Samostatná práce pro nadané žáky z matematiky

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Samostatná práce pro nadané žáky z matematiky"

Transkript

1 Samostatná práce pro nadané žáky z matematiky 4. roník RNDr. Marta Makovská, kvten 2012 Financováno z projektu. CZ.01.07/1.2.09/ GG OP VK Jihomoravského kraje. 1

2 Obsah I. Slovní a úsudkové úlohy II. Obrazce. Operace s pirozenými ísly III. ady, logické úlohy... 7 IV. ady, úsudkové úlohy VI. Slovní a logické úlohy VII. Úsudkové úlohy, ady VIII. Poetní operace s pirozenými ísly, jednotky IX. Slovní úlohy, operace s ísly, jednotky X. Osová soumrnost, poetní operace XI. Jednotky hmotnosti. Zlomky XII. Rychlost, dráha, as XIII. Jednotky objemu, objemy ve slovních úlohách XIV. Zlomky a desetinná ísla XV. Poetní operace (poetní výkony) XVI. Rovnice, slovní úlohy XVII. Operace s pirozenými ísly XVIII. Dlitelnost XIX. Rovnice, nerovnice XX. Rovnice, nerovnice, šifry XXI. Celá ísla XXII. Poetní operace s celými ísly XXIII. Dlitelnost XXIV. Obrazce XXV. Slovní úlohy XXVI. Slovní úlohy XXVII. Dlitelnost XXVIII. Obrazce XXIX. íslo, íslice, íselné operace XXX. Jednoduché testové úlohy XXXI. as XXXII. tverec, obdélník XXXIII. Testové úlohy z aritmetiky XXXIV. Zlomky, zlomek jako ást celku XXXV. Slovní úlohy z aritmetiky XXXVI. Zlomky, desetinná ísla, vzájemné pevádní XXXVII. Poetní operace s desetinnými ísly XXXVIII. Slovní úlohy s desetinnými ísly XXXIX. Slovní úlohy s desetinnými ísly XL. Pevody jednotek s desetinnými ísly XLI. íselné výrazy XLII. Algebraické výrazy a jejich hodnota

3 I. Slovní a úsudkové úlohy. P. 1 1 vrabec sezobe denn 32 zrníek pšenice. Kolik sezobou denn 3 vrabci? P. 2 Dopl pyramidu násobení P. 3 Petr šel do školy ¼ hodiny, Eva 10 minut. Kdo šel delší dobu? O kolik minut? 3

4 P. 4 Napiš, o kolik a kolikrát je íslo 32 vtší než íslo 8? P. 5 Kolik je na obrázku? P. 6 Najdi prnik = spolenou ást všech 3 obrazc. 4

5 II. Obrazce. Operace s pirozenými ísly. P. 1 Kolik tverc je na obrázku? P. 2 Najdi, kolik je na obrázku trojúhelník. 5

6 P. 3 Dopl pyramidu násobení P. 4 (8 + 4). 2 = = = = = P. 5 Dopl 3 leny ady. a) 4; 8; 12;...;...;... b) 5; 6; 10; 12;...;...;... 6

7 III. ady, logické úlohy. P. 1 Dopl pyramidu (sítání) P. 2 Vybarvi spolenou kruhu ást, obdélníku a trojúhelníku mode. 7

8 P = (42 8) : 2 = ½ z 84 kg = ¼ z 44 m = 2ha (a) = P. 4 Dopladu. a) 3; 2; 5; 4; 7; 6; 9;...;...;... b) * A; * * B;...;...;...; c) 1; 3; 1; 4;...;...;... d) 3; 6; 9;...;...;... P. 5 V místnosti je 5 stol, u každého stolu jsou 4 židle. Kolik židlí je v místnosti? 8

9 IV. ady, úsudkové úlohy. P. 1 Uri. x P. 2 A C B Zelen vybarvi spolenou ást A a B. Mode vybarvi spolenou ást B a C. erven vybarvi spolenou ást A a C. 9

10 P. 3 (18 + 2) : 2 + (4 3). 7 = P. 4 Dopladu 3 další leny. (obrázky:, o, *,, ) o * o * P. 5 Petr a Jan mají 16 knížek o pírod. Petr má o 2 knížky víc než Jan. Kolik knížek má Petr a kolik Jan? P. 6 (48 + 2). 2 = = = = 10

11 V. Operace s ísly, ady. P. 1 Dopl pyramidu násobení P. 2 Sestroj všechny pímky urené body A; B; C. C x A x x B P. 3 Dopl tabulku podle pravidla prvního ádku

12 P. 4 Dopladu. a) xoxoxxooxxoo b) 1; 2; 4; 8; ; ; ; c) AB; AC; AD; AE; ; ;. d) * 1; ** 2; *** 3; ; ; P. 5 Na tyech židlích sedí 4 koky a každá má 2 myši. Kolik je celkem myší? P. 6 Dopl znaménka, pop. závorky, aby platila rovnost = 13 P = (14 2). 7 = = 14 (2 + 7) = 14 (2 + 7) 5 = 14. (2. 3 6) = 12

13 VI. Slovní a logické úlohy. P. 1 1 rybika potebuje 1,5 l vody. Kolik vody potebuje 6 rybiek? P. 2 Dopl sítací pyramidu P. 3 Dopl pyramidu násobení P. 4 Turista ušel za ½ hodiny 3 km. Jak dlouho by mu trvalo ujití 24 km? 13

14 P. 5 Najdi prnik spolenou ást tverce, trojúhelníku a obdélníku. P. 6 Kolik obdélník je na obrázku? 14

15 VII. Úsudkové úlohy, ady. P. 1 Dopl pyramidu P. 2 Uri spolenou ást všech tech kruh. 15

16 P. 3 Doplady 3 další leny. a) 4; 8; 12; 16; b) 4; 8; 16;.. c) 4; 6; 8; d) 1; 3; 7; 15;. P. 4 Uri poet trojúhelník. P (7 3) = = (8 + 2) = ( ) = 16

17 VIII. Poetní operace s pirozenými ísly, jednotky. P = = 8. 3 = 9. 7 = 4.5 = P = = = = P. 3 Napiš další ti leny ady. a) 2; 4; 6;. b) 1; 3; 5;. c) 3; 6; 9;. d) 1; 3; 7;. P. 4 Kolik trojúhelník je na obrázku? 17

18 P. 5 Na základ 1. obrázku dopl 2. obrázek P. 6 Uri spolenou ást obdélník. 18

19 IX. Slovní úlohy, operace s ísly, jednotky. P. 1 Petr nasbíral 3x více hib než Anika. Celkem dti nasbíraly 28 hib. Kolik nasbíral hib Petr, kolik Anika? P. 2 Petr nasbíral o 3 bedle víc než Anika. Celkem dti nasbíraly 15 bedlí. Kolik jich nasbíral Petr, kolik Anika? 19

20 P P. 4 3 kg 1 g = g 2 m 3 cm = cm 1 m 4 cm = mm 2 ha = a 300 a = ha P. 5 (8 + 7) : 5 = (8 + 7). 5 = (8 + 7) 5 = = (8 + 4). 2 = (8 + 2). 3 = 20

21 X. Osová soumrnost, poetní operace. P. 1 Dopl zbývající ást osov soumrného útvaru. 21

22 P. 2 Vypoítej = 99 9 = = 99 : 9 = 9,9 + 9 = 9,9 9 = 9,9. 9 = 9,9 : 9 = P = = = 121 : 11 = 12, = 12,1 11 = 12,1. 11 = 12,1 : 11 = 22

23 XI. Jednotky hmotnosti. Zlomky. 1 dag = 1 dkg = 10 g 1 kg = 100 dag = 100 dkg P. 1 4 kg = g 2 kg = g 310 q = kg 310 kg = g g = kg g = kg kg = q kg = t P. 2 1 kg 1 dag = dag 1 kg = g 1 dag = g 1 kg 1 kg = g g = kg g = dag 23

24 Zlomky: Zapiš zlomkem, jaká ást obrazce je vybarvena. 24

25 XII. Rychlost, dráha, as. P. 1 Za ti hodiny ujede auto 180 km. Kolik km ujede a) za 1 hodinu b) za 5 hodin. P. 2 Peve na uvedené jednotky. 14 km = m 2 h = min 3 h 12 min = min 180 min = h 196 min = h 131 s = min; s 4 h 2 min 1 s = s 8 h 3 s = s 25

