Vysoká škola finanční a správní, Fakulta sociálních studií

Rozměr: px
Začít zobrazení ze stránky:

Download "Vysoká škola finanční a správní, Fakulta sociálních studií"

Transkript

1 ORBIS SCHOLAE, 2013, 7 (3) EMPIRICKÉ STUDIE Koho znevýhodňuje škola: chlapce, nebo dívky? Rozdíly v dovednostech, školních výsledcích a vzdělanostních aspiracích dívek a chlapců devátých tříd základních škol Petr Matějů Vysoká škola finanční a správní, Fakulta sociálních studií Natalie Simonová Institut pro sociální a ekonomické analýzy Abstrakt: Stať se v kontextu feministického diskurzu zabývá rozdíly mezi žáky a žákyněmi devátých tříd základních škol ve školních výsledcích a dalších studijních plánech. Autoři si kladou za cíl identifikovat a vysvětlit vliv pohlaví žáků na známky z matematiky a českého jazyka, a to při kontrole rodinného původu, příslušných dovedností měřených testy funkční gramotnosti PISA a dalších sociálně-psychologických faktorů. Věnují se rovněž rozdílům ve studijních plánech po ukončení základní školy a v aspiracích na dosažení vysokoškolského vzdělání. Analýza provedená na datech z longitudinálního projektu PISA-L z roku 2003 prokazuje, že pohlaví žáka má na výsledky vzdělávání statisticky významný vliv, avšak opačný než uvádí feministicky orientované studie, tj. školní známkování působí v českém vzdělávacím systému v neprospěch chlapců, kteří jsou při stejných dovednostech klasifikováni hůře než dívky. Dívky se zároveň častěji než chlapci hlásí ke studiu na gymnáziích a častěji aspirují na dosažení vysokoškolského vzdělání. Autoři se proto v závěru dotýkají i otázky možného významu těchto zjištění pro vysvětlení prokazatelně nižší úspěšnosti žen na trhu práce, a to zejména na počátku pracovní kariéry. Klíčová slova: rozdíly mezi pohlavími, školní výsledky, výzkum PISA, spravedlnost ve vzdělávání Who is shortchanged in school: boys or girls? Gender gaps in skills, grading and educational aspirations among pupils of 9th grade of elementary schools Abstract: This paper addresses one of the key issues of contemporary sociology of education, namely gender gaps in academic performance and their consequences for school continuation decisions. We begin with a critical review of feminist production on this issue and proceed by the analysis of data from the PISA 2003 student assessment, encompassing the academic performance and family background of about th grade pupils. Similar to most recent research carried out in other countries, and in contrast to most of the findings presented in feminist studies, 1 Výzkum, o jehož výsledky se opírá tato stať, i práce na této stati, byly podpořeny grantem od Grantové agentury České republiky na bilaterální projekt Educational Stratification in Taiwan and the Czech Republic: Accessibility of and Heterogeneous Returns to Higher Education (Grant číslo P404/12/J006, hlavní řešitelé: Michael Lee Smith a Shu-Ling Tsai). Autoři děkují D. Münichovi, J. Strakové a M. Smithovi za cenné připomínky k dřívější verzi stati. Odpovědnost za provedené analýzy a intepretace výsledků je však zcela na autorech této stati. Veškerou korespondenci prosíme zasílat na adresu: Petr Matějů, Vysoká škola finanční a správní, Estonská 500, Praha 10, , nebo Natalie Simonová, Institut pro sociální a ekonomické analýzy, José Martího 407/2, Praha 6, ,

2 Petr Matějů, Natalie Simonová 108 we find that girls outperform boys in grades in Czech language and math, even after controlling for measured ability in reading and math, family background and other student attributes. Girls are also substantially more likely than boys to apply to secondary grammar schools, as well as aspire to a college education, even after controlling for measured ability. Based on relevant literature, we put forward a number of theoretical perspectives that shed light on the possible causes of these empirical findings. Keywords: gender gaps in education, gender inequality, educational inequality, academic achievement, educational aspirations 1 Úvod Jen málokteré sociologické pojmy dostaly tak silný ideologický a politický náboj jako pojmy třída, rasa a v posledních desetiletích také gender. Ačkoli každý z nich patří ke klíčovým teoretickým a analytickým nástrojům výzkumu sociálních nerovností, všechny se možná nevyhnutelně staly náchylnými ke zneužití v ideologických, politických, občanských či národnostních střetech, z nichž řada měla fatální důsledky. 2 O tom, že feministický aktivismus 3 nepříznivě ovlivnil především výzkum v oblasti vzdělávání, psali jiní (např. Sommers, 1994, 2000; Kleinfeld, 1999). Aniž bychom se chtěli zaplétat do ideologické debaty, je třeba dát za pravdu Kleinfeldové, která před více než deseti lety poukázala na to, že ženské nátlakové skupiny vedly intenzivní mediální kampaň propagující myšlenku, že školy diskriminují dívky. Jejich cílem bylo přesvědčit veřejnost, že ženy jsou,oběťmi nespravedlivého vzdělávacího systému a že si zaslouží zvláštní zacházení, lepší financování a zvýšenou politickou pozornost. Jejich sofistikovaná kampaň namířená k veřejnosti byla nakonec úspěšná. Názor, že dívky jsou ve školách znevýhodňovány, se stal součástí všeobecného mínění tím, co lidé berou jako zaručené, aniž by si položili otázku, zda je to pravda, či nikoli (Kleinfeld, 1999, s. 9). Kritická zhodnocení především amerických studií, které měly dokládat znevýhodňování dívek ve vzdělávacím systému (Sommers, 1994, 2000; Kleinfeld, 1999), ukázala, že řada z nich stála na velmi chatrných metodologických základech. Shodou okolností i u nás hojně citované studie autorské dvojice Sadkerová a Sadker (1985, 1994) podle Sommersové stály na výzkumných zprávách 2 Zpolitizování marxistické filozofie na dlouhou dobu nejen vážně pokřivilo koncept sociální třídy, ale nakonec více než půl století legitimizovalo nejrůznější podoby diktatury proletariátu, jejímž ušlechtilým cílem měla být emancipace všech tříd a nastolení beztřídní společnosti. Podobně tomu bylo s bezprecedentním zneužitím rasy a výsledků věd, které se zabývají fyziologickými, biologickými a psychologickými rozdíly mezi rasami. To vše proto, aby údajně v životním a historickém zájmu jedné z ras byla zahájena nejhorší genocida v soudobých dějinách. Aniž bychom měli v úmyslu klást rovnítko mezi tyto případy zneužití v sociologii jinak běžných a legitimních nástrojů k analýze nerovností, vyjadřujeme jistou a nepochybně legitimní obavu, že zneužívání pojmu pohlaví (gender) k podobně ideologicky zabarveným účelům a nastolování politické agendy nepříznivě ovlivňuje použití této kategorie v sociologickém výzkumu nerovností, a to zejména ve výzkumu sociální stratifikace, vzdělanostních nerovností, potažmo pak v analýze nerovností na trhu práce, v politické participaci a při zkoumání dalších sociálních procesů, které lze těžko popsat, natož pak pochopit, aniž v příslušném kontextu vysvětlíme rozdíly mezi muži a ženami a příčiny jejich přetrvávání. 3 Podotýkáme, že feministický aktivismus nepovažujeme za vědní obor ani disciplínu, ale hnutí.

3 Koho znevýhodňuje škola: chlapce, nebo dívky? z kvalitativních výzkumů (zpravidla šlo o pozorování ve třídách a rozhovory s učiteli, autoři prováděli výzkum po řadu let sami), které se buď nikdy nepodařilo získat a prověřit, nebo se s výsledky jejich pozorování zacházelo značně voluntaristicky (viz Sommers, 1994). Podobné tendence lze ovšem identifikovat i v současnosti. Například některé studie z produkce sociologie genderu na téma nerovností ve vzdělávání založené převážně na kvalitativních sondách (např. Jarkovská & Lišková, 2008; Smetáčková, 2009), tvrdí, že dosavadní analýzy vzdělanostních nerovností opomíjejí genderový aspekt reprodukce vzdělanostních nerovností, tj. ignorují diskriminaci na základě genderu při vstupu do vzdělávacího systému, při průchodu vzdělávacím systémem a při dalším uplatnění na pracovním trhu. Tyto studie, podobně jako výše zmíněné zahraniční práce, se však díky zvolené kvalitativní metodologii potýkají s absencí důkazů pro většinu klíčových tvrzení a závěrů. Jako příklad za všechny lze uvést tvrzení Jarkovské a Liškové, podle kterého na všech vzdělávacích stupních tvoří součást vzdělávání mechanismy (skryté kurikulum), které umísťují ženy na nižší společenské pozice (ve srovnání se stejně a často i méně vzdělanými muži). Tyto mechanismy směřují ženy k tomu, aby svůj nižší status akceptovaly a považovaly ho za přirozený a aby ho vnímaly jako samozřejmou součást své genderové identity (Jarkovská & Lišková, 2008, s. 684). I zde se ve prospěch tezí o genderovaném kurikulu a genderových stereotypech argumentuje odkazy na již zmíněné práce Sadkera a Sadkerové, přičemž domácí odkazy jdou převážně za podobnými tzv. etnografickými studiemi, které se vyznačují velmi chatrným metodologickým aparátem a úplnou absencí testování hypotéz (viz např. Smetáčková, 2005). Rozhodně nezpochybňujeme tvrzení, že ženy dosahují na trhu práce nižších výdělků a nižších pozic než muži, a to i při srovnatelném vzdělání. Avšak používat tento fakt jako vysvětlení segregace (dívek) v rámci vzdělávacího systému se nezdá být udržitelné, ačkoli jak ukazují nedávno publikované studie (viz např. Mechtenberg, 2009) souvislosti mezi možným zvýhodňováním jednoho či druhého pohlaví v procesu vzdělávání na jedné straně a pozdějšími šancemi na trhu práce na straně druhé přeci jen existují, a je třeba je podrobit analýze. Dostupná evidence však nesvědčí ve prospěch tvrzení, podle kterého umísťování žen na nižší společenské pozice je způsobeno skrytým kurikulem vzdělávacího systému. Spíše se zdá, že ve školním prostředí působí jiné mechanismy, které ve svém důsledku oslabují konkurenceschopnost žen na trhu práce. Prověřit existenci těchto mechanismů je jedním z hlavních cílů této stati Sociologické implikace genderových nerovností ve vzdělávání Přes výhrady, které máme k metodologii i závěrům tzv. genderové sociologie, jsme toho názoru, že porozumění faktorům, které způsobují rozdíly mezi pohlavími v dosaženém vzdělání a v úspěchu na trhu práce, může výrazně přispět k formulování po-

4 Petr Matějů, Natalie Simonová 110 litik, jejichž cílem je dosažení větší rovnosti mezi muži a ženami. Vycházíme z toho, že právě nerovnosti mezi muži a ženami reprodukované, nebo dokonce posilované, ve vzdělávání, stejně jako některé nástroje používané k jejich odstranění, nezřídka generují nerovnosti jiného typu, například tím, že přispívají k reprodukci nerovností na trhu práce (Mechtenberg, 2009) a mohou negativně působit na formování lidského kapitálu, a tím samozřejmě podvazovat ekonomický růst (King & Hill, 1995; Sen, 1999; Klasen, 2002; Klasen & Lamanna, 2009). Na druhé straně je třeba připomenout známý fakt, že poválečný vývoj v úrovních vzdělání mužů a žen, charakteristický jejich poměrně rychlým sbližováním (nezřídka i překlopením ve prospěch žen), měl výrazné důsledky jak pro postavení žen na trhu práce, tak pro dosažení větší rovnováhy mezi pracovním a rodinným životem u mužů a žen. Trend, kdy ženy v řadě industrializovaných společností předstihly muže v počtu absolventů vysokých škol, byl doprovázen rostoucí ekonomickou návratností vzdělání žen (DiPrete & Buchmann, 2006), což přispělo ke zmenšení (nikoli však odstranění) rozdílů v příjmech. Titíž autoři ve své zatím poslední a komplexně pojaté studii na toto téma (DiPrete & Buchmann, 2013) s odvoláním na statistická data ukazují, jaké celospolečenské a ekonomické důsledky má (a zřejmě ještě bude mít) poměrně hluboký propad šancí na dosažení vyššího vzdělání u mužů dosahujících stejné úrovně měřených kompetencí jako ženy (DiPrete & Buchmann, 2013, s. 4 6). I tento fenomén by si zasloužil studii provedenou na českých statistických a výzkumných datech. Přes nepochybně pozitivní trend spočívající v rostoucí ekonomické návratnosti vzdělání žen jsou jednou z aktuálních a nepochybně velmi citlivých otázek, které stojí před sociologickým výzkumem, právě rozdíly ve výsledcích vzdělávání a jejich příčiny. S tím souvisí otázka spravedlnosti, nestrannosti a objektivity v hodnocení žáků a žákyň učiteli (problém vlivu pohlaví žáka na známkování). Řada autorů totiž prokázala, že hodnocení učitelů je do značné míry subjektivní, a často náchylné k některým formám stereotypizace, což vede k otázce, zda známky jsou objektivním měřítkem skutečného výkonu a znalostí studentů (viz například Hoge & Coladarci, 1989). Některé stereotypy učitelů jsou přitom považovány za hlavní příčinu rozdílného hodnocení výsledků vzdělávání (Bernard, 1979; AAUW, 1992; Tiedemann, 2000). Tyto stereotypy, v kombinaci s tezemi, podle nichž učitelé věnují více pozornosti a zpětné vazby chlapcům než dívkám (Sadker & Sadker, 1994), dlouhodobě posilovaly přesvědčení, že dívky jsou v mnoha školních systémech systematicky znevýhodňovány. Mezinárodní srovnávací výzkumy založené na měření dovedností žáků na různých stupních vzdělávacího systému (PISA, TIMSS atd.) naopak ukázaly, že v řadě zemí došlo k podstatné změně projevující se v tom, že ženy dosahují lepších výsledků než muži, a to i v oblastech, kde tomu bylo tradičně naopak (sociologicky fundovanou analýzu tohoto vývoje podávají např. Buchmann, DiPrete, & McDaniel, 2008). Ukazuje se například, že ani nejvíce zakořeněný stereotyp, spočívající v tvrzení, že dívky prospívají hůře než chlapci v matematice, který byl důvodem ke směřování dívek do netechnických oborů, již nemá oporu v datech: v řadě zemí OECD rozdíl ve výsledcích v matematice mezi chlapci a dívkami již není statisticky významný, zatímco ve většině zemí dívky s poměrně velkým náskokem předstihují chlapce ve čtení (OECD,

