Obnovitelné zdroje energie šetrné ekologicky i ekonomicky

Rozměr: px
Začít zobrazení ze stránky:

Download "Obnovitelné zdroje energie šetrné ekologicky i ekonomicky"

Transkript

1 Obnovitelné zdroje energie šetrné ekologicky i ekonomicky Eduard Sequens, Calla Sdružení pro záchranu prostředí Energeticky soběstačně, čistě a bezpečně? Průměrná roční teplota atmosféry u zemského povrchu byla na počátku 20. stol. přibližně 15 C, o sto let později dosahuje už téměř 16 C. Během posledního čtvrt miliónu let se teploty výrazně měnily, stejně tak jako koncentrace metanu a oxidu uhličitého. Toto přesné poznání nám umožnily vrty do kilometrových hloubek v grónském a antarktickém ledovci. V dávném ledu jsou totiž uvězněny bublinky tehdejšího vzduchu. Koncentrace plynů lze po rozpuštění ledu měřit přímo, teploty se odvozují od podílu různých izotopů vodíku a kyslíku. Na konci 20. století začalo být patrné, že teplota atmosféry stoupá. Intenzivní výzkumy ukázaly, že už celé minulé století vybočuje z proměnlivosti klimatu ve srovnání se stoletím předchozím. Jak je patrno z grafu pro severní polokouli vzrostly na konci 20. stol. teploty zcela nebývale. Jejich současný nárůst se týká celé Země, mluví se proto o globálním oteplování. Kam až porostou, je věc jiná, v každém případě to však bude v příštích staletích o řadu stupňů, tj. zcela srovnatelně se vzrůstem na konci doby ledové. Soustavný růst emisí zhruba dosavadním tempem by zřejmě do konce století vedl k oteplení o 3,4 C (s devadesátiprocentní pravděpodobností se výsledek pohybuje v rozpětí 2,0 5,4 C). Pomalý růst průměrných teplot téměř nevnímáme, ale některé důsledky globální klimatické změny jsou již patrné i nám. Nejrychleji se oteplují oblasti nejchladnější - Sibiř a Kanada - kde už dnes činí oteplení několik stupňů, což má vliv na počasí na celé severní polokouli. V některých částech Země vládne nebývalé sucho, jinde 1

2 přibývá katastrofálních srážek a větrných smrští. Razantně ubývá ledovců, což má za následek pomalu vzrůstající hladinu moří a oceánů, taje ledový příkrov severního pólu. Dochází k narušení celé řady ekosystémů s negativními důsledky pro mnoho rostlinných i živočišných druhů. Co je příčinou globální klimatické změny? V roce 1890 odhalil švédský chemik Svante Arrhenius, že oxid uhličitý (CO2) působí jako tepelná past. Propouští krátkovlnné sluneční záření v neporušené podobě k zemskému povrchu, ale zadržuje odražené dlouhovlnné záření, čímž dochází k hromadění tepla (skleníkovému efektu). Kdyby nebylo různých stopových plynů v naší atmosféře, především vodní páry, oxidu uhličitého, oxidu dusného, metanu a ozónu, které tvoří izolující ochrannou vrstvu, bylo by na povrchu Země pouhých 18 stupňů Celsia. Hypotézu, že změna koncentrace skleníkových plynů způsobila velké výkyvy mezi ledovými a teplejšími dobami, proměnila analýza kousků ledu z polárních ledovců v jistotu. Problémem je, že dnešní koncentrace obou plynů překročila hranici někdejší přirozené proměnlivosti klimatu. U oxidu uhličitého je dnešní koncentrace o 30 % vyšší než před dvěma sty lety a nadále roste. U metanu se koncentrace zvýšila oproti minulosti třikrát. Růst koncentrace je z větší části zapříčiněn překotným pálením fosilních paliv uhlí, ropy či zemního plynu. Každoročně ve formě 27,5 miliard tun oxidu uhličitého, který vypustíme do atmosféry, uvolníme tolik uhlíku, kolik se ho vázalo do biomasy, ze které vznikala fosilní paliva po celý 1 milión let. Za to, že v ovzduší zůstává jen zhruba polovina CO2, uvolněného lidskou činností, vděčíme jeho rozpustnosti v oceánech a v těchto desetiletích zřejmě také tomu, že rychleji rostou severské jehličnaté lesy. Rychlejší růst lesů je ovšem záležitostí pouze přechodnou, očekává se, že od poloviny 21. století bude v důsledku jejich průběžného odumírání oxidu uhličitého v ovzduší přibývat. Emise CO2 na obyvatele a HDP v roce 2000 v EU a zemích OECD Jaký je podíl České republiky na vypouštění skleníkových plynů? Zdroj: Swedish Energy Agency 2

3 Podíl jednotlivých států na rozvracení klimatu planety je velmi rozdílný. Ačkoliv v ekonomicky nejvyspělejších zemích žije jen 20 % z celkového počtu obyvatel světa, produkují na 80 % skleníkových plynů. Jejich celková emise činila v České republice v roce mil. tun, tj. přibližně 3 tuny uhlíku na obyvatele. Na konci éry socialismu to byly skoro čtyři tuny, avšak v důsledku jednak rozpadu energeticky nejnáročnějších průmyslových odvětví, jednak jejich inovací se emise v první polovině devadesátých let výrazně snížily. Přesto jsou stále neúnosně vysoké a v produkci CO2 na osobu patříme mezi světovou špičku. Rakousko se svým několikrát větším HDP vypouští ročně pouze dvě tuny uhlíku na obyvatele. Je zřejmé, že tempo vypouštění skleníkových plynů je sebevražedné a je nutné ho omezit. Po dlouhém vyjednávání byl v roce 1997 uzavřen Kjótský protokol k rámcové úmluvě Organizace spojených národů o klimatických změnách, jehož výsledkem by mělo být snížení produkce skleníkových plynů průmyslových zemí v letech na úroveň o 5,2 % nižší, než byla v roce V případě České republiky se jedná o závazek snížení ve výši 8 %, což znamená, že bychom teoreticky nemuseli dělat vůbec nic vzhledem k výši produkce v roce 1990, ale byl by to krátkozraký postoj. Jakkoliv jde ve vztahu k celkovému nárůstu skleníkových plynů v atmosféře pouze o nepatrnou změnu, i tak je velký problém s ratifikací protokolu ze strany jejich největších producentů, zejména USA a dalších zemí. Česká republika Kjótský protokol ratifikovala. Nejen skleníkové plyny! Přestože se kvalita ovzduší v České republice po roce 1989 výrazně zlepšila díky odsíření velkých elektráren, v posledních letech se začíná opět zhoršovat. Nezanedbatelnou měrou se na tom podílejí sami občané - největším současným problémem jsou totiž emise prachových částic pocházející především z lokálních topenišť a automobilů. Vrací se spalování nekvalitního uhlí nebo dokonce odpadků. Navíc jsou v provozu kotle staré někdy i několik desítek let, často ve špatném technickém stavu. Kromě prachových částic jsou spalováním nevhodných paliv v zastaralých kotlích do ovzduší uvolňovány také nebezpečné karcinogenní látky. Existuje cesta, jak snížit vypouštění skleníkových plynů a dalších emisí? Máme-li změnit stávající nepříznivou situaci, musíme hledat řešení v Energetickém obratu. Ten je postaven na: - Razantním snižování spotřeby energie Česká republika má přibližně dvojnásobně větší energetickou spotřebu na jednotku HDP ve srovnání s vyspělými zeměmi. Cesta ke snížení spotřeby a k hospodárnému využívání energie vede od aplikace nejnovějších technologií na straně výroby - účinnější moderní elektrárny, využití kogenerace (kombinované výroby tepla a elektřiny), účinné kotle pro domácnosti apod. po řešení na spotřební straně zateplení budov (spotřebu lze snížit desetkrát), nasazení energeticky úsporných spotřebičů, upřednostnění výhodnějších technologických procesů, zpomalení nárůstu automobilové dopravy, snížení spotřeby paliv v motorech atd. Samozřejmě je nutné snížit i ztráty při distribuci energie, čemuž nejlépe napomůže umístění zdrojů energie co nejblíže místu spotřeby (takzvaná decentralizace). - Rychlém nahrazení neobnovitelných zdrojů energie zdroji čistými obnovitelnými Ty neprodukují skleníkové plyny, nečerpají z omezených zásob surovin, nepřinášejí rizika jako jaderné elektrárny a nevytvářejí nebezpečné odpady. Jaké jsou obnovitelné zdroje energie? 3

