Číselné množiny Vypracovala: Mgr. Iva Hálková

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Číselné množiny Vypracovala: Mgr. Iva Hálková"

Transkript

1 Číselné množiny Vypracovala: Mgr. Iva Hálková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických předmětů OP Vzdělávání pro konkurenceschopnost Registrační číslo: CZ.1.07/1.1.16/ Matematika jinak strana 1

2 Pracovní list č. 4 ČÍSELNÉ MNOŽINY 1).. 3, 2, 1 0 1, 2, 3,.... záporná celá čísla nula přirozená čísla N N0 = N 0 2) celá čísla Z = záporná celá čísla N 3) p racionální čísla Q (čísla, která lze zapsat zlomkem ; p Z q N ) q 12 př. celé číslo číslo s konečným rozvojem 8, číslo s konečným periodickým rozvojem 1, , 6 3 4) iracionální čísla I ( číslo s nekonečným neperiodickým rozvojem ) př. 2 1, , , Ludolfovo číslo e 2, Eulerovo číslo (základ přirozených logaritmů) 5) reálná čísla R Q I 6) komplexní čísla C = R + { i } i 1...imaginární jednotka Znázornění reálných čísel na reálné číselné ose: strana 2

3 Znázornění komplexních čísel v Gaussově rovině: Z 5 i; Z 4 3i osa x...reálná osa osa y...imaginární osa Přirozená čísla dělíme podle počtu dělitelů: a) 1 b) prvočísla 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 c) čísla složená - mají nejméně 3 dělitele Prvočíslo : přirozené číslo, které je beze zbytku dělitelné pouze číslem jedna a sebou samým. Na odkazu prvočísla ve Wikipedii naleznete: a) Prvočísel je nekonečně mnoho (důkaz sporem Eukleides) b) Hustota prvočísel je určena vztahem 1/ln(n) c) Největší dnes známé prvočíslo (objeveno v roce 2008), jde o 47. Mersennovo číslo d) Prvočíselná dvojčata (liší se o 2) např. 5 a 7, 41 a 43,... e) Riemannova hypotéza: řeší pravidelnost rozložení prvočísel (jeden z problémů tisíciletí - vypsána odměna milionu dolarů) f) Erastothenovo síto - algoritmus pro vytvoření seznamu prvočísel strana 3

4 g) Význam prvočísel: v kryptografii (např. šifrovací systémy) Úkoly: 1. na adrese: a) v seznamu prvočísel do najděte libovolné šesticiferné složené číslo. Pomocí tabulky určete jeho rozklad na součin prvočísel b) s použitím tabulky vypište všechna prvočísla mezi čísly 70 a na adrese: instalujte freeware a v programu splňte úkoly: a) kolik prvočísel se nachází v rozmezí 521 až b) s použitím programu zapište rozklad čísla c) zjistěte, zda jde o prvočíslo: , Nejmenší společný násobek přirozených čísel : n( označ. v angličtině: lcm (least common multiple) - určujeme z prvočíselných rozkladů jednotlivých čísel - je minimálním násobkem každého z čísel Největší společný dělitel přirozených čísel : D( označ. v angličtině: gcd (greatest common divisor) - je maximální číslo, které dělí každé z daných čísel Příklad: n, n,..., 2 n n, n,..., 2 n 1 x 1 x Určete nejmenší společný násobek a největšího společného dělitele čísel 54,144 a = 2*3*3*3 = 2* = 2*2*2*2*3*3 = 2 4 * = 2*2*2*2*2*3 = 2 5 *3 lcm (54, 144, 48) = 2 5 *3 3 = 32*27 = 864 gcd (54, 144, 48) = 2*3 = 6 ) ) strana 4

5 Řešení v softwaru Mathematica Použití klávesnic k psaní některých matematických symbolů: LCM[54,144,48] 432 GCD[54,144,48] 6 Rozklad na součin prvočísel: FactorInteger[54] {{2,1},{3,3}} 54 = 2 1 *3 3 FactorInteger[144] {{2,4},{3,2}} 144 = 2 4 *3 2 FactorInteger[48] {{2,4},{3,1}} 48 = 2 4 *3 1...nejmenší společný násobek...největší společný dělitel Intervaly : části reálné číselné osy rozdíl v mezinárodním značení: Česky a,b, anglicky a, b francouzsky a, b Užití intervalů: a) servisní intervaly vozů - vyberte značku automobilu a zaznamenejte délku servisních intervalů dle kritérií b) intervaly jako základ hudební nauky: c) intervaly v dopravě d) časování událostí TIMEOUT strana 5