26 Ujede-li auto za 1 hodinu 70 km íkáme, že jede rychlostí 70 km za hodinu zapisujeme 70 km/h. P. 3 Auto za 4 hodiny ujelo 260 km. Uri jeho rychlost. P. 4 Cyklista jede prmrnou rychlostí 15 km/h. Za jak dlouho ujede 60 km? P. 5 Chodec jde prmrnou rychlostí 5 km/h. Kolik km ujde za 2,5 hodiny? 26

27 XIII. Jednotky objemu, objemy ve slovních úlohách. 1 hl = 100 l 1 l = 10 dl 1 dl = 10 cl 1 cl = 10 ml P. 1 Peve na uvedené jednotky. 4 hl = l 2 hl 1 l = l 3 hl 40 dl = l 2 cl = ml l = hl dl = l dl = hl P. 2 Na zahrad stojí sud o objemu 1 hl. Malý Petr do nj nanosil vodu, 50x šel s kbelíkem o objemu 1 l, 40x s nádobkou o objemu 15 dl. Jaký je výsledek jeho snažení? 27

28 P. 3 Jirka nalil do vaniky 4x 2 l vody, pak 6x ½ l vody odebral a pak ješt pilil 5 l vody. Kolik l vody je nyní ve vanice? P. 4 Vašík vypil ráno ¼ l kakaa ke snídani, na svainu ml 2 dl džusu, k obdu vypil dv skleniky malinové šávy po 1,5 dl, odpoledne bhem pobytu na hišti vypil 3 krabiky Fruka (každá má objem 2,5 dl) a veer ml 0,5 l citronády. Kolik tekutin vypil Vašík za celý den? 28

29 XIV. Zlomky a desetinná ísla. P. 1 7 vybarvi zelen obdélníku 24 1 vybarvi erven obdélníku 24 3 vybarvi mode obdélníku 24 Napiš zlomek, jaká ást obdélníku je nevybarvena. P. 2 Zlomek lze pevést na desetinné íslo tak, že dlíme itatele jmenovatelem. 3 itatel - zlomková ára 4 jmenovatel 3 zlomek 4 3 = 3 : 4 = 0,75 4 3,00 : 4 = 0, = 3,6 18,0 : 5 = 3,

30 Peve tyto zlomky na desetinná ísla. (v pípad poteby použij kalkulaku) a) 11 = 5 b) 5 2 = c) 1 = 4 13 d) = e) = 75 f) 12 = 48 P. 3 vzor: 3 z 20 m = (20 :5) = 4. 3 = 12 m 5 nebo: 5 20 m : 5 = 4 m = 12 m 5 Vypoítej 47 2 z 35 kg. 30

31 XV. Poetní operace (poetní výkony). P. 1 K íslu 100 piítej opakovaníslo 15 a skoni, jakmile dojdeš k prvnímu soutu vtšímu než 200. P.2 Od ísla 100 odeítej opakovan 24 a skoni pi prvním rozdílu menšímu než 30. P. 3 Uri: a) souet 789 a 232 b) rozdíl 789 a 232 c) souin 144 a 12 d) podíl 144 a 12 e) souin soutu 2 a 5 a rozdílu 12 a 10 P. 4 Uri: a) souet zvtšený o 20 b) souin 12 a 10 zmenšený 25 c) soui12 a 10 zmenšený 5x d) souet 1500 a 500 zvtšený 2x 31

32 P. 5 Vypoítej. a) ptinásobek ísla 9 zmenšený o 5 b) ptinásobek ísla 15 zmenšený 3x P. 6 Napiš pod sebe ísla a seti. a) = b) = P. 7 Uri. a) ( ) ( ) = b) ( ) (12 9) = 32

33 XVI. Rovnice, slovní úlohy. vzor: 3. x = 150 zk. L (50) = = 150 x = 150 : 3 P (50) = 150 x = 50 P. 1 a + 39 = 809 P b = 372 P. 3 b 21 = 426 P. 4 c : 8 =24 33

34 vzor: 13 m stužky stojí 65 K. Kolik zaplatíme za 11 m této stužky? 13 m K 1 m : 13 = 5 K 11 m = 55 K Za 11 m stužky zaplatíme 55 K. P okolád stojí 247 K. Kolik K zaplatí Petr za 9 okolád? P knih stojí K. Kolik korun zaplatíme za 17 takových knih? 34

35 XVII. Operace s pirozenými ísly. P. 1 O kolik je íslo vtší než 8 009? P. 2 Kolikrát je íslo vtší než 3? P. 3 Kolikrát je íslo 27 menší než 1 377? P. 4 O kolik je íslo 324 menší než 459? P. 5 (36 + 9) : 3 = : 3 = (36 9) : 3 = 36 9 : 3 = 35

36 P. 6 a) = b) 1231 ( ) = c) = d) 1231 (45 13) = P. 7 Vypoítej. a) souet 108 a 37 b) rozdíl 108 a 37 c) souin 108 a 4 d) souin 108 a 104 zvtšený o podíl 28 a 4 36

37 XVIII. Dlitelnost. P. 1 Zjisti ciferný souet ísel. a) b) c) P. 2 Doplíslice 0 9 tak, aby dané íslo bylo dlitelné. a) temi a bylo * 4 * 1 * 1 - menší než (vypiš alespo 3 možnosti) b) temi * 51 c) temi a bylo vtší než 400 d) tymi 51 * e) pti * 37

38 P. 3 Zjisti, zda íslo a) je dlitelné 7 b) je dlitelné 6 P a 7 jsou ísla dlitelná sedmi Zjisti, zda souet, rozdíl, souin, podíl je i není dlitelný sedmi. 38

39 XIX. Rovnice, nerovnice. P. 1 eš rovnici. a) y + 15 = 45 b) 15. z = 45 c) x 15 = 45 d) b : 15 = 45 39

40 P. 2 Uri všechna pirozená ísla, která vyhovují nerovnici. a) b) 9 + y < 15 c) 4 x < 10 d) 5. y < 35 40

41 XX. Rovnice, nerovnice, šifry. P. 1 Zapiš A (ano), N (ne), zda x = 9 je ešením rovnice. a) 3x + 3 = 30 b) 11x 9 = 80 c) 9x 19 = 80 d) 5x + 5 = 51 e) 12x + 2 = 110 f) 20x + 20 = 100 P. 2 Vypiš všechna ísla, která vyhovují nerovnici 4x + 7 > 47 Vyber je z ísel: 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14 P. 3 Napiš nejmenší pirozené íslo, které lze dlit souasn osmi a šesti 41

42 P. 4 Je dána šifra. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Uri šifrovaný zápis. a) 78 : 3 = 72 : 8 = 39 : 3 = 38 : 38 = b) 96 : 6 = 36 : 2 = 45 : 3 = 76 : 4 = 900 : 100 = 70 : 5 = 125 : 25 = 81 : 27 = 42

43 XXI. Celá ísla. P. 1 Dopl tabulku. poátení teplota zmna teploty výsledná teplota - 5 C vzestup o 7 C 2 C + 3 C pokles o 8 C +4 C pokles o 4 C 0 C vzestup o 1 C - 11 C pokles o 3 C - 3 C vzestup o 4 C +2 C vzestup o 1 C +7 C pokles o 9 C P. 2 Vypoítej. -6 C + 7 C = 5 o C + 9 o C = 3 C - 4 C = -9 C + 12 C = -8 C + 15 C = 17 C - 8 C = 13 C - 26 C = 43

44 P. 3 Dopl. + 5 o C - 9 o C +2 o C - 6 o - 2 o C 4 o C - 8 o C - 14 o C - 3 o C P. 4-4 C + 12 C = -12 C - 8 C = -15 C + 10 C = -15 C - 10 C = = = = = = 7 1 = 2 3 = = 44

45 XXII. Poetní operace s celými ísly. P = = = = = = P. 2 Poítej podle vzoru = (- 5) = (- 5) = = 15 a) = g) 1 8. (- 4) = b) - 2. (- 7) = h) (-2) = c) = i) 2. (- 13) = d) 2. (- 7) = j) 3. (- 19) = e) 2. (- 9) = k) - 2. (- 11) = f) - 2. (- 9) = l) = P (- 3) = 9. (- 3) 2. 3 = 45