4 Nejvíce takové energie na Zemi dodává Slunce. Slunečního záření můžeme využít k získávání tepla nebo na výrobu elektřiny. Slunce ohřívá atmosféru, avšak nestejnoměrně, díky čemuž dochází k jejímu pohybu energii větru využívají větrné motory k pohonu čerpadel nebo větrné elektrárny k výrobě elektřiny. Biomasa ke svému růstu potřebuje rovněž dopadající sluneční záření (0,5 až 1 % celkového množství), proto se jí někdy říká sluneční energetická konzerva. Jejím spalováním můžeme získat teplo, eventuálně mechanickou energii. Energii proudící vody (koloběh vody na Zemi je opět možný jen díky slunečnímu záření) využívají vodní motory (kola, turbíny) k její přeměně v energii mechanickou nebo elektrickou. V některých přímořských státech se také začíná využívat energie mořských vln. Teplo z přípovrchové vrstvy Země a vodních ploch vzniklé absorbcí slunečního záření lze získávat pomocí tepelných čerpadel. Žhavé nitro naší rodné planety Země rovněž uvolňuje geotermální energii, kterou je možno využívat. Nejvíce tam, kde je zemská kůra porušena a magma je blízko povrchu. Horká pára nebo voda vyvěrající ze země či získaná čerpáním do vrtů se používá přímo k ohřevu, případně i k výrobě elektřiny. Specifické je využití energie přílivu a odlivu moří, který vzniká díky vzájemnému působení otáčení Země a přitažlivosti Měsíce a Slunce. Síla Slunce Životně nejdůležitějším dodavatelem energie pro Zemi je Slunce. Je výchozím bodem pro chemické a biologické procesy na naší planetě. Energie slunečního záření každoročně dopadajícího na Zemi činí 1, kwh/rok, což je x více, než lidstvo v současné době spotřebuje. V našich klimatických podmínkách je celková doba přímého slunečního svitu od do hodin ročně. Teoreticky bychom tak mohli z každého metru území čerpat od do kwh energie ročně. Jedná se o stejné množství energie, které získáme dokonalým spálením cca 250 kg běžného uhlí. Na celou Českou republiku ročně dopadá okolo TWh sluneční energie. Jestliže roční spotřeba energií v ČR činí přibližně 320 TWh (50 TWh u elektřiny a 270 TWh tepla), nabízí nám jí Slunce 250 x více. Pasivně lze dopadajícího slunečního záření využívat vhodným architektonickým řešením budov. Aktivně je možné využívat sluneční teplo pomocí kolektorů, které z hlediska teplonosného média dělíme na vzduchové nebo kapalinové. Jinou možností je výroba elektřiny cestou fotovoltaiky nebo v solárně termických zařízeních. Energie z biomasy Biomasa může snadno nahradit velké množství fosilních paliv. Ve srovnání s nimi nepřispívá ke skleníkovému efektu, protože při spálení je do ovzduší uvolněno stejné množství CO2, jaké je během růstu absorbováno. Navíc jde o obnovující se a v České republice lehce dostupný zdroj energie. Pro její získávání se užívá různých metod. Nejznámější je spalování, které se spolu se zplyňováním řadí k takzvaným suchým procesům. Mezi mokré procesy patří anaerobní vyhnívání za tvorby bioplynu nebo fermentace, jejímž produktem je alkohol. Obojí je výhodně použitelné jako palivo. Specifickým způsobem je pak lisování olejů a jejich úprava na bionaftu. Dřevo se používá jako zdroj tepla již od pradávna. V současné době přibývá především spalování odpadů, vzniklých při jeho zpracování a to buď ve formě štěpků, pilinových briket nebo pelet. Na trhu je velký výběr topidel od malých kamen až po téměř bezobslužné výtopny pro obce. Nové kotle spalují dřevo s vysokou účinností, často s využitím procesu zplyňování na dřevoplyn. Hlavně pro domácnosti je pak určena nová technologie malých pilinových pelet, která odstraňuje fyzickou námahu tradičně spojovanou s vytápěním dřevem. Přibývá spalování obilné i řepkové slámy, které je dnes v zemědělství přebytek. Rozšiřuje se pěstování rychlerostoucích dřevin (topoly, vrby aj.) či energetických rostlin (například konopí, čiroku či 4