5 Koho znevýhodňuje škola: chlapce, nebo dívky? 2011). Tyto trendy daly vznik místy velmi vzrušené debatě na téma, zda předchozí výzkum prokazující znevýhodnění dívek ve vzdělávání nebyl genderově vychýlený, a to bez solidní empiricky a statistiky založené argumentace (Sommers, 2000). S ohledem na to, jak důležitým tématem rozdíly mezi pohlavími v českém vzdělávacím systému jsou, se v této stati snažíme tyto rozdíly identifikovat, a to v několika směrech. Zaprvé nám jde o identifikaci rozdílů v hodnocení školních výsledků (známkách) žáků a žákyň v 9. ročnících školní docházky, a to při kontrole rodinného původu, příslušných dovedností vztahujících se k daným předmětům a dalších faktorech sociálně psychologické povahy. S přihlédnutím ke skutečnosti, že český sekundární stupeň vzdělávání (podobně jako systém slovenský, maďarský, polský, rakouský a německý) je značně stratifikován, se rovněž věnujeme rozdílům mezi pohlavími v aktuálních plánech studovat na některém z typů gymnázií (vyjádřeno podáním přihlášky) a v aspiracích na dosažení vysokoškolského vzdělání. Naše analýza též využívá dosavadního poznání na poli genderových rozdílů ve vzdělanostních aspiracích v České republice (Potužníková & Straková, 2006; Matějů, Smith, Soukup, & Basl, 2007; Matějů & Smith, 2009) a vlivu struktury vzdělávacího systému na utváření vzdělanostních nerovností (Matějů & Straková, 2005; Straková, 2007, 2010; Simonová & Soukup, 2010). I když se soustředíme v prvé řadě na statistické modely vysvětlující příslušné rozdíly mezi žáky a žákyněmi, vedeni snahou přispět k pochopení rozsahu a povahy těchto rozdílů prezentujeme i výsledky čistě deskriptivních analýz. V závěru stati se pokoušíme zjištěné rozdíly interpretovat v kontextu relevantních teorií Rozdíly ve výsledcích vzdělávání chlapců a dívek v teoretické a empirické reflexi Řada starších i nedávno publikovaných studií prokázala, že studijní výsledky dívek nejenže dosahují úrovně chlapců, ale často je i převyšují (Mickelson, 1989). Rozdíly ve výsledcích mezi oběma pohlavími mají, zdá se, svůj prvopočátek již ve velmi raném věku. Co se týče čtení, dívky vykazují vyšších úrovní dovedností již v předškolním vzdělávání (Tach & Farkas, 2006), zatímco pětiletí až sedmiletí chlapci jsou ve srovnání s dívkami náchylnější k poruchám učení, což v pozdějším životě přispívá k jejich asociálnímu chování a dalším problémům (Trzesniewski et al., 2006). V šetřeních PISA chlapci v průměru převyšují dívky o 12 bodů v matematických dovednostech, zatímco dívky převyšují chlapce o 39 bodů v dovednostech čtenářských (OECD, 2009). V řadě zemí však nejsou rozdíly v testech z matematiky mezi chlapci a dívkami statisticky signifikantní. Lepší čtenářské dovednosti nicméně dívky vykazují v každé ze zemí, které se výzkumu PISA účastní. Rozdíly ve výsledcích mezi pohlavími se linou celou školní kariérou, aniž by byly výrazněji ovlivňovány tím, jaké obory studují více dívky či chlapci (Leopard & Jiang, 1999; Buchmann & DiPrete, 2006). Naprostá většina současných výzkumů zabývajících se rozdíly ve výsledcích vzdělávání ukazuje, že teze o horších výsledcích žen ve srovnání s muži je mýtus, přičemž s ohledem na chatrný empirický základ tohoto tvrzení, jež v 80. a 90. letech zaplavilo

6 Petr Matějů, Natalie Simonová 112 americká média, nelze zřejmě prokázat, že to nebyl mýtus již v době jeho zrodu. Za připomenutí v této souvislosti stojí diskuze vyvolaná studií publikovanou American Association of University Women (AAUW, 1992), která s odvoláním na výzkumy provedené již zmiňovanou autorskou dvojicí Sadkers a Sadkersová argumentovala tím, že dívky ve srovnání s chlapci dosahují horších výsledků v tak důležitých předmětech, jako je například matematika, zejména proto, že chlapci se ze strany učitelů těší mnohem větší (příznivé) pozornosti než dívky. Stěžejní podpůrné argumenty, na kterých byla tato studie založena, vycházely z pozorování publikovaných až později (Sadker & Sadker, 1994); nicméně z následné práce se důkazy o zvýhodňování mužů záhadně vytratily (Kleinfeld, 1996), a nebylo tudíž možné je verifikovat. Stejně tak je možné, že i další americké, zejména starší, studie hovořící o zvýhodňování mužů mohly mít v prvé řadě politický cíl, a byly tedy předpojaté (Sommers, 2000). V každém případě, ať už učitelé věnují ve třídě více pozornosti chlapcům, nebo dívkám, výzkumy naznačují, že velká část této pozornosti je negativního rázu a má spíše disciplinární povahu (Bossert, 1981; Kleinfeld, 1996), částečně kvůli většímu sklonu některých žáků k poruchám pozornosti. V britské studii z roku 1999 (Younger et al., 1999, s. 329) učitelé připustili, že hladina hluku, kterou produkují chlapci, a jejich aktivity, které nesouvisí s výukou, jejich špatné chování a evidentně nedostatečné soustředění, nevyhnutelně přitahuje větší pozornost učitelů. Chlapci jsou vnímáni jako ti, kteří více vyrušují a méně se zajímají o výuku, ale zároveň jako ti, kteří potřebují více pobízet a potřebují větší podporu v učení. Autoři této studie také zjistili, že chlapci jsou ve srovnání s dívkami při výuce více aktivní v některých typech diskuzí, zatímco dívky více využívají individuální interakce učitel student, které mnohem více naplňují cíle výuky. V souvislosti s rolí učitelů v procesu osvojování si poznatků při výuce se výzkum zaměřuje také na to, zda a případně jakou roli v tomto procesu hraje pohlaví učitele. Studie dochází k rozporuplným závěrům. Ehrenberg, Goldhaber a Brewer (1995) zjistili prostřednictvím výzkumu žáků desátých ročníků, účastnících se v roce 1988 National Education Longitudinal Study, že pohlaví učitele nemá prokazatelný vztah ke školnímu výkonu ať již chlapců, či dívek. Nicméně jiná studie využívající tatáž data (Dee, 2006) došla k závěru, že výuka učitelem stejného pohlaví má na výkon žáků (chlapců i dívek) silný vliv, a to jak na výsledky v testech, tak na to, jak výkon žáků učitel hodnotí. Další výzkum založený na longitudinálním šetření National Longitudinal Survey of Youth (Nixon & Robinson, 1999) ukázal, že podíl učitelek na středních školách byl pozitivně korelován s lepšími studijními výsledky dívek. Avšak Neugebauer et al. (2011) naopak za pomoci rozšířeného souboru dat z výzkumu PIRLS v Německu nenašli systematický vliv pohlaví učitele na výkon chlapců či dívek jak ve standardizovaných testech čtenářské gramotnosti, tak ve školní klasifikaci. Co se týče České republiky, tento jev dosud systematicky zkoumán nebyl. V této souvislosti je s podivem, že v šetřeních programu PISA není sledováno pohlaví učitele u těch předmětů, které jsou z hlediska výsledků v klíčových oblastech dovedností (minimálně čtenářské a matematické) relevantní, tj. v našem případě v předmětech matematika a český jazyk.

7 Koho znevýhodňuje škola: chlapce, nebo dívky? Rozdíly ve výsledcích vzdělávání mezi muži a ženami mohou být způsobeny také rozdíly v rodinném zázemí a celospolečenském kontextu. Na základě nejnovějších dat PISA 2009 autoři González de San Román a Rica Goiricelaya (2012) zjistili, že dívky dosahují lepšího výkonu, pokud jsou jejich matky zaměstnané, zatímco pro chlapce tento efekt neplatí. To naznačuje, že na dívky významně působí mezigenerační přenos hodnot jejich matek. Autoři dále zjistili, že vyšší výkon dívek v matematice i čtení je kladně ovlivněn rovností pohlaví na celospolečenské úrovni dané země, tak jak ji například měří index navržený pro Global Gender Gap Report (Hausmann et al., 2011). To znamená, že ve společnostech, kde jsou si pohlaví více rovna, jako např. v severských státech, dosahují dívky lepších výsledků v matematice i čtení, čímž se vyrovnává jejich ztráta v matematice a posiluje jejich náskok ve čtení (Hausmann et al., 2011, s. 14). Tato zjištění potvrzují výsledky autorů Guiso et al. (2008) otištěné v časopise Science, podle kterých genderové rozdíly v matematice zjištěné šetřením PISA 2003 v zemích s větší rovností pohlaví mizí. V České republice výzkum rozdílů mezi žáky a žákyněmi v dosažených studijních výsledcích potvrdil, že dívky dosahují lepších známek než chlapci prakticky ve všech předmětech (Straková, Potužníková, &Tomášek, 2006), což ovšem neplatí pro skóry dosažené v testech dovedností. Kvalitativní studie dvou pražských škol (Vojtíšková, 2011) ukázala, že učitelé hodnotí žáky silně pod vlivem jejich chování a interakcí ve třídě, stejně jako pod vlivem subjektivní percepce jejich motivace a studijního úsilí. Další výzkum zjistil, že dívky v českém vzdělávacím systému mají větší pravděpodobnost vstupu na gymnázia, což je spojeno s jejich lepšími výsledky v přijímacích testech a následnou vyšší úspěšností v přechodu na vysokou školu ve srovnání s absolventy jiných typů středních škol (Straková, 2007, 2010; Šmídová, Janoušková, & Katrňák, 2008). Stejně tak mají dívky ve srovnání s chlapci vyšší pravděpodobnost aspirovat na studium vysoké školy, a nakonec i získat vysokoškolské vzdělání, a to i při kontrole jejich studijních schopností a rodinného původu (Matějů & Smith, 2009; Simonová & Soukup, 2010). Celkově shrnuto, rozdíly mezi muži a ženami v českém vzdělávacím systému kopírují vzorce zachycené mezinárodní literaturou. V důsledku vysoké míry diverzifikace českého středního školství představují specifický problém rozdíly v poměrech mužů a žen v různých typech středních škol, zejména pak na víceletých i klasických gymnáziích. Je přitom známo, že studium na určitém typu střední školy výrazně ovlivňuje šance na dosažení vysokoškolského vzdělání. Proto právě tomuto fenoménu, kromě souvislostí mezi známkováním učitelů a skóry, jichž žáci dosáhli v relevantních dovednostech (matematika, český jazyk), věnujeme v analytické části této stati stěžejní pozornost Testované hypotézy Na základě zjištění dostupných ve světové literatuře, která jsme částečně prezentovali v předchozí části, je možné formulovat několik předpokladů a hypotéz o rozdílech ve školních výsledcích mezi žáky a žákyněmi devátých tříd. V souladu s genderovými stereotypy bychom mohli očekávat, že:

8 Petr Matějů, Natalie Simonová 114 a) chlapci budou dosahovat lepších výsledků v matematice, zatímco dívky budou dosahovat lepších výsledků ve čtení; b) chlapci budou dosahovat vyšších hodnot v naměřené osobní účinnosti (self-efficacy) 4, která se projevuje mimo jiné větší psychickou odolností v náročných situacích (například právě při testování a zkoušení); c) chlapci budou náchylnější než dívky k výskytu poruch chování; d) chlapci budou ve srovnání s dívkami volit v přístupu k matematice spíše aktivní strategie (samostatné hledání řešení), zatímco dívky budou spoléhat spíše na pasivní strategie spočívající primárně na zapamatování a procvičování; e) chlapci budou ve strategiích životního úspěchu klást větší důraz na riskování a podnikavost, zatímco dívky budou více spoléhat na znalosti a vzdělání ; f) současně budeme předpokládat, že tyto rozdíly budou mít vliv na známky z matematiky a českého jazyka a vzdělanostní aspirace. Na základě literatury popsané výše formulujeme následující hypotézy: H1 Předpokládáme, že dívky dosahují ve srovnání s chlapci statisticky významně lepších známek z českého jazyka, a to i při kontrole čtenářských dovedností (měřených testy PISA) 5, sociálně-ekonomického a kulturního zázemí a dalších vlastností žáka (např. osobní účinnosti, výskytu problémového chování atd.). H2 Podobně předpokládáme, že dívky dosahují ve srovnání s chlapci statisticky významně lepších známek z matematiky, a to i při kontrole matematických dovedností (měřených testy PISA), sociálně-ekonomického a kulturního zázemí a dalších vlastností žáka (viz výše). H3 Předpokládáme, že dívky se častěji hlásí ke studiu na gymnáziu, a to i při kontrole čtenářských a matematických dovedností, sociálně-ekonomického a kulturního zázemí, známek z matematiky a českého jazyka a dalších vlastností žáka (viz výše). H4 Rovněž v souladu s výsledky předchozího výzkumu předpokládáme, že dívky častěji než chlapci aspirují na dosažení vysokoškolského vzdělání, a to i po kontrole čtenářských a matematických dovedností, sociálně-ekonomického a kulturního zázemí, známek z matematiky a českého jazyka a dalších vlastností žáka (viz výše). Shrnuto do teze, která povede naši analýzu, lze říci, že při kontrole výsledků v testech PISA vztahujících se k příslušným předmětům (v našem případě matematice a českém jazyce) by pohlaví žáka nemělo mít na výsledky vzdělávání (známky, přihlášky na gymnázium, aspirace na vysokou školu) statisticky významný vliv. Pokud je vliv pohlaví při srovnatelných úrovních naměřených dovedností (schopností) statisticky významný, budeme se klonit k závěru, že chlapci a dívky srovnatelných 4 Pojem self-efficacy (překládáme jako osobní či vnitřní účinnost, sebedůvěra) označuje přesvědčení jedince o jeho schopnostech a kapacitách, které předurčují dosahování očekávaných či vyžadovaných úrovní určitého výkonu. Vnitřní účinnost ovlivňuje to, jak se lidé cítí, jak sami sebe motivují k výkonu a jak jednají zejména v situacích, na kterých podle nich záleží (více viz např. Bandura, 1994). 5 Jsme si vědomi toho, že testy čtenářských dovedností žáků používané v šetřeních PISA nemohou plně predikovat známky z českého jazyka, kde se hodnotí i další stránky výkonu v tomto předmětu, neměly by je však, alespoň podle našeho názoru, predikovat v různé míře u chlapců a dívek.

