Řízení zásob ZÁSOBY JSOU IDENTIFIKÁTOREM NESCHOPNOSTI MANAGEMENTU FIRMU ŘÍDIT ZÁSOBY JSOU ZDROJEM VÍCENÁKLADŮ, ZTRÁT, NÍZKÉ EFEKTIVNOSTI KAPITÁLU

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Řízení zásob ZÁSOBY JSOU IDENTIFIKÁTOREM NESCHOPNOSTI MANAGEMENTU FIRMU ŘÍDIT ZÁSOBY JSOU ZDROJEM VÍCENÁKLADŮ, ZTRÁT, NÍZKÉ EFEKTIVNOSTI KAPITÁLU"

Transkript

1 Řízení zásob ZÁSOBY JSOU IDENIFIKÁOREM NESCHOPNOSI MANAGEMENU FIRMU ŘÍDI ZÁSOBY JSOU ZDROJEM VÍCENÁKLADŮ, ZRÁ, NÍZKÉ EFEKIVNOSI KAPIÁLU GEOGRAFICKÁ FUNKCE ZÁSOB VYROVNÁVACÍ FUNKCE ZÁSOB ECHNOLOGICKÁ FUNKCE ZÁSOB SPEKULAIVNÍ FUNKCE ZÁSOB SÁNÍ HMONÉ REZERVY ÚZEMNÍ SPECIALIZACE, PŘIBLÍŽENÍ RHU, OPIMÁLNÍ LOKALIZACE KAPACI, VYROVNÁVÁNÍ KAPACINÍHO, ČASOVÉHO, NESOULADU MEZI VÝROBOU A SPOŘEBOU SKLADOVÁNÍ ZÁSOB SURVIN, POLOOVARŮ, VÝROBKŮ JAKO SOUČÁS ECHNOLOGIE VÝROBKU SPEKULAIVNÍ UDRŽOVÁNÍ ZÁSOB SURVIN, POLOOVARŮ, VÝROBKŮ SRAEGICKÉ ZÁSOBY PRO PŘÍPAD MIMOŘÁDNÝCH UDÁLOSÍ

2 Řízení zásob Funkce zásob POJISNÁ ZÁSOBA x p ECHNOLOGICKÁ ZÁSOBA x t BĚŽNÁ ZÁSOBA x b KONSANNÍ V ČASE, REZERVA PŘED NÁHODNÝMI VÝKYVY POPÁVKY, PORUCHAMI KONSANNÍ V ČASE, SKLADOVÁNÍ ZÁSOB SUROVIN, POLOOVARŮ, VÝROBKŮ PROMĚNNÁ V ČASE, ZÁVISLÁ NA ZPOŮSOBU POŘIZOVÁNÍ A ČERPÁNÍ ZÁSOB x t

3 Řízení zásob Klasifikace zásob v dodavatelském řetězci Zásoby SUROVIN, PALIV POLOOVARŮ, DÍLŮ, KOMPONEN HOOVÝCH VÝROBKŮ Interpretace Paretova pravidla na analýzu zásob Podle něho by mělo platit, že při analýze zásob zjistíme,že 80% zásob v peněžním vyjádření tvoří cca 0% skladovaných položek, 80% skladovaných položek dodává zhruba 0% dodavatelů 80% rychloobrátkových zásob tvoří zhruba 0% sladovaných položek atd.

4 Řízení zásob Členění zásob na bázi analýzy ABC Interpretace Paretova pravidla na analýzu zásob c.p. q c c.p. q c c.p. q c c.p. q c č.p. číslo položky q skladované množství jedn. c cena Kč/jedn.