6 Procvičujeme: 1. Na adrese: vyuka.odbskmb.cz/množiny_soubory/page655.htm Projít příklady + řešení a z každého typu úlohy vyberte jeden příklad se zadáním i řešením (celkem 7 příkladů) a zaznamenejte do pracovního listu 2. Pomocí softwaru Mathematika určete nejmenší společný násobek a největšího společného dělitele trojice čísel 90, 210, 320 strana 6

7 Použité zdroje: ŘÍHA, Jan. Software Mathematica v přírodních vědách a ekonomii. 1. vyd. Olomouc: Univerzita Palackého v Olomouci, 2012, 63 s. ISBN strana 7

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Y36BEZ Bezpečnost přenosu a zpracování dat Róbert Lórencz 1. přednáška Úvod http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Róbert Lórencz (ČVUT FEL, 2007) Y36BEZ Bezpečnost přenosu a zpracování

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně egistrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Matematické algoritmy (11MAG) Jan Přikryl

Matematické algoritmy (11MAG) Jan Přikryl Prvočísla, dělitelnost Matematické algoritmy (11MAG) Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 2. přednáška 11MAG ponděĺı 7. října 2013 verze: 2013-10-22 14:28 Obsah přednášky Prvočísla

Více

Prvočísla, dělitelnost

Prvočísla, dělitelnost Prvočísla, dělitelnost Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAG pondělí 3. listopadu 2013 verze: 2014-11-03 11:28 Obsah přednášky

Více

Základy elementární teorie čísel

Základy elementární teorie čísel Základy elementární teorie čísel Jiří Velebil: X01DML 29. října 2010: Základy elementární teorie čísel 1/14 Definice Řekneme, že přirozené číslo a dělí přirozené číslo b (značíme a b), pokud existuje přirozené

Více

Algebraické výrazy Vypracovala: Mgr. Zuzana Kopečková

Algebraické výrazy Vypracovala: Mgr. Zuzana Kopečková Algebraické výrazy Vypracovala: Mgr. Zuzana Kopečková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických

Více

Základy elementární teorie čísel

Základy elementární teorie čísel Základy elementární teorie čísel Jiří Velebil: A7B01MCS 3. října 2011: Základy elementární teorie čísel 1/15 Dělení se zbytkem v oboru celých čísel Ať a, b jsou libovolná celá čísla, b 0. Pak existují

Více

VYUŽITÍ PROGRAMU DERIVE PŘI VÝUCE NA ZÁKLADNÍ ŠKOLE

VYUŽITÍ PROGRAMU DERIVE PŘI VÝUCE NA ZÁKLADNÍ ŠKOLE VYUŽITÍ PROGRAMU DERIVE PŘI VÝUCE NA ZÁKLADNÍ ŠKOLE Miroslava Huclová Katedra výpočetní a didaktické techniky, Fakulta pedagogická, ZČU, Plzeň Abstrakt: Příspěvek demonstruje použití systému počítačové

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Úvod do programu wxmaxima

Úvod do programu wxmaxima Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Katedra matematiky Bakalářská práce Úvod do programu wxmaxima Vypracoval: Lukáš Filip Vedoucí práce: Mgr. Roman Hašek, Ph.D České Budějovice

Více

Základy matematiky kombinované studium 714 0365/06

Základy matematiky kombinované studium 714 0365/06 Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické

Více

Pan Novák si vždy kupuje boty o velikosti 8,5 a každý den stráví

Pan Novák si vždy kupuje boty o velikosti 8,5 a každý den stráví Číselné obory Seznamte se s jistým panem Novákem z Prahy. Je mu 48 let, má 2 děti a bydlí v domě s číslem popisným 157. Vidíte, že základní informace o panu Novákovi můžeme sdělit pomocí několika čísel,

Více

Historie matematiky a informatiky Cvičení 1

Historie matematiky a informatiky Cvičení 1 Historie matematiky a informatiky Cvičení 1 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Kapitola z teorie čísel Co

Více

Jak funguje asymetrické šifrování?