46 P. 4 Poítej = 3. (-1) = = 2. (-1) = (-1) = 2. 2 = 0. (-1) = 1. 2 = - 1. (-1) = 0. 2 = - 2. (-1) = = - 3. (-1) = = - 4. (-1) = = - 5. (-1) = P. 5 Ráno byla teplota - 8 C, pak vzrostla o 2 C a do veera klesla o 4 C. Kolik C bylo veer? P. 6 Petr ml 126 K. Dárek pro maminku stál 131 K. Kolik korun mu chybí? 46

47 XXIII. Dlitelnost. P. 1 Uri íslo: a) jehož trojnásobek je 27 b) jehož dvojnásobek je 124 c) jehož ptinásobek je 125 d) jehož tynásobek je 124 e) jehož sedminásobek je 140 P. 2 Napiš všechny násobky ísla 7, které jsou vtší než 15 a menší než 100. P. 3 Napiš všechna ísla pirozená, jimiž je dlitelné íslo 12 (tzn., napiš všechny dlitele ísla 12). 47

48 P. 4 Napiš 5 spolených násobkísel 2 a 3. P. 5 Napiš nejmenší spolené násobky. vzor: n (4; 6) = 12 n ( 4; 6; 5) = 60 n ( 9; 5) = n (8; 4) = n ( 3;8) = n (2; 5) = n (3; 4; 5) = n ( 2; 4; 5) = n (3; 7) = n (21; 7) = n (3; 9) = 48

49 XXIV. Obrazce. P. 1 D C D C b b bv b b A a B A a B a) Zm délku strany tverce a vypoítej jeho obvod a obsah. b) Zm délky stran obdélníku a vypoítej jeho obvod a obsah. P. 2 Vypoítej obvod a obsah pravoúhlého trojúhelníku ABC. Délky stran zm. C A B 49

50 P. 3 tverec ABCD má stranu délky 3 cm. tverec KLMN má stranu dvojnásobné délky. a) Kolikrát je obvod tverce KLMN vtší než obvod tverce ABCD? b) Kolikrát je obsah tverce KLMN vtší než obsah tverce ABCD? P. 4 O kolik je 12 dm víc než 3 dm? Kolikrát je 12 dm vtší než 3 dm? 50

51 XXV. Slovní úlohy. P. 1 Myslím si 1 dvojciferné a 1 jednociferné íslo. Když je mezi sebou vynásobím, dostanu 70; když je od sebe odetu, dostanu 9. Která jsou to ísla? P. 2 Eliška nasbírala 15 hib, Petra tetinu tohoto množství a Maruška našla dvakrát víc hib než Petra. Kolik hib nasbíraly všechny dívky celkem? 51

52 P. 3 Jirka má 14 K, což je o 3 K víc než má Petr a Vašík má o 13 K víc než Petr. Kolik korun mají všichni 3 chlapci dohromady? P. 4 Jakub má o 4 autíka víc než Pavel. Celkem mají 22 autíek. Kolik autíek má Jakub, kolik Pavel? 52

53 XXVI. Slovní úlohy. P. 1 Auto stálo K, po namontování klimatizace se jeho cena o 10 1 zvýšila. Kolik pak auto stálo? P. 2 3 kg jablek stály 54 K. Kolik stojí ½ kg jablek? 53

54 P. 3 Vlak vyjel z Prahy ve 22:40 hodin. Cesta do Letovic mu trvá 2 hodiny 35 minut. V kolik hodin dojel do Letovic? P. 4 Sadai vysadili celkem 18 strom ve vzdálenosti 4 m od sebe. Kolik m je 1. strom vzdálen od posledního? 54

55 XXVII. Dlitelnost. P. 1 Z kartiek, na kterých jsou ísla 2; 3; 8; 8 poskládej nejvtší íslo dlitelné 3. P. 2 Napiš první tyi násobky ísla 24. P. 3 Zjisti, zda íslo 1377 je dlitelné 17. P. 4 Napiš všechna dvojciferná ísla z íslic 0; 1; 2 (každá íslice 1x). 55

56 P. 5 Napiš všechna trojciferná ísla z íslic 2; 5; 7 (každá z íslic mže být obsažena v 1 íslu jen 1x). P. 6 D. nejvtší spolený dlitel nap. D (24;36) = 12 D (8;4) = 4 D (5;2) = 1 D (27;6) = 3 a) n (2;7) = c) n (4; 5) = D (2;7) = D (4;5) = b) n (18; 9) = e) n (4;6) = D (18; 9) = D (4;6) = 56

57 XXVIII. Obrazce. P. 1 Obvod trojúhelníku je 35 cm. Uri délku strany b. C b 14 A 13 B P. 2 Zm délky stran (mm: k =.., l =., m =.. P. 3 Zm délky stran: PQ =., QR =., PR = R P Q P. 4 Uri obvod trojúhelníku KLM z p

58 P. 5 Uri obvod trojúhelníku PQR z p. 3. P. 6 a = 25 mm Uri obvod a obsah tverce. D C A B P. 7 a = 2 cm. Uri obvod tverce, který má 3x delší stranu než tverec ABCD. D C A B P. 8 Obvod tverce je 36 dm. Uri jeho obsah. P. 9 Uri obvod a obsah obdélníku. b = 2 cm a = 3 cm 58

59 XXIX. íslo, íslice, íselné operace. P. 1 Uri souet všech pirozených sudých jednociferných ísel. P. 2 Uri souet všech pirozených lichých jednociferných ísel. P. 3 a) = b) ( ) 1 + ( ) 2 + ( ) 3 = c) Uri a: = 19 - a d) Napiš všechna dvojciferná ísla, která lze sestavit z íslic 4 a 5. 59

60 P. 4 a) napiš souet všech lichých ísel, která vyhovují nerovnici: 12 x 25 b) napiš souet všech sudých ísel, která vyhovují nerovnici: 14 x < 20 P. 5 Zapiš všechna dvojciferná ísla z íslic 0; 1; 2. P. 6 a) (3 1) = b) (14 5) = c) = 60

61 XXX. Jednoduché testové úlohy. P. 1 Za Petrem stojí ve front 7 zákazník, ped ním 3 zákazníci. Kolik osob stojí celkem ve front? P. 2 1 okoláda stojí spolu s 1 tatrankou 17 K. Za 2 tatranky a 3 okolády Maruška zaplatila 44 K. Kolik stojí 1 okoláda a 3 tatranky? (kresli si obrázek) P. 3 Jirka má v kapse 4 modré a 4 ervené kuliky. Kolik uliek musí z kapsy vytáhnout, aby ml jistotu, že vytáhl ervenou kuliku? P. 4 4 osoby za týden spotebují asi 560 l vody. Kolik l vody spotebuje 1 osoba za 8 dní? 61

62 P. 5 Eliška si myslí njaké íslo. Vynásobí je temi, pite k výsledku dvojnásobek myšleného ísla a dojde tak k výsledku 100. Které íslo si Eliška myslí? P. 6 Ptinásobek neznámého ísla je o 34 vtší než trojnásobek tohoto ísla. Uri neznámé íslo. 62

63 XXXI. as. P. 1 Vžní hodiny bijí ve tvrt, v pl a ve ti tvrt hodiny 1x, v celou hodinu tolikrát, kolik je práv hodiny. Kolik úder slyšel Petr, který pišel pod hodiny v 10:50 a odcházel 11:20? P. 2 Kolik minut je 6 hodin a 13 minut? P. 3 a) Vyjádi zlomkem 15 minut z 1 hodiny. b) Vyjádi zlomkem 30 sekund z 6 minut (pokus se zlomky uvést v základním tvar). 63

64 P. 4 Vlak vyjel z Letovic v 10 hodin 59 minut a do Bílovic dojel v 11 hodin 41 minut. Jak dlouho jel z Letovic do Bílovic? P. 5 Vašík jde do školy 17 minut, Petr 900 sekund, Eva ¼ hodiny a Mirce cesta trvá 1/3 hodiny. Komu trvá cesta do školy nejdéle? P. 6 Rychlost svtla je asi m/s. Kolik km by svtlo urazilo za 12 sekund? 64

65 XXXII. tverec, obdélník. P. 1 Zm délky stran (v cm) a vypoítej obvod i obsah. B D A B P. 2 Obvod obdélníku ABCD je 16 cm. Strana BC mí 2 cm (tj. BC = b = 2 cm). Vypoítej stranu a, uri obsah obdélníku ABCD. D C A B 65