5 Řízení zásob Členění zásob na bázi analýzy ABC (5) (4) (3) () (1) (5) (4) (3) () (1)

6 Řízení zásob Členění zásob na bázi analýzy ABC Podíl na stavu zásob % podíl počtu položek % Skladované položky je možno v naší ilustraci rozdělit na 3 skupiny: A, které představují 81% stavu zásob a kterých je pouze 13% z celkového počtu 38, konkrétně 5 položek 31, 3, 11, 8, a 5. B, tvořenou dalšími 3-13 = 19% položkami, jejichž stav zásob činí = 6%, konkrétně 6 položek 1,18,3,17,9,7, a, a konečně C, kde zůstalo zbývajících = 68% položek, které se podílejí na stavu zásob = 5%

7 Řízení zásob Členění zásob na bázi analýzy XYZ Členění zásob podle průběhu jejich spotřeby v čase PRŮBĚH SPOŘEBY V ČASE Pravidelná bez větších výkyvů PŘEDVÍDAELNOS SPOŘEBY Velmi dobrá předvídatelnost SKUPINA X Spotřeba s většími výkyvy Omezená předvídatelnost SKUPINA Y SKUPINA Z Velmi nepravidelná, sporadická.. Velmi obtížná předpověď???

8 Základní pojmy Lokalizace zásob v dodavatelském řetězci Zpětné toky Recyklační organizace Z Výrobce surovin Výrobce dílů Výrobce dílů Výrobce polotovarů, mont. skupin Výrobce polotovarů, mont. skupin Výrobce finálního výrobku Výrobce finálního výrobku Distribuční organizace Á K A Z N Í C Vertikální rozšíření I Výrobce dílů Výrobce finálního výrobku Horizontální rozšíření

9 Řízení zásob Náklady spojené s pořizováním a udržováním zásob NÁKLADY NA POŘÍZENÍ ZÁSOB NÁKLADY SPOJENÉ S UDRŽOVÁNÍM ZÁSOB ZRÁY Z NEDOSAKU ZÁSOB nákupem Zásoba je pořizována: Objednací, pořizovací náklady na: nákupní proces administrativu (objednávky ) náklady na dopravu kvalitativní a kvantitativní přejímku vlastní nákup zboží (při množstevních rabatech) vlastní výrobou Jednorázové náklady na: seřízení strojů, linek čistění aparátů administrativu (výrobní příkazy, operační listy ) ztráta zbytkového množství ned. výroby kontrolu kvality pojistné skladovaných položek ztráty vázáním kapitálu v zásobách skladovací náklady na vlastní sklad nájemné externích skladů ztráty z neprodejnosti výrobků skladovací ztráty (prošlé záruční lhůty) (rozprachem, vytěkáním..) Vícenáklady na dodatečnou objednávku, ztráta tržeb, zisku Prostoje, mimořádné směny náklady na změnu programu porušení plynulosti výroby

10 Řízení zásob Faktory působící na náklady spojené s existencí zásob Průměrná zásoba x za sledované období On line výpočet průměrné zásoby x x Výpočet průměrné zásoby z dílčích stavů zásob (inventury) x x = x + x + x x 1 x x 4 + x 3 + x 3 x x

11 Řízení zásob Faktory působící na náklady spojené s existencí zásob Průměrná zásoba x i působí na náklady N si spojené s udržováním zásoby i-té položky za sledované období N si = nsici xi = n si c i x i n si c si x i náklady spojené s udržováním zásob v % průměrné zásoby v Kč cena i-té položky v Kč/jedn. délka sledovaného období v časových jednotkách stav zásob v jedn./jedn.času Nákladová položka Skladovací náklady Úroková míra, výnosnost kapitálu Pojistné zásob Ztráty zpusobené znehodnocením zásob, zcizením Celkem Procent z prumerné zásoby Pramen materiály EU

12 Řízení zásob Faktory působící na náklady spojené s existencí zásob Počet dodávek (objednávek) o i působí na celkové pořizovací náklady N oi spojené s realizací dodávek i-té položky za sledované období N = n si oi o i n oi náklady spojené s realizací jedné dodávky v Kč/1 dodávku Pruzkum v Holandsku ukázal, že náklady na jednu objednávku se v EU pohybují mezi EUR, Dignum F.:E-commerce in production, Integrated Manufacturing Systems 13/5 (00 )page V ČR cca Kč na jednu objednávku Průměrné množství x zi i - té položky, které se nedostává za sledované období působí na celkové ztráty z nedostatku zásob N zi N = n si zi x zi n zi ztráty spojené s nedostatkem položky v Kč/jedn.,období

