MECHANIKA PRUŽNÉHO TĚLESA. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Předmluva 3

Rozměr: px
Začít zobrazení ze stránky:

Download "MECHANIKA PRUŽNÉHO TĚLESA. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Předmluva 3"

Transkript

1 MECHANIKA PRUŽNÉHO TĚLESA Studijní tet pro řešitee O a ostatní zájemce o fyziku Bohumi Vybíra Obsah Předmuva 3 1 ZÁKLADNÍ POZNATKY O PRUŽNOSTI TĚLES Pevnépružnétěeso Napětíadeformace TAHOVÁ A TLAKOVÁ DEORMACE Tahovádeformacetyče,Hookůvzákon Takovádeformacetyče Deformačníenergiepřitahu Eperimentánízkoumánímateriáutahematakem Mírabezpečnostiadovoenénapětí Příkad1 návrhprutovésoustavy Sožitějšíúohyvedoucínatahnebotak Příkad2 rotujícítyč Příkad3 rotujícíprstenec Úohykekapitoe SMYKOVÁ DEORMACE A TORZE Hookůvzákonprodeformacismykem Deformačníenergiepřismyku Dovoenénapětípřismyku Torzerotačníhováce Deformačníenergiepřitorzi Příkad4 hnacíhříde Příkad5 torzníosciátor Příkad6 tuhostšroubovitépružiny Úohykekapitoe

2 4 ELEMENTÁRNÍ TEORIE OHYBU Nosníkzatíženývnějšímisiami Vnitřnístatickéúčinkyunosníků Příkad7 posouvajícísíaaohybovýmoment Napětíadeformacepřiprostémohybu Příkad8 Průřezovécharakteristikyobdéníkaakruhu Deformačníenergiepřiprostémohybu Příčnýohyb Ohybováčáranosníkupřipříčnémohybu Příkad9 Ohybováčárakrakorce Příkad10 Pevnostnívýpočetkrakorce Vzpěrpřímýchprutů Úohykekapitoe ŘEŠENÍ ÚLOH 56 Literatura 62 Příoha 63

3 Předmuva Předožený studijní tet se zabývá mechanikou pevného deformovateného těesa oborem, který studuje mechanická napětí a deformace vyvoané působením vnějších si. Jde tedy o otázky související s pružností a pevností reáného těesa a proto se tento obor v apikované technické formě nazývá pružnost a pevnost, i když ani toto označení pně nevystihuje obsah tohoto technického předmětu. Zabývá se jevy, které vysvětují pevnost např. ptačího křída, kymácejícího se stéba trávy ve větru anebo rotující neutronové hvězdy. Konstruktérovi poskytuje metody potřebné pro návrh různých staveb a strojů. Jejich nedostatečné respektování vede ke katastrofám, se kterými se stáe setkáváme (zřícené budovy, mosty, havarovaná etada atd.). Otázkami pružnosti a pevnosti se zabývay nejvýznamnější osobnosti fyziky, jakými byi G. Gaiei, Jacob Bernoui, E. Mariotte, R. Hooke, L. Euer, Ch. A.Couomb,A.L.Cauchy,G.G.Stokes,G.Green,J.C.Maweaj.Souběžně s rozvojem tohoto oboru se rozvíjey i významné matematické obory, jako teorie diferenciáních rovnic a tenzorový počet. I přes uvedený význam je tento obor mechaniky jen okrajovou součástí současné středoškoské fyziky. Nicméně ve vysokoškoské fyzice má pevné místo v teoretické mechanice jako mechanika pružného kontinua. Zde jde o náročnou partii vyžadující dobrou znaost vyšší matematiky, zejména tenzorového počtu. Pro budoucí techniky na středních a vysokých škoách je pružnost a pevnost obávaným profiujícím předmětem. Inženýr dokáže metodou konečných prvků (numerická diferenční metoda řešení diferenciáních rovnic, které popisují napětí a deformace) provést pevnostní výpočet těesa(součástky, konstrukce) ibovoného tvaru. Předožená pubikace může poskytnout jen stručný fyzikání úvod do mechaniky deformovatených těes. Omezuje se jen na pružné deformace těes jednoduchého tvaru. Popisuje zákadní deformace: tah, tak, smyk, torzi a ohyb. Při fyzikáním popisu vystačíme se zákady diferenciáního a integráního počtu. Stručný fyzikání výkad je iustrován 10 řešenými příkady a čtenáři je předoženo 26 úoh s řešením uvedeným v závěru pubikace. Přiřešenípříkadůaúohsečtenářsetkásmatematikou,kteráseběžně na střední škoe neprobírá. Vhodné dopnění matematiky pro fyziku ze najít v souboru pubikací Kapitoy z matematiky pro řešitee fyzikání oympiády[13]. 3

4 1 ZÁKLADNÍ POZNATKY O PRUŽNOSTI TĚLES 1.1 Pevné pružné těeso V mechanice se setkáváme s ideaizovanými modey pevných těes. Jde-i nám o pohyb těesa jako ceku, používáme mode tuhého těesa. Síy a momenty si působící na těeso vyvoávají u reáného těesa stav napjatosti provázený jeho deformací. V našem tetu se soustředíme na zjednodušený mode pevného těesa, u něhož vznikají jen pružné deformace, tj. po vymizení vnějších si vymizí i deformace a těeso nabývá původního tvaru. U reáného tvárného těesa přejdou při překročení určitého napětí pružné deformace na pastické zákad změny tvaru těesa kováním a isováním. U křehkého těesa tento stav nenastává dochází přímo k omu. Deformace reáných pružných těes působením si je podmíněna jejich mikrostrukturou. Jejím zákadem jsou zpravida ionty, které jsou u krystaických átek rozoženy v krystaových mřížkách. Látka ve formě monokrystau je anizotropní, tj. její vastnosti závisí na směru si vzhedem ke stavbě krystau. Většina technicky významných átek se vyskytuje jako poykrystay. Skádají se z vekého počtu krystaků(zrn), jejichž vzájemná pooha je nahodiá a proto výsedné fyzikání vastnosti těchto átek jíž nejsou závisé na směru; tyto átky jsou izotropní. Izotropií se vyznačuje i druhá skupina pevných átek amorfní átky, které nemají krystaovou strukturu, protože jsou tvořeny částicemi s krátkým dosahem. Patří mezi ně např. pasty, sko, vosk, pryskyřice, asfat a poymery(např. kaučuk, bavna, termopasty aj.). V našem tetu se budeme zabývat deformacemi pevných těes vytvořených z izotropních átek. Mikrostruktura pevných átek výrazně ovivňuje jejich mechanické vastnosti jejich pružnost a pevnost. Pro zkoumání makroskopických deformačních dějů však není nutné přihížet k mikrostruktuře átky, nýbrž pevné těeso ze vyšetřovat jako pružné spojité prostředí pružné kontinuum. Tento mode umožňuje využít matematickou teorii spojitých funkcí jedné nebo více proměnných, přičemž rozpor s nespojitou fyzikání reaitou, projevující se ve vemi maých objemech, překeneme tak, že jednotivým bodům kontinua připíšeme veičiny, které jsou středními hodnotami z dostatečně vekého okoí bodu kontinua.upatňujesezdefenomenoogická( jevová )metoda,přičemžfyzikání vastnosti átky, podmíněné jejich mikrostrukturou, jsou popsány obecně spojitými funkcemi místa v těese. Některé z nich ze považovat za konstanty; nazývají se materiáové konstanty. U izotropních átek jsou tyto konstanty dvě a nazývají se moduy pružnosti: E YoungůvmodupružnostiaG modupružnostivesmyku.uani- 4

5 zotropních átek se nazývají eastické koeficienty a jejich počet závisí na sožitosti krystau(u nejsožitějšího krystau trojkonné soustavy je jich 21). 1.2 Napětí a deformace Nechťnapružnétěesopůsobísoustavavnějšíchsi 1... i... n (obr.1), přičemžjejichvýsednicejenuová: n i=1 i= 0, tj.těesojevestatickérovnováze. Mezi vnější síy patří: 1. objemové síy rozožené v ceém těese, tedy především tíhová sía a setrvačné síy vznikají v neinerciání soustavě spojené s těesem, např. sía odstředivá, 2. pošné síy, působící na povrch těesa především takové síy vyvoané takem kapain a pynů, 3. vazbové síy(reakce) síy a případně momenty si, kterými působí na pružné těeso okoní těesa v místech vazeb(např. ožiska, podpěry, vetknutí). Určují se z podmínek statické rovnováhy těesa(viz např.[10]) n k n Obr. 1 Soustava vnějších si a vnitřních si Působení vnějších si uvnitř těesa zprostředkovávají vnitřní síy. Jsou to síy, které působí jako reakce proti tendenci vnějších si porušit prvek pružného těesa, měnit jeho tvar, odděit jednu jeho část od druhé. Určují se metodou k 5