66 P. 3 tverec ABCD má stranu a = 11 cm. Uri jeho obvod a obsah. P. 4 tverec ABCD má obvod 8 cm. Uri jeho stranu a a jeho obsah. P. 5 Obdélník ABCD má stranu a = 8 cm a obsah 24 cm 2. Uri jeho stranu. 66

67 XXXIII. Testové úlohy z aritmetiky. P : = P. 2 1 brigádník zasadí za 1 hodinu 10 stromk. Kolik stromk zasadí 5 brigádník za 4 hodiny? P. 3 Jaký je souet nejvtšího dvojciferného ísla a druhého nejmenšího tyciferného ísla? P. 4 Za hodinu a pl bude tvrt na dv. Kolik je nyní hodin? P. 5 1 m 3 dm (cm) = 3 a 2 m 2 (m 2 ) = 42 km 50 dm (m) = P. 6 V šatn je 116 bot a 22 epic. Kolik žák pišlo bez epice? 67

68 P. 7 Kolik trojúhelník je na obrázku? C A D B P. 8 Petr ušel 25 km, Emil o 2 km mén a Mirek o 3 km více než Emil. Kolik km ušli všichni chlapci dohromady? P. 9 Obvod obdélníku je 20 cm. Délka obdélníku je 8 cm. Uri jeho šíku. P. 10 Uri souin nejmenšího dvojciferného a nejvtšího trojciferného ísla. 68

69 XXXIV. Zlomky, zlomek jako ást celku. P. 1 Vyjádi zlomkem, jaká ást obrazce je vybarvena. P. 2 P. 3 P. 4 Vypoítej obvod a obsah tverce o stran 7 cm. P. 5 Vypoítej obvod a obsah obdélníku o stranách 7 cm a 2 cm. 69

70 P. 6 Vypoítej obsah obdélníku o stranách 5 dm a 4 dm. Uri ¾ obsahu tohoto obdélníku. P. 7 1/5 délky plotu odpovídá 14 m. Kolik m mí celý plot? P. 8 Jana nasbírala 12 kg jahod, Petra ¾ tohoto množství. Kolik jahod nasbíraly ob dívky dohromady? P. 9 Uri 5/6 z 60 m. P. 10 5/6 uritého celku pedstavuje 60 m. Uri tento celek. 70

71 XXXV. Slovní úlohy z aritmetiky. P. 1 Jestliže neznámé íslo vynásobím temi a odetu 31, dostanu 50. Uri neznámé íslo. P. 2 Z íslic 1; 2; 7 vytvo všechna dvojciferná ísla, která jsou dlitelná 3. P. 3 Z íslic 1; 3; 6; 9 vytvo všechna dvojciferná ísla, jejichž ciferný souet je vtší než 7. P. 4 Napiš nejvtší trojciferné íslo dlitelné tymi. 71

72 P. 5 Petr spoítal, že ddeek peuje o 70 kus domácích zvíat. Má 10 slepic, králík je o 14 ks víc než slepic, kachen je tyikrát mén než králík, perliek má o 4 ks mén než je poet kachen. Zbytek má holuby. Kolik holub ddeek chová? P. 6 a) O kolik je 1296 vtší než 1269? b) Kolikrát je 23 menší než 207? c) O kolik je 23 menší než 207? 72

73 XXXVI. Zlomky, desetinná ísla, vzájemné pevádní. Vzor: Napiš desetinným íslem a) = 27,13 b) = 0, Vzor: Napiš zlomkem a) 70,00 = b) 0,08 = 100 P. 1 Napiš desetinným íslem. 7 a) = b) = c) = d) = 100 e) = 10 f) P = 1000 Napiš desetinným zlomkem. 0,007 = 15,2 = 60,0 = 0,002 = 4,721 = 3,31 = 73

74 P. 3 Porovnej ísla napiš mezi n správný znak =; >; <. 0,3 0,03 7 0, ,7 15,3 1,53 0,27 0,270 P. 4 Seaísla vzestupni sestupn. Použij znak >; <. a) sestupn: 0,02; 2,51; 25,1; 2 b) vzestupn: 3,03; 3,5; 3,05 c) vzestupn: 1,5; 1,05; 0,105 P. 5 Napiš nejbližší pirozené íslo k íslu. 0,9 13,4 18,74 0,1 74

75 XXXVII. Poetní operace s desetinnými ísly. P. 1 Kolá stojí 8,40 K, rohlík 2,20 K. Petr si koupil 3 rohlíky a 1 kolá. Kolik K mu vrátí prodavaka na padesátikorunu? P. 2 0,2 + 0,4 = 2,7 + 0,5 = 0,2 + 0,8 = 2,7 + 1,3 = 0,2 + 3,1 = 2,7 + 1,8 = 0,9 + 3,1 = ,1 = 0,9 + 3,8 = 0,2 + 4 = 75

76 P. 3 vzor: 0,3 + 0,002 = 0,302 nebo 0,3 0,002 0,302 a) 0, ,02 = b) 0,7 + 0,21 = c) 0,03 + 0,25 = d) 2,27 + 3,84 = P. 4 Kterým íslem musíme násobit 3,2 abychom dostali 9,6? P ,4 = 0,3. 0,4 = 3. 2,5 = 0,3. 2,5 = 3. 0,09 = 0,3. 0,09 = 76

77 XXXVIII. Slovní úlohy s desetinnými ísly. P. 1 Slon denn spotebuje 290 kg potravy. Jeho denní poteba potravy se rovná 0,1 jeho hmotnosti. Uri hmotnost slona. P. 2 Tída 6.A mla prmr na 1 žáka ve sbru papíru 14 kg;, 6.B 36,8 kg a 6.C 54,4 kg. a) Kolik kg papíru sebrali žáci v 6.A, když tato tída má 28 žák? b) O kolik kg byl prmr na 1 žáka v 6.C vtší než v 6.B? c) O kolik kg byl prmr na žáka v 6.A menší než v 6.C? 77

78 P. 3 Tída 4.A má 14 chlapc, 12 dvat. Prmrn sebral každý chlapec 0,7 kg bylin, každá dívka 0,8 kg. Kolik kg bylin sebrali žáci ve tíd dohromady? P. 4 Honzík koupil 3 sáky kávy po 14,20 K a 9 okolád po 12,50 K. Kolik korun dostal zpt na 200 K? (nákup se zaokrouhluje) 78

79 XXXIX. Slovní úlohy s desetinnými ísly. P. 1 Petr ml 500 korunovou bankovku. V Albertu provedl nákup: 5 krabic džusu po 24,80 K, 3 balíky šunky po 32,50 K, 2 krabiky kávy po 18 K a 3 krabiky aje po 28,20 K. U pokladny se cena zaokrouhluje na celé koruny. Kolik korun dostal Petr nazpt z 500 K? P. 2 Jitka suší byliny. Po vysušení 1 kg list zstalo 0,48 kg sušených list. Kolik kg vody se vypailo? 79

80 P. 3 Tatínek ezal tyky k rostlinám. Jejich délky byly 0,7 m; 12 dm; 110 cm; 1,3 m a 0,9 m. Kolik m mly všechny tyky dohromady? P. 4 Které íslo musíme piíst k íslu 2,3, abychom dostali 8,1? P. 5 Které íslo musíme odeíst od 12,04, abychom dostali 7,6? P. 6 Doplísla v tabulce, aby souet ve všech smrech byl vždy ,4 3,6 4,2 80

81 XL. Pevody jednotek s desetinnými ísly. vzor: 3,1 dm = 0,31 m 2,7 dl = 0,27 l 1,1 m = 110 cm P. 1 3,2 dm = m 4 m = km 5,2 cm = mm 5,2 cm = dm 5,2 cm = m 4,02 km = m 4,2 km = m 4,002 km = m 27 mm = m P. 2 4,1 ha = a 2 m 2 = a 3,2 dm 2 = cm 2 3,2 dm 2 = m 2 1,2 dm 2 = cm 2 1,2 dm 2 = mm 2 1,2 dm 2 = m 2 4,5 km 2 = ha 4,5 km 2 = a 81