13 Řízení zásob vstup Zdroj: externí dodavatel vlastní výroba Způsob dodávek: po dávkách kontinuální Dodací lhůta: zanedbatelná konstantní náhodná Objednané množství: spojité nespojité Sklad výstup Poptávka: konstantní v čase proměnná v čase náhodná spojitá nespojitá

14 Řízení zásob Optimální velikost objednávky Na období potřebujeme S i = konst. jednotek i-té suroviny o ceně c i = konst. Q i spojitá proměnná Stanovit velikost objednávek Q i <= S i a dodací cykly tak, aby suma nákladů na udržování zásob N 1 a pořizovacích nákladů N byla minimální xi = Qi / Q i N t ci ( Qi + x N1 = nsiciqi / i = ciqi / i = Si Q N = nsisi / Qi i o / ) = N1 + N = noisi / Qi nsiciqi / i si Q i opt = Sin c n oi i opt N( Q ) = S n i si n oi c i t ci = ( S i / Q opt i ) = n Sn si ji c i

15 Řízení zásob Optimální velikost objednávky Na období potřebujeme S i = konst. jednotek i-té suroviny o ceně c i = konst. Q i nespojitá proměnná Q i = q, q, 3q Stanovit velikost objednávek Q i <= S i a dodací cykly tak, aby suma nákladů na udržování zásob N 1 a pořizovacích nákladů N byla minimální opt N( Q ) = Sn s n o c N( Q q) = n S /( Q q) + n c( Q q) / N( Q + q) = n S /( Q + q) + n c( Q q) / o s opt N( Q q) N( Q ) N( Q + q)) Sn j Q( Q q) Q( Q + q) cn s o s + q q 3q 4q 5q

16 Řízení zásob Optimální velikost objednávky Je-li termín vyřízení objednávky t vo >0, je nutné určit dolní objednací mez (signální stav zásob) x s. Jakmile dosáhne zásoba tuto hranici,, je třeba vystavit objednávku na dodávku stanovené velikosti Q. pro t vo < t c x s = st vo kde s = S/ pro t vo = t c V okamžiku příchodu objednávky objednat další pro t vo > t c x s je neceločíselný zbytek podílu s.t vo / Q Celá část podílu vyjadřuje kolik celých dodávek během t vo přijde a bude krýt poptávku Analýza citlivosti nákladů na změnu Q opt i Q i N( Q ) / N( 1 ) 1 opt Q i / Q i

17 Řízení zásob ve skladech Metody doplňování stavu zásob ve skladech Stav zásob Problém kdy objednat a kolik? Počáteční stav zásob Jaké pravidlo zvolit, jakou řídící veličinu použít? Dvě možnosti: Dosažený stav zásob Dosažený časový okamžik Čas

18 Řízení zásob ve skladech Metody doplňování stavu zásob ve skladech Základní požadavky na vstupní informace Charakteristiky poptávky po skladované položce: p náhodná poptávka za časový interval dt p odhad průměrné poptávky za časový interval dt s p odhad rozptylu poptávky f(p) odhad tvaru funkce hustoty pravděpodobnosti poptávky t p termín vyřízení objednávky dodavatelem Nákladové údaje: n j jednorázové náklady v Kč/1 objednávku n s náklady na udržování zásob v % průměrné zásoby v Kč n z ztráty z předčasného vyčerpání zásoby v Kč/jednotku nedodaného zboží x on line stav zásoby položky na skladě

19 Řízení zásob ve skladech Metody doplňování stavu zásob ve skladech Q systém Systémy s pevnou velikostí doplňovací objednávky a proměnným objednacím termínem Signální stav zásob - Dolní objednací mez x s Jakmile stav zásob x klesne pod x s, je třeba objednat Signální stav zásob musí pokrýt náhodné výkyvy v poptávce a spotřebu po dobu průměrného termínu pořízení objednávky