6 myšenéhořezu. 1 )Těesemvedemevmístě,kdemámesíyurčit,myšenýřez rovinou (obr.1),kterýmtěesorozděímenadvěčásti1,2.označíme-i 21 výsednici vnitřních si spojitě rozožených po poše řezu, kterými působí část 2načást1aanaogicky 12,kterýmipůsobíčást1načást2,musízhediska rovnováhybýt = 0. Vnitřnísíyurčujememetodoumyšenéhořezu tak,žeurčímerovnováhujejíurčitéčásti(1nebo2). V mechanice tuhého těesa jsme pracovai se siou jako vektorem, který je vázánnapřímku nositekusíy ponížjibyomožnoibovoněposunout. V mechanice pružných těes to nepatí, protože posunutím síy po přímce(změnoujejíhopůsobiště)bydošokezměněrozoženívnitřníchsiatímkezměně napjatosti těesa. Rozožení vnitřních si na poše myšeného řezu těesa charakterizujeme veičinou(mechanické) napětí. Nechť na eementární poše S v okoí bodu A pochyřezu(obr.2)působívnitřnísía.pakcekovénapětívtomtobodě je c= im S 0 S =d ds. (1) JednotkounapětívsoustavěSIjeN m 2 =m 1 kg s 2 =Pa(pasca).Protože napětí1pajevemimaé,používásejednotkampa=10 6 Pa=N mm 2. S S n n A α c t t n k Obr.2 Kpojmunapětí 1 )Geniánímetodumyšenéhořezu,hojněpoužívanouvmechanicepružnéhotěesa,zaved Leonard Euer ( ). Řezem se vnitřní sía stává siou vnější a můžeme ji určit z podmínky rovnováhy odděené části. 6

7 Vektornapětí cmádvěvýznamnésožky.sožkanapětívesměrunormáy nkroviněmyšenéhořezusenazývánormáovénapětí,vtechnicképraise značí σ. tohoto souhasný se směrem vnější normáy, hovoříme otahovémnapětí(tentopřípadjeznázorněnnaobr.2).je-isměrnapětí opačný než vnější normáa, hovoříme o takovém napětí. Druhá významná sožkouvektorunapětí cežívtečnéroviněmyšenéhořezu(tedypřímovroviněřezu,kterýjerovinný).nazývásetečnénapětí avtechnicképraise značí τ. Protože toto napětí vyvoává smykovou deformaci, nazývá se rovněž smykové napětí. Rozkadvektorunapětí cvurčitémboděrovinnéhořezuzatíženéhotěesa do sožek můžeme vyjádřit těmito skaárními výrazy: n σ= im S 0 S =d n ds =d ds cosα=σ ccosα, (2) t τ= im S 0 S =d t ds =d ds sinα=σ csinα, (3) kde n, t jsouveikostiprůmětusíy do nat.úhe αvtěchtovýrazech jeodchykasíy odsměruvnějšínormáy naežívintervau 0, p.zvýrazu (2)tedyvypývá σ >0 protahovénapětí,kdy α 0, p/2) a σ <0 pro takovénapětí,kdy α (p/2, p.tečné(smykové)napětíje τ > 0,neboť vznikápro α (0, p). Cekové napětí(1) je závisé na dvou vektorových veičinách na vektoru vnitřních si v místě eementu pochy S a na směru vnější normáy pochy myšenéhořezuvmístě,vněmžeement Seží.Napětí cjetedyveičina, která je charakterizována dvěma směry, což se v jeho sožkách obecně vyjadřuje připojením dvou indeů. Takové veičiny se vyskytují jak ve fyzice, tak v geometrii, nazývají se tenzory a zabývá se jimi matematická discipína tenzorový počet. 2 ) 2 )Vdanémpřípadějdeotenzordruhéhořádu.Vtrojrozměrnémprostorumá3 2 =9 kartézských sožek, které ze uspořádat do matice ( σ, σ y, σ z ) σ y, σ yy, σ yz. σ z, σ zy, σ zz Tři sožky v havní diagonáe matice mají dva stejné indey a popisují normáová napětí ve směru přísušných os, y, z. Šest zbývajících sožek popisuje tečná napětí v rovinách yz, zay.jsouvindeechsymetrické(např. σ y = σ y)atedynezáviséjsoujentři. V mechanice tuhého těesa se setkáváme s podobným tenzorem tenzorem setrvačnosti(viz např.[11]). Vektory ze považovat za tenzory prvního řádu(v trojrozměrném prostoru mají 3 1 =3sožky)askaáryzatenzorynutéhořádu(3 0 =1sožka).Ovektorechatenzorechve fyzice systematicky pojednává[12]. 7

8 S tenzorovým vyjádřením napětí souvisí i tenzorové vyjádření deformace, kterou napětí vyvoává. Tedy úpný a obecný popis napjatosti těesa vyžaduje popis pomocí tenzorové agebry a anaýzy. V našem výkadu se tomuto obecnému popisu vyhneme, aniž bychom omezovai správnost řešení, neboť se budeme zabývat jen jednoduchými(i když fundamentáními) případy pružnosti těesa. Budeme tedy nadáe pracovat se sožkami napětí σ a τ jako se skaárními veičinami. Účinkem vnitřních si vzniká v těese jeho deformace. Budeme uvažovat jen pružnou deformaci, tj. takové změny tvaru a rozměrů, které vymizí, přestanou-i působit vnější síy. Nyní zavedeme veičiny, kterými budeme popisovat deformaci. Představme si body A, B, C nedeformovaného těesa(obr. 3). Vzdáenost bodů A, B označíme ; úsečky AB, BC spou svírají úhe α. Působenímsíy setěesodeformujeabodypřejdoudopooh A, B, C.Orientované úsečky AA, BB, CC senazývajívektorypřemístění,přičemžjezerozožit na přemístění ineární posunutí a přemístění úhové pootočení. U ohybu nosníku(viz kap. 4) se posunutí nazývá průhyb v určitém bodě. S pootočením sesetkámeutorze(vizkap.3),kterésezdeoznačujeúhezkroucení. A A + B α B α C C Obr.3 Kpojmudeformace Současně s přemístěním vzniká u těesa na obr. 3 přetvoření charakterizovanézměnoudéekúsečekazměnouúhumezinimi.nechťúsečka ABzmění déku popřemístěnído A B na +.Tutozměnucharakterizujemereativním(poměrným) prodoužením ε=. (4) Je to bezrozměrná veičina, která udává prodoužení úsečky jednotkové déky. Vyjde-i εzáporné,jdeozkráceníúsečkydéky o. 8

9 Vede ineárního přetvoření vzniká úhové přetvoření, které se v našem případěprojevízměnouúhu αna α.zvoíme-ibodya, B, Ctak,že α=p/2, nazývá se přísušná změna úhu zkos γ= p/2 α. (5) Obecně síy a momenty si způsobují sožité deformace těes. Ve zváštních případech dochází k zákadním deformacím těes, jak je vyznačeno na obr. 4. Jsou to: 1. tah(tahová deformace) a tak(taková deformace) projevuje se u namáhání an, prutů v příhradových konstrukcích, soupů, řetězů, 2. smyk(smyková deformace) projevuje se u namáhání šroubů, nýtů, svárů, čepů, 3. torze(krut) projevuje se u namáhání hřídeů, pružin, torzních váken, 4. ohyb projevuje se u namáhání všech druhů nosníků, např. hřídeů, překadů, mostovek, bakonových nosníků(krakorců). a) b) c) d) 2 e) Obr.4 Zákadnídruhydeformací:a)tah,b)tak,c)smyk,d)torze,e)ohyb 9