82 P. 3 0,6 l = hl 2 dl = l 1,3 cl = ml 12,4 ml = dl 1 m 3 = dm cm 3 = dm 3 4,2 dm 3 = cm mm 3 = cm 3 P. 4 3 h = min 3,5 h = min 1,5 min = s 4 h = s 3,25 h = min P g = kg 2,3 t = kg 1 q = t 1,1 t = q 3,2416 t = kg 2,308 q = kg kg = t kg = q g = kg 82

83 XLI. íselné výrazy. P. 1 Dopl : 4 x P. 2 Dopl znak poetní operace (poetního výkonu) tak, aby hodnota výrazu byla ? 10 = P. 3 Piaarou ke každému výrazu správný název podíl souet souin : : 2 rozdíl (827 +2) : (16 + 2) 83

84 P. 4 Pia ke každému výrazu arou jeho hodnotu. 325 : : P. 5 Mezi výrazy zakroužkuj ten, který nemá smysl. a b (49 + 2). 0 c (49. 0) + 2 d (49. 0) - 2 e (2 + 49) : 0 f (2 + 49) : 0 g (49 0). 2 h (0 49)

85 XLII. Algebraické výrazy a jejich hodnota. Algebraický výraz obsahuje kromísel i promnné (písmenka). ( ). 5 íselný výraz [(2x -8). b] : 2 algebraický výraz P. 1 Uri hodnotu výrazu. vzor: a + 2b pro a = 1; b = = = 5 vzor: abc pro a = 2; b = 3; c = = 54 a) 2 k l pro k = 11; l = 3 b) a +b c pro a = 10; b = 7; c = 2 c) 3 m 2 n pro m = 5; n = 4 d) 4. (b +c) 2. (b c) pro b = 10; c = 1 85

86 P. 2 Pia ke každému výrazu jeho správný název (podle poslední provádné operace). vzor: (a +b). (c + d) souet 4 + bc souin 4 k : 3 7 a + 2 ab souet l 3 c 9 souin mno 2. (ab + ac + bc) rozdíl 4. (m + 2) + 11 c [b (b 7) : 2] : 4 podíl [b (b 7) : 2] + 1 P. 3 Dopl tabulku. x x + 15 y y z z : 3 86

Samostatná práce pro nadané žáky z matematiky

Samostatná práce pro nadané žáky z matematiky Samostatná práce pro nadané žáky z matematiky 3. roník RNDr. Marta Makovská, kvten 2012 Financováno z projektu. CZ.01.07/1.2.09/01.0010 GG OP VK Jihomoravského kraje. 1 Obsah I. Jednotky asu.... 3 II.

Více

Samostatná práce pro nadané žáky z matematiky

Samostatná práce pro nadané žáky z matematiky Samostatná práce pro nadané žáky z matematiky 5. roník RNDr. Marta Makovská, kvten 2012 Financováno z projektu. CZ.01.07/1.2.09/01.0010 GG OP VK Jihomoravského kraje. I. Hodnota algebraického výrazu....

Více

Tematický plán uiva z matematiky pro 6. roník na školní rok 2009-2010

Tematický plán uiva z matematiky pro 6. roník na školní rok 2009-2010 Tematický plán uiva z matematiky pro 6. roník na školní rok 2009-2010 Msíc: Záí Uivo: Shrnutí a opakování uiva z 5.roníku Pirozená ísla íselná osa, porovnávání, zaokrouhlování, operace s nimi, pevody,

Více

Přirozená čísla do milionu 1

Přirozená čísla do milionu 1 statisíce desetitisíce tisíce stovky desítky jednotky Klíčová aktivita: Přirozená čísla do milionu 1 č. 1 Matematika 1. Porovnej čísla: , =. 758 258 4 258 4 285 568 470 56 847 203 488 1 584 2 458 896

Více

R O V N O B Ž N Í K (2 HODINY)

R O V N O B Ž N Í K (2 HODINY) R O V N O B Ž N Í K (2 HODINY)? Co to vlastn rovnobžník je? Na obrázku je dopravní znaka, která íká, že vzdálenost k železninímu pejezdu je 1 m (dva pruhy, jeden pruh pedstavuje vzdálenost 80 m): Pozorn

Více

1) íselný výraz. 8. roník Algebraické výrazy. Algebraické výrazy výrazy s promnnou

1) íselný výraz. 8. roník Algebraické výrazy. Algebraické výrazy výrazy s promnnou Algebraické výrazy výrazy s promnnou S výrazy jsme se setkali v matematice a fyzice již mnohokrát. Pomocí výraz zapisujeme napíklad matematické vzorce. Vyskytují se v nich jednak ísla, kterým íkáme konstanty

Více

Matematika. Až zahájíš práci, nezapomeò:

Matematika. Až zahájíš práci, nezapomeò: 9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení

Více

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel Ročník: I. - vytváří si názoru představu o čísle 5, 10, 20 - naučí se vidět počty prvků do 5 bez počítání po jedné - rozpozná a čte čísla 0 5 - pozná a čte čísla 0 10 - určí a čte čísla 0 20 Číselná řada

Více

Očekávaný výstup Zvládnutí slovních úloh využívajících poměr Speciální vzdělávací žádné

Očekávaný výstup Zvládnutí slovních úloh využívajících poměr Speciální vzdělávací žádné Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Ing. Renata Dupalová Datum 17. 8. 2014 Ročník 7. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

PROPOZICE 43. ROČNÍKU BĚHU ČESKÝM ÚDOLÍM. Podzimní lyžařský přespolák. 5. ročník memoriálu Oldřicha Kroupy. Lyžařský klub USK CS Plzeň

PROPOZICE 43. ROČNÍKU BĚHU ČESKÝM ÚDOLÍM. Podzimní lyžařský přespolák. 5. ročník memoriálu Oldřicha Kroupy. Lyžařský klub USK CS Plzeň PROPOZICE 43. ROČNÍKU BĚHU ČESKÝM ÚDOLÍM Podzimní lyžařský přespolák 5. ročník memoriálu Oldřicha Kroupy Lyžařský klub USK CS Plzeň ve spolupráci s KATEDROU TĚLESNÉ VÝCHOVY A SPORTU ZČU Dne 3. LISTOPADU

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Projekt: Registrační číslo projektu: Každý máme

Více

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Prioritní osa: 1 Počáteční vzdělávání Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Registrační číslo projektu: CZ.1.07/1.4.00/21. 0918 Název projektu:inovace vzdělávání v

Více

Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6.

Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6. Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6. ROČNÍK Zadání úloh Autorka úloh: Mgr. Lucie Filipenská Katedra didaktiky

Více

Píklad : Kolik procent základu : a) jsou jeho 4 5 ; b) je 0,7 celku ( základu ); c) je 1 1 4

Píklad : Kolik procent základu : a) jsou jeho 4 5 ; b) je 0,7 celku ( základu ); c) je 1 1 4 1. Vymezení pojm Pi výpotu píklad, které se týkají procent se setkáváme se temi základními pojmy : základ ( z ), poet procent ( p ), procentová ást ( ). Z tchto tí údaje dva známe a tetí mžeme vypoítat.

Více

Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6)

Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6) Test žáka Zdroj testu: Domácí testování Školní rok 2014/2015 Test z celoplošné zkoušky I. MATEMATIKA 9. ročník ZŠ (kvarta G8, sekunda G6) Jméno: Třída: Škola: Termín testování: Datum tisku: 01. 02. 2015

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Do jednoho vagonu se vejde 70

Více

SOUBOR VZOROVÝCH ÚLOH MATEMATIKA

SOUBOR VZOROVÝCH ÚLOH MATEMATIKA MATEMATIKA Obsah. íselné obory... 3 2. Algebraické výrazy... 9 3. Rovnice a nerovnice...3 4. Funkce...9 5. Posloupnosti a finanní matematika...25 6. Planimetrie...30 7. Stereometrie...39 8. Analytická

Více

Mateřská škola a Základní škola při dětské léčebně, Křetín 12

Mateřská škola a Základní škola při dětské léčebně, Křetín 12 Mateřská škola a Základní škola při dětské léčebně, Křetín 12 VY_32_INOVACE_DUM.M.17 Autor: Mgr. Miroslav Páteček Vytvořeno: duben 2012 Matematika a její aplikace Klíčová slova: Třída: Anotace: Zlomky,

Více

Matematika a její aplikace - 1. ročník

Matematika a její aplikace - 1. ročník Matematika a její aplikace - 1. ročník počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje a porovnává přirozená čísla do 20 užívá a zapisuje vztah rovnosti a nerovnosti

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Projekt: Registrační číslo projektu: Každý máme

Více

Seznam periodik Knihovna Pražské konzervatoře

Seznam periodik Knihovna Pražské konzervatoře Seznam periodik Knihovna Pražské konzervatoře Název periodika Signatura Ročník Rok Uložení Acta musicologica 2 P 19 Vol. 4 1932 1935 Per. 13 Vol. 7 Allgemeine Musik 2 P 70 XXIX 1902 Per. 17 Zeitung XXXIII

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3476 Název materiálu: Vzdělávací oblast: Vzdělávací obor: Tématický okruh: Téma: Ročník: Očekávaný

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Matematika a její aplikace Matematika 2. období 5. ročník Učební texty : J. Justová: Alter-Matematika, Matematika 5.r.I.díl, 5.r.