20 x Řízení zásob ve skladech Metody doplňování stavu zásob ve skladech Q systém t c Dodací cyklus Q x d 1.objednávka t p.objednávka t p.dodávka 1.dodávka Čas

21 Řízení zásob ve skladech Metody doplňování stavu zásob ve skladech Q systém Metody stanovení základních řídících veličin: A. Jednoduchý odhad: 1. Určíme velikost objednávky podle vztahu nebo jinou metodou. Určíme velikost pojistné zásoby podle vztahu 3. Určíme dolní objednací mez podle vztahu Q = S. n. n x p = σ p x s = x p + s. t p s c j

22 Řízení zásob ve skladech Metody doplňování stavu zásob ve skladech Q systém B. Přesná metoda, kriterium minimalizace nákladů a ztrát z předčasného vyčerpání zásoby: 1. Náklady na vystavování a příjem objednávek. Náklady na udržování běžné zásoby N N = 1 = x t c n j p. n s. c. 3. Náklady na udržování pojistné zásoby N 0,5. Q.. c. = Q = S. t c n s 4. Ztráty z předčasného vyčerpání zásoby N = 0,5. S. c. t c. n s N 3 = nz. f ( p) tc x = x + t. s s p p dp

23 Řízení zásob ve skladech Metody doplňování stavu zásob ve skladech Q systém B. Přesná metoda, kriterium minimalizace nákladů a ztrát z předčasného vyčerpání zásoby: N( t c, x p ) = t c n j + x p.. c. n s + 0,5. S. t c. c. n s + t c n z. x s f ( p) dp Řešení: ( t, x ) = c p argmin N( t ( t, c x p ) c, x p )

24 Řízení zásob ve skladech Metody doplňování stavu zásob ve skladech Q systém B. Přesná metoda, kriterium minimalizace nákladů a ztrát z předčasného vyčerpání zásoby: ( ).[ ] 0.., ) ( = + = p f s x z c s p p c n t n c x x t N ( ) ) ( 1... s p p z c n c t p x f n t + =

25 Řízení zásob ve skladech Metody doplňování stavu zásob ve skladech Q systém B. Přesná metoda, kriterium minimalizace nákladů a ztrát z předčasného vyčerpání zásoby: N( t c t, x c p ) = n ( ) = j S nsc n z f p dp t t c c x s 0 t [ 1 F ( x )] [ n + n ] j z c = S. c. n s s ()

26 Řízení zásob ve skladech Metody doplňování stavu zásob ve skladech Q systém Do () dosadíme za t c výraz (1), dostaneme výraz a iteračním postupem určíme velikost pojistné zásoby x p f ( x + p. t ) p p =. c. n s [ n + n [ 1 F ( x + p. t ) ] j z S. n z p p a z něho iteračním postupem určíme velikost pojistné zásoby x p dále t c dosazením za x p do vztahu (1) a poté Q = S.t c /

27 Řízení zásob ve skladech Metody doplňování stavu zásob ve skladech P systém Systémy s proměnnou velikostí doplňovací objednávky a pevným objednacím termínem Signální stav zásob - Horní objednací mez x h Objednává se v pevných termínech proměnlivé množství Q = x h - x Horní mez stavu zásob musí pokrýt náhodné výkyvy v poptávce a spotřebu po dobu průměrného termínu pořízení objednávky a průměrného dodacího cyklu x h = x p + p( t p + t c )

28 Řízení zásob ve skladech Metody doplňování stavu zásob ve skladech P systém x Q 1 Q Q 3 t p1 tc1 t p1 Interval nejistoty Čas

29 Řízení zásob ve skladech Metody doplňování stavu zásob ve skladech PQ systém Systémy s proměnnou velikostí doplňovací objednávky a proměnným objednacím termínem Dolní objednací mez x s - Horní objednací mez x h Objednává se v proměnných termínech proměnlivé množství Q = x h - x x h = x + p( t + t ) x = x + st. p p c s p p

30 Řízení zásob ve skladech Metody doplňování stavu zásob ve skladech PQ systém x x h Q 1 Q x d 1.objednávka.objednávka Čas