9 Koho znevýhodňuje škola: chlapce, nebo dívky? schopností nemají rovné podmínky k dosažení stejných formálních výsledků vzdělávání (Duckworth & Seligman, 2006). Rádi bychom se na tomto místě předem dotkli možných výtek na adresu našeho analytického přístupu, a to ve třech bodech. Předně je třeba zdůraznit, že netvrdíme, že testy čtenářských a matematických dovedností mají jednoznačně predikovat známky z příslušných předmětů (tj. z českého jazyka a matematiky). V obou předmětech učitelé hodnotí i jiné aspekty výkonu žáka než pouze ty, které zachycují testy čtenářských a matematických dovedností (jakkoli jde zřejmě o velmi důležité komponenty šířeji chápaných výsledků vzdělávání). Rozhodně se ale domníváme, že diskrepance mezi výsledky v testech a známkováním by neměla být systematicky významně odlišná pro dívky a chlapce. Dále může být vznesena námitka, že testy čtenářských a matematických dovedností v projektu PISA nejsou genderově neutrální, tj. že v případě chlapců měří něco jiného než v případě dívek. Dosavadní výzkum sice naznačuje, že chlapci si ve srovnání s dívkami vedou lépe v testech, zejména pak v těch, které jsou spojeny s větším stresem a jsou považovány za důležité (tzv. high-stake testy, viz například AAUWEF, 1998), a to i když běžně dostávají horší známky než dívky. Spencer et al. (1999) například ukázali, že dívky při vypracovávání těchto high-stake testů čelí větší trémě, protože se zároveň snaží bojovat se stereotypem, že chlapci jsou v těchto testech úspěšnější. Testy PISA však nejsou považovány za stresující (ve smyslu high-stake ), protože na nich nezávisí další pokračování vzdělávací dráhy žáků a nemají vliv na známky či hodnocení. Pokud je nám známo, dosud žádný výzkum neprokázal systematické vychýlení obtížnosti testů PISA směrem k dívkám nebo chlapcům. Proti případné námitce tohoto druhu svědčí i skutečnost, že existuje celá řada mezinárodních studií založených na datech PISA, které se věnují rozdílům ve výsledcích vzdělávání, přičemž rozdíly mezi chlapci a dívkami patří k nejčastěji testovaným a interpretovaným rozdílům (viz např. Ammermueller, 2004; Fryer & Levitt, 2009; Fuchs & Wossmann, 2007). I kdybychom připustili, že testy PISA nejsou genderově neutrální (pro což jak jsme již uvedli není žádný důkaz), těžko bychom tím mohli uspokojivě vysvětlit, proč dívky ve škole získávají z klíčových předmětů jedničky mnohem častěji než chlapci. Nepochybně je potřeba vzít v úvahu řadu mimokognitivních faktorů, které mohou ve výsledcích vzdělávání hrát významnou roli. Na prvním místě je třeba zmínit rozdíly v chování, které jak se obecně předpokládá obě pohlaví od sebe odlišují, jako je např. stupeň sebekázně a sebekontroly. Existují studie, které prokazují, že tento faktor má na známky značný vliv. Podle Duckwortha a Seligmana (2006) dobré chování přispívá k lepším známkám dívek, aniž by však ovlivňovalo jejich výsledky ve standardizovaných testech. Chlapci ve škole častěji trpí disciplinárními problémy, což může přispívat k rozdílům ve školním prospěchu mezi dívkami a chlapci. Abychom zjistili, do jaké míry mimokognitivní projevy žáků mohou ovlivňovat rozdíly v šancích na získání excelentní známky (jednička) na jedné straně, a aspiracemi chlapců a dívek na dosažení vysokoškolského vzdělání na straně druhé, zahrnuli jsme do našich modelů celou řadu proměnných, které tyto vlastnosti více či méně spolehlivě reprezentují. 115

10 Petr Matějů, Natalie Simonová 116 A konečně je třeba uvést, proč se zaměřujeme na vztah mezi výsledky testů na jedné straně a šancí na excelentní hodnocení (tj. získání jedničky ) z příslušného předmětu (tj. českého jazyka a matematiky) na straně druhé, což má konsekvence pro zvolený statistický model (binární logistická regrese místo ordinální logistické regrese). Předpokládáme, že excelentní známka (jednička) funguje vůči studentovi jako zřetelný signál, že v daném předmětu (zpravidla však ve více předmětech) patří mezi jednoznačně nejlepší, což nepochybně posiluje jeho/její motivaci k dalšímu studiu, zpravidla na elitní nebo známé, kvalitní škole. 6 Zde pak vzniká efekt, který lze považovat za centrální mechanismus zajišťující selekci, o které hovoří teorie efektivně udržované nerovnosti (Lucas, 2001), jejíž platností v českých podmínkách se zabývají Katrňák, Simonová a Fónadová (2013). Volba dichotomie kontrastující excelenci (jednička) vůči ostatním úrovním hodnocením ze strany učitelů souvisí i s hlavním cílem analýzy, jímž je testování hypotéz o vlivu pohlaví na vzdělanostní přechody (vstup na gymnázium, přechod mezi střední a vysokou školou), v nichž právě excelentní hodnocení studentů vyjádřené jedničkou hraje klíčovou roli, a to jak ve formování aspirací, tak reálných šancích v těchto stále ještě selektivních přechodech uspět. 5 Data, proměnné a metody Data použitá v této stati pochází z výzkumu PISA 2003, který byl v České republice součástí rozsáhlejšího výzkumu PISA_L 2003 (tj. longitudinálního projektu). Cílovou populaci výzkumu tvořili žáci narození v roce 1987, kteří v době sběru dat stále ještě plnili školní docházku. Dvoustupňová výběrová procedura plně respektovala pravidla předepsaná OECD. Při výběru vzorku byly nejprve náhodně vybrány školy z databáze všech základních škol, zvláštních škol, čtyřletých a víceletých gymnázií, středních odborných škol a středních odborných učilišť. Dále bylo na každé škole náhodně vybráno až 35 žáků narozených v příslušném kalendářním roce. Vzorek byl tedy stratifikován podle typu navštěvované školy. 7 Na dotazník výzkumu PISA odpovědělo v roce 2003 celkem 6320 žáků narozených v roce 1987, z nichž 2785 navštěvovalo devátý ročník (včetně víceletých gymnázií). Tento vzorek byl v České republice rozšířen o výběr žáků devátých tříd základních škol, což poté v součtu činilo 6340 žáků devátých ročníků (91,5 % žáků navštěvujících základní školu a 8,5 % žáků navštěvujících víceletá gymnázia). Reprezentativní soubor studentů narozených v roce 1987 (používaný pro mezinárodní analýzy v rámci projektu PISA) se skládal ze žáků základních škol (41,1 %), studentů víceletých gymnázií (7,9 %), studentů čtyřletých gymnázií (6,2 %), studentů navštěvujících maturitní obory středních odborných škol a učilišť (28,1 %), studentů navštěvujících nematuritní obory středních 6 Není pochyb o tom, že vliv výsledků kognitivních testů na známkování v obecnější poloze by si zasloužil vlastní rozbor a stať, na níž autoři již pracují. 7 Víceletá gymnázia mohou žáci navštěvovat po 5. či 7. ročníku základních škol, studium na nich tedy trvá 6 až 8 let. Vstup na klasická čtyřletá i víceletá gymnázia je značně selektivní (Matějů & Straková, 2005; Straková, 2007; Katrňák, Simonová, & Fónadová, 2013).

11 Koho znevýhodňuje škola: chlapce, nebo dívky? odborných učilišť (12,9 %) a žáky zvláštních škol (2,7 %). Z celkového počtu těchto respondentů bylo 0,2 % žáků v 7. ročníku, 2,8 % v 8. ročníku, 44,7 % v 9. ročníku a 52,4 % v 10. ročníku školní docházky. Dotazník vyplnilo celkem 9910 žáků. V této stati s ohledem na korektnost vážení a plánovaná mezinárodní srovnání pracujeme pouze s mezinárodním reprezentativním souborem PISA 2003 zachycujícím žáky devátých tříd základních škol (celkem 2598 žáků, z toho 1410 chlapců a 1189 dívek). Pro účely analýz jsme použili několik námi vytvořených proměnných, které se podle konkrétního cíle analýzy a podoby rovnice vyskytovaly buď v pozici závislých, či nezávislých proměnných. V prvé řadě jsme pracovali s proměnnými z oblasti známkování. Žáci byli v rámci výzkumu PISA dotázáni na známky z matematiky (MATHGRD) a českého jazyka (READGRD). Tyto proměnné byly kódovány stejným způsobem, jakým probíhá známkování (na čtyřbodové škále, kde 1 = výborný a 4 = dostatečný). K otestování známek, jakožto závislých proměnných, a s ohledem na skutečnost, že získání vynikajících známek v klíčových předmětech je spojeno s podporou učitelů a silnou motivací žáků k dalšímu vzdělávání, jsme vytvořili dichotomické proměnné. Proměnná EXMATH vyjadřuje, zda žák získal výbornou známku ( jedničku ) z matematiky (1 = 1, ostatní známky = 0) a proměnná EXREAD vyjadřuje, zda žák získal výbornou známku ( jedničku ) z českého jazyka (1 = 1, ostatní známky = 0). Dále s ohledem na to, že typ navštěvované střední školy je jednou z nejsilnějších determinant budoucího přechodu na terciární stupeň vzdělávání, jsme použili otázku z dotazníku PISA, která zjišťovala, zda se žák po 9. ročníku základní školy hlásí, či nehlásí na gymnázium. Proměnná GYMAPP je rovněž dichotomická (ano = 1, ne = 0). Aspirace na studium na vysoké škole, byť zatím v 9. ročníku školní docházky, mohou být rovněž silným prediktorem budoucího studia na terciárním stupni vzdělávání. Testovali jsme proto také rozdíly mezi pohlavími v těchto aspiracích, které jsme rovněž kódovali jako dichotomickou proměnnou COLASP (1 = plánuje jít na vysokou školu, 0 = neplánuje jít na vysokou školu). Pohlaví bylo kódováno jako 1 = žena, 0 = muž (v modelech jsme pro větší přehlednost použili proměnnou s názvem FEMALE, 1 = žena, 0 = muž). K vysvětlení potenciálních rozdílů mezi pohlavími a k identifikaci čistých vlivů pohlaví jsme také kontrolovali vliv relevantních intervenujících proměnných zmíněných výše. Byly jimi čtenářské a matematické dovednosti (READ, MATH), měřené prostřednictvím dosažených skórů v testech PISA. Tyto proměnné jsme rovněž použili po jejich překódování na kvartilové rozdělení (READ4, MATH4) Používáme tzv. první plausibilní hodnoty vyjadřující čtenářské a matematické dovednosti (proměnné pv1read a pv1math ze souboru PISA). Pro kontrolu robustnosti příslušných efektů jsme provedli stejnou analýzu pětkrát pro všech 5 plausibilních hodnot (viz např. San Roman & Goiricelaya, 2012, kteří použili podobné řešení). Toto řešení je na rozdíl od jiných strategií (například průměrování plausibilních hodnot) též uvedeno mezi přijatelnými strategiemi pro získání tzv. unbiased estimates (OECD, 2005). Tyto odhady nejsou nepochybně tak efektivní jako odhady provedené s využitím všech pěti plausibilních hodnot za každou proměnnou a příslušných replikačních vah. Tato procedura je poměrně snadno aplikovatelná v případě, že plausibilní hodnoty figurují na levé straně rovnice (jako závislé proměnné). Pokud se vyskytují na pravé straně rovnice (tj. jako nezávislé proměnné), je procedura používající replikační váhy aplikovatelná pouze v případě, že pracujeme jen s jednou takovou nezávislou proměnnou. V naší rovnici jsou