5 šťovíku), rostoucích na zemědělských plochách ležících ladem nebo na plochách jinak těžko využitelných. Sláma i energetické plodiny se používají jako palivo především v obecních výtopnách (někdy spojených s kogenerační výrobou elektřiny) nebo přímo v elektrárnách na biomasu. Svou výhřevností dřevo (15,5 MJ/kg) i sláma (14,2 MJ/kg) předčí hnědé uhlí (11,1 MJ/kg). Při rozkladu organických látek (hnoje, zelených rostlin, čistírenských kalů, odpadů z potravinářství apod.) v uzavřených zahřátých nádržích vzniká bioplyn, což je vlastně metan s oxidem uhličitým a s nepatrným množstvím dalších plynů. Bioplyn můžeme použít k vytápění nebo k pohonu spalovacích motorů či k výrobě elektřiny a tepla v motorgenerátorech. Větrná energie Ve větru na Zemi je obsaženo 35 x více energie, než spotřebovává celé lidstvo. Část jí může být využívána pomocí větrných elektráren, které pracují na odporovém nebo vztlakovém principu. V současnosti jsou nejvíce používané vztlakové větrné elektrárny s podélnou osou rotace, kdy vítr obtéká lopatky, jež mají profil jako vrtule letadel. Roztočený rotor větrné elektrárny pohání generátor, který vyrábí elektrický proud. Jednotkový výkon elektrárny se liší dle stanoviště, ale běžné jsou výkony 1 až 2 MW na jeden stroj. Obvykle se pak na jedné lokalitě staví více elektráren do takzvaných větrných farem. I v České republice jsou vhodné podmínky pro provoz větrných elektráren všude tam, kde je roční průměrná rychlost větru vyšší než 4,5 m/s v 10 m nad terénem. Vodní energie Energie proudící vody je lidstvem využívána již dlouho. Zpočátku k pohonu mlýnů, hamrů, pil, později i pro výrobu elektřiny v malých vodních elektrárnách, mezi něž se počítají zdroje do 10 MW instalovaného výkonu (u velkých vodních děl přehrad - již negativní ekologické dopady převažují nad přínosem). Před 2. světovou válkou bylo na dnešním území České republiky takových provozů. Bohužel později, při orientaci na velká vodní díla došlo často k jejich likvidaci. Dnes jich je v provozu jen cca 1 300, většinou se zastaralou technologií. Pokud dojde k jejich inovaci a dokážeme-li využít i zbývající dosažitelný potenciál vodních toků, můžeme získat dalších 550 GWh elektřiny. Malé vodní elektrárny můžeme rozdělit na průtočné, které využívají přirozený průtok a akumulační s časově omezenou schopností odběru vody podle momentální potřeby energie. Elektrárny se budují buď přímo na jezech či v tělesech hrází nebo je potřebného spádu dosaženo i několikakilometrovým náhonem nebo tlakovým přivaděčem. Základní technologickou jednotkou vodní elektrárny je turbína. Roztáčena proudící vodou pohání generátor vyrábějící elektrický proud. Existuje celá řada typů turbín pro různé průtoky a spády nejznámějšími jsou Bánkiho, Peltonova, Kaplanova či Francisova. U malých spádů se používá rovněž vodních kol, které však mají malou účinnost. Srovnání nákladů na vytápění Graf: Porovnání nákladů na vytápění podle druhu paliva v domácnosti s průměrnou roční energetickou spotřebou 80 GJ na území, kde elektřinu a zemní plyn dodává firma E.On. Elektřina přímotop Elektřina akumulace Zemní plyn Rostlinné pelety Štěpka Dřevěné pelety

6 Zdroj: TZB-info, říjen

7 Další důvody pro využití obnovitelných zdrojů energie Využívání obnovitelných zdrojů energie přináší nezanedbatelné zvýšení zaměstnanosti. Podle studie zpracované Evropskou komisí bude v roce 2020 v EU dávat práci cca 900 tisícům obyvatel. Ministerstvo životního prostředí ve svém scénáři energetické koncepce vypočetlo, že využití obnovitelných zdrojů, zejména biomasy, nabídne v roce 2010 cca 45 tis. pracovních míst. Finanční prostředky navíc neodtékají ve velkém do jiných zemí či na jiné kontinenty jako v případě ropy a zemního plynu (v České republice je to ročně přes 100 mld Kč) a zůstávají v místní ekonomice. Důležitým aspektem využívání obnovitelných zdrojů je zvýšení nezávislosti a bezpečnosti dodávek energií. Závislost Evropy na dovážených fosilních palivech, zejména ropě a zemním plynu rychle roste. V roce 2030 by mohla činit až 71 procent, ČR nevyjímaje. Bohužel se navíc jedná o závislost na geopoliticky nestabilních oblastech, kterou můžeme právě díky obnovitelným zdrojům energie snížit. 7

Energeticky soběstačně, čistě a bezpečně?

Energeticky soběstačně, čistě a bezpečně? Možnosti ekologizace provozu stravovacích a ubytovacích zařízení Energeticky soběstačně, čistě a bezpečně? Ing. Edvard Sequens Calla - Sdružení pro záchranu prostředí Globální klimatická změna hrozí Země

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn CZ.1.07/1.5.00/34.0061 VY_32_INOVACE_D.1.10 Integrovaná střední škola technická

Více

Slunce # Energie budoucnosti

Slunce # Energie budoucnosti Možnosti využití sluneční energie Slunce # Energie budoucnosti www.nelumbo.cz 1 Globální klimatická změna hrozí Země se ohřívá a to nejrychleji od doby ledové.# Prognózy: další růst teploty o 1,4 až 5,8

Více

Odhady růstu spotřeby energie v historii. Historické období Časové zařazení Denní spotřeba/osoba. 8 000 kj (množství v potravě)

Odhady růstu spotřeby energie v historii. Historické období Časové zařazení Denní spotřeba/osoba. 8 000 kj (množství v potravě) Logo Mezinárodního roku udržitelné energie pro všechny Rok 2012 vyhlásilo Valné shromáždění Organizace Spojených Národů za Mezinárodní rok udržitelné energie pro všechny. Důvodem bylo upozornit na význam

Více

SPOTŘEBA ENERGIE ODKUD BEREME ENERGII VÝROBA ELEKTŘINY

SPOTŘEBA ENERGIE ODKUD BEREME ENERGII VÝROBA ELEKTŘINY SPOTŘEBA ENERGIE okamžitý příkon člověka = přibližně 100 W, tímto energetickým potenciálem nás pro přežití vybavila příroda (100Wx24hod = 2400Wh = spálení 8640 kj = 1,5 kg chleba nebo 300 g jedlého oleje)

Více

Energetika se zabývá získáváním, přeměnou a distribucí všech forem energie. Energii nevytváříme, pouze transformujeme z jedné formy na druhou.

Energetika se zabývá získáváním, přeměnou a distribucí všech forem energie. Energii nevytváříme, pouze transformujeme z jedné formy na druhou. VŠB TU Ostrava Energetika se zabývá získáváním, přeměnou a distribucí všech forem energie. Energii nevytváříme, pouze transformujeme z jedné formy na druhou. VŠB TU Ostrava 2 VŠB TU Ostrava 3 Dle zdroje:

Více

Metodické pokyny k pracovnímu listu č. 10 OBNOVITELNÉ ZDROJE ENERGIE VYUŽÍVANÉ ČLOVĚKEM 9. ročník

Metodické pokyny k pracovnímu listu č. 10 OBNOVITELNÉ ZDROJE ENERGIE VYUŽÍVANÉ ČLOVĚKEM 9. ročník Metodické pokyny k pracovnímu listu č. 10 OBNOVITELNÉ ZDROJE ENERGIE VYUŽÍVANÉ ČLOVĚKEM 9. ročník DOPORUČENÝ ČAS NA VYPRACOVÁNÍ: 25 minut INFORMACE K TÉMATU: OBNOVITELNÉ ZDROJE ENERGIE Spalováním fosilních