31 Řízení zásob ve skladech Metody doplňování stavu zásob ve skladech QP systém Systémy s pevnou velikostí doplňovací objednávky a pevným objednacím termínem Objednává se v pevných termínech konstantní množství Q

32 Řízení zásob ve skladech Metody doplňování stavu zásob ve skladech P systém x Q Q t p1 tc1 t p1 Čas

33 Řízení zásob ve skladech Metody doplňování stavu zásob ve skladech Ps systém Systémy s proměnnou velikostí doplňovací objednávky a pevným objednacím termínem Objednává se v pevných termínech množství rovné spotřebě od poslední objednávky

34 Řízení zásob ve skladech Metody doplňování stavu zásob ve skladech Ps systém x Q 1 Q Q 3 Čas

35 Distribuce Řízení zásob v distribučním řetězci Řízení zásob poptávkou Na každém stupni distribučního řetězce jsou vystavovány objednávky v okamžiku, kdy zásoba klesne pod objednací mez Velikost objednávky je většinou konstantní, někdy proměnná a optimální ve vazbě na distribuční náklady Předpoklady funkce: Všechny segmenty trhu jsou pro podnikatele rovnocenné Kapacity výrobní, přepravní skladovací jsou teoreticky neomezené Možnost pružných změn dodacích cyklů, velikosti dodávek

36 Distribuce Řízení zásob v distribučním řetězci Řízení zásob plánem DRP Na základě předpovědi poptávky je sestaven podrobný plán dodávek v celém distribučním řetězci Předpoklady funkce: Možnost detailní předpovědi poptávky na nejnižším distribučním stupni Možnost detailního sledování pohybu zboží na všech stupních distribučního řetězce

37 Distribuce Řízení zásob v distribučním řetězci Kombinované metody Změny vnějších podmínek vyžadují adekvátní reakci v řízení zásob Změna strategie v čase: Výroba a distribuce potravin Období sklizně Řízení plánem Mimosezonní období Řízení poptávkou Změna strategie v prostoru: Nákup: Řízení plánem Dodávky výrobků: Řízení poptávkou

38 Distribuce Řízení zásob v distribučním řetězci Kombinované metody Změny vnějších podmínek vyžadují adekvátní reakci v řízení zásob Změny podle segmentu trhu: A B C Řízení plánem Kombinované řízení Řízení poptávkou

39 Předpovědi poptávky Předpověď je jako sex ve společnosti: potřebujeme to, nemůžeme se bez toho obejít, každý to tím, nebo jiným způsobem dělá, ale nikdo si není jist, že správným způsobem Plossel Předpověď poptávky je systematický postup vedoucí k odhadu velikosti poptávky na zvolené období opírající se o intuitivní, metodické, matematické a statistické metody. Budoucnost nelze předpovědět, budoucnost je třeba vytvořit! Nejlepším zdrojem budoucnosti je minulost! (Byron)

40 Předpovědi poptávky Vše, co podnikatel uskutečňuje je založeno na jeho odhadu - předpovědi - budoucího vývoje! Dobrá předpověď= kombinace intuice zkušenosti analýzy minulosti

41 Předpovědi poptávky Poptávka s trendem trend Dos avadní vývoj prodeje P alkydu Základní typy časových řad Basic groups of the time series Stagnující poptávka Stagnation Vývoj prodeje Melformu XL Sezónní poptávka Seasonality Spotřeba zemního plynu tun tun m il. m m ě síc mě síc mě síc tis.tu n Cyklická poptávka Periodicity Prodej stavebních hmot ro k ks Sporadická poptávka Intermittend demand Spotřeba náhadního dílu měsíc Ústav ekonomiky a řízení chemického a potravinářského průmyslu VŠCH Praha