12 Petr Matějů, Natalie Simonová 118 Jak jsme zmínili výše, část rozdílů mezi chlapci a dívkami v procesu dosahování vzdělání může pomoci vysvětlit i osobní (vnitřní) účinnost (self-efficacy). Využili jsme proto i mezinárodní škály pro měření tohoto konceptu a pomocí metody hlavních komponent (viz Příloha, tabulka A1) 9 jsme vytvořili příslušnou latentní proměnnou (SELFEF). Prostřednictvím proměnné ESCS, která je oficiální škálou sociálně-ekonomického a kulturního statusu rodiny, jsme zohlednili také rodinný původ žáků. S ohledem na předpoklad, že problémy s chováním ve škole mohou potenciálně přispívat k horšímu klasifikování chlapců (či naopak, příznivějšímu klasifikování dívek), jsme vytvořili spojitou proměnnou PROBL, zachycující výskyt problematického chování ve škole i mimo ni. Škála byla zkonstruována pomocí metody hlavních komponent z baterie otázek, prostřednictvím kterých žáci sami vypovídali o svém případném problémovém chování. Výsledné hodnoty faktorových skórů zachycuje příloha, tabulka A4. Předpokládáme rovněž, že rozdíly mezi pohlavími ve známkách z matematiky, stejně jako aspirace a budoucí plány týkající se jejich vzdělání, mohou být vysvětleny odlišnými strategiemi učení se matematice. 10 Latentní proměnné MATHAPP a MATHLRN zachycují dva různé přístupy učení se matematice: MATHAPP vyjadřuje strategii založenou spíše na hledání vlastních řešení a aplikací, zatímco MATHLRN vyjadřuje důraz na zapamatování a procvičování. 11 Výsledky analýzy hlavních komponent jsou uvedeny v příloze, tabulka A2. Konečně, k vysvětlení odlišného průběhu vzdělávání chlapců a dívek by mohly přispět i rozdílné sklony k různým strategiím životního úspěchu, které se zdají být formovány odlišným společenským očekáváním od obou pohlaví. Abychom mohli kontrolovat vliv i tohoto faktoru, z baterie otázek na představy o životním úspěchu jsme definovali proměnné STEDUC a STENTREP. Proměnná STEDUC reprezentuje představy žáků o dosahování úspěchu především prostřednictvím vzdělání, jazykové vybavenosti a ambicí, zatímco proměnná STENTREP reprezentuje přesvědčení, že klíčem k životnímu úspěchu jsou osobní a politické konexe, schopnost riskovat a umění prosadit se. Výsledky analýzy hlavních komponent jsou uvedeny v Příloze, tabulka A3. Rozdíly mezi žáky a žákyněmi v hodnotách stěžejních (nezávislých) proměnných použitých v analýze ukazuje tabulka 1. Z ní je patrné, že čeští chlapci dosahují vyšších skórů v matematice, dívky naopak vyšších skórů ve čtení. Výsledky chlapců jsou nicméně zatíženy větším rozptylem v dosažených hodnotách než výsledky dívek, však vždy dvě nezávislé proměnné tohoto typu (READ a MATH). Z tohoto důvodu volíme strategii, která je považována nikoli za ideální, ale za přijatelnou (OECD, 2005). 9 Tuto proměnnou používáme v rovnicích predikujících výslednou školní klasifikaci, zejména pro kontrolu vlivu stresu či úzkosti, která je spojována s testováním. Deskriptivní analýza skutečně potvrdila, že chlapci disponují mírně vyšší osobní účinností (self-efficacy) než dívky, i když tento rozdíl není statisticky signifikantní (viz tabulka 1). 10 Otázky na strategie zdokonalování se ve čtenářských dovednostech nebyly součástí výzkumu PISA Tyto proměnné vychází z otázek Q34 a k studentského dotazníku PISA 2003.

13 Koho znevýhodňuje škola: chlapce, nebo dívky? které jsou více homogenní. 12 Chlapci dosáhli jen mírně vyšších hodnot osobní účinnosti než dívky, naměřené rozdíly však nejsou statisticky signifikantní. Tento závěr je, alespoň pokud jde o Českou republiku, v rozporu s tvrzeními o větší odolnosti chlapců vůči stresu z testování. Chlapci se dále vyznačují tím, že při učení se matematice více než dívky využívají příklady (úlohy) z praxe a objevovací strategie, zatímco dívky více sledují spíše tradiční učební postupy (zapamatování a procvičování). V obou případech jde o statisticky významné rozdíly mezi oběma pohlavími. Pokud jde o ČR, chlapci se ve srovnání s dívkami v přístupu k matematice přiklání spíše k objevovací a aplikační strategii, zatímco dívky volí spíše strategie založené na učení a procvičování. V souladu s očekáváním chlapci také ve statisticky významně větší míře přiznávají své problémové chování. Překvapivé není ani to, že chlapci v souvislosti se strategiemi životního úspěchu vykazují statisticky významně větší sklon k podnikatelským aktivitám, podstupování rizik a využívání sociálních sítí (sociálního kapitálu), zatímco dívky mají tendenci propojit vnímání životního úspěchu spíše se vzděláním, nabýváním znalostí (kulturního kapitálu), poctivostí a poslušností. 119 Tabulka 1 Rozdíly mezi pohlavími ve vybraných nezávislých proměnných vstupujících do analýz* Pohlaví/parametr MATH** READ** SELFEF MATHLRN MATHAPP PROBL STEDUC STENTREP Průměr 504,1 456,5 0,027 0,168 0,171 0,047 0,122 0,241 Chlapci Dívky Celkem N S.D. 89,4 85,9 1,024 1,080 1,047 1,061 1,054 0,986 S.E. 5,698 4,779 0,040 0,041 0,035 0,038 0,042 0,039 Průměr 483,9 483,5 0,032 0,195 0,200 0,055 0,142 0,281 N S.D. 85,1 81,4 0,969 0,856 0,901 0,921 0,912 0,942 S.E. 5,179 4,772 0,041 0,034 0,029 0,032 0,033 0,035 Průměr 495,2 469,1 0,032 0,000 0,000 0,000 0,000 0,000 N S.D. 88,1 84,9 1,000 1,000 1,000 1,000 1,000 1,000 S.E. 4,944 4,159 0,041 0,029 0,024 0,029 0,028 0,028 * Všechny odhady byly vypočítány s použitím celkové váhy vyvinuté pro soubor PISA (student final weight, w_fstuwt), stejně jako designových (replikačních) vah (w_fstr1 až w_fstr80), pro podrobnosti viz PISA Data Analysis Manual (OECD, 2005). ** Odhady všech parametrů dovednostních škál u proměnných MATH a READ byly vypočítány s použitím SPSS maker používajících plausibilní hodnoty, pro podrobnosti viz PISA Data Analysis Manual (OECD, 2005). 12 Směrodatné odchylky výsledků v testech byly následující: z matematiky v případě chlapců 89,4; v případě dívek 85,1; v testech ze čtení u chlapců 85,9; u dívek 81,4.

14 Petr Matějů, Natalie Simonová 120 Tabulka 2 zachycuje rozdíly mezi chlapci a dívkami ve vysvětlovaných (závislých) proměnných. Z nich je patrné, že dívky častěji dosahují lepších známek z českého jazyka 19,3 % dívek získalo hodnocení jedna, oproti 6,6 % chlapců. Dívky stejně tak získávají lepší známky z matematiky (19,9 % dívek bylo klasifikováno známkou jedna, ve srovnání s pouze 14,3 % chlapců). Rozdíly panují i v oblasti plánů týkajících se následného vzdělávání: pouze 14 % chlapců uvedlo, že se hlásili na gymnázium, zatímco dívek se hlásilo 22,6 %. Co se týče aspirací na vysokoškolské vzdělání, zde jsou pravděpodobnosti v podstatě vyrovnané, s mírnou převahou u dívek. Tabulka 2 Rozdíly mezi pohlavími ve vybraných závislých proměnných vstupujících do analýz (průměry binárních proměnných) Gender/parametr EXMATH EXREAD GYMAPP COLASP Průměr 0,143 0,066 0,140 0,373 Chlapci Dívky Celkem N S.D. 0,350 0,248 0,347 0,484 S.E. 0,013 0,008 0,015 0,018 Průměr 0,199 0,193 0,226 0,413 N S.D. 0,399 0,395 0,418 0,493 S.E. 0,018 0,016 0,019 0,025 Průměr 0,169 0,125 0,179 0,392 N S.D. 0,375 0,330 0,384 0,488 S.E. 0,014 0,009 0,013 0,016 * Všechny odhady byly vypočítány s použitím celkové váhy vyvinuté pro soubor PISA (student final weight, w_fstuwt), stejně jako designových (replikačních) vah (w_fstr1 až w_fstr80), pro podrobnosti viz PISA Data Analysis Manual (OECD, 2005). 6 Hlavní výsledky Jak jsme uvedli výše, chlapci dosahují statisticky významně lepších výsledků v matematických testech PISA než dívky, zatímco dívky ve srovnání s chlapci dosahují statisticky významně lepších výsledků v testech čtenářských dovedností. Pro obě tvrzení nacházíme oporu v údajích uvedených v tabulce Tento model ostatně není v zemích OECD výjimečný. Ve snaze pochopit rozdíly ve výsledcích vzdělávání podle pohlaví jsme se snažili zjistit, jaké odlišnosti panují mezi dívkami a chlapci ve vztahu mezi školním znám- 13 Hodnoty testového kritéria t pro rozdíly mezi průměry dívek a chlapců, (μ muž μ žena )/σ μ, jsou v obou případech větší než příslušné kritické hodnoty pro hladinu významnosti 0,05 (1,96).

15 Koho znevýhodňuje škola: chlapce, nebo dívky? kováním (1 = výborně až 4 = dostatečně) a dovednostmi měřenými testy PISA (s výslednými skóry rozčleněnými na kvartily, kde 1 = nejnižší kvartil, 4 = horní kvartil). Již jsme předeslali, že známky z českého jazyka nelze přímo spojovat s výsledky testů čtenářských dovedností. Na druhou stranu by ovšem tento vztah neměl být zásadně ovlivněn pohlavím. V rozporu s tímto předpokladem výsledky srovnání úrovní měřených dovedností a školních známek ukazují, že mezi chlapci a dívkami existují v tomto ohledu velké rozdíly. Z grafů 1a a 1b je patrné, že pouze 10 % chlapců, kteří se umístili v horním kvartilu čtenářských dovedností, dostalo z českého jazyka jedničku. Z dívek, které se ve čtenářských dovednostech umístily v horním kvartilu, dostalo z českého jazyka jedničku 29 %, což je téměř trojnásobek ve srovnání s chlapci se stejnými dovednostmi. Skutečnost, že žáci s nejlepšími čtenářskými dovednostmi dostávají ve škole špatné známky z českého jazyka (jsou hodnoceni známkami 3 a 4), není z hlediska hlavní otázky, kterou v této stati řešíme, tak zajímavá a důležitá jako to, že taková situace je mnohem běžnější u chlapců než u dívek (43 % v případě chlapců oproti 24 % u dívek). Výsledky analýzy tedy potvrzují zjištění, k nimž dospěli autoři, kteří si podobnou otázku položili před námi: při studiu rozdílů ve školním výkonu chlapců a dívek je obvyklé, že chlapci mají tendenci profitovat ze standardizovaného testování, zatímco dívky bodují spíše v běžné školní klasifikaci (Duckworth & Seligman, 2006). 121 Chlapci 50,0% 45,0% 40,0% 35,0% 30,0% 25,0% 20,0% 15,0% 10,0% 5,0% 2% 42% 43% 38% 30% 23% 18% 4% 8% 39% 37% 16% 47% 34% 10% 9% 1,00 2,00 3,00 4,00 0,0% 1,00 2,00 3,00 4,00 Čtenářské dovednosti - kvartily Graf 1a Známky z českého jazyka a výsledky v testech čtenářských dovedností chlapci (kvartily, 1 = nejhorší výsledky, 4 = nejlepší výsledky)

16 Petr Matějů, Natalie Simonová 122 Dívky 50,0% 47% 49% 47% 45,0% 40,0% 40% 38% 35,0% 30,0% 25,0% 20,0% 15,0% 10,0% 5,0% 5% 25% 23% 9% 13% 17% 30% 5% 29% 21% 3% 1,00 2,00 3,00 4,00 0,0% 1,00 2,00 3,00 4,00 Čtenářské dovednosti - kvartily Graf 1b Známky z českého jazyka a výsledky v testech čtenářských dovedností dívky (kvartily, 1 = nejhorší výsledky, 4 = nejlepší výsledky) Stejným způsobem jako v oblasti čtení jsme analyzovali také rozdíly v matematice. Grafy 2a a 2b ukazují, že pouze 32 % chlapců v nejvyšším kvartilu matematických dovedností získalo zároveň jedničku z matematiky, zatímco dívek se stejnou úrovní dovedností, které získaly jedničku z matematiky, bylo 54 %. Podobně mezi žáky s nejlepšími dovednostmi v matematice bylo známkami 3 nebo 4 klasifikováno 22 % chlapců, avšak pouze 6 % dívek. Chlapci 60,0% 62% 50,0% 48% 40,0% 30,0% 20,0% 30% 38% 37% 38% 33% 21% 14% 14% 32% 18% 1,00 2,00 3,00 4,00 10,0% 2% 7% 5% 3% 0,0% 1,00 2,00 3,00 4,00 Matematické dovednosti - kvartily Graf 2a Známky z matematiky a výsledky v testech matematických dovedností chlapci (kvartily, 1 = nejhorší výsledky, 4 = nejlepší výsledky)