10 2 TAHOVÁ A TLAKOVÁ DEORMACE 2.1 Tahová deformace tyče, Hookův zákon Napřímoutyčkonstantníhoprůřezuopošnémobsahu Snechťpůsobívose stáá sía (obr. 5). Normáové napětí v ibovoném místě komého průřezu nosníku určíme metodou myšeného řezu rovinou vedenou komo k jeho ose (obr.5a).zpodmínkyrovnováhyodděenéčásti σs =0pyne σ= S. (6) a) b) b b b S σ + Obr. 5 Tahová deformace: a) určení napětí metodou myšeného řezu, b) změna rozměrůtyčepřitahu Působením vnější siy se tyč prodouží o. Výsedky eperimentů, které r pubikova Robert Hooke, vedou k jednoduchému závěru, že prodoužení je přímo úměrné veikosti působící síy, pokud její veikost nepřekročí jistou mez. Prodoužení tyče je dáe přímo úměrné její déce a nepřímo úměrné pošnému obsahu S příčného řezu pode vztahu = ES = σ E, (7) kde Ejekoeficientúměrnosti,kterýjeprourčitýmateriátyčeajehotepotu konstanta.veičinu Ezavedteprver.1807,tedyaž129etpozveřejněníHookova poznatku, Thomas Young. Na jeho počest se nazývá Youngův modu (anebo také modu pružnosti v tahu). Zavedením reativního prodoužení(4) a normáového napětí(6) můžeme vztah(7) psát v obecnějším tvaru σ= Eε, (8) který se nazývá Hookův zákon pro jednoosou napjatost(tah/tak). Z tohoto vztahu je zřejmý fyzikání význam Youngova moduu. Je to napětí, které 10

11 byvtyčivznikopři ε=1(tj. =),kdyžbychompřijaipatnostzákona (8) bez omezení. Ve skutečnosti u většiny technických materiáů vzniká již při ε <0,01pastickádeformace.Výjimkutvoříjenpryž.Vtab.Ivpříozejsou uvedeny hodnoty Youngova moduu pro běžné technické materiáy. Protože / = ES/, nazývá se veičina ES/ tuhost tyče v tahu jako sía, která by způsobia prodoužení tyče o jednotkovou déku. S prodoužením tyče se současně zmenšují její příčné rozměry. Např. šířka tyče bsezmenšína b b(obr.5b).reativnízúženípříčnýchrozměrů η = b/b je přímo úměrné reativnímu prodoužení ε pode vztahu η= b b = µε=µ σ E, (9) kde konstanta úměrnosti µ se nazývá Poissonovo číso. U běžných technických materiáůje µ (0,25 0,5) viztab.i. 2.2 Taková deformace tyče Poznatky, které jsme uvedi pro pružnou tahovou deformaci, patí do jisté míry iprotakovoudeformaci,přičemž σ <0 ε <0(zápornéreativníprodoužení = zkrácení), η < 0(záporné reativní zúžení = rozšíření). U takové deformace však přistupují i otázky stabiity a tak reativně štíhé přímé tyče namáhané natakjenutnékontroovatnavzpěr(vizč.4.7). 2.3 Deformační energie při tahu Protože se tyč nachází ve statické rovnováze, projeví se práce vykonaná vnějšími siami při její deformaci přírůstkem její potenciání energie; v tomto případě deformační energie při tahu. Vypočtěme tedy deformační práci ze stavu bez deformace(=0)dostavusdeformací = (obr.6).vobecnépooze(při protažení )mávnějšísiaveikost = ES/ apřiprotaženíodékud vykoná eementární práci dw= d= ES d. Ceková deformační práce při protažení o je W= ES 0 d= ES [ 2 2 ] 0 = ES 2 ( )2 = 1 2 = 2 2ES. (10) 11

12 + S B dw O d C Obr. 6 K výpočtu deformační energie při tahu Zde jsme práci vyjádřii ještě užitím koncové veikosti síy a prodoužení podevztahu(7).zobr.6jezřejmé,žepráce(10)jeúměrnápošetrojúheníka OBC. Zavedeme-i do(10) reativní prodoužení ε a napětí σ, dostaneme pro deformační práci a tudíž i pro deformační energii U výraz W= U= ε2 E σ2 S= S. (11) 2 2E Protože S = V je objem tyče, můžeme snadno vypočítat hustotu deformační energie při tahu u t = U V = ε2 E 2 = σε 2 = σ2 2E. (12) Přiznaostideformačníenergie U přiobecnémprotaženíomůžemenaopakurčitveikost vnějšísíypřitomtoprodoužení.zevztahu(10)pro obecnou poohu nahradíme veičinou a dostaneme U = W = ES 2 2 = du d = ES. (13) 2.4 Eperimentání zkoumání materiáu tahem a takem Mechanické vastnosti materiáu ze spoehivě určit jen eperimentáně, přičemž zákadní statickou zkouškou je zkouška tahem. Tyč se napíná v hydrauickém trhacím stroji pozvoně rostoucí siou, až dojde k jejímu přetržení. Přitom se měří veikost síy a odpovídající prodoužení. Zkouška musí probíhat za přesně stanovených podmínek(daných závaznou normou). Zkušební tyče jsou normaizovány; mívají zpravida kruhový průřez(obr. 7). Pracovní déka tyče, vyznačená ryskami, je kratší než její vácová část. 12

13 Obr. 7 Zkušební tyč pro statickou zkoušku tahem Graf závisosti veikosti zatěžující síy na prodoužení, resp. závisosti napětí σ na reativním prodoužení ε se nazývá pracovní diagram, jehož příkadjenaobr.8. σ σ pt σ kt σ e σ u O α K 0 K E U σ P X 0 X X ε Obr. 8 Pracovní diagram pro houževnatou oce. Napětí σ je definováno podíem zatěžující síy a pošného obsahu původního(nedeformovaného) průřezu; jde osmuvnínapětí,skutečnénapětí σ je větší, protože se pocha průřezu deformací zmenšuje. Poznámka: Pro napětí v pracovním diagramu se nově pode ČSN přijaa tato označení: σ k = R e, σ pt = R m Pracovní diagram má někoik význačných bodů: σ u napětínameziúměrnosti(u mezúměrnosti)vymezujeobast (přibižné)inearity,tedyobast,vnížjespněnhookůvzákon σ=eε.je zřejmé,žesměrniceúsečky OU(tg α)jerovnayougovumoduu E. σ e napětí na mezi úměrnosti(e mezpružnosti)vymezujebod, při jehož překročení vznikají trvaé deformace.(norma vymezuje, že trvaé prodoužení musí být větší než 0,005%.) σ k napětínamezikuzu(k mezkuzu)jenapětí,přiněmžsečástečně poruší strukturání vazba v krystaické mřížce. Vzniká výrazná pastická deformace(materiá teče ).Tentobodsenevyskytujeukřehkýchmateriáů. σ pt napětínamezipevnostivtahu,(p mezpevnosti),přijehož dosaženídojdektrvaémuporušenímateriáu(bod P).Materiádáe teče a přetržení nastane v bodě X při menším smuvním napětí.(skutečné napětí je větší bod X.)Bod X 0 popisujedékupřetrženétyče. Při statické zkoušce na tak se použije zkušební těísko tvaru kryche nebo nízkého váce. Jde-i o houževnatý materiá(většina oceí), chová se do meze 13

14 úměrnosti stejně jako při tahu. Při překročení meze kuzu nabude zkušební těísko tvaru soudku. U křehkých materiáů(itina, beton, kámen) je pevnost vtakuvýrazněvětší,přičemžněkteréznich(např.čistýbeton,tj.bezoceové armatury) neze vůbec namáhat na tah. Na mezi pevnosti v taku nastává rozdrcení zkušebního těíska. Porovnání úpných pracovních diagramů houževnatých a křehkých materiáů je na obr. 9. Pracovní diagramy pro křehké materiáy nemají zpravida ineární úseky, proto Hookův zákon pro ně patí jen přibižně. Mechanické pevnostní charakteristiky některých konstrukčních oceí akřehkýchmateriáůjsouuvedenyvpříozevtabukáchiiaiii.ukřehkých materiáů se uvádí i eperimentání hodnota pevnosti v ohybu. a) oce σ b) šedá itina σ σ kt tah σ pt tah O ε O ε tak σ kd tak σ pd Obr. 9 Úpné pracovní diagramy: a) houževnaté materiáy(oce), b) křehké materiáy (šedá itina) 2.5 Míra bezpečnosti a dovoené napětí Tvar a veikost namáhaných těes(např. součástí strojů) se odchyuje od tvaru zkušebních tyčí. Jde zejména o změny průřezu(otvory, osazení, zápichy, závity tvořískupinutzv. vrupů ).Rovněžsíynebývajístatické,naopakčastovemi dynamické, např. u spaovacích motorů. Provozní tepoty také ovivňují pevnost, jsou-i vysoké anebo naopak vemi nízké. Zejména dynamické namáhání může způsobit tzv. únavové omy v místě vrupů, z nichž se šíří mikroskopické trhiny. Konstruktér se musí při návrhu také pojistit proti nenadáému nestandardnímu zatížení, které se může při provozu ojediněe vyskytnout a ohrozit ceistvostsoučástiatímčinnostceéhozařízení.zavádíseprotokoeficient k >1 14