42 Předpovědi poptávky 1. Grafické metody Graphical methods Ηodnoty jsou zobrazeny v přehledné, srozumitelné formě Data representation in the transparent and comprehensible form Na malém prostoru lze znázornit velké množství údajů On the small space is possible to draw lagre amount of date Do sava dní vývoj prodej Recent consumption development yp grafu graph type Bodové nebo spojnicové grafy! Point or line graphs Do sava dní vývoj pro de je Re ce nt consumption developme nt Přímo z grafu lze odhadnout trend vývoje Directly from the graph is possible to estimate a development trend Z grafu jsou zřejmé anomálie ve vývoji Directly from the graph is possible to see trend anomalies V grafu je možno srovnávat vývoj více veličin vedle sebe On the graphs is possible directly compare the development of more time series Jednotek Units Mě s íc Monthh Me lform P alkyd Plyn Jednotek Units NE! No! Mě s íc Month Melform P alkyd Plyn Ústav ekonomiky a řízení chemického a potravinářského průmyslu VŠCH Praha

43 Předpovědi poptávky 1. Metoda klouzavých průměrů S i Τ Východiskem je časová řada dosavadního vývoje poptávky... S +1 P+,+1 P +1, Často je nahrazována řadou prodejů! Předpověď uskutečněná v tém období na , Nechť je skutečnost v +1. období S +1. Předpověď na další +. období bude rovna P P Τ Τ+1 Τ+ + 1, +, S S + S i= 0 i = = P 1 S S i= i + 1 = = S 1 + S S 1, + 1 P + 1, = ( S + 1 S 1 ) t Ústav ekonomiky a řízení chemického a potravinářského průmyslu VŠCH Praha

44 Předpovědi poptávky 1. Metoda klouzavých průměrů exponenciální vyrovnání Μetodika: Vyrovnáme nejdříve řadu známých hodnot S 1 S S : Odhad na.období P,1 = ( 1 α) S1 + αs1 = S1 P 3, = ( 1 α ) P,1 + αs = (1 α) S1 + αs P ( 1 ) 4,3 = α P 3, + αs3 = αs3 + (1 α )((1 α ) S1 + αs Odhad na 3.období Odhad na 4.období = αs První předpověď na +1.období bude rovna P P + 1, = (1 ) P, 1 α + αs 3 + α 1 α ) S + (1 α ) ( S 1 + 1, = αs + α( 1 α) S 1 + α(1 α) S...(1 α) S1 1 )

45 Předpovědi poptávky 1. Metoda klouzavých průměrů exponenciální vyrovnání Vzhledem k tomu, že se α pohybuje v intervalu (0, 1) je zřejmé, že při tomto postupu dáváme při odhadu největší váhu historicky nejmladším hodnotám a nejmenší váhu hodnotám nejstarším. Koeficienty při hodnotách S i splňují požadavek na váhy- jejich suma je rovna jedné, jak se můžeme přesvědčit např. na našem příkladě řady 3 historických hodnot: α + α(1 α) + (1 α) = α + α α + 1 α + α U řad vykazující trend klasické metody klouzavých úhrnů zaostávají předpovědi za trendem = 1. Metoda klouzavých průměrů exponenciální vyrovnání úprava pro řady s trendem Jako další kriterium je používána diference mezi po sobě jdoucími obdobími d = S S 1 a časovou řadu vyrovnáváme včetně diferencí podle vztahů kde β je opet koeficient volený v intervalu (0, 1) první diference bude S -S 1 a první předpověď na +1. období bude rovna P d + 1, = ( 1 α )( P, 1 + d 1) + αs = 1 ( 1 β ) d + β ( P + 1, P, 1) P + 1, = P, 1 + d 1

46 Předpovědi poptávky. Metoda klouzavých průměrů exponenciální vyrovnání úprava pro řady s trendem Μetodika: Vyrovnáme nejdříve řadu známých hodnot S 1 S S od 3. období Odhad pro.období P,1 = S První diference bude d1 = S - S 1 Odhad pro 3. období P d 3, = ( 1 α )( P,1 + d 1) + αs 3 = ( 1 β ) d + β ( P 3, P, 1) 1 atd.