Více

Obnovitelné zdroje energie

Obnovitelné zdroje energie Energetika a venkovský prostor, 11. 3. 2010 Obnovitelné zdroje energie Ing. Edvard Sequens Calla - Sdružení pro záchranu prostředí Obsah přednášky Proč využívat obnovitelné zdroje Co jsou to obnovitelné

Více

SSOS_ZE_3.05 Přírodní zdroje

SSOS_ZE_3.05 Přírodní zdroje Číslo a název projektu Číslo a název šablony DUM číslo a název CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT SSOS_ZE_3.05

Více

ALTERNATIVNÍ ZDROJE ENERGIE

ALTERNATIVNÍ ZDROJE ENERGIE ALTERNATIVNÍ ZDROJE ENERGIE Využití energie slunce Na zemský povrch dopadá průměrně 0,2 kw/m 2 V ČR dopadne na 1 m 2 přibližně 1000 kwh energie ročně Je několik možností, jak přeměnit energii slunečního

Více

lní vývoj v biomasy Ing. Jan Koloničný, Ph.D. Luhačovice 13.-14.5.2009

lní vývoj v biomasy Ing. Jan Koloničný, Ph.D. Luhačovice 13.-14.5.2009 Aktuáln lní vývoj v energetickém m využívání biomasy Ing. Jan Koloničný, Ph.D. Luhačovice 13.-14.5.2009 Úvod Státní energetická koncepce Obsah prezentace Národní program hospodárného nakládání s energií

Více

Název: Potřebujeme horkou vodu

Název: Potřebujeme horkou vodu Tradiční a nové způsoby využití energie Název: Potřebujeme horkou vodu Seznam příloh Obrázky k rozlosování žáků do náhodných skupin Motivační texty 1 až 5 Pracovní list Potřebujeme horkou vodu Graf naměřených

Více

ALTERNATIVNÍ ZDROJE ENERGIE

ALTERNATIVNÍ ZDROJE ENERGIE Inovace a zkvalitnění výuky v oblasti přírodních věd Člověk a příroda 7.ročník červenec 2011 ALTERNATIVNÍ ZDROJE ENERGIE Anotace: Kód: VY_52_INOVACE_ Čap-Z 7.,8.16 Vzdělávací oblast: energie slunce, větru,

Více

Obnovitelné zdroje energie

Obnovitelné zdroje energie Obnovitelné zdroje energie Anotace: Kód: VY_52_INOVACE_Přv-Z 5.,7.08 Vzdělávací oblast: Přírodověda zdroje energie Autor: Mgr. Aleš Hruzík Jazyk: český Očekávaný výstup: žák správně definuje základní probírané

Více

Česká energetika a ekonomika Martin Sedlák, , Ústí nad Labem Čistá energetika v Ústeckém kraji

Česká energetika a ekonomika Martin Sedlák, , Ústí nad Labem Čistá energetika v Ústeckém kraji Česká energetika a ekonomika Martin Sedlák, 29. 11. 2012, Ústí nad Labem Čistá energetika v Ústeckém kraji Kolik stojí dnešní energetika spalování uhlí v energetice: asi polovina českých emisí (cca 70

Více

Úvod do problematiky. Možnosti energetického využití biomasy

Úvod do problematiky. Možnosti energetického využití biomasy Úvod do problematiky Možnosti energetického využití biomasy Cíle Uvést studenta do problematiky energetického využití biomasy Klíčová slova Biomasa, energie, obnovitelný zdroj 1. Úvod Biomasa představuje

Více

Obnovitelné zdroje energie

Obnovitelné zdroje energie ČVUT v Praze Fakulta stavební Katedra technických zařízení budov TBA1 Vytápění Zdroje tepla - obnovitelné zdroje 1 Obnovitelné zdroje energie Zákon 406/2000 Sb o hospodaření energií OZE=nefosilní přírodní

Více

PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ ENERGIE

PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ ENERGIE PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ ENERGIE 2010 Ing. Andrea Sikorová, Ph.D. 1 Problémy životního prostředí - energie V této kapitole se dozvíte: Čím se zabývá energetika. Jaké jsou trvalé a vyčerpatelné zdroje

Více

Identifikace vzdělávacího materiálu VY_52_INOVACE_F.9.A.22 EU OP VK. Obnovitelné zdroje

Identifikace vzdělávacího materiálu VY_52_INOVACE_F.9.A.22 EU OP VK. Obnovitelné zdroje Identifikace vzdělávacího materiálu VY_52_INOVACE_F.9.A.22 EU OP VK Škola, adresa Autor ZŠ Smetanova 1509, Přelouč Mgr. Ladislav Hejný Období tvorby VM Březen 2012 Ročník 9. Předmět Fyzika Obnovitelné

Více

Využití sluneční energie díky solárním kolektorům Apricus

Využití sluneční energie díky solárním kolektorům Apricus Využití sluneční energie díky solárním kolektorům Apricus Základní princip solárního ohřevu Absorpce slunečního záření Sluneční energie, která dopadá na zemský povrch během slunečného dne, se dokáže vyšplhat

Více

Sluneční energie. Základní energie - celkové množství přiváděné k Zemi cca 1350 W.m -2 35 % se odrazí do kosmického prostoru 15 % pohlceno atmosférou

Sluneční energie. Základní energie - celkové množství přiváděné k Zemi cca 1350 W.m -2 35 % se odrazí do kosmického prostoru 15 % pohlceno atmosférou Sluneční energie Základní energie - celkové množství přiváděné k Zemi cca 1350 W.m -2 35 % se odrazí do kosmického prostoru 15 % pohlceno atmosférou 1 % energie větrů 1% mořské proudy 0,5 % koloběh vody

Více

Vliv zdrojů elektrické energie na životní prostředí

Vliv zdrojů elektrické energie na životní prostředí Klimatické změny odpovědnost generací Hotel Dorint Praha Don Giovanni 11.4.2007 Vliv zdrojů elektrické energie na životní prostředí Tomáš Sýkora ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická

Více

2 Primární zdroje energie. Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín

2 Primární zdroje energie. Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín 2 Primární zdroje energie Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín Obsah přednášky 1. Zdroje energie rozdělení 2. Fosilní paliva 3. Solární

Více

Oxid uhličitý, biopaliva, společnost

Oxid uhličitý, biopaliva, společnost Oxid uhličitý, biopaliva, společnost Oxid uhličitý Oxid uhličitý v atmosféře před průmyslovou revolucí cca 0,028 % Vlivem skleníkového efektu se lidstvo dlouhodobě a všestranně rozvíjelo v situaci, kdy