17 Koho znevýhodňuje škola: chlapce, nebo dívky? Dívky ,0% 54% 50,0% 45% 46% 40,0% 30,0% 20,0% 16% 38% 39% 36% 18% 25% 26% 40% 1,00 2,00 3,00 4,00 10,0% 0,0% 1% 7% 4% 4% 1,00 2,00 3,00 4,00 2% Matematické dovednosti - kvartily Graf 2b Známky z matematiky podle pohlaví a výsledků v testech matematických dovedností dívky (kvartily, 1 = nejhorší výsledky, 4 = nejlepší výsledky) Podstatná část akademického výzkumu se dále věnuje tomu, čím lze rozdíly v dovednostech a školní klasifikaci mezi chlapci a dívkami vysvětlit. Do jaké míry například na průběh vzdělávacích drah chlapců a dívek různě působí jejich sociálně-ekonomický původ (Entwisle et al., 2007; Penner & Paret, 2007). Jiné studie dochází ke zjištění, že jedna z výhod dívek, jež se promítá do školní klasifikace, spočívá v jejich schopnosti sebeovládání a rozsahu mimokognitivních schopností (Farkas et al., 1990; Duckworth & Seligman, 2006). Abychom tedy zmapovali i vliv potenciálně relevantních intervenujících proměnných, zařadili jsme do analýzy čtyři latentní proměnné definované výše: SELFEF, PROBL, MATHLRN, MATHAPP, STEDUC a STENTREP. S využitím logistické regrese 14 jsme testovali vliv pohlaví žáka na jeho/její šanci získat jedničku z českého jazyka a matematiky, a to při kontrole naměřených dovedností a celé řady dalších proměnných, jež jsme zmínili výše a které by mohly do tohoto vztahu případně intervenovat. Jako závislou proměnnou jsme použili dichotomickou proměnnou vyjadřující to, zda žák obdržel nejlepší prospěchové hodnocení v matematice nebo čtení (1), či takové hodnocení neobdržel (0). Výsledky regresní analýzy rozdílů mezi dívkami a chlapci v jejich školních výsledcích jsou prezentovány v tabulce 3 (pro rozdíly v matematice) a tabulce 4 (pro rozdíly v českém jazyce). 14 Odhady byly provedeny procedurou Logistic regression v SPSS (verze 20), která ovšem neřeší problém skryté heterogenity ( unobserved heterogeneity viz např. Allison, 1999; Menard, 2002, 2004; Mood, 2010). Proto jsme parciálně standardizované (Y-standardized) i plně standardizované (fully standardized) koeficienty logistické regrese spočítali dodatečně (algoritmy viz Menard, 2006). Tyto koeficienty v tabulkách označujeme BStdY, resp. BStdXY.

18 Petr Matějů, Natalie Simonová 124 Tabulka 3 Vliv pohlaví a dalších proměnných na známku z matematiky (závislá proměnná EXMATH: jednička z matematiky, 1 = ano, 0 = ne) B S.E. Wald Exp(B) BStdXY BStdY Model 1 ( 2LL=1802,9, Nagelkerkeho RSQ=0,288; 81,8 % správně klasifikovaných případů) MATH 0,015 0, ,6 1,015 *** 0,486 0,010 Female 0,904 0,124 53,1 2,469 *** 0,167 0,609 ECSC 0,362 0,082 19,6 1,436 *** 0,106 0,244 Konstanta 10,205 0, ,3 0,000 *** Model 2 ( 2LL=1676,4, Nagelkerkeho RSQ=0,299; 83,8 % správně klasifikovaných případů) MATH 0,014 0, ,5 1,014 *** 0,451 0,009 READ 0,002 0,001 3,5 1,002 *** 0,062 0,001 Female 0,818 0,132 38,4 2,266 *** 0,150 0,546 ECSC 0,342 0,083 17,1 1,408 *** 0,099 0,228 Konstanta 10,481 0, ,8 0,000 *** Model 3 ( 2LL=1404,9, Nagelkerkeho RSQ=0,304; 86,7 % správně klasifikovaných případů) MATH 0,012 0,001 92,8 1,013 *** 0,394 0,008 READ 0,003 0,001 4,4 1,003 * 0,096 0,002 Female 0,701 0,145 23,4 2,016 *** 0,131 0,483 ECSC 0,290 0,089 10,7 1,337 *** 0,086 0,200 MATHLRN 0,041 0,068 0,4 1,042 0,015 0,028 MATHAPP 0,126 0,066 3,7 1,134 * 0,047 0,087 SELFEF 0,012 0,071 0,1 1,012 0,005 0,008 PROBL 0,282 0,078 13,0 0,754 *** 0,106 0,194 STEDUC 0,112 0,074 2,3 1,119 0,042 0,077 STENTREP 0,045 0,068 0,4 0,956 0,017 0,031 Konstanta 9,951 0, ,7 0,000 *** N = 2001 (chybějící hodnoty vyloučeny metodou listwise ). *** = p < 0,001, ** = p < 0,01, a * = p < 0,05. Modelování proměnné EXMATH (vyjadřující, zda žák obdržel jedničku z matematiky) ukazuje, že vliv pohlaví je velmi silný (dívky mají 2,5krát větší šanci 15 na získání jedničky než chlapci), a to i po zohlednění výsledků dovednostního testu PISA z matematiky a sociálně-ekonomického a kulturního zázemí rodiny (ESCS). Po zafixování čtenářských dovedností (měřených PISA testem), v nichž dívky významně překonávají chlapce, se v modelu 2 mírně snížil vliv pohlaví (vyjádřeno Y-standardizovaným koeficientem z 0,609 na 0,546). I po přidání dalších relevantních proměnných (model 3), konkrétně 15 Z přísně statistického hlediska zde termín šance odpovídá tzv. poměru šancí (angl. odds ratio), který porovnává šance (angl. odds) dvou skupin navzájem (koeficient e b, Exp (B) ve značení SPSS).

19 Koho znevýhodňuje škola: chlapce, nebo dívky? toho, zda žáci mají aktivní, nebo pasivní přístup k učení se matematice (proměnné MATHLRN, MATHAPP), dále jejich osobní účinnosti (SELFEF), sklonu k problémovému chování (PROBL) a proměnných vyjadřujících preference vedoucí k úspěchu v životě (STEDUC, STENTREP), zůstala šance na získání nejlepšího hodnocení z matematiky na vysoké a statisticky významné úrovni po zohlednění všech výše uvedených proměnných mají dívky dvakrát větší šanci na získání jedničky než chlapci. Není bez zajímavosti, že v Y-standardizovaných koeficientech je pohlaví nejsilnějším čistým efektem. Stojí za to také poznamenat, že čistý efekt sociálně-ekonomického a kulturního původu (ECSC) na školní klasifikaci není zanedbatelný, je statisticky významný ve smyslu zvýšení šance na nejlepší známku z matematiky o 1,3 násobek. Jak jsme předpokládali, sklon k problémovému chování (PROBL) hraje v souvislosti se školním hodnocením též významnou roli. Čistý efekt této proměnné (0,745) je velmi významný. Nicméně, její začlenění do modelu neodstraňuje rozdíl, který panuje mezi oběma pohlavími. 125 Tabulka 4 Vliv pohlaví a dalších proměnných na známku z českého jazyka (závisle proměnná EXREAD: jednička z českého jazyka, 1 = ano, 0 = ne) B S.E. Wald Exp(B) BStdXY BStdY Model 1 ( 2LL=1555,5, Nagelkerkeho RSQ=0,246; 86,7 % správně klasifikovaných případů) READ 0,012 0, ,5 1,012 *** 0,370 0,009 Female 1,165 0,141 68,1 3,207 *** 0,211 0,857 ECSC 0,374 0,090 17,3 1,453 *** 0,107 0,275 Konstanta 8,800 0, ,7 0,000 *** Model 2 ( 2LL=1432,1, Nagelkerkeho RSQ=0,267; 87,5 % správně klasifikovaných případů) READ 0,005 0,001 12,7 1,005 *** 0,148 0,003 MATH 0,010 0,001 59,9 1,011 *** 0,002 0,007 Female 1,613 0, ,2 4,851 *** 0,272 1,058 ECSC 0,273 0,093 8,7 1,314 *** 0,073 0,179 Konstanta 11,216 0, ,8 0,000 *** Model 3 ( 2LL=1404,8, Nagelkerkeho RSQ=0,286; 86,7 % správně klasifikovaných případů) READ 0,004 0,001 9,5 1,004 ** 0,119 0,003 MATH 0,010 0,001 49,5 1,010 *** 0,307 0,007 Female 1,530 0,165 86,2 4,618 *** 0,268 1,009 ECSC 0,237 0,097 5,9 1,267 ** 0,066 0,156 SELFEF 0,102 0,079 1,6 1,107 0,036 0,067 PROBL 0,270 0,087 9,6 0,763 ** 0,095 0,178 STEDUC 0,269 0,084 10,3 1,309 *** 0,095 0,177 STENTREP 0,079 0,074 1,1 1,082 0,028 0,052 Konstanta 10,203 0, ,1 0,000 *** N = 2067 (chybějící hodnoty vyloučeny metodou listwise ). *** = p < 0,001, ** = p < 0,01 a * = p < 0,05.

20 Petr Matějů, Natalie Simonová 126 Logistická regrese modelující proměnnou EXREAD, tj. proměnnou, která měří, zda žák dosahuje hodnocení jedna z českého jazyka (tabulka 4), ukazuje, že rozdíl mezi pohlavími je v případě školní klasifikace z předmětu český jazyk ještě silnější, než tomu bylo v případě matematiky. Pokud porovnáme výsledky modelu 2 (viz tabulka 2) s výsledky modelu 3 (viz tabulka 4), které obsahují stejné vysvětlující proměnné, vidíme, že dívky 9. ročníků mají 2,3krát větší šanci získat nejlepší známku z matematiky, avšak zároveň mají téměř 5krát větší šanci na získání jedničky z českého jazyka než chlapci a to i po kontrole výsledků PISA testů z matematiky, testů ze schopnosti porozumět psanému textu a po kontrole ESCS. Můžeme tedy konstatovat, že námi stanovené hypotézy H1 a H2 jsou platné: dívky dosahují ve srovnání s chlapci statisticky významně vyšší šance dosáhnout nejvyššího hodnocení (jedničky) v českém jazyce a matematice, a to i při kontrole čtenářských a matematických dovedností, sociálně-ekonomického a kulturního zázemí, přístupu k učení, osobní účinnosti, problémového chování a preferencí jednání vedoucího k úspěchu v životě. Výzkum vzdělanostních nerovností při vstupu do vysokého školství v ČR ukázal na velmi silný vliv typu absolvované střední školy, tj. čtyřletých nebo víceletých gymnázií, středních odborných škol a středních odborných učilišť (Matějů, Smith, Soukup, & Basl, 2007; Straková, 2007, 2010; Simonová & Soukup, 2010). Absolvování gymnázia poskytuje zdaleka největší šance k přijetí na vysokou školu (částečně také proto, že tyto školy se již předem snaží připravit své studenty na vysokoškolské vzdělávání), zatímco studenti navštěvující odborná učiliště prakticky nemají šanci na univerzitní studium, mimo jiné i proto, že bez maturity jsou jim brány vysokých škol zavřené (šance na úspěch v přechodu mezi střední a vysokou školou jsou ovšem minimální i pro absolventy učebních oborů s maturitou). Pokud jde o absolventy gymnázií, zde je třeba připomenout, že ačkoli často pocházejí z vyšších sociálně-ekonomických vrstev, efekt gymnaziálního studia je velmi silný i po kontrole vlivu sociálně-ekonomického statusu výchozí rodiny. I proto jsme se rozhodli tento efekt vzít v modelování aspirací na vysokoškolské vzdělání v úvahu. Základní popisné statistiky zachycené tabulkou 1 ukazují, že ke studiu na gymnáziu se hlásí 23 % dívek a pouze 14 % chlapců. Abychom získali představu o tom, jakou roli na přechodu mezi základní školou a gymnáziem hraje pohlaví, testovali jsme několik modelů umožňujících identifikovat čistý vliv pohlaví na případný pokus žáka pokračovat ve studiu na gymnáziu. Analýzu jsme stejně jako v předchozích případech provedli pouze na žácích 9. ročníků základních škol. Testované modely znázorňuje tabulka 5. V modelu 1 platí, že dívky mají 1,8krát větší šanci hlásit se na gymnázia než chlapci. Další modely ukazují, že vliv pohlaví po kontrole čtenářských a matematických dovedností roste (vyjádřeno pomocí odds-ratios). V modelu 2 se relativní šance dívek vůči chlapcům zvyšuje na 2,6 násobek (při kontrole čtenářských a matematických dovedností). Výhoda dívek oproti chlapcům se nemění ani po přidání dalších relevantních proměnných do modelu, jmenovitě MATHLRN, MATHAPP, SELFEF, PROBL, STEDUC a STENTREP (viz model 3).