47 Předpovědi poptávky 3. Regresní analýza Vyrovnání časové řady vhodně volenou křivkou metodou nejmenších čtverců ( a, b ) i = arg min a, b t = i 1 ( S t P t ) Používané křivky: P = a + b t + b t nejčastěji 1 P = 1 a + b t P = a + b1t + t P = a. b b t bt P = a. e b t k k Polynom t-tého stupně přímka kvadratická funkce exponenciální funkce Pro výpočty lze využít nástrojů Excelu: LINREND,LINREGRESE, LOGLINREGRESE

48 Předpovědi poptávky 3. Regresní analýza Vhodnost použitých křivek je třeba otestovat, kriteria výběru: Korelační index: Protože testujeme stejnou řadu hodnot stačí jako kriterium jen čitatel zlomku: s I i= 1 = 1 1 i= 1 ( S i ( S i P ) i S) S, t = ( Si Pi ) i= 1 P vyrovnané hodnoty S skutečné hodnoty délka časové řady Vzhledem k tomu, že s rostoucím počtem stupňů volnosti automaticky roste i hodnota těchto ukazatelů bez ohledu na to, zda jde opravdu o vhodnější křivku, doporučují se jiné míry. Schwarzovo kriterium SIC = k 1 i= 1 ( S i P ) i Akaikovo kriterium AIC = k exp 1 i= 1 ( S i P ) i

49 Předpovědi poptávky Ιlustrace Dosavadní vývoj prodeje Vyrovnání řady prodeje P alkydu 35 35, ,00 5 5,00 tun I II III IV V VI VII VIII IX X XI XII měsíc tun 0,00 15,00 10,00 5,00 0,00 II III IV V VI VII VIII IX X XI XII měsíc P alkyd PE R45 P skut. P a = 0, P a = 0,5 P Holt přímka

50 Předpovědi poptávky Ιlustrace 6,81 0,95 7,0 1,19,75 1,3 1, XII 5,48-0,4 4,9 1,38 5,50 1,9 1, XI 4,16 1,47 7,10 10,75 4,00 11,86 0, X,83 1,51 5,68 11,51,01 1,3 19, IX 1,50 1,39 3,98 13,0,0 1,90 18,4 10 VIII 0,17,18 3,78 13,03 1,03 1,88 17, VII 18,84,49,07 14,06 17,06 13,10 15, VI 17,51 1,31 17,8 13,13 16,13 1,6 14, V 16,18 1,4 16,40 1,5 1,5 1,8 13, IV 14,85-0,0 13,00 13,50 14,50 1,60 14, III 13,53 1, , , II 1 14 I d P PE R45 P alkyd PE R45 P alkyd PE R45 P alkyd P alkyd 0,5 0, Skutecná poptávka Mesíc prímkou 0,4 0,5 Exponenciální vyrovnání Vyrovnání Holtova metoda 1,5 = (1-0,5)* *11 3,78 = (1-0,5)* *( )+0.5*3 1,47 = (1-0,4)* *( ) Výpočet pomocí funkce LINREND (Excel)

51 Předpovědi poptávky Ιlustrace PE R45 Vyrovnání PE tun 16,00 14,00 1,00 10,00 8,00 6,00 4,00,00 0,00 II III IV V VI VII VIII IX X XI XII měsíc PE skut PE a=0, PE a=0,5 PE primka

52 Předpovědi poptávky Ιlustrace Mesíc Skutecná poptávka PE skut Exponenciální vyrovnání PE α=0, PE α=0,5 Vyrovnání prímkou PE primka Výpočet pomocí funkce LINREND (Excel) II III 15,00 11,00 1,00 1,60 1,00 13,50 13,73 13,47 13,13 = (1-0,5)* *14 IV 14,00 1,8 1,5 13, V 15,00 1,6 13,13 1,96 VI 1,00 13,10 14,06 1,71 VII 13,00 1,88 13,03 1,45 VIII 10,00 1,90 13,0 1,0 IX 10,00 1,3 11,51 11,95 X 14,00 11,86 10,75 11,69 XI 1,00 1,9 1,38 11,44 XII 11,00 1,3 1,19 11,18