Více

lní vývoj v ČR Biomasa aktuáln pevnými palivy 2010 Ing. Jan Koloničný, ný, Ph.D. Mgr. Veronika Hase 3.11. 4.11.2010 v Hotelu Skalní mlýn

lní vývoj v ČR Biomasa aktuáln pevnými palivy 2010 Ing. Jan Koloničný, ný, Ph.D. Mgr. Veronika Hase 3.11. 4.11.2010 v Hotelu Skalní mlýn Biomasa aktuáln lní vývoj v ČR Ing. Jan Koloničný, ný, Ph.D. Mgr. Veronika Hase Seminář: Technologické trendy při vytápění pevnými palivy 2010 3.11. 4.11.2010 v Hotelu Skalní mlýn Výroba elektřiny z biomasy

Více

Využívání nízkoemisních zdrojů energie v EU. Praha, 20. září 2010

Využívání nízkoemisních zdrojů energie v EU. Praha, 20. září 2010 Využívání nízkoemisních zdrojů energie v EU Praha, 20. září 2010 Pohled na energetiku V posledních letech se neustále diskutuje o energetické náročnosti s vazbou na bezpečné dodávky primárních energetických

Více

Obnovitelné zdroje energie

Obnovitelné zdroje energie ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie 1.hodina doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 Obsah Představení Časový plán

Více

Co je to CO 2 liga? Víš, co je to CO 2??? Naučil/a jsi se něco nového???

Co je to CO 2 liga? Víš, co je to CO 2??? Naučil/a jsi se něco nového??? Co je to CO 2 liga? Je to celorepubliková soutěž, která je učena pro týmy 3-10 studentů ve věku cca 13-18 let (ZŠ, SŠ). Zabývá se tématy: klimatické změny, vody, energie a bydlení, jídla, dopravy. Organizátorem

Více

Aktuální stav využívání obnovitelných zdrojů energie v ČR a možnosti podpory OZE v rámci programu Nová zelená úsporám

Aktuální stav využívání obnovitelných zdrojů energie v ČR a možnosti podpory OZE v rámci programu Nová zelená úsporám Aktuální stav využívání obnovitelných zdrojů energie v ČR a možnosti podpory OZE v rámci programu Nová zelená úsporám Druhý cyklus seminářů úspory energie a uhlíková stopa úřadu Praha Letiště Václava Havla

Více

MAS Opavsko směřuje k energetické nezávislosti

MAS Opavsko směřuje k energetické nezávislosti MAS Opavsko směřuje k energetické nezávislosti Ing. Jiří Krist předseda sdružení MAS Opavsko Bc. Petr Chroust - manažer MAS Opavsko www.masopavsko.cz Energetická koncepce území MAS Opavsko Podklad pro

Více

okolo 500 let př.n.l. poč. 21.stol

okolo 500 let př.n.l. poč. 21.stol Logo Mezinárodního roku udržitelné energie pro všechny Rok 2012 vyhlásilo Valné shromáždění Organizace Spojených Národů za Mezinárodní rok udržitelné energie pro všechny. Důvodem bylo upozornit na význam

Více

J i h l a v a Základy ekologie

J i h l a v a Základy ekologie S třední škola stavební J i h l a v a Základy ekologie 16. Skleníkový jev a globální oteplování Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284

Více

Energetické zdroje budoucnosti

Energetické zdroje budoucnosti Energetické zdroje budoucnosti Energie a společnost Jakýkoliv živý organismus potřebuje dodávku energie (potrava) Lidská společnost dále potřebuje značné množství energie k zabezpečení svých aktivit Doprava

Více

Analýza teplárenství. Konference v PSP

Analýza teplárenství. Konference v PSP Analýza teplárenství Konference v PSP 11.05.2017 Vytápění a chlazení V EU vytápění a chlazení představuje polovinu celkové spotřeby energie, kdy 45%spotřeby je bytový sektor, 37% průmysl a 18% služby V

Více

Obnovitelné zdroje energie

Obnovitelné zdroje energie ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie 1.hodina doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 Obsah Představení Časový plán

Více

Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Politika ochrany klimatu v České republice. Návrh Ministerstva životního prostředí České republiky

Politika ochrany klimatu v České republice. Návrh Ministerstva životního prostředí České republiky 0 1 Politika ochrany klimatu v České republice Návrh Ministerstva životního prostředí České republiky Politika ochrany klimatu je příspěvkem k celosvětové aktivitě 80./90. léta 2005 2006 2007 2008 2009

Více

Politika ochrany klimatu

Politika ochrany klimatu Politika ochrany klimatu Brno, 4.5. 2010 Mgr. Jiří Jeřábek, Centrum pro dopravu a energetiku Adaptace vs Mitigace Adaptace zemědělství, lesnictví, energetika, turistika, zdravotnictví, ochrana přírody,..

Více

Obnovitelnézdroje včera dnes a zítra. Ing. Markéta Krahulec, Ph.D

Obnovitelnézdroje včera dnes a zítra. Ing. Markéta Krahulec, Ph.D Obnovitelnézdroje včera dnes a zítra Ing. Markéta Krahulec, Ph.D. 14.5. 15.5. 2013 Obnovitelné zdroje Řada definic Obnovitelný s časem nevyčerpatelný Energetický zákon obnovitelnénefosilnípřírodnízdroje

Více

Obnovitelné zdroje energie

Obnovitelné zdroje energie ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 2 1 je hmota organického původu (rostlinného

Více

VŠB-TU OSTRAVA. Energetika. Bc. Lukáš Titz

VŠB-TU OSTRAVA. Energetika. Bc. Lukáš Titz VŠB-TU OSTRAVA Energetika Bc. Lukáš Titz Energetika Je průmyslové odvětví, které se zabývá získáváním, přeměnou a distribucí všech forem energie Energii získáváme z : Primárních energetických zdrojů Obnovitelných

Více

CO JE TO GLOBÁLNÍ OTEPLOVÁNÍ

CO JE TO GLOBÁLNÍ OTEPLOVÁNÍ CO JE TO GLOBÁLNÍ OTEPLOVÁNÍ 2010 Ing. Andrea Sikorová, Ph.D. 1 Co je to globální oteplování V této kapitole se dozvíte: Co je to globální oteplování. Co je to změna klimatu. Co jsou to antropogenní změny.

Více

Přírodní zdroje a energie

Přírodní zdroje a energie Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Přírodní zdroje a energie Energie - je fyzikální veličina, která bývá charakterizována jako schopnost hmoty

Více

Energetické problémy

Energetické problémy Energetické problémy Zdroje energie 1) Obnovitelné zdroje energie, které jsou prakticky nevyčerpatelné částečně a nebo úplně se obnovují (sluneční energie, voda, vítr, biomasa) Zdroje energie 2) Neobnovitelné

Více

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:

Více

Obnovitelné zdroje energie. Masarykova základní škola Zásada Česká republika

Obnovitelné zdroje energie. Masarykova základní škola Zásada Česká republika Obnovitelné zdroje energie Masarykova základní škola Zásada Česká republika Větrná energie Veronika Čabová Lucie Machová Větrná energie využití v minulosti Původně nebyla převáděna na elektřinu, ale sloužila

Více

Můžeme se obejít bez jaderné energetiky? Máme na vybranou?