Od diferenciace k diverzifikaci: test teorií MMI a EMI v českém středním vzdělávání. Tomáš Katrňák Natalie Simonová Laura Fónadová

Od diferenciace k diverzifikaci: test teorií MMI a EMI v českém středním vzdělávání. Tomáš Katrňák Natalie Simonová Laura Fónadová Od diferenciace k diverzifikaci: test teorií MMI a EMI v českém středním vzdělávání Tomáš Katrňák Natalie Simonová Laura Fónadová Cíl analýzy Ukázat, zda rozšiřující se dostupnost maturitního vzdělání

Více

Faktory podmiňující vzdělanostní aspirace a vzdělanostní segregaci u dívek a chlapců v v českém vzdělávacím systému

Faktory podmiňující vzdělanostní aspirace a vzdělanostní segregaci u dívek a chlapců v v českém vzdělávacím systému Faktory podmiňující vzdělanostní aspirace a vzdělanostní segregaci u dívek a chlapců v v českém vzdělávacím systému Xxxxx, Tomáš Katrňák Úvod Většina až dosud provedených výzkumů ukazuje, že vzdělanostní

Více

Mezinárodní výzkum PISA 2009

Mezinárodní výzkum PISA 2009 Mezinárodní výzkum PISA 2009 Zdroj informací: Palečková, J., Tomášek, V., Basl, J,: Hlavní zjištění výzkumu PISA 2009 (Umíme ještě číst?). Praha: ÚIV 2010. Palečková, J., Tomášek V. Hlavní zjištění PISA

Více

Sociální původ, pohlaví, vzdělání a kompetence ve světle dat z národního šetření PIAAC

Sociální původ, pohlaví, vzdělání a kompetence ve světle dat z národního šetření PIAAC Sociální původ, pohlaví, vzdělání a kompetence ve světle dat z národního šetření PIAAC Petr Matějů Konference Předpoklady úspěchu v práci a v životě 27. listopadu 2013 Hlavní otázky pro analýzu procesu

Více

NĚKTERÉ VZÁJEMNÉ VAZBY A VZTAHY

NĚKTERÉ VZÁJEMNÉ VAZBY A VZTAHY NĚKTERÉ VZÁJEMNÉ VAZBY A VZTAHY Věra Semerádová - Alena Škaloudová OBSAH TESTOVÉ VÝSLEDKY A PROSPĚCH TESTOVÉ VÝSLEDKY, PROSPĚCH A VZDĚLÁNÍ RODIČŮ Průměrné hodnoty vybraných ukazatelů podle vzdělání otce

Více

Konzumace piva v České republice v roce 2007

Konzumace piva v České republice v roce 2007 TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská 1, Praha 1 Tel./fax: 26 40 129 E-mail: jiri.vinopal@soc.cas.cz Konzumace piva v České republice v roce 2007 Technické

Více

Jak velká je poptávka po gymnáziích? Aproč není vyšší?

Jak velká je poptávka po gymnáziích? Aproč není vyšší? Jak velká je poptávka po gymnáziích? Aproč není vyšší? Petr Matějů 1 Otázky Je růst podílu žáků ve školách poskytujících všeobecné vzdělání žádoucí? Jaká je aktuální poptávka po studiu na gymnáziích? Co

Více

Indikátory Strategie vzdělávací politiky ČR do roku 2020

Indikátory Strategie vzdělávací politiky ČR do roku 2020 Indikátory Strategie vzdělávací politiky ČR do roku 2020 Indikátory Strategie vzdělávací politiky České republiky do roku 2020 (dále jen Strategie ) jsou vymezeny s ohledem na tři klíčové priority Strategie,

Více

SOCIOLOGICKÁ ANALÝZA PŘECHODŮ ROMSKÝCH DĚTÍ ZE SOCIÁLNĚ VYLOUČENÉHO PROSTŘEDÍ ZE ZÁKLADNÍCH NA STŘEDNÍ ŠKOLY. Prezentace výsledků. www.gac.

SOCIOLOGICKÁ ANALÝZA PŘECHODŮ ROMSKÝCH DĚTÍ ZE SOCIÁLNĚ VYLOUČENÉHO PROSTŘEDÍ ZE ZÁKLADNÍCH NA STŘEDNÍ ŠKOLY. Prezentace výsledků. www.gac. SOCIOLOGICKÁ ANALÝZA PŘECHODŮ ROMSKÝCH DĚTÍ ZE SOCIÁLNĚ VYLOUČENÉHO PROSTŘEDÍ ZE ZÁKLADNÍCH NA STŘEDNÍ ŠKOLY Prezentace výsledků www.gac.cz TENTO PROJEKT BYL PODPOŘEN Z DOTAČNÍHO PROGRAMU MŠMT NA PODPORU

Více

Tabulka 1 Rizikové online zážitky v závislosti na místě přístupu k internetu N M SD Min Max. Přístup ve vlastním pokoji 10804 1,61 1,61 0,00 5,00

Tabulka 1 Rizikové online zážitky v závislosti na místě přístupu k internetu N M SD Min Max. Přístup ve vlastním pokoji 10804 1,61 1,61 0,00 5,00 Seminární úkol č. 4 Autoři: Klára Čapková (406803), Markéta Peschková (414906) Zdroj dat: EU Kids Online Survey Popis dat Analyzovaná data pocházejí z výzkumu online chování dětí z 25 evropských zemí.

Více

Využití indikátorů při hodnocení spravedlivosti vzdělávacích systémů

Využití indikátorů při hodnocení spravedlivosti vzdělávacích systémů Využití indikátorů při hodnocení spravedlivosti vzdělávacích systémů Cyklus přednášek: Podněty pro pedagogický výzkum PdF MUNI v Brně, 13. 5. 2008 David Greger PedF UK v Praze Ústav výzkumu a rozvoje vzdělávání

Více

Další vzdělávání a rozvoj kompetencí

Další vzdělávání a rozvoj kompetencí Mezinárodní výzkum dospělých Další vzdělávání a rozvoj kompetencí Výsledky mezinárodního výzkumu OECD PIAAC v České republice a jejich implikace pro veřejné politiky Konference, 27.11.2013 Věra Czesaná,

Více

Úroveň vzdělávání v ČR

Úroveň vzdělávání v ČR TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR Jilská 1, Praha 1 Tel./fax: 286 840 129 E-mail: klara.prochazkova@soc.cas.cz Úroveň vzdělávání v ČR Technické parametry Výzkum:

Více

Hodnocení různých typů škol pohledem české veřejnosti - září 2015

Hodnocení různých typů škol pohledem české veřejnosti - září 2015 or151 TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská 1, Praha 1 Tel.: 6 40 1 E-mail: milan.tucek@soc.cas.cz Hodnocení různých typů škol pohledem české veřejnosti

Více

PEDAGOGIKA: OKRUHY OTÁZEK Státní závěrečná zkouška bakalářská

PEDAGOGIKA: OKRUHY OTÁZEK Státní závěrečná zkouška bakalářská PEDAGOGIKA: OKRUHY OTÁZEK Státní závěrečná zkouška bakalářská (otázky jsou platné od ledna 2013) I. Teoretické základy pedagogických věd 1. Teorie výchovy a vzdělávání, vzdělanost a školství v antice.

Více

Souběžná validita testů SAT a OSP

Souběžná validita testů SAT a OSP Souběžná validita testů SAT a OSP www.scio.cz 15. ledna 2013 Souběžná validita testů SAT a OSP Abstrakt Pro testování obecných studijních dovedností existuje mnoho testů. Některé jsou všeobecně známé a

Více

Výsledky mezinárodního výzkumu OECD PISA 2009

Výsledky mezinárodního výzkumu OECD PISA 2009 Výsledky mezinárodního výzkumu OECD PISA 2009 Programme for International Student Assessment mezinárodní projekt OECD měření výsledků vzdělávání čtenářská, matematická a přírodovědná gramotnost 15letí

Více

Učitelé matematiky a CLIL

Učitelé matematiky a CLIL ŠULISTA Marek. Učitelé matematiky a CLIL. Učitel matematiky. Jednota českých matematiků a fyziků, 2014, roč. 23, č. 1, s. 45-51. ISSN 1210-9037. Učitelé matematiky a CLIL Úvod V České republice došlo v

Více

Česká veřejnost o tzv. Islámském státu a o dění na Ukrajině leden 2016

Česká veřejnost o tzv. Islámském státu a o dění na Ukrajině leden 2016 pm0 TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská, Praha Tel.: +0 0 E-mail: jan.cervenka@soc.cas.cz Česká veřejnost o tzv. Islámském státu a o dění na Ukrajině

Více

Znalost log politických stran

Znalost log politických stran Sociologie politiky Sociologický ústav AV ČR, v.v.i. Jilská 1, Praha 1 Aleš Kudrnáč E-mail: ales.kudrnac@soc.cas.cz Znalost log politických stran Technické parametry Výzkum: Naše společnost, v14-11 Realizátor:

Více

O informálním učení v České republice

O informálním učení v České republice O informálním učení v České republice Milada Rabušicov icová & Ladislav Rabušic Filozofická fakulta & Fakulta sociáln lních studií Masarykova univerzita Brno Východiska Celoživotní učení je v ideálním

Více

KONFERENCE ZAČÍT VČAS ZNAMENÁ ZAČÍT DOBŘE II 5. listopadu 2015, PRAHA

KONFERENCE ZAČÍT VČAS ZNAMENÁ ZAČÍT DOBŘE II 5. listopadu 2015, PRAHA Roma Early Childhood Inclusion+ Special Report on Roma Inclusion in Early Childhood Education and Care Czech Republic Zpráva o začleňování romských dětí předškolního věku KONFERENCE ZAČÍT VČAS ZNAMENÁ

Více

Hodnocení kvality různých typů škol září 2016

Hodnocení kvality různých typů škol září 2016 Tisková zpráva Hodnocení kvality různých typů škol září 201 Hodnocení úrovně výuky na různých typech škol počínaje základními školami a konče vysokými je trvale příznivé kladné hodnocení výrazně převažuje

Více

Nikolić Aleksandra Matěj Martin

Nikolić Aleksandra Matěj Martin POSTAVENÍ Í PEDAGOGIKY MEZI VĚDAMI Nikolić Aleksandra Matěj Martin PŮVOD NÁZVU Paidagogos = pais + agein Pais = dítě Agein = vést průvodce dětí, často vzdělaný otrok pečoval o výchovu dětí ze zámožných

Více

Situace v krajích. Bleskový výzkum SC&C pro Českou televizi. Česká televize. Praha 1. dubna 2012

Situace v krajích. Bleskový výzkum SC&C pro Českou televizi. Česká televize. Praha 1. dubna 2012 1 Česká televize Situace v krajích Bleskový výzkum SC&C pro Českou televizi Praha 1. dubna 2012 SC & C spol. s r.o. Marketingový a sociologický výzkum Držitel certifikátu ISO 9001:2009 Člen ESOMAR a Hospodářské

Více

Sekundární analýzy výsledků šetření PISA 2012

Sekundární analýzy výsledků šetření PISA 2012 Sekundární analýzy výsledků šetření PISA 2012 Praha, září 2014 Obsah 1 Úvod... 3 2 Vliv socioekonomického zázemí na výsledky českých žáků v šetření PISA 2012... 4 2.1 Shrnutí... 9 3 Srovnání žáků s výbornými

Více

8. Věda a technologie, informační společnost

8. Věda a technologie, informační společnost 8. Věda a technologie, informační společnost V každé společnosti je její důležitou a nedílnou součástí oblast výzkumu a vývoje. Jedná se o systematickou tvůrčí práci konanou za účelem získání nových znalostí

Více

or11013 První otázka z tematického bloku věnovaného vysokoškolskému vzdělávání se zaměřila na mínění českých občanů o tom, zda je v České republice ka

or11013 První otázka z tematického bloku věnovaného vysokoškolskému vzdělávání se zaměřila na mínění českých občanů o tom, zda je v České republice ka or11013 TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská 1, Praha 1 Tel.: 2 0 129 E-mail: milan.tuček@soc.cas.cz Občané o možnostech a motivaci ke studiu na vysokých

Více

RŮST ČESKÉ EKONOMIKY LIDÉ PŘÍLIŠ NEPOCIŤUJÍ. Ekonomická situace v ČR se v porovnání se situací před 12 měsíci:

RŮST ČESKÉ EKONOMIKY LIDÉ PŘÍLIŠ NEPOCIŤUJÍ. Ekonomická situace v ČR se v porovnání se situací před 12 měsíci: INFORMACE Z VÝZKUMU STEM TRENDY 03/2005 RŮST ČESKÉ EKONOMIKY LIDÉ PŘÍLIŠ NEPOCIŤUJÍ Uváděné výsledky vycházejí z rozsáhlého reprezentativních výzkumu STEM uskutečněného ve dnech. 7. března 2005. Na otázky

Více

Analýza úspěšnosti studia na Národohospodářské fakultě VŠE v Praze a její predikce testem OSP (2. část)

Analýza úspěšnosti studia na Národohospodářské fakultě VŠE v Praze a její predikce testem OSP (2. část) Analýza úspěšnosti studia na Národohospodářské fakultě VŠE v Praze a její predikce testem OSP (2. část) Zpracovala: www.scio.cz., s.r.o. (14. 11. 2011) Datové podklady: Národohospodářská fakulta VŠE v

Více

Česká veřejnost o tzv. Islámském státu únor 2015

Česká veřejnost o tzv. Islámském státu únor 2015 pm50 TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská, Praha Tel.: +40 86 840 9 E-mail: jan.cervenka@soc.cas.cz Česká veřejnost o tzv. Islámském státu únor 05

Více

České školství v mezinárodním srovnání Ing. Kateřina Tomšíková

České školství v mezinárodním srovnání Ing. Kateřina Tomšíková České školství v mezinárodním srovnání 2015 Ing. Kateřina Tomšíková OECD Organizace pro ekonomickou spolupráci a rozvoj OECD Organisation for Economic Co-operation and Development Světová organizace sdružující

Více

STRUČNÉ SHRNUTÍ. Učitelé škol regionálního školství bez vedoucích zaměstnanců

STRUČNÉ SHRNUTÍ. Učitelé škol regionálního školství bez vedoucích zaměstnanců Genderové otázky pracovníků ve školství STRUČNÉ SHRNUTÍ Svodka Genderové otázky pracovníků ve školství se zabývá genderovou strukturou pracovníků v regionálním školství a na jejím základě pak také strukturou

Více

Další vzdělávání a rozvoj kompetencí

Další vzdělávání a rozvoj kompetencí Mezinárodní výzkum dospělých Další vzdělávání a rozvoj kompetencí Workshop k výsledkům výzkumu MŠMT, 21.10.2013 Věra Czesaná, Národní vzdělávací fond Tento projekt je spolufinancován Evropským sociálním

Více

Vývoj vzdělanostní struktury a nerovností v českých zemích od počátku 20. stol. do současnosti

Vývoj vzdělanostní struktury a nerovností v českých zemích od počátku 20. stol. do současnosti Vývoj vzdělanostní struktury a nerovností v českých zemích od počátku 20. stol. do současnosti Natalie Simonová Sociologický ústav AV ČR, v.v.i. Obsah příspěvku I. Sociologie vzdělanostních nerovností