15 zvanýmírabezpečnosti,pomocíněhožsepočítádovoenénapětí σ dt pro namáhání tahem pode vztahu σ dt = σ kt k, (14) kde σ kt jenapětínamezikuzuurčenéstatickouzkouškou. Zmateriáů,kterénemajímezkuzu,sedovoenénapětíurčíznapětína mezi pevnosti pode vztahu σ dt = σ pt k, (15) kde k > k.vobamírybezpečnosti k, k jepředevšímotázkouempiriezískané provozem a zkušenosti konstruktéra. Při jeho vobě rozhodují současně otázky spoehivosti a ekonomiky, které jsou vzájemně protichůdné. Často přistupují i otázky hmotnosti ceého zařízení, např. u etade. Materiá k, k Oce k=1,2 2 Ocekaená k =2,5 4 Šedáitina k =4 5 Hiníkitý k =8 10 Dřevo k =6 12 Beton k =4 8 Tab.IV Mírabezpečnosti Pevnostní podmínka, kterou je vázán konstruktér při návrhu, určuje, že pro vypočtené napětí musí patit σ σ dt k nebo σ σ pt k. (16) Zaokrouhení vypočteného rozměru součásti, které nakonec konstruktér provede, je dáno např. ceým čísem, které vypývá z normované řady pro řešený případ(např. normované řady šroubů, nýtů, ožisek). Zváštní pozornost je třeba věnovat cykicky namáhaným součástkám, u kterýchmůžepřiprovozudojítkúnavovýmomům.jetodánonapř.jejichkmitáním(u opatek turbín, anebo istů vrtue), nebo rotací(u hřídeů, čepů ko automobiů) a jejichž om může způsobit katastrofu. Zde je proto nutné statickou zkoušku dopnit zkouškou meze únavy při střídavém tahu taku anebo 15

16 při souměrně střídavém ohybu, kdy jsou krajní vákna střídavě namáhána na tahatak.zjišťujesezávisostcykickéhonapětí σ c napočtu Ncyků,které zkušebnítyčvydržídovznikuúnavovéhoomu.srostoucím N se σ c uocei asymptotickyzmenšujekhodnotě σ 0c,kterájenapětímnameziúnavy.Při zkoušcesevycházízpoznatku,ženerozruší-isevzorekdo cyků,vydrží praktickyneomezenýpočetcyků.přísušnýgraf σ c (N)senazýváWöherůvdiagram(obr.10).Prooceipatípřibižnýpoznatek σ 0c =(0,4 0,6)σ pt.unežeezných kovů, zejména u ehkých sitin, se neobjevuje zřetená mez únavy. Wöherova křivka má stáe sestupný průběh, a proto je nutné součásti z těchto kovůnavrhovatpročasovoumezúnavy σ N proočekávanýpočet Ncykůdo konce životnosti zařízení. Přinávrhucykickynamáhanýchsoučástísedovoenénapětí σ dt vpevnostní podmínce(16) určí anaogicky vztahu(14), tedy σ dt = σ 0c k resp. σ dt = σ N k. σ c σ c σ pt σ c1 σ c2 oce nežeezné kovy pevnost časovaná trvaá σ 0c σ 0c 0 N 1 N N og N Obr.10 Závisostcykickéhonapětí σ cnapočtucyků N(Wöherůvdiagram)vgrafu ineárním(a) a semiogaritmickém(b) pro oce Příkad 1 návrh prutové soustavy Navrhněte průměry tyčí staticky namáhané prutové soustavy pode obr. 11 pro =10,0kN, α 1 = α 2 = α=30.voteoce10370(σ kt =200MPa)amíru bezpečnosti k = 2,0. 16

17 α 1 α Obr. 11 Prutová soustava Řešení Z podmínky statické rovnováhy pyne Pevnostní podmínka(16): 1 = 2 = 2cosα = 3. σ= 1 S = 2 pd 2 cosα σ dt= σ kt k. (17) 2k Odtud d pσ kt cosα =8, m. Voíme d=10mm. Zevztahu(17)pakdostanemeskutečnénapětívtyči σ=73,5mpa <100MPa. 2.6 Sožitější úohy vedoucí na tah nebo tak K nejvýznamnějším úohám, které vedou k Hookovu zákonu pro tah/tak patří namáhánívohybu.tentopřípadjetakvýznamnýasožitý,žemuvěnujeme samostatnou kapitou 4. K úohám na tah/tak vede i řada staticky neurčitýchúoh,tj.úoh,kdykurčenísiamomentůsinestačípodmínkystatické rovnováhy = 0, M=0 akřešenímusípřistoupitještědeformační rovnice, vyjadřující pode dané situace deformační podmínku soustavy, její rozměrovou kompatibiitu. Těchto rovnic je někdy nutno sestavit více; pak hovoříme o tom, koikrát je soustava staticky neurčitá. Důežitým případem je tepené pnutí. Uvažujme jedenkrát staticky neurčitousoustavu,kteroujetyčvoženápřitepotě t 1 donehybnýchopor(např. mezičeistisvěráku)bezpředpětí(obr.12).pozahřátíztepoty t 1 na t 2 se 17

18 tyč bude snažit prodoužit a bude rozpínat opory. Protože jsou nehybné, budoupůsobitnatyčreakcemi R,kterévyvoajívtyčinapětí σ.tovypočteme zrovnice t + R =0, kde t = α(t 2 t 1 ), R = R ES = σ E, kde α je tepotní součinite dékové roztažnosti. Odtud σ= αe(t 2 t 1 ). (18) Např.uoceovétyče(α=1, K 1 )vznikápřizvýšenítepotyo10 C takovénapětí σ= 30MPa, E=2, Pa. R S R Obr.12 Tepenépnutívtyči Jiný příkad jedenkrát staticky neurčité soustavy je na obr. 13. Předpokádáme,ženosníkjedokonaetuhýapruty1,2jsoupružné.Soustavaby bya staticky určitá, kdyby neobsahovaa prut 2. Pak bychom mohi jednoduše určitsíupůsobícívprutu1ireakci Rzávěsu.Vdanémpřípaděobouprutů bude řešení poměrně jednoduché, budou-i pruty přesně stejně douhé a jejich montáž bude provedena s nuovým předpětím(obr. 13b). Jiná situace nastane, kdyžnapř.prut2budevdůsedkuvýrobnínepřesnostioδkratší(obr.13c). Pakpřimontážibudenutnéprut1stačitodéku 10 aprut2odéku 20 natáhnout.musítedybýtspněnadeformačnírovnice δ= , kde 10 <0jetakovádeformaceprutu1převedenádoprutu2.Přimontážitedy vzniknouvprutechpočátečnísíy 10 <0, 20 >0,ikdyž =0.Popřipojení vnější síy dostaneme výsedné zatížení superpozicí si z řešení situací na obr. 13ba13c. Přerozděení si v naší soustavě by nastao i v případě montáže bez předpětí (obr.13b),jestižebychompotézměniitepoty t 1, t 2 prutů1,2(předpokádejmerovnoměrněpoceéjejichdéce),např. t 2 < t 1. Vsoustavěopětvznikne tepotnípnutíipro =0.Podobnépnutívznikátakénapř.přiochazování itinového nebo skeněného oditku a může vést k jeho popraskání. K apikaci Hookova zákona pro tah vedou i některé daší sožitější úohy, jak je uvedeno vpříkadech2a3avúoháchvč

19 a) O 1 2 a a a b) O R c) O δ 10 Příkad2 rotujícítyč R Obr. 13 Staticky neurčitá prutová soustava Uvažujte pružnou tyč o déce, hustotě a konstantním obsahu S příčného průřezu, která rotuje konstantní úhovou rychosti ω koem osy komé k podéné ose tyče(obr. 14). Vypočtěte a)napětí σ vobecněvedenémkomémřezu Xtyče, b) prodoužení úseku tyče o déce a prodoužení ceé tyče. Při řešení pro jednoduchost předpokádejte, že změna rozměrů tyče je maá, což dobře spňují technické materiáy s výjimkou pryže. Řešení a)vevzdáenosti odkoncetyčeprovedememyšenýřez X(obr.14).Vnitřní síyvtomtořezumusíbýtvrovnovázesvýsednicí odstředivýchsimyšené odděené části. Na eement dξ působí eement odstředivé síy o veikosti d = Sω 2 ( ξ)dξ. 19