Můžeme se obejít bez jaderné energetiky? Máme na vybranou? 29. března 2011, Chytrá energie pro jižní Čechy Můžeme se obejít bez jaderné energetiky? Máme na vybranou? Ing. Edvard Sequens Calla - Sdružení pro záchranu prostředí Obsah Realita jaderné energetiky ve

Více

Obnovitelné zdroje energie

Obnovitelné zdroje energie Obnovitelné zdroje energie Identifikace regionálních disparit v oblasti obnovitelných zdrojů energie na Jesenicku Bc. Krystyna Nováková Komplexní regionální marketing jako koncept rozvoje rurálního periferního

Více

VYTÁPĚNÍ A ENERGETICKY ÚSPORNÁ OPATŘENÍ PŘI PROVOZU BUDOV

VYTÁPĚNÍ A ENERGETICKY ÚSPORNÁ OPATŘENÍ PŘI PROVOZU BUDOV Projekt ROZŠÍŘENÍ VYBRANÝCH PROFESÍ O ENVIRONMENTÁLNÍ PŘESAH Č. CZ.1.07/3.2.04/05.0050 VYTÁPĚNÍ A ENERGETICKY ÚSPORNÁ OPATŘENÍ PŘI PROVOZU BUDOV ZDROJE ENERGIE V ČR ZDROJE ENERGIE V ČR Převaha neobnovitelných

Více

ZDROJE A PŘEMĚNY. JAN PREHRADNÝ, EVŽEN LOSA Katedra jaderných reaktorů FJFI ČVUT v Praze

ZDROJE A PŘEMĚNY. JAN PREHRADNÝ, EVŽEN LOSA Katedra jaderných reaktorů FJFI ČVUT v Praze ZDROJE A PŘEMĚNY ENERGIE JAN PREHRADNÝ, EVŽEN LOSA Katedra jaderných reaktorů FJFI ČVUT v Praze Formy energie Energie rozdělení podle působící síly omechanická energie Kinetická (Pohybová) Potenciální

Více

Obnovitelné zdroje energie

Obnovitelné zdroje energie ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 2 1 je hmota organického původu (rostlinného

Více

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D.

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D. ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Spalování paliv - Kotle Ing. Jan Andreovský Ph.D. Kotle Úvod do problematiky Základní způsoby získávání energie Spalováním

Více

Co je BIOMASA? Ekologická definice

Co je BIOMASA? Ekologická definice BIOMASA Co je BIOMASA? Ekologická definice celkový objem všech organismů vyskytujících se v určitém okamžiku na určitém místě všechny organismy v sobě mají chemicky navázanou energii Slunce. Co je BIOMASA?

Více

ENERGETICKÉ ZDROJE PRO 21. STOLETÍ

ENERGETICKÉ ZDROJE PRO 21. STOLETÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ENERGETICKÉ ZDROJE PRO 21. STOLETÍ

Více

5. hodnotící zpráva IPCC. Radim Tolasz Český hydrometeorologický ústav

5. hodnotící zpráva IPCC. Radim Tolasz Český hydrometeorologický ústav 5. hodnotící zpráva IPCC Radim Tolasz Český hydrometeorologický ústav Mění se klima? Zvyšuje se extremita klimatu? Nebo nám jenom globalizovaný svět zprostředkovává informace rychleji a možná i přesněji

Více

okolo 500 let př.n.l. poč. 21.stol

okolo 500 let př.n.l. poč. 21.stol Logo Mezinárodního roku udržitelné energie pro všechny Rok 2012 vyhlásilo Valné shromáždění Organizace Spojených Národů za Mezinárodní rok udržitelné energie pro všechny. Důvodem bylo upozornit na význam

Více

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Číslo projektu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0743 Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Chemie chemie ve společnosti kvarta Datum tvorby 2.6.2013 Anotace a)

Více

Vývoj v oblasti využití biomasy v Jihomoravském kraji

Vývoj v oblasti využití biomasy v Jihomoravském kraji Vývoj v oblasti využití biomasy v Jihomoravském kraji Odbor životního prostředí KrÚ JMK Ing. Aleš Pantůček 1. Analýza území Jihomoravský kraj je svoji rozlohou čtvrtý největší kraj v ČR, z hlediska počtu

Více

Změna klimatu, její dopady a možná opatření k její eliminaci

Změna klimatu, její dopady a možná opatření k její eliminaci Změna klimatu, její dopady a možná opatření k její eliminaci Ing. Martin Kloz, CSc. konference Globální a lokální přístupy k ochraně klimatu 8. 12. 2014 Strana 1 Skleníkový efekt a změna klimatu 1 Struktura

Více

Osnova kurzu. Výroba elektrické energie. Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 3

Osnova kurzu. Výroba elektrické energie. Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 3 Osnova kurzu 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 1 Základy teorie elektrických obvodů 2 Základy teorie elektrických

Více

DŮSLEDKY VĚDOMÉ TRANFORMACE NA ŽIVOTNÍ PROSTŘEDÍ

DŮSLEDKY VĚDOMÉ TRANFORMACE NA ŽIVOTNÍ PROSTŘEDÍ DŮSLEDKY VĚDOMÉ TRANFORMACE NA ŽIVOTNÍ PROSTŘEDÍ 125EAB1, EABI prof.ing.karel Kabele,CSc. 285 1 sekunda = 434 let Carl Sagan s Universe Calendar 1 rok = 13,7 miliard let = stáří vesmíru 125EAB1, EABI prof.ing.karel

Více

VÝROBA ELEKTRICKÉ ENERGIE V ČR

VÝROBA ELEKTRICKÉ ENERGIE V ČR INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 VÝROBA ELEKTRICKÉ ENERGIE V ČR

Více

VYUŽITÍ OZE V MINULOSTI

VYUŽITÍ OZE V MINULOSTI VYUŽITÍ OZE V MINULOSTI VYUŽITÍ OZE V MINULOSTI Oheň - zdroj tepla,tepelná úprava potravin Pěstování plodin, zavodňování polí Vítr k pohonu lodí Orientace budov tak, aby využily co nejvíce denního světla

Více

10. Energeticky úsporné stavby

10. Energeticky úsporné stavby 10. Energeticky úsporné stavby Klíčová slova: Nízkoenergetický dům, pasivní dům, nulový dům, aktivní dům, solární panely, fotovoltaické články, tepelné ztráty objektu, součinitel prostupu tepla. Anotace

Více

Koncentrace CO 2 v ovzduší / 1 ppmv

Koncentrace CO 2 v ovzduší / 1 ppmv Žijeme v pětihorách Pojem pětihory označuje současné geologické období, kdy se přírodní transport látek ze zemské kůry stal menší než látkové toky provozované lidmi. Jde přitom o veškerou těžební činnost

Více

POLITIKA OCHRANY KLIMATU V ČESKÉ REPUBLICE

POLITIKA OCHRANY KLIMATU V ČESKÉ REPUBLICE POLITIKA OCHRANY KLIMATU V ČESKÉ REPUBLICE Návrh Ministerstva životního prostředí ČR ÚVODNÍ SLOVO Milí přátelé, změna klimatu se stává každodenní realitou. Koncentrace skleníkových plynů v zemské atmosféře