Více

ZE SOCIOLOGICKÝCH VÝZKUMŮ

ZE SOCIOLOGICKÝCH VÝZKUMŮ ZE SOCIOLOGICKÝCH VÝZKUMŮ Rozdíly ve vědomostech a dovednostech českých chlapců a děvčat na základě zjištění mezinárodních výzkumů* EVA POTUŽNÍKOVÁ** Ústav pro informace ve vzdělávání, Praha JANA STRAKOVÁ**

Více

Evaluace středních škol

Evaluace středních škol Evaluace středních škol v projektu Kvalita II Radim Ryška Seminář k projektu ESF Kvalita II A 1 2: Evaluace středních škol M a l á t o v a t e l. 2 9 5 e-m a i l : 1. Celkový koncept kvality; žák, škola

Více

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická

Více

A. Datová příloha k potřebám regionálního školství

A. Datová příloha k potřebám regionálního školství A. Datová příloha k potřebám regionálního školství 1 Významný počet žáků nedosahuje ani základní úrovně v klíčových kompetencích Graf ukazuje podíl žáků, kteří dosáhli nižší úrovně než 2 (tmavě modré)

Více

odpovědí: rizikové již při prvním užití, rizikové při občasném užívání, rizikové pouze při pravidelném užívání, není vůbec rizikové.

odpovědí: rizikové již při prvním užití, rizikové při občasném užívání, rizikové pouze při pravidelném užívání, není vůbec rizikové. TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská, Praha Tel.: 8 840 9 E-mail: jan.cervenka@soc.cas.cz Postoj veřejnosti ke konzumaci vybraných návykových látek

Více

Česká veřejnost o tzv. Islámském státu listopad 2015

Česká veřejnost o tzv. Islámském státu listopad 2015 pm TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská, Praha Tel.: + 0 E-mail: jan.cervenka@soc.cas.cz Česká veřejnost o tzv. Islámském státu listopad Technické

Více

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu

Více

Problematika neúspěšných ukončení vysokoškolského studia (drop-outs) v českém kontextu

Problematika neúspěšných ukončení vysokoškolského studia (drop-outs) v českém kontextu Problematika neúspěšných ukončení vysokoškolského studia (drop-outs) v českém kontextu Jan Hraba, Vladimír Hulík (MŠMT, oddělení analytické) Klára Hulíková Tesárková (PřF UK, katedra demografie a geodemografie)

Více

Výsledky dětí v testech, zkouškách a přijímacím řízení na vyšší stupeň

Výsledky dětí v testech, zkouškách a přijímacím řízení na vyšší stupeň Výsledky dětí v testech, zkouškách a přijímacím řízení na vyšší stupeň V rámci celé školy je zaveden systém sledování, jak žáci dosahují očekávaných výstupů. Na konci každého pololetí jsou v každé třídě

Více

Vzdělávání dětí a žáků z rodin s nízkým ekonomickým statusem

Vzdělávání dětí a žáků z rodin s nízkým ekonomickým statusem Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vzdělávací program Integrativní vzdělávání žáků se speciálními vzdělávacími potřebami na ZŠ a SŠ běžného typu MODUL A Distanční text k

Více

MINKSOVÁ, L.: Vysokoškoláci přehled hlavních sociologických výzkumů realizovaných v ČR. Data a výzkum SDA info, 4, 2010, č.1, s. 39 60.

MINKSOVÁ, L.: Vysokoškoláci přehled hlavních sociologických výzkumů realizovaných v ČR. Data a výzkum SDA info, 4, 2010, č.1, s. 39 60. Vysokoškoláci v ČR Přehled základních sociologických výzkumů vysokoškoláků Přehled zkoumaných tematických oblastí ve výzkumech vysokoškoláků Lenka Minksová Centrum pro studium vysokého školství, v.v.i.

Více

Technické parametry výzkumu

Technické parametry výzkumu TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská 1, Praha 1 Tel./fax: 286 840 129 E-mail: jiri.vinopal@soc.cas.cz K některým aspektům výběru piva českými konzumenty

Více

PISA 2012. SPŠ stavební J. Gočára, Družstevní ochoz 3, Praha 4. Kód vaší školy: M 2 VÝSLEDKY ŠETŘENÍ ŠKOLNÍ ZPRÁVA

PISA 2012. SPŠ stavební J. Gočára, Družstevní ochoz 3, Praha 4. Kód vaší školy: M 2 VÝSLEDKY ŠETŘENÍ ŠKOLNÍ ZPRÁVA VÝSLEDKY ŠETŘENÍ PISA 1 ŠKOLNÍ ZPRÁVA SPŠ stavební J. Gočára, Družstevní ochoz 3, Praha Kód vaší školy: M Tato zpráva je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.

Více

K možnostem užití státních maturit jako přijímacích zkoušek jaký styl ověřování předpokladů ke studiu chceme podporovat?

K možnostem užití státních maturit jako přijímacích zkoušek jaký styl ověřování předpokladů ke studiu chceme podporovat? K možnostem užití státních maturit jako přijímacích zkoušek jaký styl ověřování předpokladů ke studiu chceme podporovat? Jiří Zlatuška Poznámky pro AF 11. února 2010 Aktuální model státní maturity http://www.m2010.cz/images/maturitni_model.pdf

Více

Analýza postojů a vzdělávacích potřeb romských dětí a mládeže. Výsledky kvantitativní a kvalitativní sondy v devíti základních školách

Analýza postojů a vzdělávacích potřeb romských dětí a mládeže. Výsledky kvantitativní a kvalitativní sondy v devíti základních školách Analýza postojů a vzdělávacích potřeb romských dětí a mládeže Výsledky kvantitativní a kvalitativní sondy v devíti základních školách Základní informace o projektu Zadavatel Nadace rozvoje občanské společnosti

Více

Statistika. Základní pojmy a cíle statistiky. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .

Statistika. Základní pojmy a cíle statistiky. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) . Statistika Základní pojmy a cíle statistiky Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Statistika Pojmy a cíle

Více

Výběrové šetření o zdravotním stavu české populace (HIS CR 2002) Fyzická aktivita (VIII. díl)

Výběrové šetření o zdravotním stavu české populace (HIS CR 2002) Fyzická aktivita (VIII. díl) Aktuální informace Ústavu zdravotnických informací a statistiky České republiky Praha 12. 12. 2002 60 Výběrové šetření o zdravotním stavu české populace (HIS CR 2002) Fyzická aktivita (VIII. díl) Tato

Více

TISKOVÁ ZPRÁVA. Centrum pro výzkum veřejného mínění CVVM, Sociologický ústav AV ČR, v.v.i. OV.14, OV.15, OV.16, OV.17, OV.18, OV.179, OV.

TISKOVÁ ZPRÁVA. Centrum pro výzkum veřejného mínění CVVM, Sociologický ústav AV ČR, v.v.i. OV.14, OV.15, OV.16, OV.17, OV.18, OV.179, OV. ov602 TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská 1, Praha 1 Tel.: 286 840 129 E-mail: jan.cervenka@soc.cas.cz Romové a soužití s nimi očima české veřejnosti

Více

Pearsonův korelační koeficient

Pearsonův korelační koeficient I I.I Pearsonův korelační koeficient Úvod Předpokládejme, že náhodně vybereme n objektů (nebo osob) ze zkoumané populace. Často se stává, že na každém z objektů měříme ne pouze jednu, ale několik kvantitativních

Více

Jak vyvažovat autonomii a odpovědnost škol a učitelů: hodnocení výsledků vzdělávání

Jak vyvažovat autonomii a odpovědnost škol a učitelů: hodnocení výsledků vzdělávání Jak vyvažovat autonomii a odpovědnost škol a učitelů: hodnocení výsledků vzdělávání Jana Straková Ústav pro informace ve vzdělávání a Institut pro sociální a ekonomické analýzy Rozmach plošných testů se

Více

katedra statistiky PEF, Vysoká škola zemědělská, 165 21 Praha 6 - Suchdol

katedra statistiky PEF, Vysoká škola zemědělská, 165 21 Praha 6 - Suchdol STATISTICKÁ ANALÝZA PŘIJÍMACÍHO ŘÍZENÍ NA PEF PRO AKADEMICKÝ ROK 1994/1995 Bohumil Kába, Libuše Svatošová katedra statistiky PEF, Vysoká škola zemědělská, 165 21 Praha 6 - Suchdol Anotace: Příspěvek pojednává

Více

Zpracoval: Milan Tuček Centrum pro výzkum veřejného mínění, Sociologický ústav AV ČR, v.v.i. Tel.: ,

Zpracoval: Milan Tuček Centrum pro výzkum veřejného mínění, Sociologický ústav AV ČR, v.v.i. Tel.: , Tisková zpráva Priority ve financování jednotlivých oblastí sociální politiky listopad 2016 Z deseti sociálních oblastí nejvyšší prioritu získala zdravotní péče, kterou polovina dotázaných uvedla na prvním

Více

Využití zakotvené teorie pro výzkum volby školy na úrovni primárního vzdělávání

Využití zakotvené teorie pro výzkum volby školy na úrovni primárního vzdělávání Využití zakotvené teorie pro výzkum volby školy na úrovni primárního vzdělávání Jaroslava Simonová Ústav výzkumu a rozvoje vzdělávání Pedagogická fakulta UK Praha výzkumný projekt Přechod mezi preprimárním

Více

Volba střední školy jak to vidí osmáci

Volba střední školy jak to vidí osmáci Volba střední školy jak to vidí osmáci Studie občanského sdružení Než zazvoní 2. června 2014 Studie o výběru školy Tento dokument je veřejnou součástí širší dlouhodobé studie občanského sdružení Než zazvoní,

Více

Romové a soužití s nimi očima české veřejnosti duben 2014

Romové a soužití s nimi očima české veřejnosti duben 2014 ov14014 TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská 1, Praha 1 Tel.: 286 840 9 E-mail: milan.tucek@soc.cas.cz Romové a soužití s nimi očima české veřejnosti

Více

Česká republika. Obrázek 1: Přehled o vývoji počtů nově přijímaných žáků v ČR. 1. ročníku SŠ. 1

Česká republika. Obrázek 1: Přehled o vývoji počtů nově přijímaných žáků v ČR. 1. ročníku SŠ. 1 Česká republika Přehled o nově přijímaných žácích Celkový počet žáků nově přijatých do denního studia na středních a vyšších odborných školách ve školním roce 2013/2014 činil 116 842, z toho do studia

Více

Reforma vysokých škol: rovné příležitosti. Petr Matějů Simona Weidnerová členové expertního týmu IPn projektu Reforma terciárního vzdělávání

Reforma vysokých škol: rovné příležitosti. Petr Matějů Simona Weidnerová členové expertního týmu IPn projektu Reforma terciárního vzdělávání Reforma vysokých škol: rovné příležitosti Petr Matějů Simona Weidnerová členové expertního týmu IPn projektu Reforma terciárního vzdělávání V čem je problém? Systém terciárního vzdělávání je velmi selektivní

Více

Využití přírodovědného pokusu na 1. stupni ZŠ z pohledu učitelů z praxe výzkumná sonda. Ondřej Šimik

Využití přírodovědného pokusu na 1. stupni ZŠ z pohledu učitelů z praxe výzkumná sonda. Ondřej Šimik Využití přírodovědného pokusu na 1. stupni ZŠ z pohledu učitelů z praxe výzkumná sonda Ondřej Šimik Kontext přírodovědného vzdělávání na 1. stupni ZŠ Transformace české školy - RVP ZV Člověk a jeho svět

Více

Předběţné výsledky z výzkumu PISA 2009

Předběţné výsledky z výzkumu PISA 2009 Předběţné výsledky z výzkumu PISA 2009 Školní zpráva pro: Základní škola, Kuncova 1580, Praha 5 - Stodůlky Kód vaší školy: ZS 5 Praha prosinec 2009 Úvod Tato zpráva obsahuje předběţné výsledky vaší školy

Více

Metodologie pedagogického výzkumu Téma číslo 2 Koncipování vlastního výzkumu

Metodologie pedagogického výzkumu Téma číslo 2 Koncipování vlastního výzkumu Metodologie pedagogického výzkumu Téma číslo 2 Koncipování vlastního výzkumu pedagogického výzkumu 1 Příprava výzkumu Teoretický rozbor literární rešerše (úprava, vyvarování se chyb, inspirace ) Zdroje:

Více

Výzkum sociální změny

Výzkum sociální změny UK FHS Historická sociologie (ZS 2011) Design kvantitativního výzkumu Výzkum sociální změny 6. část poslední aktualizace 26.11. 2011 Jiří Šafr jiri.safr(at)seznam.cz Zkoumání sociální změny V centru zájmu

Více

Rozhodování žáků absolventských ročníků základních škol o další vzdělávací a profesní dráze

Rozhodování žáků absolventských ročníků základních škol o další vzdělávací a profesní dráze 21. 11. 2013, Bratislava Inovatívne technológie včasnej prevencie v poradenských systémoch a preventívnych programoch Rozhodování žáků absolventských ročníků základních škol o další vzdělávací a profesní

Více

Cvičení 12: Binární logistická regrese

Cvičení 12: Binární logistická regrese Cvičení 12: Binární logistická regrese Příklad: V roce 2014 konalo státní závěrečné zkoušky bakalářského studia na jisté fakultě 167 studentů. U každého studenta bylo zaznamenáno jeho pohlaví (0 žena,

Více

Ekonomická situace a materiální životní podmínky z pohledu veřejného mínění ve středoevropském srovnání Jan Červenka

Ekonomická situace a materiální životní podmínky z pohledu veřejného mínění ve středoevropském srovnání Jan Červenka Ekonomická situace a materiální životní podmínky z pohledu veřejného mínění ve středoevropském srovnání Jan Červenka V mezinárodní spolupráci na bázi CEORG 1 již několik let probíhají paralelně v České

Více

eu100 špatnou a vyučenými bez maturity. Například mezi nezaměstnanými (, % dotázaných) hodnotilo 8 % z nich nezaměstnanost jako příliš vysokou, mezi O

eu100 špatnou a vyučenými bez maturity. Například mezi nezaměstnanými (, % dotázaných) hodnotilo 8 % z nich nezaměstnanost jako příliš vysokou, mezi O eu100 TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská 1, Praha 1 Tel./fax: 28 80 12 E-mail: milan.tucek@soc.cas.cz Česká veřejnost o nezaměstnanosti červen 201

Více

2. Odstraňování slabých míst vzdělávacího systému

2. Odstraňování slabých míst vzdělávacího systému MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Podklad pro diskuzi ke Strategii vzdělávací politiky do roku 00. Odstraňování slabých míst vzdělávacího systému Praha, březen 01 Úvod V lednu 01 zahájilo Ministerstvo

Více

Hlavní šetření. Školní zpráva

Hlavní šetření. Školní zpráva Hlavní šetření Školní zpráva Základní škola nám. Arnošta z Pardubic 8, Úvaly Kód vaší školy: S18 Praha, leden 2017 Obsah 1 Úvod... 3 2 Projekt PIRLS... 4 3 Čtenářská gramotnost... 4 4 Šetření PIRLS 2016...

