 40 studentů) S experimentálním vybavením dostupným v době Lorda Celsia změřte teplotu absolutní nuly (v Celsiově stupnici). Poradíme

Více

ZVUKOVÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

ZVUKOVÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie ZVUKOVÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Odraz zvuku Vznik ozvěny Dozvuk Několikanásobný odraz Ohyb zvuku Zvuk se dostává za překážky Překážka srovnatelná s vlnovou délkou Pružnost Působení

Více

4. Pokusy z vlnové optiky

4. Pokusy z vlnové optiky 4. Pokusy z vlnové optiky V následující kapitole jsou popsány pokusy z vlnové optiky, které lze provádět v Interaktivní fyzikální laboratoři MFF UK. Je to tedy jakýsi manuál k návštěvě IFL. Kromě pokusů,

Více

Svaz průmyslu a dopravy ČR Zástupce těch, kteří vytvářejí hodnoty

Svaz průmyslu a dopravy ČR Zástupce těch, kteří vytvářejí hodnoty Svaz průmysu a dopravy ČR Úvod Svaz průmysu a dopravy ČR představuje největší zaměstnavateskou organizaci v České repubice. Za třináct et svého působení si díky siné a odborně zdatné čenské zákadně vybudova

Více

Vzdělávací oblast: Člověk a příroda. Vyučovací předmět: fyzika. Třída: sekunda. Očekávané výstupy. Poznámky. Přesahy. Průřezová témata.

Vzdělávací oblast: Člověk a příroda. Vyučovací předmět: fyzika. Třída: sekunda. Očekávané výstupy. Poznámky. Přesahy. Průřezová témata. Vzdělávací oblast: Člověk a příroda Vyučovací předmět: fyzika Třída: sekunda Očekávané výstupy Nalezne společné a rozdílné vlastnosti kapalin, plynů a pevných látek Uvede konkrétní příklady jevů dokazujících,

Více

ZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání

ZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání iloš Hüttner SR D přímé nosníky cvičení 09 adání D PŘÍÉ NOSNÍKY Příklad č. 1 Vykreslete průběhy vnitřních sil na konstrukci zobrazené na Obr. 1. Příklad převzat z katedrové wikipedie (originál ke stažení

Více

M/61000/M, M/61000/MR Kluzné vedení a dorazové válce

M/61000/M, M/61000/MR Kluzné vedení a dorazové válce M/6/M, M/6/MR Kuzné vedení a dorazové váce Dvojčinné - Ø 32 až 1 mm Přesnost vedení Ø,2 mm Přesnost bez otáčení Ø,2 Integrované pevné vodící tyče Varianta s ineárním kuičkovým ožiskem poskytuje přesné

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita

Více

Laboratorní práce č. 1: Určení výtokové rychlosti kapaliny

Laboratorní práce č. 1: Určení výtokové rychlosti kapaliny Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 1: Určení výtokové rychlosti kapaliny Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY FYZIKÁLNA 2. ročník šestiletého studia

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2 Fyzikální sekce přírodovědecké faklty Masarykovy niverzity v Brně FYZIKÁLNÍ PRAKTIKUM Fyzikální praktikm 2 Zpracoval: Jakb Jránek Naměřeno: 24. září 2012 Obor: UF Ročník: II Semestr: III Testováno: Úloha

Více

Vlny kolem nás. Název. Jméno a e-mailová adresa autora Cíle

Vlny kolem nás. Název. Jméno a e-mailová adresa autora Cíle Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Vlny kolem nás Vlnění Jiří Kvapil renata.holubova@upol.cz Žáci rozeznají typy vlnění a podstatu vlnění v každodenním životě

Více

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou.

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 1 Pracovní úkoly 1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 2. Sestrojte graf této závislosti. 2 Teoretický úvod 2.1 Povrchové napětí

Více

ZÁKLADNÍ ŠKOLA a MATE SKÁ ŠKOLA STRUP ICE, okres Chomutov

ZÁKLADNÍ ŠKOLA a MATE SKÁ ŠKOLA STRUP ICE, okres Chomutov ZÁKLADNÍ ŠKOLA a MATE SKÁ ŠKOLA STRUP ICE, okres Chomutov Autor výukového Materiáu Datum (období) vytvo ení materiáu Ro ník, pro který je materiá ur en Vzd ávací obor tématický okruh Název materiáu, téma,

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jakub Michálek stud. skup. 15 dne: 20. března 2009 Odevzdal dne: Možný

Více

Vlníme podélně i příčně

Vlníme podélně i příčně Vlníme podélně i příčně OLDŘICH LEPIL Přírodovědecká fakulta UP, Olomouc Veletrh nápadů učitelů!vziáy VI Je řada demonstrací mechanického kmitání a vlnění, při nichž potřebujeme plynule měnit frekvenci

Více