Více

lní vývoj a další směr r v energetickém Mgr. Veronika Bogoczová

lní vývoj a další směr r v energetickém Mgr. Veronika Bogoczová Aktuáln lní vývoj a další směr r v energetickém využívání biomasy Mgr. Veronika Bogoczová Hustopeče e 5. 6. května 2010 Obsah prezentace Úvod Výroba elektřiny z biomasy Výroba tepelné energie z biomasy

Více

Životní prostředí Energetika a životní prostředí

Životní prostředí Energetika a životní prostředí Životní prostředí Energetika a životní prostředí Energie-fyzikální zákonitosti Přírodní suroviny+další zdroje Zdroje energie versus člověk + ŽP (popis, vlivy, +/-) Čím tedy topit/svítit? (dnes/zítra) Katedra

Více

Jak učit o změně klimatu?

Jak učit o změně klimatu? Jak učit o změně klimatu? Tato prezentace vznikla v rámci vzdělávacího projektu Jak učit o změnách klimatu? Projekt byl podpořen Ministerstvem životního prostředí, projekt nemusí vyjadřovat stanoviska

Více

Rotační výsledkem je otáčivý pohyb (elektrické nebo spalovací #5, vodní nebo větrné

Rotační výsledkem je otáčivý pohyb (elektrické nebo spalovací #5, vodní nebo větrné zapis_energeticke_stroje_vodni08/2012 STR Ga 1 z 5 Energetické stroje Rozdělení energetických strojů: #1 mění pohyb na #2 dynamo, alternátor, čerpadlo, kompresor #3 mění energii na #4 27. Vodní elektrárna

Více

Digitální učební materiál

Digitální učební materiál Evidenční číslo materiálu: 503 Digitální učební materiál Autor: Mgr. Pavel Kleibl Datum: 21. 3. 2012 Ročník: 9. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Energie Téma:

Více

ČVUT v Praze Fakulta stavební Katedra technických zařízení budov Situace v ČR 55% uhelné 42% jádro 3% vodní 0,1 % ostatní (vítr, fotovoltaická)

ČVUT v Praze Fakulta stavební Katedra technických zařízení budov Situace v ČR 55% uhelné 42% jádro 3% vodní 0,1 % ostatní (vítr, fotovoltaická) ČVUT v Praze Fakulta stavební Katedra technických zařízení budov TZ1 Vytápění Elektrická energie - výroba Situace v ČR 55% uhelné 42% jádro 3% vodní 0,1 % ostatní (vítr, fotovoltaická) Zdroje tepla - elektrické

Více

VYSOKÁ ÚČINNOST VYUŽITÍ BIOMASY = efektivní cesta k naplnění závazku EU a snížení nákladů konečných spotřebitelů elektřiny

VYSOKÁ ÚČINNOST VYUŽITÍ BIOMASY = efektivní cesta k naplnění závazku EU a snížení nákladů konečných spotřebitelů elektřiny VYSOKÁ ÚČINNOST VYUŽITÍ BIOMASY = efektivní cesta k naplnění závazku EU a snížení nákladů konečných spotřebitelů elektřiny Město Třebíč - kraj Vysočina Počet obyvatel: cca. 39.000 Vytápěné objekty: 9.800

Více

Výroba a spotřeba elektřiny v Pardubickém kraji v roce 2013

Výroba a spotřeba elektřiny v Pardubickém kraji v roce 2013 Krajská správa ČSÚ v Pardubicích Výroba a spotřeba elektřiny v Pardubickém kraji v roce 2013 www.czso.cz Informace z oblasti energetiky o provozu elektrizační soustavy pravidelně zveřejňuje v krajském

Více

Alternativní zdroje energie

Alternativní zdroje energie Autor: Ivo Vymětal Pracovní list 1 Přeměny energie 1. Podle vzoru doplň zdroje a druhy energie, které se uplatní v popsaných dějích. Využij seznamu: Žárovka napájená z tepelné elektrárny. Slunce Rostliny

Více

Očekávaný vývoj energetiky do roku 2040

Očekávaný vývoj energetiky do roku 2040 2040 Technické, ekonomické a bezpečnostní ukazatele 2040 1 Strategické cíle energetiky ČR Bezpečnost dodávek energie = zajištění nezbytných dodávek energie pro spotřebitele i při skokové změně vnějších

Více

Energetické využití odpadu. 200 let První brněnské strojírny

Energetické využití odpadu. 200 let První brněnské strojírny 200 let První brněnské strojírny Řešení využití odpadů v nové produktové linii PBS Spalování odpadů Technologie spalování vytříděného odpadu, kontaminované dřevní hmoty Depolymerizace a možnosti využití

Více

Podpora využívání obnovitelných zdrojů energie v ČR. Juraj Krivošík / Tomáš Chadim SEVEn, Středisko pro efektivní využívání energie, o.p.s.

Podpora využívání obnovitelných zdrojů energie v ČR. Juraj Krivošík / Tomáš Chadim SEVEn, Středisko pro efektivní využívání energie, o.p.s. Podpora využívání obnovitelných zdrojů energie v ČR Juraj Krivošík / Tomáš Chadim SEVEn, Středisko pro efektivní využívání energie, o.p.s. OZE v ČR: Základní fakta 6000 Spotřeba OZE: 4,7 % celkové spotřeby

Více

Chytrá energie. koncept nevládních organizací ke snižování emisí

Chytrá energie. koncept nevládních organizací ke snižování emisí Chytrá energie koncept nevládních organizací ke snižování emisí Chytrá energie Konkrétní a propočtený plán, jak zelené inovace a nová odvětví mohou proměnit českou energetiku Obsahuje: příležitosti efektivního

Více

KAPITOLA 9. Města a příroda

KAPITOLA 9. Města a příroda KAPITOLA 9 Města a příroda Hrajete si rádi venku? Pokud žijete ve městě, dobře víte, jak důležitá jsou hřiště a parky, které dětem poskytují prostor na hraní a běhání. Víte už, že města zvyšují teplotu

Více

PROGRAM "TEPLO SLUNCEM"

PROGRAM TEPLO SLUNCEM PROGRAM "TEPLO SLUNCEM" Obsah 1 Jak můžeme využít energii slunečního záření?... Varianty řešení...5 3 Kritéria pro výběr projektů... Přínosy...7.1. Přínosy energetické...7. Přínosy environmentální...8

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/ PŘEDMĚT VYUŽITÍ ELEKTRICKÉ ENERGIE

PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/ PŘEDMĚT VYUŽITÍ ELEKTRICKÉ ENERGIE PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/02.0010 PŘEDMĚT VYUŽITÍ ELEKTRICKÉ ENERGIE Obor: Ročník: Zpracoval: Elektrikář - silnoproud Třetí Bc. Miroslav Navrátil PROJEKT ŘEMESLO

Více

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta Tepelné elektrárny 1) Kondenzační elektrárny uhelné K výrobě elektrické energie se využívá tepelné energie uvolněné z uhlí spalováním. Teplo uvolněné spalováním se využívá k výrobě přehřáté (ostré) páry.