Více

Digitální učební materiál

Digitální učební materiál Projekt: Digitální učební materiál Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Prioritní osa: 1 Počáteční vzdělávání Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Registrační číslo projektu: CZ.1.07/1.4.00/21. 0918 Název projektu:inovace vzdělávání v

Více

Tematický plán učiva. Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová

Tematický plán učiva. Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová Tematický plán učiva Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová 1. Používá čtení a psaní v číselném oboru 0 1 000 000. 2. Rozumí lineárnímu uspořádání

Více

DUM 01 - Procvičování zápisu přirozených čísel v desítkové soustavě PRAC. LIST

DUM 01 - Procvičování zápisu přirozených čísel v desítkové soustavě PRAC. LIST DUM 01 - Procvičování zápisu přirozených čísel v desítkové soustavě PRAC. LIST Doplň chybějící čísla: 836 472 836 478 962 590 962 595 508 000 508 500 846 720 846 730 406 600 407 100 Napiš, mezi kterými

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět : Matematika Ročník: 1. Výstup Učivo Průřezová témata,

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět : Matematika Ročník: 1. Výstup Učivo Průřezová témata, 5.1.2.2 Vzdělávací obsah vyučovacího předmětu Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět : Matematika Ročník: 1. Výstup Učivo Průřezová témata, Zná číslice 1 až 20, umí je napsat a

Více

KATALOG POŽADAVKŮ ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY

KATALOG POŽADAVKŮ ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY KATALOG POŽADAVKŮ ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY platný od školního roku 2015/2016 Zpracoval: Centrum pro zjišťování výsledků vzdělávání Schválil: Ministerstvo školství, mládeže a tělovýchovy

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

1. Opakování učiva 6. ročníku

1. Opakování učiva 6. ročníku . Opakování učiva 6. ročníku.. Čísla, zlomek ) Z číslic, 6 a sestavte všechna trojciferná čísla tak, aby v každém z nich byly všechny tři číslice různé. ) Z číslic, 0, 3, sestavte všechna čtyřciferná čísla

Více

Úřední věstník Evropské unie

Úřední věstník Evropské unie 23.9.2003 CS 179 2. VOLNÝ POHYB OSOB A. SOCIÁLNÍ ZABEZPEČENÍ iv) za oddíl J. ITÁLIE se vkládají nové oddíly, které znějí: 1. 31971 R 1408: Nařízení Rady (EHS) č. 1408/71 ze dne 14. června 1971 o uplatňování

Více

Tabulkový procesor Excel

Tabulkový procesor Excel Tabulkový procesor Excel Excel 1 SIPVZ-modul-P0 OBSAH OBSAH...2 ZÁKLADNÍ POJMY...4 K EMU JE EXCEL... 4 UKÁZKA TABULKOVÉHO DOKUMENTU... 5 PRACOVNÍ PLOCHA... 6 OPERACE SE SOUBOREM...7 OTEVENÍ EXISTUJÍCÍHO

Více

Sbírka úloh z matematiky. 6. - 9. ročník

Sbírka úloh z matematiky. 6. - 9. ročník Sbírka úloh z matematiky 6. - 9. ročník Pro základní školy srpen 2011 Vypracovali: Mgr. Jaromír Čihák Ing. Jan Čihák Obsah 1 Úvod 2 2 6. ročník 3 2.1 Přirozená čísla.................................. 3

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ

Základní škola Nýrsko, Školní ulice, příspěvková organizace. (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) MIŠ MAŠ Základní škola Nýrsko, Školní ulice, příspěvková organizace (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) Název projektu: MIŠ MAŠ Moderní Interaktivní Škola Možností a Šancí (pro každého žáka) Číslo

Více

Procenta. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz.

Procenta. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. Variace 1 Procenta Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Procenta U příkladů, kde se vyskytují procenta,

Více

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m . Když od neznámého čísla odečtete 54, výsledek vydělíte 3 a následně přičtete 6, získáte číslo 9. Jaká je hodnota tohoto neznámého čísla? (A) 0 (B) 03 (C) 93 (D) 89 2. Na úsečce SV, jejíž délka je 3 cm,

Více

Obsahy. Trojúhelník = + + 2

Obsahy. Trojúhelník = + + 2 Obsahy Obsah nám říká, jak velkou plochu daný útvar zaujímá. Třeba jak velký máme byt nebo pozemek kolik metrů čtverečných (m 2 ), hektarů (ha), centimetrů čtverečných (cm 2 ), Základní jednotkou obsahu

Více

Matematika - 4. ročník Vzdělávací obsah

Matematika - 4. ročník Vzdělávací obsah Matematika - 4. ročník Čas.plán Téma Učivo Ročníkové výstupy žák podle svých schopností: Poznámka Září Opakování učiva 3. ročníku Počítaní do 20 Sčítání a odčítání do 20 Násobení a dělení číslem 2 Počítání

Více

OBSAH. Pfiedmluva k prvnímu vydání...12 Pfiedmluva k druhému vydání...14 PouÏité zkratky...16

OBSAH. Pfiedmluva k prvnímu vydání...12 Pfiedmluva k druhému vydání...14 PouÏité zkratky...16 Pfiedmluva k prvnímu vydání...12 Pfiedmluva k druhému vydání...14 PouÏité zkratky...16 âást I. Obecné otázky obchodních závazkov ch vztahû... 17 Hlava I. Pojetí a druhy obchodních závazkov ch vztahû...

Více

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ARITMETIKA - SEKUNDA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Procenta, poměr, trojčlenka Klíčová slova: Procenta, poměr, zvětšení, zmenšení, trojčlenka, měřítko Autor: Mlynářová 1 Trojčlenka označuje postup při řešení úloh přímé

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Učební texty : Matematika 3. období 6. ročník J.Coufalová : Matematika pro 6.ročník ZŠ (Fortuna) O.Odvárko,J.Kadleček : Sbírka úloh z matematiky pro 6.ročník ZŠ (Prometheus)

Více

Sbírka. úloh z matematiky. pro 2. ročník. tříletých učebních oborů

Sbírka. úloh z matematiky. pro 2. ročník. tříletých učebních oborů Sbírka úloh z matematik pro. ročník tříletých učebních oborů Jméno: Třída: Obsah Výraz Člen výrazu Absolutní hodnota Sčítání a odčítání výrazů 6 Násobení výrazů 6 Dělení výrazů jednočlenem 8 Vtýkání před

Více

Ročník VI. Matematika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed.

Ročník VI. Matematika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed. Přirozená čísla Desetinná čísla IX. X. Přirozená čísla opakování všech početních výkonů, zobrazení čísel na číselné ose, porovnávání a zaokrouhlování čísel. Metody- slovní, názorně demonstrační a grafická.

Více

Obsah: 2. Tematický plán pro 2. ro ník

Obsah: 2. Tematický plán pro 2. ro ník Obsah: 2. Tematický plán pro 2. ro ník 2. 1. Tematický plán pro 2. ro ník 2. 2. Tematický plán - Nám ty 2. 3. Seznam doporu ených inovativních pom cek 2. 4. Doporu ená odborná literatura 2. 5. erpáno z

Více

U každé úlohy je uveden maximální počet bodů.

U každé úlohy je uveden maximální počet bodů. MATEMATIKA MPZD1C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 1 Maximální bodové hodnocení: 0 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 0 minut.

Více

Vyučovací předmět probíhá ve všech ročnících. V 1. ročníku se vyučují 4 hodiny matematiky týdně, v 2. 5. ročníku po 5 hodinách.