Jak funguje asymetrické šifrování? Jak funguje asymetrické šifrování? Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, Vysoká škola báňská Technická univerzita Ostrava Petr Vodstrčil

Více

Matematika v 5. ročníku

Matematika v 5. ročníku Matematika v 5. ročníku září Čte a zapisuje přirozená čísla. učebnice strana 3 8 Počítá po milionech, statisících, desetitisících, tisících, stovkách a desítkách. chvilky strana 1 8 Čte, píše a zobrazuje

Více

Hlubší věty o počítání modulo

Hlubší věty o počítání modulo Hlubší věty o počítání modulo Jiří Velebil: X01DML 3. prosince 2007: Hlubší věty o počítání modulo 1/17 Příklad Vyřešte: Idea řešení: x = 3 v Z 4 x = 2 v Z 5 x = 6 v Z 21 x = 3 + 2 + 6 Musí být: 1 První

Více

Logaritmy a věty o logaritmech

Logaritmy a věty o logaritmech Variace 1 Logaritmy a věty o logaritmech Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Logaritmy Definice

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška sedmá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Čísla a číselné obory 2 Princip indukce 3 Vybrané

Více

Úvod do teorie dělitelnosti

Úvod do teorie dělitelnosti Úvod do teorie dělitelnosti V předchozích hodinách matematiky jste se seznámili s desítkovou soustavou. Umíte v ní zapisovat celá i desetinná čísla a provádět zpaměti i písemně základní aritmetické operace

Více

4. Lineární nerovnice a jejich soustavy

4. Lineární nerovnice a jejich soustavy 4. Lineární nerovnice a jejich soustavy 9. ročník 4. Lineární nerovnice a jejich soustavy 5 > 0 ostrá nerovnost 5.0 50 neostrá nerovnost ( používáme pouze čísla) ZNAKY NEROVNOSTI: > je větší než < je menší

Více

MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň

MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň Obsahové, časové a organizační vymezení Předmět Matematika se vyučuje jako samostatný předmět v 6. až 8. ročníku 4 hodiny týdně, v 9. ročníku 3

Více

METODICKÉ LISTY. výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Sokolově

METODICKÉ LISTY. výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Sokolově METODICKÉ LISTY výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Sokolově reg. č. projektu: CZ.1.07/1.3.11/02.0005 Sada metodických listů: KABINET MATEMATIKY Název metodického

Více

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská. Matematika ve starověké Babylónii

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská. Matematika ve starověké Babylónii České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Matematika ve starověké Babylónii Vít Heřman Praha, 22.2.2008 Obsah: 1. Úvod 2. Historický kontext 3. Dostupné historické zdroje

Více

Rovnice 2 Vypracovala: Ing. Stanislava Kaděrková

Rovnice 2 Vypracovala: Ing. Stanislava Kaděrková Rovnice 2 Vypracovala: Ing. Stanislava Kaděrková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických předmětů

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 4.

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 4. Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 4. Očekávané výstupy z RVP ZV Ročníkové výstupy Učivo Průřezová témata a přesahy Číslo a početní operace využívá při

Více

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012 Algebra - třetí díl Lenka Zalabová Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita v Českých Budějovicích zima 2012 Obsah 1 Dělitelnost 2 Grupy zbytkových tříd 3 Jedna z

Více

Rovnice 1 Vypracovala: Mgr. Bronislava Kreuzingerová

Rovnice 1 Vypracovala: Mgr. Bronislava Kreuzingerová Rovnice 1 Vypracovala: Mgr. Bronislava Kreuzingerová Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických

Více

Historie matematiky a informatiky 2 7. přednáška

Historie matematiky a informatiky 2 7. přednáška Historie matematiky a informatiky 2 7. přednáška Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 5. října 2013 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Kapitoly z teorie

Více

A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 6. 4 Klíčové kompetence.