Více

GENDEROVÉ STEREOTYPY VE ŠKOLE

GENDEROVÉ STEREOTYPY VE ŠKOLE EVROPSKÝ SOCIÁLNÍ FOND "PRAHA & EU": INVESTUJEME DO VAŠÍ BUDOUCNOSTI" VŠCHT Praha: Inovace studijního programu Specializace v pedagogice (CZ.2.17/3.1.00/36318) GENDEROVÉ STEREOTYPY VE ŠKOLE PhDr. Irena

Více

KLIMA ŠKOLY. Zpráva z evaluačního nástroje Klima školy. Škola Testovací škola - vyzkoušení EN, Praha. Termín

KLIMA ŠKOLY. Zpráva z evaluačního nástroje Klima školy. Škola Testovací škola - vyzkoušení EN, Praha. Termín KLIMA ŠKOLY Zpráva z evaluačního nástroje Klima školy Škola Testovací škola - vyzkoušení EN, Praha Termín 29.9.2011-27.10.2011-1 - Vážená paní ředitelko, vážený pane řediteli, milí kolegové! Dovolte, abychom

Více

Česká veřejnost o tzv. Islámském státu březen 2015

Česká veřejnost o tzv. Islámském státu březen 2015 pm TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská, Praha Tel.: + E-mail: jan.cervenka@soc.cas.cz Česká veřejnost o tzv. Islámském státu březen 05 Technické parametry

Více

1. Případová studie - obecně

1. Případová studie - obecně Zdravím, tato opora má dvě kapitoly: 1. Případová studie obecně je skutečně neskutečně obecná 2. Případová studie z pohledu DIVMAN a JEVTECH je praktičtější a srozumitelnější 1. Případová studie - obecně

Více

Mezinárodní výzkum občanské výchovy ICCS 2009. Výzkumná zpráva ZŠ Jablonec nad Nisou

Mezinárodní výzkum občanské výchovy ICCS 2009. Výzkumná zpráva ZŠ Jablonec nad Nisou Mezinárodní výzkum občanské výchovy ICCS 2009 Výzkumná zpráva ZŠ Jablonec nad Nisou Ústav pro informace ve vzdělávání Senovážné nám. 26, P.O. Box 1, 06 Praha 1 Tato výzkumná zpráva předkládá výsledky mezinárodní

Více

Výsledky a prezentace české vědy z pohledu veřejnosti

Výsledky a prezentace české vědy z pohledu veřejnosti TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská 1, Praha 1 Tel./fax: +420 210 310 584 E-mail: jiri.vinopal@soc.cas.cz Výsledky a prezentace české vědy z pohledu

Více

Názory občanů na přínos cizinců pro ČR březen 2013

Názory občanů na přínos cizinců pro ČR březen 2013 TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská 1, Praha 1 Tel./fax: 286 840 9 E-mail: anezka.pribenska@soc.cas.cz Názory občanů na přínos cizinců pro ČR březen

Více

Základní škola a Mateřská škola Třešňová 99 Osoblaha Výsledky žáků ze základní školy

Základní škola a Mateřská škola Třešňová 99 Osoblaha Výsledky žáků ze základní školy Kód školy: 13017 HLAVNÍ ŠETŘENÍ PISA 2015 ŠKOLNÍ ZPRÁVA Základní škola a Mateřská škola Třešňová 99 Osoblaha Výsledky žáků ze základní školy Praha, leden 2016 Obsah 1 Úvod... 3 2 Šetření PISA... 3 3 Gramotnosti

Více

ANALÝZA VÝSLEDKŮ TESTOVÁNÍ OBECNÝCH STUDIJNÍCH PŘEDPOKLADŮ

ANALÝZA VÝSLEDKŮ TESTOVÁNÍ OBECNÝCH STUDIJNÍCH PŘEDPOKLADŮ ANALÝZA VÝSLEDKŮ TESTOVÁNÍ OBECNÝCH STUDIJNÍCH PŘEDPOKLADŮ Hlavní zjištění Ze studentů slovenských středních škol jsou výrazně lepší ti, kteří chtějí jít studovat vysokou školu do ČR, než ti, kteří chtějí

Více

TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská 1, Praha 1 Tel./fax: 86 80 1 E-mail: paulina.tabery@soc.cas.cz Názory české veřejnosti na úroveň vzdělávání na

Více

Příklad dobré praxe IV z realizace kariérového poradenství

Příklad dobré praxe IV z realizace kariérového poradenství Projekt Další vzdělávání pedagogických pracovníků středních škol v oblasti kariérového poradenství CZ 1.07/1.3.00/08.0181 Příklad dobré praxe IV z realizace kariérového poradenství Mgr. Miloš Blecha 2010

Více

Příloha č. 8 Podmínky ke vzdělání

Příloha č. 8 Podmínky ke vzdělání Příloha č. 8 Podmínky ke vzdělání Ukázka z Vlastního hodnocení školy, které bylo schváleno 21.10.2010 a bylo provedeno za předcházející 3 roky. Vybraná část popisuje oblast, která asi nejvíce ovlivňuje

Více

SITUACE ŽEN PŮSOBÍCÍCH VE VĚDĚ A VÝZKUMU

SITUACE ŽEN PŮSOBÍCÍCH VE VĚDĚ A VÝZKUMU SITUACE ŽEN PŮSOBÍCÍCH VE VĚDĚ A VÝZKUMU PRO PRÁCI VE VĚDĚ A VÝZKUMU MAJÍ ŽENY I MUŽI STEJNÉ PŘEDPOKLADY, PROFESNÍ RŮST ŽEN JE ALE POMALEJŠÍ Citované výsledky vycházejí ze tří výzkumných akcí uskutečněných

Více

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/ VZDĚLÁVÁNÍ V EU A ČR

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/ VZDĚLÁVÁNÍ V EU A ČR Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 VZDĚLÁVÁNÍ V EU A ČR 2010 Ing. Andrea Sikorová, Ph.D. 1 Vzdělávání v EU a ČR

Více

Pražská sídliště 2010 - závěrečná zpráva

Pražská sídliště 2010 - závěrečná zpráva Pražská sídliště 2010 - závěrečná zpráva (Švorcová, Makovcová, Mach) Úvod: Naše práce je jednou z částí většího projektu výzkumu sídlišť, v jehož rámci byli dotazováni obyvatelé sídlišť Petrovice, Barrandov,

Více

Česká republika. Obrázek 1: Přehled o vývoji počtů nově přijímaných žáků v ČR

Česká republika. Obrázek 1: Přehled o vývoji počtů nově přijímaných žáků v ČR Česká republika Přehled o nově přijímaných žácích Celkový počet žáků nově přijatých do denního studia na středních a vyšších odborných školách ve školním roce 2015/2016 činil 112 756, z toho do studia

Více

SPECIFIKA PŘÍRODOVĚDNÝCH A TECHNICKÝCH OBORŮ GENDEROVÁ DIMENZE V HORIZONTU

SPECIFIKA PŘÍRODOVĚDNÝCH A TECHNICKÝCH OBORŮ GENDEROVÁ DIMENZE V HORIZONTU GENDER VE VÝUCE SPECIFIKA PŘÍRODOVĚDNÝCH A TECHNICKÝCH OBORŮ GENDEROVÁ DIMENZE V HORIZONTU Irena Smetáčková katedra psychologie, Pedagogická fakulta UK 1 Zákon o VŠ, 1, d) VŠ hrají aktivní roli ve veřejné

Více

Zveřejnění výsledků výběrové zjišťování výsledků žáků 2015

Zveřejnění výsledků výběrové zjišťování výsledků žáků 2015 Zveřejnění výsledků výběrové zjišťování výsledků žáků 2015 V souladu s Plánem hlavních úkolů České školní inspekce na školní rok 2014/2015 a v rámci zákonem definovaných úkolů získávat a analyzovat informace

Více

velmi dobře spíše dobře spíše špatně velmi špatně neví

velmi dobře spíše dobře spíše špatně velmi špatně neví TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská 1, Praha 1 Tel.: 86 840 19 E-mail: milan.tucek@soc.cas.cz Názory občanů na úroveň sociální zabezpečení v ČR a

Více

er150213 Jilská 1, Praha 1 Tel.: 286 840 129 E-mail: milan.tucek@soc.cas.cz

er150213 Jilská 1, Praha 1 Tel.: 286 840 129 E-mail: milan.tucek@soc.cas.cz er0 TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská, Praha Tel.: 86 80 9 E-mail: milan.tucek@soc.cas.cz Názor na zadlužení obyvatel a státu leden 0 Technické

Více

Faktory ovlivňující přechod žáků 5. ročníků na osmileté gymnázium 1

Faktory ovlivňující přechod žáků 5. ročníků na osmileté gymnázium 1 ORBIS SCHOLAE, 2013, 7 (3) 73 85 EMPIRICKÉ STUDIE Faktory ovlivňující přechod žáků 5. ročníků na osmileté gymnázium 1 73 Jana Straková, David Greger Univerzita Karlova v Praze, Pedagogická fakulta Abstrakt:

Více

TISKOVÁ ZPRÁVA. Centrum pro výzkum veřejného mínění CVVM, Sociologický ústav AV ČR, v.v.i. OV.14, OV.15, OV.16, OV.17, OV.18, OV.179, OV.

TISKOVÁ ZPRÁVA. Centrum pro výzkum veřejného mínění CVVM, Sociologický ústav AV ČR, v.v.i. OV.14, OV.15, OV.16, OV.17, OV.18, OV.179, OV. TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská 1, Praha 1 Tel./fax: 286 840 129 E-mail: jan.cervenka@soc.cas.cz Romové a soužití s nimi očima české veřejnosti

Více

Metodická instrukce. Možnosti využití inspekčních nástrojů ke gramotnostem v práci školy

Metodická instrukce. Možnosti využití inspekčních nástrojů ke gramotnostem v práci školy Praha, říjen 2015 Obsah 1 Cíl a určení dokumentu... 3 2 Inspekční nástroje ke gramotnostem... 3 3 ke sledování podpory gramotností... 3 4 Obecný postup pro sledování podpory rozvoje gramotností... 4 5

Více

SLADĚNÍ RODINNÉHO A PROFESNÍHO ŽIVOTA ŽEN PŮSOBÍCÍCH VE VĚDĚ A VÝZKUMU

SLADĚNÍ RODINNÉHO A PROFESNÍHO ŽIVOTA ŽEN PŮSOBÍCÍCH VE VĚDĚ A VÝZKUMU SLADĚNÍ RODINNÉHO A PROFESNÍHO ŽIVOTA ŽEN PŮSOBÍCÍCH VE VĚDĚ A VÝZKUMU Citované výsledky vycházejí ze tří výzkumných akcí uskutečněných STEM v rámci projektu "Postavení žen ve vědě a výzkumu" spolufinancovaného

Více

2. Kvalita pracovní síly

2. Kvalita pracovní síly 2. Kvalita pracovní síly Kvalita pracovní síly = vzdělání a kvalifikace Úkolem první části této práce bylo ukázat, jak velká je pracovní síla v Jihomoravském kraji či jak se její velikost změnila. Cílem

Více

Monitorování. učitelé. žáci. další partneři. absolventi. trh práce

Monitorování. učitelé. žáci. další partneři. absolventi. trh práce M a l á t o v a t e l. 2 9 5 e-m a i l : Vývoj vzdělávání a školství v krajích ČR Kvalita a evaluace Radim Ryška Seminář k projektu ESF Kvalita II Praha a Brno, 15. a 17. ledna 2008 M a l á t o v a t e

Více

Bulharsko Česká republika Maďarsko Německo Polsko Rakousko Rumunsko Rusko Slovensko Slovinsko

Bulharsko Česká republika Maďarsko Německo Polsko Rakousko Rumunsko Rusko Slovensko Slovinsko ev13 TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská 1, Praha 1 Tel./fax: 286 8 129 E-mail: jan.cervenka@soc.cas.cz Hospodářská úroveň ČR v kontextu jiných zemí

Více

Matematika s chutí Proč? S kým? A jak?

Matematika s chutí Proč? S kým? A jak? Matematika s chutí Proč? S kým? A jak? První otázka Proč jsme se rozhodli realizovat projekt Matematika s chutí? Důvod první: Motivace a vztah k matematice Od roku 2003 (PISA věnovaná především matematice)

Více