20 Pronapětívřezu Xpakpatí σ = S = ω2 0 ( ( ξ)dξ= ω 2 ). 2 b) K výpočtu prodoužení úseku tyče o déce určíme nejprve prodoužení jejího eementu dξ, které označíme (dξ) a tato prodoužení sečteme pro všechna ξ.vyjdemezhookovazákona,přičemžnapětí σ ξ vmístěeementuurčímez výše uvedeného vztahu, nahradíme-i ξ za. Pro prodoužení eementu dξ tedy apikací vztahu(7) dostaneme (dξ)= σ ξ ω2 dξ= E E ) (ξ ξ2 dξ. 2 Prodoužení úseku tyče déky dostaneme integrací od 0 do : = ω2 E 0 (ξ )dξ= ξ2 ω2 2 ( ). 2 2E 3 Prodoužení ceé rotující tyče dostaneme dosazením = : = ω2 3 3E (patípro ). ω X dξ ξ S σ Obr. 14 Rotující tyč Příkad 3 rotující prstenec Prstenecovnitřnímpooměru r,toušťce h r,šířce bahustotě rotuje úhovou rychostí ω okoo rotační osy souměrnosti. Vypočtěte a) napětí v prstenci, b) zvětšení pooměru v důsedku rotace, c) deformační energii a porovnejte ji s kinetickou energií. 20

21 Řešení a)úohavedenaprostýtah.zprstencevyjmemeeement(obr.15),nakterý působí eementární odstředivá sía o veikosti ( d o = ω 2 r+ h ) dm ω 2 r 2 bhdα. 2 Aby myšeně vyjmutý eement by v rovnováze, musí účinek odstředivé síy d o vyrovnávatdvěvnitřníobvodovésíy, stejnéveikostipodeobr.15b. Protože tyto tři síy jsou v rovnováze, je siový trojúheník uzavřený(obr. 15c). Proveikosteementárnísíyd o musítedysoučasněpatit d o = dα. Porovnánímobouvýrazůprod o dostanemeveikost vnitřnísíyatahové napětí, které sía v prstenci vyvoá: = ω 2 r 2 bh, σ= bh = ω2 r 2. (19) b a) b) c) h r O ω dα dα d o d o Obr. 15 K výpočtu napětí v rotujícím prstenci dα = = b) Působením odstředivých si se obvod prstence zvětší, přičemž pode Hookova zákona pro jeho reativní prodoužení patí ε= 2p(r+ r) 2pr 2pr = r r = σ E = ω2 E r2. Odtud dostaneme zvětšení pooměru prstence r= ω2 E r3. 21

22 Vzhedemktomu,žehodnota Ejevemiveikávesrovnánísnapětím σ,je r vemi maé ve srovnání s pooměrem r. c) Pode(12) je hustota deformační energie prstence u t = σ2 2E = ω4 r 4 2 2E. Deformační energii ceého prstence dostaneme vynásobením objemem V: U= u t V= u t m = mω4 r 4 2E. Kinetickáenergie Tprstence 3 )omomentusetrvačnosti J= mr 2 je T= 1 2 Jω2 = 1 2 mω2 r 2. Podí obou energií je U T = ω2 r 2 E = σ E, kde σ je napětí(19), které v prstenci při rotaci vzniká. Protože z pevnostních důvodůmůžebýtprooce σ ma 200MPaaE Pa,jepotenciání deformační energie prstence nejméně 1000krát menší než jeho energie kinetická. Lze ji tedy zanedbat. 2.7 Úohykekapitoe2 1. Řetěz Řetězkezvedáníbřemendohmotnosti2500kgmábýtzhotovenzocei11370 (σ kt =200MPa).Navrhnětepotřebnýprůměr dčánku.mírubezpečnostivote k=2,0.omeztesejennanamáhánítahovýmisiamivevětvíchčánku. d Obr. 16 Čánek řetězu 3 )Prokinetickouenergiiužijememístosymbou E k symbo T běžnývteoretickémechanice, abychom odstranii koizi se značkou E pro Youngův modu. 22

23 2. Ladění housové struny Uvažujmeoceovouhousovoue-strunuodéce =325mm(úsekodkobyky nakonechmatníku)aprůměru2r=0,250mm,kterámábýtnaaděnana tón e 1 ofrekvenci f=654hz.jedántepotnísoučinitedékovéroztažnosti α=1, K 1, E=2, Pa, =7, kg m 3.Jeznámvztah mezirychostízvukuvestruně canapínajícísiou: c 2 S=.Vypočtěte a)veikost napínajícísíyanapětí σvestruně, b) prodoužení struny při adění z nenapjatého stavu. 3. Vychýení housové struny Strunuzúohy2vjejímstředupříčněvychýímeoδ =4mm.Jakébude přídavnénapětí σ p ajakécekovénapětí σ c = σ+ σ p,kde σjenapětístruny po jejím naadění? 4. Oceový drát při změně tepoty Mezidvěmapevnýmibody,např.mezidvěmadomy,byzatepoty t=35 C napnutoceovýdrátoprůměru2r=2,00mmsiouoveikosti =30,0N. Vypočtěte a)napětí σvdrátu, b)napětí σ aveikost napínajícísíy,kesne-itepotana t = 5 C. Tepotnísoučinitedékovéroztažnosti α=1, K 1, E=2, Pa. 5. Tahová zkouška Přitahovézkoušceoceovétyčeoprůměru d=20,0mmadéce =200mm byopřizatížení =5, Nzměřenoprodoužení =0,172mmapříčné zúžení d =4, mm.tytohodnotybyyurčenyzastavupodmezí pružnosti. Určete napětí, Youngův modu a Poissonovo číso zkoumané ocei. 6. Podpěrný soup Ve stavební konstrukci je třeba navrhnout reativně krátký soup z šedé itiny, jehožprůřezmátvarmezikružíovnějšímprůměru d=100mm.nasoup připadátíhovásíaveikosti2, N.Vypočtěteminimánítoušťkustěny soupu,jestiže σ pd =500MPa.Vote k =5,0. 7. Důní ano Důníanoodéce =1000m,pošnémobsahupříčnéhořezuvšechdrátů S=500mm 2,dékovéhustotě µ=3,95kg m 1 ayoungověmoduu E= 23

Obsah MECHANIKA PRUŽNÉHO TĚLESA. Tabulka III. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral.

Obsah MECHANIKA PRUŽNÉHO TĚLESA. Tabulka III. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Tabuka III Mechanické vastnosti některých křehkých konstrukčních materiáů Pevnost v tahu Pevnost v taku Pevnost v ohybu Materiá σ pt/mpa σ pd /MPa σ po/mpa Šedá itina 4 4 1 10 500 80 Šedá itina 4 4 4 40

Více

1. Stanovení modulu pružnosti v tahu přímou metodou

1. Stanovení modulu pružnosti v tahu přímou metodou . Stanovení moduu pružnost v tahu přímou metodou.. Zadání úohy. Určte modu pružnost v tahu přímou metodou pro dva vzorky různých materáů a výsedky porovnejte s tabukovým hodnotam.. Z naměřených hodnot

Více

Inovace předmětů studijních programů strojního inženýrství v oblasti teplotního namáhání

Inovace předmětů studijních programů strojního inženýrství v oblasti teplotního namáhání Grantový projekt FRVŠ MŠMT č.97/7/f/a Inovace předmětů studijních programů strojního inženýrství v obasti tepotního namáhání Některé apikace a ukázky konkrétních řešení tepeného namáhání těes. Autorky:

Více

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1 Střední průmysová škoa a Vyšší odborná škoa technická Brno, Sokoská 1 Šabona: Inovace a zkvaitnění výuky prostřednictvím ICT Název: Téma: Autor: Číso: Anotace: echanika, pružnost pevnost Nosníky stejné

Více

7 Mezní stavy použitelnosti

7 Mezní stavy použitelnosti 7 Mezní stavy použitenosti Cekové užitné vastnosti konstrukcí mají spňovat dva zákadní požadavky. Prvním požadavkem je bezpečnost, která je zpravida vyjádřena únosností. Druhým požadavkem je použitenost,

Více

Téma 4 Výpočet přímého nosníku

Téma 4 Výpočet přímého nosníku Stavební statika, 1.ročník bakaářského studia Téma 4 Výpočet přímého nosníku Výpočet nosníku v osové úoze Výpočet nosníku v příčné úoze ve svisé a vodorovné havní rovině Výpočet nosníku v krutové úoze

Více

1.5. DYNAMIKA OTÁČIVÉHO A SLOŽENÉHO POHYBU TĚLESA

1.5. DYNAMIKA OTÁČIVÉHO A SLOŽENÉHO POHYBU TĚLESA .5. OTÁČIVÉHO A SLOŽENÉHO POHYBU TĚLESA.5. ZÁKLADNÍ ROVNICE DYNAMIKY PRO ROTAČNÍ POHYB Fz F Z výsednce zrychujících s F m.a n m a t a n r z F Zrychující moment M F. r F. r z z z m.a t r6,5cm ρ r ω,ε r