A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 6. 4 Klíčové kompetence. A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 6. 4 Klíčové kompetence Výstupy Učivo Průřezová témata Evaluace žáka Poznámky (Dílčí kompetence) 5 Kompetence

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

1 Teorie čísel. Základní informace

1 Teorie čísel. Základní informace 1 Teorie čísel Základní informace V této výukové jednotce se student seznámí se základními termíny z teorie čísel, seznámí se s pojmy faktorizace, dělitelnost, nejmenší společný násobek. Dále se seznámí

Více

Matematika - Prima. množiny zavedení pojmů množina, prvek, sjednocení, průnik, podmnožina

Matematika - Prima. množiny zavedení pojmů množina, prvek, sjednocení, průnik, podmnožina - Prima Matematika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence občanská Kompetence sociální a personální Kompetence k učení Kompetence pracovní Učivo

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Průběhem funkce rozumíme určení vlastností funkce

Více

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. Jednoduché cykly Tento oddíl obsahuje úlohy na první procvičení práce s cykly. Při řešení každé ze zde uvedených úloh stačí použít vedle podmíněných příkazů jen jediný cyklus. Nepotřebujeme používat ani

Více

MATEMATIKA / 1. ROČNÍK. Strategie (metody a formy práce)

MATEMATIKA / 1. ROČNÍK. Strategie (metody a formy práce) MATEMATIKA / 1. ROČNÍK Učivo Čas Strategie (metody a formy práce) Pomůcky Numerace v oboru do 7 30 pokládání koleček rozlišování čísel znázorňování kreslení a představivost třídění - číselné obrázky -

Více

Edita Kolářová ÚSTAV MATEMATIKY

Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik 1 Obsah 1 Přehled použité smbolik 3 Základní pojm matematické logik a teorie množin 4.1 Element matematické logik.........................

Více

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu ázev projektu školy Klíčová aktivita III/2 EU PEÍZE ŠKOLÁM CZ.1.7/1.4./21.2146

Více

Poznámky z matematiky

Poznámky z matematiky Poznámky z matematiky Verze: 14. dubna 2015 Petr Hasil hasil@mendelu.cz http://user.mendelu.cz/hasil/ Ústav matematiky Lesnická a dřevařská fakulta Mendelova univerzita v Brně Vytvořeno s podporou projektu

Více

Přehled učiva matematiky 7. ročník ZŠ

Přehled učiva matematiky 7. ročník ZŠ Přehled učiva matematiky 7. ročník ZŠ I. ARITMETIKA 1. Zlomky a racionální čísla Jestliže rozdělíme něco (= celek) na několik stejných dílů, nazývá se každá část celku zlomkem. Zlomek tři čtvrtiny = tři

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 5.

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 5. Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 5. Očekávané výstupy z RVP ZV Ročníkové výstupy Učivo Průřezová témata a přesahy Číslo a početní operace využívá při

Více

)(x 2 + 3x + 4),

)(x 2 + 3x + 4), 3 IREDUCIBILNÍ ROZKLADY POLYNOMŮ V T [X] 3 Ireducibilní rozklady polynomů v T [x] - rozklady polynomů na ireducibilní (dále nerozložitelné) prvky v oboru integrity polynomů jedné neurčité x nad tělesem

Více

MPI - 7. přednáška. Hledání inverzí v Z n. Rychlé mocnění modulo n. Lineární rovnice v Z + n. Soustavy lineárních rovnic v Z + n.

MPI - 7. přednáška. Hledání inverzí v Z n. Rychlé mocnění modulo n. Lineární rovnice v Z + n. Soustavy lineárních rovnic v Z + n. MPI - 7. přednáška vytvořeno: 31. října 2016, 10:18 Co bude v dnešní přednášce Hledání inverzí v Z n. Rychlé mocnění modulo n. Lineární rovnice v Z + n. Soustavy lineárních rovnic v Z + n. Rovnice a b

Více

Rozklad na součin vytýkáním

Rozklad na součin vytýkáním Rozklad na součin vytýkáním 1. Rozložte na součin prvočísel číslo: 165 = 210 = 546 = 2. Rozložte na součin mocnin prvočísel číslo: 96 = 432 = B. Rozklad na součin vytýkáním 1. Rozložte na součin vytýkáním:

Více

Prvočísla a čísla složená

Prvočísla a čísla složená Prvočísla a čísla složená Prvočíslo je každé přirozené číslo, které má právě dva různé dělitele, číslo 1 a samo sebe. Nejmenším a jediným sudým je prvočíslo 2. Další prvočísla: 2, 3, 5, 7, 11, 13, 17,

Více

Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 6.

Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 6. 5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 6. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo ČÍSLO A PROMĚNNÁ M9101 provádí

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p KOMENTÁŘE ÚLOH 43. ROČNÍKU MO, KATEGORIE A 1. Přirozené číslo m > 1 nazveme k násobným dělitelem přirozeného čísla n, pokud platí rovnost n = m k q, kde q je celé číslo, které není násobkem čísla m. Určete,

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI

ZÁPADOČESKÁ UNIVERZITA V PLZNI ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY PŘÍKLADY NA DĚLITELNOST V OBORECH INTEGRITY BAKALÁŘSKÁ PRÁCE Stanislav Hefler Přírodovědná studia, obor

Více

Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013

Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013 Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013 Test přijímací zkoušky bude obsahovat úlohy uzavřené, kdy žák vybírá správnou odpověď ze čtyř nabízených variant (správná je vždy právě

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004 PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 003 004 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO M 0030 Vyjádřete jedním desetinným číslem (4 ½ 4 ¼ ) (4 ½ + 4 ¼ ) Správné řešení: 0,5 Zjednodušte výraz : ( 4)

Více

Témata ke státní závěrečné zkoušce z matematiky ARITMETIKA

Témata ke státní závěrečné zkoušce z matematiky ARITMETIKA Státní zkouška aritmetika Témata ke státní závěrečné zkoušce z matematiky ARITMETIKA Teoretická aritmetika 1. Prvky výrokové logiky - výrok, skládání výroků, abeceda výrokové logiky, výrokové formule,

Více

1,2,3,6,9,18, 1,2,3,5,6,10,15,30.

1,2,3,6,9,18, 1,2,3,5,6,10,15,30. ARNP 1 2015 Př. 9 Společný dělitel a společný násobek Společný dělitel Příklad 1: Najděte množinu všech dělitelů čísla 18 a množinu všech dělitelů čísla 30. Řešení: Množina všech dělitelů čísla 18 je množina

Více

Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11

Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11 Gymnázium, Brno Matice Závěrečná maturitní práce Jakub Juránek 4.A Školní rok 2010/11 Konzultant: Mgr. Aleš Kobza Ph.D. Brno, 2011 Prohlášení Prohlašuji, že jsem předloženou práci zpracoval samostatně

Více

23. Věta jednoduchá Vypracovala: Mgr. Soňa Matůšová, leden 2013

23. Věta jednoduchá Vypracovala: Mgr. Soňa Matůšová, leden 2013 23. Věta jednoduchá Vypracovala: Mgr. Soňa Matůšová, leden 2013 Název školy Obchodní akademie a Střední odborné učiliště Veselí nad Moravou Název a číslo OP OP Vzdělávání pro konkurenceschopnost, CZ 1.5

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

Tematický plán pro školní rok 2015/2016 Předmět: Matematika Vyučující: Mgr. Jitka Vlčková Týdenní dotace hodin: 5 hodin Ročník: čtvrtý

Tematický plán pro školní rok 2015/2016 Předmět: Matematika Vyučující: Mgr. Jitka Vlčková Týdenní dotace hodin: 5 hodin Ročník: čtvrtý ČASOVÉ OBDOBÍ Září KONKRÉTNÍ VÝSTUPY KONKRÉTNÍ UČIVO PRŮŘEZOVÁ TÉMATA porovnává přirozená čísla v oboru do zaokrouhluje čísla na desítky a stovky provádí zpaměti jednoduché početní operace řeší a tvoří

Více

Funkce. Logaritmická funkce. Mgr. Tomáš Pavlica, Ph.D. Digitální učební materiály, Gymnázium Uherské Hradiště

Funkce. Logaritmická funkce. Mgr. Tomáš Pavlica, Ph.D. Digitální učební materiály, Gymnázium Uherské Hradiště Funkce Logaritmická funkce Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště Digitální učební materiály, 01-1 Obsah Logaritmická funkce 1 Logaritmická funkce předpis funkce a ukázky grafů srovnání grafů

Více

Důkazové metody v teorii čísel

Důkazové metody v teorii čísel Důkazové metody v teorii čísel Michal Kenny Rolínek ØÖ ØºPříspěveknejenukazujeklasickátvrzenízelementárníteoriečísel, ale především ukazuje obvyklé postupy při jejich používání, a to převážně na úlohách

Více

Komplexní číslo. Klíčové pojmy: Komplexní číslo, reálná část, imaginární část, algebraické počty s komplexním číslem