Vyučovací předmět probíhá ve všech ročnících. V 1. ročníku se vyučují 4 hodiny matematiky týdně, v 2. 5. ročníku po 5 hodinách. 5.2 Oblast: Předmět: Matematika 5.2.1 Obor: Charakteristika předmětu matematika 1. stupeň Matematika tvoří základ vzdělávacího působení v základní škole. Vede žáky k získávání matematických pojmů, algoritmů,

Více

Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M.

Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M. Přípravný kurz - Matematika Téma: Slovní úlohy Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M.Hetmerová 12 19 9:02 Jak pracovat

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Žák cvičí prostorovou představivost Žák využívá při paměťovém i písemném počítání komutativnost i asociativní sčítání a násobení Žák provádí písemné početní operace v oboru Opakování učiva 3. ročníku Písemné

Více

Matematický KLOKAN 2005 kategorie Junior

Matematický KLOKAN 2005 kategorie Junior Matematický KLOKAN 2005 kategorie Junior Vážení přátelé, v následujících 75 minutách vás čeká stejný úkol jako mnoho vašich vrstevníků v řadě dalších evropských zemí. V níže uvedeném testu je zadáno čtyřiadvacet

Více

časová dotace: 1. až 3. třída - 4 hodiny týdně, 4. a 5. třída 5 hodin týdně

časová dotace: 1. až 3. třída - 4 hodiny týdně, 4. a 5. třída 5 hodin týdně Výuka Matematiky je postavena na rozvíjení vlastních zkušeností žáků a na jejich přirozeném zájmu, přirozené schopnosti vnímat, pozorovat a experimentovat. Žáci se matematiku učí řešením úloh a činnostmi,

Více

Prbh funkce Jaroslav Reichl, 2006

Prbh funkce Jaroslav Reichl, 2006 rbh funkce Jaroslav Reichl, 6 Vyšetování prbhu funkce V tomto tetu je vzorov vyešeno nkolik úloh na vyšetení prbhu funkce. i ešení úlohy jsou využity základní vlastnosti diferenciálního potu.. ešený píklad

Více

Pídavný modul rozvaha lze vyvolat z hlavní nabídky po stisku tlaítka Výkazy / pídavné moduly.

Pídavný modul rozvaha lze vyvolat z hlavní nabídky po stisku tlaítka Výkazy / pídavné moduly. Výkaz rozvaha Pídavný modul rozvaha lze vyvolat z hlavní nabídky po stisku tlaítka Výkazy / pídavné moduly. Po spuštní modulu se zobrazí základní okno výkazu: V tabulce se zobrazují sloupce výkazu. Ve

Více

Základní škola Klatovy, Čapkova ul. 126 ŠVP Zdravá škola. Dodatek č. 5 Matematika a její aplikace Matematika 2. období (4. a 5.

Základní škola Klatovy, Čapkova ul. 126 ŠVP Zdravá škola. Dodatek č. 5 Matematika a její aplikace Matematika 2. období (4. a 5. Základní škola Klatovy, Čapkova ul. 126 ŠVP Zdravá škola Dodatek č. 5 Matematika a její aplikace Matematika 2. období (4. a 5. ročník) Č.j.: ZS-KT-CAP-301/2013 Schváleno ped. radou dne 19. 6. 2013 Platné

Více

Výzkumný ústav bezpečnosti práce Jeruzalémská 9, 116 52 Praha 1

Výzkumný ústav bezpečnosti práce Jeruzalémská 9, 116 52 Praha 1 Výzkumný ústav bezpečnosti práce Jeruzalémská 9, 116 52 Praha 1 Projekt č. HS 120/04 Odborné podklady pro legislativní zajištění úrazového pojištění Návrh důvodové zprávy k zákonu o změně zákonů souvisejících

Více

Řešení. Příklad 1: zkouška: odpověď: Turisté ušli první den 10 km, druhý den 20 km a třetí den 15 km. Příklad 2:

Řešení. Příklad 1: zkouška: odpověď: Turisté ušli první den 10 km, druhý den 20 km a třetí den 15 km. Příklad 2: Řešení Příklad 1: Turisté ušli za tři dny 45 km. Druhý den ušli dvakrát více než první den. Třetí den o pět km méně než druhý den. Kolik ušli turisté první, druhý a třetí den? zkouška: odpověď: Turisté

Více

7. Slovní úlohy na lineární rovnice

7. Slovní úlohy na lineární rovnice @070 7. Slovní úlohy na lineární rovnice Slovní úlohy jsou často postrachem studentů. Jenţe Všechno to, co se učí mimo slovní úlohy, jsou postupy, jak se dopracovat k řešení nějaké sestavené (ne)rovnice.

Více

GYMNÁZIUM CHEB. SEMINÁRNÍ PRÁCE Grafy funkcí sbírka ešených úloh. Radek HÁJEK, 8.A Radka JIROUŠKOVÁ, 8.A Cheb, 2006 Petr NEJTEK, 8.

GYMNÁZIUM CHEB. SEMINÁRNÍ PRÁCE Grafy funkcí sbírka ešených úloh. Radek HÁJEK, 8.A Radka JIROUŠKOVÁ, 8.A Cheb, 2006 Petr NEJTEK, 8. GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE Grafy funkcí sbírka ešených úloh Radek HÁJEK, 8.A Radka JIROUŠKOVÁ, 8.A Cheb, 006 Petr NEJTEK, 8.A Prohlášení Prohlašujeme, že jsme seminární práci na téma: Grafy funkcí

Více

součet druhé mocniny čísla zvětšeného o jedna a odmocniny z jeho trojnásobku

součet druhé mocniny čísla zvětšeného o jedna a odmocniny z jeho trojnásobku .7. Zápisy pomocí výrazů I Předpoklady: 70 Pedagogická poznámka: Hodina obsahuje poměrně málo příkladů, protože se snažím, aby z ní všichni spočítali opravdové maximum. Postupujeme tedy pomalu a kontrolujeme

Více

Přirozená čísla. (Zápis přirozených čísel) (Základní početní operace v N a jejich vlastnosti) (Dělitel a násobek přirozeného čísla)

Přirozená čísla. (Zápis přirozených čísel) (Základní početní operace v N a jejich vlastnosti) (Dělitel a násobek přirozeného čísla) Přirozená čísla Jedna, dva, moc Zápis přirozených čísel) 0 a) např. 8 b) např. 0 c) např. CXXVIII např.,, 0 a, d, h 0 0, 0,, 00,,, 00,,, 000 0 A, B, C, D 0 a) ANO b) NE c) NE ANO 0 a) 0 + 0 + 0 + 0 + b)

Více

UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika

UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE Vzdělávací oblast : : Cílové zaměření vzdělávací oblasti Učíme žáky využívat matematických poznatků a dovedností v praktických činnostech rozvíjet pamětˇ žáků prostřednictvím

Více

MATEMATICKÉ DOVEDNOSTI

MATEMATICKÉ DOVEDNOSTI Hodnocení výsledků vzdělávání žáků 9. tříd 005 MA0Z9 MATEMATICKÉ DOVEDNOSTI A Testový sešit obsahuje 7 úloh. Na řešení úloh máte 40 minut. Při řešení konstrukční úlohy užívejte rýsovací potřeby. V průběhu

Více

Matematika prakticky. Pracovní listy pro žáky. Matematika prakticky. - Pracovní listy pro žáky. Fotka nebo fotky

Matematika prakticky. Pracovní listy pro žáky. Matematika prakticky. - Pracovní listy pro žáky. Fotka nebo fotky PRACOVNÍ LIST_ŽÁCI 1 Matematika prakticky Matematika prakticky - Pracovní listy pro žáky Fotka nebo fotky Pracovní listy pro žáky PRACOVNÍ LIST_ŽÁCI 2 Vážení kolegové, tuto publikaci připravil kolektiv

Více

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák: Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,

Více

Obecné informace: Typy úloh a hodnocení:

Obecné informace: Typy úloh a hodnocení: Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata)

Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Číslo a početní operace - využívá při pamětném i písemném počítání komutativnost a asociativnost

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM DR. J. PEKAŘE V MLADÉ BOLESLAVI