Více

Modelování kmitavých soustav s jedním stupněm volnosti

Modelování kmitavých soustav s jedním stupněm volnosti Modeování kmitavých soustav s jedním stupněm vonosti Zpracova Doc. RNDr. Zdeněk Haváč, CSc 1. Zákadní mode Zákadním modeem kmitavé soustavy s jedním stupněm vonosti je tzv. diskrétní podéně kmitající mode,

Více

STRUKTURA A VLASTNOSTI KAPALIN

STRUKTURA A VLASTNOSTI KAPALIN I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í STUKTUA A VLASTNOSTI KAPALIN. Povrchové napětí a) yzikání jev Povrch kapain se chová jako napjatá pružná membrána (důkaz vodoměrka, maé kapičky koue)

Více

Kmitavý pohyb trochu jinak

Kmitavý pohyb trochu jinak Kmitavý pohyb trochu jinak JIŘÍ ESAŘ, PER BAROŠ Katedra fyziky, Pedaoická fakuta, JU České Budějovice Kmitavý pohyb patří mezi zákadní fyzikání děje. Většinou se tato část fyziky redukuje na matematický

Více

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011 OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:

Více

4.1 Shrnutí základních poznatků

4.1 Shrnutí základních poznatků 4.1 Shrnutí zákadních poznatků V případech příčných deformací přímých prutů- nosníků se zabýváme deformací jejich střednice, tj. spojnice těžiště příčných průřezů. Tuto deformovanou křivku nazýváme průhybová

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 013 Použitá literatura: Technická

Více

I Stabil. Lepený kombinovaný nosník se stojnou z desky z orientovaných plochých třísek - OSB. Navrhování nosníků na účinky zatížení podle ČSN 73 1701

I Stabil. Lepený kombinovaný nosník se stojnou z desky z orientovaných plochých třísek - OSB. Navrhování nosníků na účinky zatížení podle ČSN 73 1701 I Stabi Lepený kombinovaný nosník se stojnou z desky z orientovaných pochých třísek - OSB Navrhování nosníků na účinky zatížení pode ČSN 73 1701 Část A Část B Část C Část D Výchozí předpokady, statické

Více

Téma 2 Napětí a přetvoření

Téma 2 Napětí a přetvoření Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram

Více

Název: Studium kmitání matematického kyvadla

Název: Studium kmitání matematického kyvadla Název: Studium kmitání matematického kyvada Autor: Doc. RNDr. Mian Rojko, CSc. Název škoy: Gymnázium Jana Nerudy, škoa h. města Prahy Předmět, mezipředmětové vztahy: fyzika, biooie Ročník: 3. (1. ročník

Více

MAGNETICKÉ POLE. 1. Stacionární magnetické pole I I I I I N S N N

MAGNETICKÉ POLE. 1. Stacionární magnetické pole I I I I I N S N N MAGETCKÉ POLE 1. Stacionární magnetické poe V E S T C E D O R O Z V O J E V Z D Ě L Á V Á Í je část prostoru, kde se veičiny popisující magnetické poe nemění s časem. Vzniká v bízkosti stacionárních vodičů

Více

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Vzpěr,

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 2: Měření modulu pružnosti v tahu a ve smyku. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 2: Měření modulu pružnosti v tahu a ve smyku. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úoha : Měření moduu pružnosti v tahu a ve smyku Datum měření: 9. 10. 009 Jméno: Jiří Sabý Pracovní skupina: 1 Ročník a kroužek:. ročník, 1. kroužek, pátek 13:30 Spoupracovaa:

Více

2.1 Stáčivost v závislosti na koncentraci opticky aktivní látky

2.1 Stáčivost v závislosti na koncentraci opticky aktivní látky 1 Pracovní úkoy 1. Změřte závisost stočení poarizační roviny na koncentraci vodního roztoku gukozy v rozmezí 0 500 g/. Pro jednu zvoenou koncentraci proveďte 5 měření úhu stočení poarizační roviny. Jednu

Více

F7 MOMENT SETRVAČNOSTI

F7 MOMENT SETRVAČNOSTI F7 MOMENT ETRVAČNOTI Evropský sociání fond Praha & EU: Investujeme do vaší budoucnosti F7 MOMENT ETRVAČNOTI V této části si spočteme některé jednoduché příkady na rotační pohyby a seznámíme se s někoika

Více

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úlohač.19 Název: Měření s torzním magnetometrem

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úlohač.19 Název: Měření s torzním magnetometrem Odděení fyzikáních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. úohač.19 Název: Měření s torzním magnetometrem Pracova: Lukáš Ledvina stud.skup.14 dne:16.10.2009 Odevzdadne: Možný počet

Více

Namáhání na tah, tlak

Namáhání na tah, tlak Namáhání na tah, tlak Pro namáhání na tah i tlak platí stejné vztahy a rovnice. Velikost normálového napětí v tahu, resp. tlaku vypočítáme ze vztahu: resp. kde je napětí v tahu, je napětí v tlaku (dále

Více

A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku

A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku 1. Úlohy a cíle teorie plasticity chopnost tuhých těles deformovat se působením vnějších sil a po odnětí těchto sil nabývat původního tvaru a rozměrů se nazývá pružnost. 1.1 Plasticita, pracovní diagram

Více

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. katedra fyziky ZÁKLADY FYZIKY II. Pro obory DMML, TŘD a AID prezenčního studia DFJP

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. katedra fyziky ZÁKLADY FYZIKY II. Pro obory DMML, TŘD a AID prezenčního studia DFJP UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ katedra fyziky ZÁKLADY FYZIKY II Pro obory DMML, TŘD a AID prezenčního studia DFJP RNDr Jan Z a j í c, CSc, 005 4 MAGNETICKÉ JEVY 4 NESTACIONÁRNÍ ELEKTROMAGNETICKÉ

Více

1.7 Magnetické pole stacionárního proudu

1.7 Magnetické pole stacionárního proudu 1.7 Magnetické poe stacionárního proudu Pohybující se e. náboje (e. proud) vytvářejí magnetické poe. Naopak poe působí siou na pohybující se e. náboje. 1.7.1 E. proud, Ohmův zákon v diferenciáním tvaru

Více

3.9. Energie magnetického pole

3.9. Energie magnetického pole 3.9. nergie agnetického poe 1. Uět odvodit energii agnetického poe cívky tak, aby bya vyjádřena poocí paraetrů obvodu (I a L).. Znát vztah pro energii agnetického poe cívky jako funkci veičin charakterizujících

Více

Mezní napětí v soudržnosti

Mezní napětí v soudržnosti Mení napětí v soudržnosti Pro žebírkovou výtuž e stanovit návrhovou hodnotu meního napětí v soudržnosti vtahu: = η η ctd kde je η součinite ávisý na kvaitě podmínek v soudržnosti a pooe prutu během betonáže

Více

MECHANIKA TUHÉHO TĚLESA

MECHANIKA TUHÉHO TĚLESA MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 2013 Aktualizováno: 2015 Použitá

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ. ING. JIŘÍ KYTÝR, CSc. ING. PETR FRANTÍK, Ph.D. STATIKA I MODUL BD03-MO1 ROZŠÍŘENÝ PRŮVODCE

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ. ING. JIŘÍ KYTÝR, CSc. ING. PETR FRANTÍK, Ph.D. STATIKA I MODUL BD03-MO1 ROZŠÍŘENÝ PRŮVODCE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ ING. JIŘÍ KYTÝR, CSc. ING. PETR FRANTÍK, Ph.D. STATIKA I MODUL BD3-MO ROZŠÍŘENÝ PRŮVODCE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

Více

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady. Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových

Více

PŘÍČNÉ LISOVANÉ ZTUŽIDLO VE STŘEŠNÍ ROVINĚ KONSTRUKCÍ Z DŘEVĚNÝCH

PŘÍČNÉ LISOVANÉ ZTUŽIDLO VE STŘEŠNÍ ROVINĚ KONSTRUKCÍ Z DŘEVĚNÝCH PŘÍČNÉ LISOVANÉ ZTUŽIDLO VE STŘEŠNÍ ROVINĚ KONSTRUKCÍ Z DŘEVĚNÝCH VAZNÍKŮ S KOVOVÝMI DESKAMI S PROLISOVANÝMI TRNY Petr Kukík 1, Micha Grec 2, Aeš Tajbr 3 Abstrakt Timber trusses with punched meta pate