Komplexní číslo. Klíčové pojmy: Komplexní číslo, reálná část, imaginární část, algebraické počty s komplexním číslem Komplexní číslo Cíl kapitoly: seznámení s použitím komplexního čísla v pythonu Klíčové pojmy: Komplexní číslo, reálná část, imaginární část, algebraické počty s komplexním číslem Komplexní číslo Opakování

Více

goniometrickém tvaru z 1 = z 1 (cosα 1 +isinα 1 ), z 2 = z 2 (cosα 2 +isinα 2 ) Jejich součin = z 1 ( z 2 z 2 Jejich podíl: n-tá mocnina:

goniometrickém tvaru z 1 = z 1 (cosα 1 +isinα 1 ), z 2 = z 2 (cosα 2 +isinα 2 ) Jejich součin = z 1 ( z 2 z 2 Jejich podíl: n-tá mocnina: KMA/MAT1 Matematika 1 Přednáška č. 2 Jiří Fišer 26. září 2016 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 26. září 2016 1 / 24 Součin, podíl a mocniny komplexních čísel v goniometrickém tvaru Dvě nenulová

Více

Hledání rekordně velkých prvočísel

Hledání rekordně velkých prvočísel Hledání rekordně velkých prvočísel Martina Bekrová, Gymnázium Trutnov (to.zapomenu@gmail.com) Ondřej Bouchala, Gymnázium Komenského, Havířov (ondrej.bouchala@gmail.com) David Krška, Gymnázium J. V. Jirsíka,

Více

Zápis čísla v desítkové soustavě. Číselná osa Písemné algoritmy početních operací. Vlastnosti početních operací s přirozenými čísly

Zápis čísla v desítkové soustavě. Číselná osa Písemné algoritmy početních operací. Vlastnosti početních operací s přirozenými čísly Vzdělávací oblast: Matematika a její aplikace Obor vzdělávací oblasti: Matematika Ročník: 1. Výstupy kompetence Učivo Průřezová témata,přesahy Číslo a početní operace VDO Občanská společnost a škola Obor

Více

Úvodní slovo autora. Karel Lepka

Úvodní slovo autora. Karel Lepka Základy elementární teorie čísel Karel Lepka Úvodní slovo autora Významný německý matematik Karl Friedrich Gauss napsal, že matematika je královna věd a teorie čísel je královnou matematiky. Je skutečností,

Více

Seminář z IVT Algoritmizace. Slovanské gymnázium Olomouc Tomáš Kühr

Seminář z IVT Algoritmizace. Slovanské gymnázium Olomouc Tomáš Kühr Seminář z IVT Algoritmizace Slovanské gymnázium Olomouc Tomáš Kühr Algoritmizace - o čem to je? Zatím jsme se zabývali především tím, jak určitý postup zapsat v konkrétním programovacím jazyce (např. C#)

Více

Pojem algoritmus a jeho základní vlastnosti

Pojem algoritmus a jeho základní vlastnosti DUM Algoritmy DUM III/2-T1-1-1 PRG-01A-var1 Téma: Úvod do algoritmů - výklad Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Pojem algoritmus a jeho základní vlastnosti Obsah

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

- zvládá orientaci na číselné ose

- zvládá orientaci na číselné ose Příklady možné konkretizace minimální doporučené úrovně pro úpravy očekávaných výstupů v rámci podpůrných opatření pro využití v IVP předmětu Matematika Ukázka zpracována s využitím školního vzdělávacího

Více

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel Ročník: I. - vytváří si názoru představu o čísle 5, 10, 20 - naučí se vidět počty prvků do 5 bez počítání po jedné - rozpozná a čte čísla 0 5 - pozná a čte čísla 0 10 - určí a čte čísla 0 20 Číselná řada

Více

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Název školy Obchodní akademie a Hotelová škola Havlíčkův Brod Název OP OP Vzdělávání pro konkurenceschopnost Registrační

Více

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl: KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku

Více

Úloha 2. Obdélník ABCDprotínákružnicivbodech E, F, G, H jakonaobrázku.jestližeplatí AE =3, DH =4a GH =5,určete EF. G C

Úloha 2. Obdélník ABCDprotínákružnicivbodech E, F, G, H jakonaobrázku.jestližeplatí AE =3, DH =4a GH =5,určete EF. G C Úloha 1. Čitatel i jmenovatel Kennyho zlomku jsou přirozená čísla se součtem 2011. Hodnota zlomku jepřitommenšínež 1 3.Jakánejvětšímůžetatohodnotabýt? Úloha 2. Obdélník Dprotínákružnicivbodech E, F, G,