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM DR. J. PEKAŘE V MLADÉ BOLESLAVI školní vzdělávací program ŠKOLNÍ VZDĚLÁVACÍ PROGRAM DR. J. PEKAŘE V MLADÉ BOLESLAVI PLACE HERE ŠKOLNÍ VZDĚLÁVACÍ PROGRAM DR. J. PEKAŘE V MLADÉ BOLESLAVI Název školy Adresa Palackého 211, Mladá Boleslav

Více

Základní škola a Mateřská škola Bohuňovice

Základní škola a Mateřská škola Bohuňovice Základní škola a Mateřská škola Bohuňovice 4. třída leden 2014 Zábavné procvičování matematiky Příklady od Viktorky Horákové: 1. Porovnej čísla 8x80 6x90 24:2 24:4 60x2 50x30 35:5 32:4 2x90 60x3 81:9 64:8

Více

ESKÝ JAZYK ESKÝ JAZYK

ESKÝ JAZYK ESKÝ JAZYK PRACOVNÍ MATERIÁLY PRACOVNÍ MATERIÁLY ESKÝ JAZYK ESKÝ JAZYK Struktura vyuovací hodiny Plán Struktura vyuovací vyuovací hodiny hodiny Plán Metodický vyuovací list aplikace hodiny Záznamový Metodický list

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Spočítá prvky daného konkrétního souboru do 6., Zvládne zápis číselné řady 0 6 Užívá a zapisuje vztah rovnosti a nerovnosti Numerace v oboru 0 6 Manipulace s předměty, třídění předmětů do skupin. Počítání

Více

1. Racionální čísla. 18 c) ( 12) + ( 8) = počítám s celými čísly 1 2 3 4 5 6 7 8 9 10. počítám s desetinnými čísly 1 2 3 4 5 6 7 8 9 10

1. Racionální čísla. 18 c) ( 12) + ( 8) = počítám s celými čísly 1 2 3 4 5 6 7 8 9 10. počítám s desetinnými čísly 1 2 3 4 5 6 7 8 9 10 . Racionální čísla Vypočítej. a) = 0 d) ( ) = g) ( ) + ( ) + (+) = 0 b) + ( ) = e) : ( ) = h) ( ) ( ) (+) = c) ( ) + ( ) = 0 f) ( ) : ( ) = i) ( ) = 0 0 Vypočítej. a) ( + ) : ( ) = b) ( ) + ( ) = 0 c)

Více

Matematika Název Ročník Autor

Matematika Název Ročník Autor Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná

Více

Matematika 1.ročník str. učivo -témata číslo a početní operace geometrie Závislosti, vztahy a práce s daty

Matematika 1.ročník str. učivo -témata číslo a početní operace geometrie Závislosti, vztahy a práce s daty Matematika 1.ročník str. učivo -témata číslo a početní operace geometrie Závislosti, vztahy a práce s daty přirozená čísla 1 až 5 správně čte daná čísla vyhledává je na číselné ose řadí čísla lineárně

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

PÍRUKA A NÁVODY PRO ÚELY: - RUTINNÍ PRÁCE S DATY

PÍRUKA A NÁVODY PRO ÚELY: - RUTINNÍ PRÁCE S DATY PÍRUKA A NÁVODY PRO ÚELY: - RUTINNÍ PRÁCE S DATY YAMACO SOFTWARE 2006 1. ÚVODEM Nové verze produkt spolenosti YAMACO Software pinášejí mimo jiné ujednocený pístup k použití urité množiny funkcí, která

Více

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5 MATEMATIKA 9. TŘÍDA 1. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 17 (B) M = 4N (C) M

Více

ročník 6. 7. 8. 9. celkem počet hodin 4 4 4 5 17 Předmět matematika se vyučuje jako samostatný předmět. Výuka probíhá převážně v kmenových třídách.

ročník 6. 7. 8. 9. celkem počet hodin 4 4 4 5 17 Předmět matematika se vyučuje jako samostatný předmět. Výuka probíhá převážně v kmenových třídách. MATEMATIKA Charakteristika vyučovacího předmětu Obsahové vymezení Vzdělání v matematice je zaměřeno na: užití matematiky v reálných situacích osvojení pojmů, matematických postupů rozvoj abstraktního myšlení

Více

MIŠ MAŠ. 17 OBVODY, obsahy 7.4.2014.notebook. May 18, 2015. Základní škola Nýrsko, Školní ulice, příspěvková organizace.

MIŠ MAŠ. 17 OBVODY, obsahy 7.4.2014.notebook. May 18, 2015. Základní škola Nýrsko, Školní ulice, příspěvková organizace. Základní škola Nýrsko, Školní ulice, příspěvková organizace (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) Název projektu: MIŠ MAŠ Moderní Interaktivní Škola Možností a Šancí (pro každého žáka) Číslo

Více

DOUOVÁNÍ DTÍ Z DTSKÉHO DOMOVA ŽÍCHOVEC Projekt podpory vzdlávání

DOUOVÁNÍ DTÍ Z DTSKÉHO DOMOVA ŽÍCHOVEC Projekt podpory vzdlávání DOUOVÁNÍ DTÍ Z DTSKÉHO DOMOVA ŽÍCHOVEC Projekt podpory vzdlávání A. Text projektu 1. Cíl projektu Cílem projektu je zlepšení životních šancí dtí z DD Žichovec a zlepšení jejich schopnosti integrace do

Více

původ neafrický, neevropský Rh(D) Rh(D)+ 2 Zapiš pomocí zlomku výskyt krevních skupin v ČR. AB AB AB AB AB AB AB AB AB 0

původ neafrický, neevropský Rh(D) Rh(D)+ 2 Zapiš pomocí zlomku výskyt krevních skupin v ČR. AB AB AB AB AB AB AB AB AB 0 Seznámení se zlomky Pro lidi s krví Rh je riskantní cestovat do jiných částí světa, kde jsou zásoby krve Rh jen malé. Vybarvi podle hodnot uvedených v tabulce dané části. Ve kterých oblastech mají málo

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Obsah I. ČÁST PŘEMĚNY. Předmluva... V Životopis... VII Přehled použitých zkratek... VIII I.1 HLAVA: OBECNÉ OTÁZKY PŘEMĚN... 3

Obsah I. ČÁST PŘEMĚNY. Předmluva... V Životopis... VII Přehled použitých zkratek... VIII I.1 HLAVA: OBECNÉ OTÁZKY PŘEMĚN... 3 Obsah Předmluva... V Životopis... VII Přehled použitých zkratek... VIII I. ČÁST PŘEMĚNY I.1 HLAVA: OBECNÉ OTÁZKY PŘEMĚN... 3 I.1.1 DÍL: Úvodní výklady... 3 I.1.1.1 kapitola: Historický exkurs... 3 1. oddíl:

Více

53. ročník matematické olympiády. q = 65

53. ročník matematické olympiády. q = 65 53. ročník matematické olympiády! 1. V rovině je dán obdélník ABCD, kde AB = a < b = BC. Na jeho straně BC eistuje bod K a na straně CD bod L tak, že daný obdélník je úsečkami AK, KL a LA rozdělen na čtyři

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně

Více

Učební osnovy pracovní

Učební osnovy pracovní ZV Základní vzdělávání 5 týdně, povinný ČaPO: Přirozená čísla do a přes 1 000 000 Žák: ČaPO: počítá do 1 000 000 - počítá po statisících, desetitisících, tisících ČaPO: čte a zobrazí číslo na číselné ose

Více

MATEMATIKA. Charakteristika vyučovacího předmětu 1. stupeň: Obsahové, časové a organizační vymezení: Předmětem prolínají průřezová témata:

MATEMATIKA. Charakteristika vyučovacího předmětu 1. stupeň: Obsahové, časové a organizační vymezení: Předmětem prolínají průřezová témata: MATEMATIKA Charakteristika vyučovacího předmětu 1. stupeň: Matematika poskytuje vědomosti a dovednosti potřebné v praktickém životě a umožňuje tak získávat matematickou gramotnost. Žáci získávají početní

Více

V předmětu Matematika je realizován obsah vzdělávací oblasti Matematika a její aplikace, oboru Matematika a její aplikace.

V předmětu Matematika je realizován obsah vzdělávací oblasti Matematika a její aplikace, oboru Matematika a její aplikace. MATEMATIKA Charakteristika vyučovacího předmětu V předmětu Matematika je realizován obsah vzdělávací oblasti Matematika a její aplikace, oboru Matematika a její aplikace. Žáci v ní mají získat početní

Více