Více

Hlavní body. Teplotní závislosti fyzikálních veličin. Teplota, měření

Hlavní body. Teplotní závislosti fyzikálních veličin. Teplota, měření e r i k a Havní body epota, ěření epotní závisosti fyzikáních veičin Kinetická teorie pynů Maxweova rozděovací funkce epo, ěrné tepo, kaorietrie epota Je zákadní veičinou, kterou neze odvodit? Čověk ji

Více

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 56 12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Těžiště I. impulsová věta - věta o pohybu těžiště II. impulsová věta Zákony zachování v izolované soustavě hmotných bodů Náhrada pohybu skutečných objektů pohybem

Více

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Cvičení 1 Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Napjatost v bodě tělesa Napjatost (napěťový stav) v bodě tělesa je množinou obecných napětí ve všech řezech, které lze

Více

Učební text k přednášce UFY102

Učební text k přednášce UFY102 Učební text k přeášce UFY0 Lom hranoem ámavé stěny ámavá hrana ámavý úhe ϕ deviace δ úhe, o který je po výstupu z hranou vychýen světený paprsek ežící v rovině komé k ámavé hraně (v tzv. havním řezu hranou),

Více

M/61000/M, M/61000/MR Kluzné vedení a dorazové válce

M/61000/M, M/61000/MR Kluzné vedení a dorazové válce M/6/M, M/6/MR Kuzné vedení a dorazové váce Dvojčinné - Ø 32 až 1 mm Přesnost vedení Ø,2 mm Přesnost bez otáčení Ø,2 Integrované pevné vodící tyče Varianta s ineárním kuičkovým ožiskem poskytuje přesné

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

Dynamika soustav hmotných bodů

Dynamika soustav hmotných bodů Dynamika soustav hmotných bodů Mechanický model, jehož pohyb je charakterizován pohybem dvou nebo více bodů, nazýváme soustavu hmotných bodů. Pro každý hmotný bod můžeme napsat pohybovou rovnici. Tedy

Více

Senzory síly a kroutícího momentu

Senzory síly a kroutícího momentu Senzory síy a kroutícího momentu Zadání 1. Seznamte se s fyzikáními principy a funkčností tenzometrů, inkrementáního optoeektronického senzoru otočení a senzoru FSR. 2. Změřte závisost odporu FSR senzoru

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu. Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

NAMÁHÁNÍ NA KRUT NAMÁHÁNÍ NA KRUT

NAMÁHÁNÍ NA KRUT NAMÁHÁNÍ NA KRUT Φd Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 8. KVĚTNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA KRUT NAMÁHÁNÍ NA KRUT KRUT KRUHOVÝCH PRŮŘEZŮ Součást je namáhána na krut

Více

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ 7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní

Více

7. Základní formulace lineární PP

7. Základní formulace lineární PP p07 1 7. Základní formulace lineární PP Podle tvaru závislosti mezi vnějšími silami a deformačně napěťovými parametry tělesa dělíme pružnost a pevnost na lineární a nelineární. Lineární pružnost vyšetřuje

Více

Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti.

Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti. Stěnové nosníky Stěnový nosník je plošný rovinný prvek uložený na podporách tak, že prvek je namáhán v jeho rovině. Porovnáme-li chování nosníků o výškách h = 0,25 l a h = l, při uvažování lineárně pružného

Více

Úvod do analytické mechaniky

Úvod do analytické mechaniky Úvod do analytické mechaniky Vektorová mechanika, která je někdy nazývána jako Newtonova, vychází bezprostředně z principů, které jsou vyjádřeny vztahy mezi vektorovými veličinami. V tomto případě např.

Více

Couloumbuv zákon stejne jako vetsina zakonu elektrostatiky jsou velmi podobna zakonum gravitacniho pole.

Couloumbuv zákon stejne jako vetsina zakonu elektrostatiky jsou velmi podobna zakonum gravitacniho pole. 1) Eektrostaticke poe, Cooumbuv zákon, Permitivita kazde dve teesa nabite eektrickym nabojem Q na sebe pusobi vzajemnou siou. Ta je vysise pomoci Couombovyho zákona: F = 1 4 Q Q 1 2 r r 2 0 kde první cast

Více

Přednáška 08. Obecná trojosá napjatost

Přednáška 08. Obecná trojosá napjatost Přednáška 8 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Objemový modul pružnosti Oedometrický modul pružnosti Hlavní napětí, hlavní deformace

Více

Měření tíhového zrychlení matematickým a reverzním kyvadlem

Měření tíhového zrychlení matematickým a reverzním kyvadlem Úloha č. 3 Měření tíhového zrychlení matematickým a reverzním kyvadlem Úkoly měření: 1. Určete tíhové zrychlení pomocí reverzního a matematického kyvadla. Pro stanovení tíhového zrychlení, viz bod 1, měřte

Více

OVMT Mechanické zkoušky

OVMT Mechanické zkoušky Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor

Více

12. Struktura a vlastnosti pevných látek

12. Struktura a vlastnosti pevných látek 12. Struktura a vlastnosti pevných látek Osnova: 1. Látky krystalické a amorfní 2. Krystalová mřížka, příklady krystalových mřížek 3. Poruchy krystalových mřížek 4. Druhy vazeb mezi atomy 5. Deformace

Více

www.ingstuksa.cz M/61000/M, M/61000/MR Kluzné vedení a dorazové válce

www.ingstuksa.cz M/61000/M, M/61000/MR Kluzné vedení a dorazové válce /6/, /6/R Kuzné vedení a dorazové váce Dvojčinné - Ø 32 až 1 mm STANDARDNÍ TYPY TYPY Přesnost vedení Ø,2 mm Přesnost bez otáčení Ø,2 Integrované pevné vodící tyče Varianta s ineárním kuičkovým ožiskem

Více

FYZIKA I. Pohyb setrvačníku. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Pohyb setrvačníku. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Pohyb setrvačníku Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar

Více

1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí 119 5 Analýza deformací 185

1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí 119 5 Analýza deformací 185 Stručný obsah Předmluva xvii Část 1 Základy konstruování 2 1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí 119 5 Analýza deformací 185 Část 2 Porušování

Více

ρ 490 [lb/ft^3] σ D 133 [ksi] τ D 95 [ksi] Výpočet pružin Informace o projektu ? 1.0 Kapitola vstupních parametrů

ρ 490 [lb/ft^3] σ D 133 [ksi] τ D 95 [ksi] Výpočet pružin Informace o projektu ? 1.0 Kapitola vstupních parametrů N pružin i?..7 Vhodnost pro dynamické excelentní 6 [ F].. Dodávané průměry drátu,5 -,25 [in].3 - při pracovní teplotě E 2 [ksi].5 - při pracovní teplotě G 75 [ksi].7 Hustota ρ 4 [lb/ft^3]. Mez pevnosti

Více

Stavební mechanika 2 (K132SM02)

Stavební mechanika 2 (K132SM02) Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D2034 e-mail: matej.leps@fsv.cvut.cz konzultační hodiny budou upřesněny později https://mech.fsv.cvut.cz/student/

Více

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty 2. VNITŘNÍ SÍLY PRUTU 2.1 Úvod * Jak konstrukce přenáší atížení do vaeb/podpor? Jak jsou prvky konstrukce namáhány? * Modelování (jednodušení a popis) tvaru konstrukce. pruty 1 Prut: konstrukční prvek,

Více

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr.