Více

Tematický plán Matematika pro 4. ročník

Tematický plán Matematika pro 4. ročník Tematický plán Matematika pro 4. ročník Vyučující: Klára Dolanová Hodinová dotace: 4 hodiny týdně Školní rok: 2015/2016 ZÁŘÍ 1. a UČ/str. 3 9 A: Opakování osvojené matematické operace, vlastnosti sčítání

Více

M - Kvadratická funkce

M - Kvadratická funkce M - Kvadratická funkce Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl kompletně

Více

CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23

CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 CVIČNÝ TEST 1 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Určete výraz V, který je největším společným dělitelem výrazů V 1 V 3 :

Více

becvar

becvar Jindřich Bečvář Katedra didaktiky matematiky, Matematicko-fyzikální fakulta UK, Praha Banská Bystrica, 11. října 2016 becvar@karlin.mff.cuni.cz www.karlin.mff.cuni.cz/ becvar www.karlin.mff.cuni.cz/katedry/kdm

Více

Obsahové vymezení Vyučovací předmět Matematika zpracovává vzdělávací obsah oboru Matematika a její aplikace z RVP

Obsahové vymezení Vyučovací předmět Matematika zpracovává vzdělávací obsah oboru Matematika a její aplikace z RVP 4 MATEMATIKA 4.1 Charakteristika vyučovacího předmětu Obsahové vymezení Vyučovací předmět Matematika zpracovává vzdělávací obsah oboru Matematika a její aplikace z RVP ZV. Na 1. stupni ZŠ předmět zprostředkovává

Více

Splněno ANO/NE/hodnota

Splněno ANO/NE/hodnota část 1 - software pro přípravu interaktivních výukových hodin postavený na aktivní účasti žáků základní specifikace: autorský objektově orientovaný výukový software v českém jazyce s implementovanou galerií

Více

Páťáci a matematika I. Přirozená čísla větší než milión. 1. Zapište čísla do tabulky. 2. Přečtěte čísla zapsaná v tabulce. Rozepište do tabulky čísla:

Páťáci a matematika I. Přirozená čísla větší než milión. 1. Zapište čísla do tabulky. 2. Přečtěte čísla zapsaná v tabulce. Rozepište do tabulky čísla: Páťáci a matematika I Přirozená čísla větší než milión 1. Zapište čísla do tabulky 2. Přečtěte čísla zapsaná v tabulce. Rozepište do tabulky čísla: 1 3. Napočítejte deset čísel od nuly při počítání 4.

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116.

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. Cykly a pole Tato část sbírky je tvořena dalšími úlohami na práci s cykly. Na rozdíl od předchozího oddílu se zde již v řešeních úloh objevuje více cyklů, ať už prováděných po sobě nebo vnořených do sebe.

Více

Algebraické výrazy - řešené úlohy

Algebraické výrazy - řešené úlohy Algebraické výrazy - řešené úlohy Úloha č. 1 Určete jeho hodnotu pro =. Určete, pro kterou hodnotu proměnné je výraz roven nule. Za proměnnou dosadíme: = a vypočteme hodnotu výrazu. Nejprve zapíšeme rovnost,

Více

Geometrie zakřiveného prostoru aplikace s fyzikální tématikou

Geometrie zakřiveného prostoru aplikace s fyzikální tématikou Gymnázium Přírodní škola, o p s Geometrie zakřiveného prostoru aplikace s fyzikální tématikou Jan Pokorný Petr Martiška, Vojtěch Žák 1 11 2012 Obsah 1 Úvod 3 2 Teoretické základy a použité metody 4 21

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Analytická geometrie. Hyperbola VY_32_INOVACE_M0119.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Analytická geometrie. Hyperbola VY_32_INOVACE_M0119. Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D. MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět: Období ročník: Učební texty: Matematika 2. období 5. ročník R. Blažková: Matematika pro 4. ročník ZŠ (2. díl) (Alter) R. Blažková: Matematika pro 4. ročník ZŠ (3. díl) (Alter) J. Jurtová:

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

O teleskopických součtech a součinech

O teleskopických součtech a součinech O teleskopických součtech a součinech JAROSLAV ŠVRČEK Přírodovědecká fakulta UP, Olomouc Stanovení součtusoučinu) několika číselčlenů číselné posloupnosti vyhovující danému předpisu) a řešení úloh, které