Více

FOSILNÍ PALIVA A JADERNÁ ENERGIE

FOSILNÍ PALIVA A JADERNÁ ENERGIE Inovace a zkvalitnění výuky v oblasti přírodních věd Člověk a příroda 7.ročník červenec 2011 FOSILNÍ PALIVA A JADERNÁ ENERGIE Anotace: Kód: VY_52_INOVACE_ Čap-Z 7.,8.15 Vzdělávací oblast: fosilní paliva,

Více

Podpora energetického využívání biomasy v Moravskoslezském kraji

Podpora energetického využívání biomasy v Moravskoslezském kraji Podpora energetického využívání biomasy v Moravskoslezském kraji Zpracovala: Ing. Petra Koudelková Datum: 28-29.2.2008, Biomasa jako zdroj energie II Koncepční strategie (1) Územní energetická koncepce

Více

Obnovitelné zdroje energie v roce 2006 a letech minulých - přehled statistických dat -

Obnovitelné zdroje energie v roce 2006 a letech minulých - přehled statistických dat - Obnovitelné zdroje energie v roce 2006 a letech minulých - přehled statistických dat - Ing. Aleš B u f k a Seminář: Nástroje státu na podporu úspor energie a obnovitelných zdrojů Praha 22.11.2007 Pozice

Více

J i h l a v a Základy ekologie

J i h l a v a Základy ekologie S třední škola stavební J i h l a v a Základy ekologie 19. Energie alternativní zdroje Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Tomáš Krásenský

Více

PALIVA. Bc. Petra Váňová 2014

PALIVA. Bc. Petra Váňová 2014 PALIVA Bc. Petra Váňová 2014 Znáte odpověď? Která průmyslová paliva znáte? koks benzín líh svítiplyn nafta Znáte odpověď? Jaké jsou výhody plynných paliv oproti pevným? snadný transport nízká teplota vzplanutí

Více

Teplárenství jako klíč k efektivnímu využití obnovitelných zdrojů v ČR

Teplárenství jako klíč k efektivnímu využití obnovitelných zdrojů v ČR Biomasa & Energetika 2011 Teplárenství jako klíč k efektivnímu využití obnovitelných zdrojů v ČR Ing. Mirek Topolánek předseda výkonné rady 29. listopadu 2011, ČZU Praha Výhody teplárenství 1. Možnost

Více

SVĚTOVÝ VÝHLED ENERGETICKÝCH TECHNOLOGIÍ DO ROKU 2050 (WETO-H2)

SVĚTOVÝ VÝHLED ENERGETICKÝCH TECHNOLOGIÍ DO ROKU 2050 (WETO-H2) SVĚTOVÝ VÝHLED ENERGETICKÝCH TECHNOLOGIÍ DO ROKU 2050 (WETO-H2) KLÍČOVÁ SDĚLENÍ Studie WETO-H2 rozvinula referenční projekci světového energetického systému a dvouvariantní scénáře, případ omezení uhlíku

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 SOUČASNÉ ELEKTRÁRNY ING. LADISLAV

Více

Projekt ASPIRE (Achieving Energy Sustainability in Peripheral Regions of Europe)

Projekt ASPIRE (Achieving Energy Sustainability in Peripheral Regions of Europe) Projekt ASPIRE (Achieving Energy Sustainability in Peripheral Regions of Europe) Jednání Dětského parlamentu Rožnov pod Radhoštěm, 13.5.2008 ASPIRE - partneři v projektu Koordinátor: Cornwall County Council,

Více

Vícepalivový tepelný zdroj

Vícepalivový tepelný zdroj Vícepalivový tepelný zdroj s kombinovanou výrobou elektrické energie a tepla z biomasy systémem ORC v Třebíči Historie projektu vícepalivového tepelného zdroje s kombinovanou výrobou el. energie a tepla

Více

Celkem 1 927,8 PJ. Ostatní OZE 86,2 PJ 4,3% Tuhá palia 847,8 PJ 42,5% Prvotní elektřina -33,1 PJ -1,7% Prvotní teplo 289,6 PJ 14,5%

Celkem 1 927,8 PJ. Ostatní OZE 86,2 PJ 4,3% Tuhá palia 847,8 PJ 42,5% Prvotní elektřina -33,1 PJ -1,7% Prvotní teplo 289,6 PJ 14,5% Energetický mix Primární energetické zdroje v teplárenství Ing. Vladimír Vlk Praha 30. listopadu 2009 1 Obsah prezentace Energetický mix v České republice Aktuální podíl PEZ při výrobě tepla Celkový podíl

Více

Energeticky soběstačná obec, region

Energeticky soběstačná obec, region Energeticky soběstačná obec, region jak na to? Ing. Karel Srdečný Žižkova 1, Č. Budějovice tel.: 774 697 901 e-mail: cb@ekowatt.cz 1. O společnosti EkoWATT je Česká nezávislá konzultační společnost, založena

Více

Srovnání využití energetických zdrojů v hospodářství ČR. Ing. Vladimír Štěpán. ENA s.r.o. Listopad 2012

Srovnání využití energetických zdrojů v hospodářství ČR. Ing. Vladimír Štěpán. ENA s.r.o. Listopad 2012 Srovnání využití energetických zdrojů v hospodářství ČR Ing. Vladimír Štěpán ENA s.r.o. Listopad 2012 Spotřeba HU a ZP v ČR Celková spotřeba hnědého uhlí a zemního plynu v ČR v letech 2002-2011 2 Emise

Více

Předmět: Stavba a provoz strojů Ročník: 4.

Předmět: Stavba a provoz strojů Ročník: 4. Předmět: Stavba a provoz strojů Ročník: 4. Anotace : Tento digitální učební materiál poskytuje základní přehled o alternativních zdrojích elektrické energie. Prostor je věnován především obnovitelným zdrojům

Více

Kombinovaná výroba elektřiny a tepla v roce 2008

Kombinovaná výroba elektřiny a tepla v roce 2008 Energetická statistika Kombinovaná výroba a tepla v roce 2008 Výsledky statistického zjišťování duben 2010 Oddělení surovinové a energetické statistiky Impressum oddělení surovinové a energetické statistiky

Více

ENERGETICKÉ ZDROJE A SYSTÉMY PRO BUDOVY

ENERGETICKÉ ZDROJE A SYSTÉMY PRO BUDOVY ENERGETICKÉ ZDROJE A SYSTÉMY PRO BUDOVY František HRDLIČKA Czech Technical University in Prague, Czech Republic Faculty of Mechanical Engineering Směrnice EU důležité pro koncepci zdrojů pro budovy 2010/31/EU

Více