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. . cvičení Klopení nosníků Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. Ilustrace klopení Obr. Ohýbaný prut a tvar jeho ztráty

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVOD DO MODELOVÁNÍ V MECHANICE PRUŽNOST A PEVNOST Přednáška č. 5 Prof. Ing. Vladislav Laš. CSc. MECHANIKA PODDAJNÝCH TĚLES Úkolem PP z inženýrského hlediska je navrhnout součásti nebo konstrukce, které

Více

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK 1. Druhy pevných látek AMORFNÍ nepravidelné uspořádání molekul KRYSTALICKÉ pravidelné uspořádání molekul krystalická mřížka polykrystaly více jader (krystalových zrn),

Více

STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK

STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 21. 4. 2013 Název zpracovaného celku: STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK Pevné látky dělíme na látky: a) krystalické b) amorfní

Více

Různé druhy spojů a spojovací součásti (rozebíratelné spoje)

Různé druhy spojů a spojovací součásti (rozebíratelné spoje) Různé druhy spojů a spojovací součásti (rozebíratelné spoje) Kolíky, klíny, pera, pojistné a stavěcí kroužky, drážkování, svěrné spoje, nalisování aj. Nýty, nýtování, příhradové ocelové konstrukce. Ovládací

Více

DYNAMIKA ROTAČNÍ POHYB

DYNAMIKA ROTAČNÍ POHYB DYNAMIKA ROTAČNÍ POHYB Dynamika rotačního pohybu hmotného bodu kolem pevné osy - při rotační pohybu hmotného bodu kolem stálé osy stálými otáčkami kolem pevné osy (pak hovoříme o rovnoměrném rotačním pohybu)

Více

FAKULTA STAVEBNÍ. Telefon: WWW:

FAKULTA STAVEBNÍ. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ ZÁKLADY METODY KONEČNÝCH PRVKŮ Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Více

Hydromechanické procesy Hydrostatika

Hydromechanické procesy Hydrostatika Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice

Více

MECHANIKA PRUŽNÉHO TĚLESA. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Předmluva 3

MECHANIKA PRUŽNÉHO TĚLESA. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Předmluva 3 MECHANIKA PRUŽNÉHO TĚLESA Studijní tet pro řešitee O a ostatní zájemce o fyziku Bohumi Vybíra Obsah Předmuva 3 1 ZÁKLADNÍ POZNATKY O PRUŽNOSTI TĚLES 4 1.1 Pevnépružnétěeso........................ 4 1.2

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.10 TĚŽIŠTĚ Těžiště (hmotný střed) je působiště tíhové síly působící na těleso. Těžiště zavádíme jako působiště

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

Pružnost a plasticita II CD03

Pružnost a plasticita II CD03 Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah

Více

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové

Více

Téma 2 Deformace staticky určitých prutových konstrukcí

Téma 2 Deformace staticky určitých prutových konstrukcí Statika stavebních konstrukcí I.,.ročník bakaářského studia Téma Deformace staticky určitých prutových konstrukcí Katedra stavební mechaniky Fakuta stavební, VŠB - Technická univerzita Ostrava Osnova přednášky

Více

Pilotové základy úvod

Pilotové základy úvod Inženýrský manuál č. 12 Aktualizace: 04/2016 Pilotové základy úvod Program: Pilota, Pilota CPT, Skupina pilot Cílem tohoto inženýrského manuálu je vysvětlit praktické použití programů GEO 5 pro výpočet

Více

Obchodní akademie, Hotelová škola a Střední odborná škola, Turnov, Zborovská 519, příspěvková organizace,

Obchodní akademie, Hotelová škola a Střední odborná škola, Turnov, Zborovská 519, příspěvková organizace, Obchodní akademie, Hotelová škola a Střední odborná škola, Turnov, Zborovská 519, příspěvková organizace, Zborovská 519, 511 01 Turnov tel.: 481 319 111, www.ohsturnov.cz, e-mail: vedeni@ohsturnov.cz Maturitní

Více

( r ) 2. Měření mechanické hysterezní smyčky a modulu pružnosti ve smyku

( r ) 2. Měření mechanické hysterezní smyčky a modulu pružnosti ve smyku ěření mechanické hysterezní smyčky a modulu pružnosti ve smyku 1 ěření mechanické hysterezní smyčky a modulu pružnosti ve smyku Úkol č.1: Získejte mechanickou hysterezní křivku pro dráty různé tloušťky

Více

studentská kopie 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice

studentská kopie 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice Vaznice bude přenášet pouze zatížení působící kolmo k rovině střechy. Přenos zatížení působícího rovnoběžně se střešní rovinou bude popsán v poslední

Více

Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl?

Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl? Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl? Zkušební stroj pro zkoušky mechanických vlastností materiálů na Ústavu fyziky materiálů AV ČR, v. v. i. Pružnost (elasticita) Z fyzikálního

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

SPOJE OCELOVÝCH KONSTRUKCÍ

SPOJE OCELOVÝCH KONSTRUKCÍ 2. cvičení SPOJE OCELOVÝCH KONSTRUKCÍ Na spojování prvků ocelových konstrukcí se obvykle používají spoje šroubové (bez předpětí), spoje třecí a spoje svarové. Šroubové spoje Základní pojmy. Návrh spojovacího

Více

Rychlost, zrychlení, tíhové zrychlení

Rychlost, zrychlení, tíhové zrychlení Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete

Více

8. lekce. Ráz Obsah: 8.1 Dynamický součinitel Podélný ráz závaží na tyč Tenzometrický snímač rázových dějů 5.

8. lekce. Ráz Obsah: 8.1 Dynamický součinitel Podélný ráz závaží na tyč Tenzometrický snímač rázových dějů 5. 8 ece Ráz Obsa: 8 Dynamicý součinite 8 Podéný ráz závaží na tyč 8 Tenzometricý snímač rázovýc dějů 5 rana z 5 8 Dynamicý součinite Rázový jev vzniá při náé změně rycoi dotýajícíc se těes, souav nebo jinýc

Více

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 6. Energie 1 Autor: Jazyk: Aleš Trojánek čeština Datum vyhotovení:

Více

NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB

NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 12. KVĚTNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB Nejdůleţitější konstrukční prvek pro ohyb je nosník.

Více

Pevnostní výpočty náprav pro běžný a hnací podvozek vozu M 27.0

Pevnostní výpočty náprav pro běžný a hnací podvozek vozu M 27.0 Strana: 1 /8 Výtisk č.:.../... ZKV s.r.o. Zkušebna kolejových vozidel a strojů Wolkerova 2766, 272 01 Kladno ZPRÁVA č. : Z11-065-12 Pevnostní výpočty náprav pro běžný a hnací podvozek vozu M 27.0 Vypracoval:

Více

Přednáška 1 Obecná deformační metoda, podstata DM

Přednáška 1 Obecná deformační metoda, podstata DM Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí

Více

8. Optické zobrazování

8. Optické zobrazování 8. Optické zobrazování 8.1 Pojem optického zobrazení Z každého bodu svítícího nebo osvěteného předmětu vychází svazek paprsků. Přeměníme-i, tyto svazky nějakým zařízením v nové svazky nazýváme body, v

Více

Prvky betonových konstrukcí BL01 3. přednáška

Prvky betonových konstrukcí BL01 3. přednáška Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování

Více

Prvky betonových konstrukcí BL01 3. přednáška

Prvky betonových konstrukcí BL01 3. přednáška Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování

Více

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK Základními vlastnosti pevných látek jsou KRYSTALICKÉ A AMORFNÍ LÁTKY Jak vzniká pevná látka z kapaliny Krystalické látky se vyznačují uspořádáním Dělíme je na 2 základní

Více

ZKOUŠENÍ TEXTILIÍ PŘEDNÁŠKA 10 KONSTRUKČNÍ PARAMETRY PLOŠNÝCH TEXTILIÍ

ZKOUŠENÍ TEXTILIÍ PŘEDNÁŠKA 10 KONSTRUKČNÍ PARAMETRY PLOŠNÝCH TEXTILIÍ ZKOUŠENÍ TEXTILIÍ PŘEDNÁŠKA 10 KONSTRUKČNÍ PARAMETRY PLOŠNÝCH TEXTILIÍ KONSTRUKČNÍ PARAMETRY PLOŠNÝCH TEXTILIÍ U tkanin: Vazba Dostava Pošná hmotnost Objemová měrná hmotnost Pórovitost Toušťka Setkání

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

Diskrétní řešení vzpěru prutu

Diskrétní řešení vzpěru prutu 1 z 5 Diskrétní řešení vzpěru prutu Discrete solution of beam buckling Petr Frantík Abstract Here is described discrete method for solution of beam buckling. The beam is divided into a number of tough

Více

Výpočtová dokumentace pro montážní přípravek oběžného kola Peltonovy turbíny

Výpočtová dokumentace pro montážní přípravek oběžného kola Peltonovy turbíny Výpočtová dokumentace pro montážní přípravek oběžného kola Peltonovy turbíny Parametry Jako podklady pro výpočtovou dokumentaci byly zadavatelem dodány parametry: -hmotnost oběžného kola turbíny 2450 kg

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

12. Prostý krut Definice

12. Prostý krut Definice p12 1 12. Prostý krut 12.1. Definice Prostý krut je označení pro namáhání přímého prizmatického prutu, jestliže jsou splněny prutové předpoklady, příčné průřezy se nedeformují, pouze se vzájemně natáčejí

Více

Předpjatý beton Přednáška 9. Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování.

Předpjatý beton Přednáška 9. Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování. Předpjatý beton Přednáška 9 Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování. Analýza napjatosti namáhání předpjatých prvků Analýza napjatosti namáhání předpjatých prvků Ohybový

Více

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost

Více