Více

Diskrétní matematika 1. týden

Diskrétní matematika 1. týden Diskrétní matematika 1. týden Elementární teorie čísel dělitelnost Jan Slovák Masarykova univerzita Fakulta informatiky jaro 2015 Obsah přednášky 1 Problémy teorie čísel 2 Dělitelnost 3 Společní dělitelé

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

Kód uchazeče ID:... Varianta: 14

Kód uchazeče ID:... Varianta: 14 Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2013 Kód uchazeče ID:.................. Varianta: 14 1. V lednu byla zaměstnancům zvýšena mzda o 16 % prosincové mzdy. Následně

Více

PŘEDMĚT: Matematika Ročník: 1. Výstup z RVP Ročníkový výstup Doporučené učivo Průřezová témata

PŘEDMĚT: Matematika Ročník: 1. Výstup z RVP Ročníkový výstup Doporučené učivo Průřezová témata PŘEDMĚT: Matematika Ročník: 1. Výstup z RVP Ročníkový výstup Doporučené učivo Průřezová témata číslo a početní operace 1. používá přirozená čísla k modelování reálných situací, počítá předměty v daném

Více

ŠVP ZV LMP Charakteristika vyučovacího předmětu Matematika na II. stupni

ŠVP ZV LMP Charakteristika vyučovacího předmětu Matematika na II. stupni ŠVP ZV LMP Charakteristika vyučovacího předmětu Matematika na II. stupni Obsahové, časové a organizační vymezení vyučovacího předmětu Matematika Vyučovací předmět Matematika je tvořen z obsahu vzdělávacího

Více

Úvodní opakování, kladná a záporná čísla, dělitelnost, osová a středová souměrnost

Úvodní opakování, kladná a záporná čísla, dělitelnost, osová a středová souměrnost Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika (MAT) Úvodní opakování, kladná a záporná, dělitelnost, osová a středová souměrnost Prima 4 hodiny týdně Učebna s PC a dataprojektorem (interaktivní

Více

Počet kreditů: 5 Forma studia: kombinovaná. Anotace: Předmět seznamuje se základy dělitelnosti, vybranými partiemi algebry, šifrování a kódování.

Počet kreditů: 5 Forma studia: kombinovaná. Anotace: Předmět seznamuje se základy dělitelnosti, vybranými partiemi algebry, šifrování a kódování. Název předmětu: Matematika pro informatiky Zkratka předmětu: MIE Počet kreditů: 5 Forma studia: kombinovaná Forma zkoušky: kombinovaná (písemná a ústní část) Anotace: Předmět seznamuje se základy dělitelnosti,

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dělitelnost Rozklad na součin prvočísel. Dušan Astaloš

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dělitelnost Rozklad na součin prvočísel. Dušan Astaloš METODICKÝ LIST DA10 Název tématu: Autor: Předmět: Dělitelnost Rozklad na součin prvočísel Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti:

Více

Syntaktická problematika odborných textů Martina Miškeříková

Syntaktická problematika odborných textů Martina Miškeříková Syntaktická problematika odborných textů Martina Miškeříková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických

Více

. Opakovací kurs středoškolské matematiky podzim 2015

. Opakovací kurs středoškolské matematiky podzim 2015 . Opakovací kurs středoškolské matematiky podzim 0 František Mráz Ústav technické matematiky, Frantisek.Mraz@fs.cvut.cz I. Mocniny, odmocniny, algeraické výrazy Upravte (zjednodušte), případně určete číselnou

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

Dělení celku na části v poměru

Dělení celku na části v poměru Dělení celku na části v poměru Příklad : Rozděl číslo 12 v poměru 2 : 3. Řešení : Celek musíme rozdělit na 2 + 3 = 5 dílů. Jeden díl má velikost 12 : 5 = 2,4 První člen poměru představuje dva díly a proto

Více

Vyučovací předmět: Matematika. Charakteristika vyučovacího předmětu

Vyučovací předmět: Matematika. Charakteristika vyučovacího předmětu Vyučovací předmět: Matematika Školní vzdělávací program pro základní vzdělávání Základní školy a mateřské školy Dobrovice Charakteristika vyučovacího předmětu Obsahové, časové a organizační vymezení předmětu

Více