53 Předpovědi poptávky Metody. Metoda klouzavých průměrů exponenciální vyrovnání úprava pro řady se sezónními výkyvy Problém volby délky s časové řady historických hodnot:! řada hodnot musí být alespoň tak dlouhá, aby zachytila sezónnost! Řad může být více Příklady: Spotřeba zemního plynu kolísá během roku délka časové řady alespoň s =1 měsíců Spotřeba pohonných hmot v krátkodobém časovém horizontu kolísá během týdne délka časové řady alespoň s = 7 dnů Spotřeba elektřiny výrazně kolísá během dne délka časové řady alespoň s = 4 hodin

54 Předpovědi poptávky Metody. Μetody klouzavých průměrů úprava pro řady se sezónními výkyvy Navíc jsou používány ještě sezónní indexy I = S s S i = 1 i kde s je délka sezónní řady s a časovou řadu vyrovnáváme včetně diferencí a indexů podle vztahů P d S ( P d α I + 1, = 1 α)(, 1 + 1) + I = s ( 1 β ) d + β ( P + 1, P, 1) S + 1 = γ + ( 1 γ ) I + 1 s P + 1, (1) () (3) kde γ je opet koeficient volený v intervalu (0, 1)

55 Předpovědi poptávky Metody. Μetody klouzavých průměrů úprava pro řady se sezónními výkyvy Předpověď na dalších např. k-té období dostaneme podle vztahu P + i ( P 1, + = id ) I 1 + i s pro i= k (4) Metodika: Vypočteme sezónní indexy v každé sezónní řadě a pro každé období vypočteme jejich průměr Odhadneme první diferenci jako rozdíl průměrných spotřeb posledních dvou sezón dělený délkou sezóny Odhadneme vyrovnaný centrovaný klouzavý průměr pro poslední období poslední sezóny jako průměr poslední sezóny plus násobek odhadnuté průměrné diference Vypočteme vyrovnané klouzavé průměry podle vztahů (1) () a (3) Podle vztahu (4) vypočteme předpověď pro další sezónu

56 Předpovědi poptávky Ilustrace Prodej Melformu X tun I II III IV V VI VII VIII IX X XI XII měsíc

57 Předpovědi poptávky.33 = 0,78*(9,09-0,46) 0, 41 = (8,9-4) / 1-0,71=0,3*(5,36-7,78)+(1-0,3)*(-0,46) Mesíc I II III IV V VI VII VIII IX X XI XII suma prum. Skutecná poptávka Melform X0 rok ,9 Výpocet sezónních indexu 7,78 = 0,5*(1 / 0,78) + 0,5*(9,09-0,46) 001 1,50 1,17 0,83 0,75 0,75 0,9 1,5 1,33 1,08 1,13 0,83 0,46 1, ,80 0,97 0,73 0,5 0,69 0,90 1,45 1,07 0,76 1,56 0,97 0,59 1, ,17 = 8,9 + 5,5*0.41 Vyrovnání Holt-Winters prumerný v mesíci 1,65 1,07 0,78 0,63 0,7 0,91 1,35 1,0 0,9 1,34 0,90 0,5 I 1,00 1 centrovaný klouzavý prumer pro 1/00 31,17 31,56 9,09 7,78 5,36 5,94 6,95 8,93 7,59 5,69 9,3 30,53 31,9 340,64 8,39 vyrovnání 00 α β 0,5 0,3 P d 0,41 5,08 0,40 34,11-0,46,33-0,71 17,17-1,3 17,39-0,68,93-0,18 36,17 0,47 35,35-0,07 5,37-0,6 33,60 0,65 7,00 0,8 16,40 0,99 339,91-0,61 8,33 γ 0, I 1,65 1,05 0,77 0,63 0,73 0,9 1,37 1,19 0,91 1,38 0,90 0,5 1,0 predpoved spotreby Melform X0 1,8 = (5,36-1,3*4)*0,63 5,70 9,49 19,88 1,80 16,46 3,80 44,18 3,05 18,7 49,47 35,77 3,0 357, ,00 9,8 0,5 = 0,*(17 / 31.9) + (1-0,)*0,5 k

58 Předpovědi poptávky Metody Vyrovnání a předpověď na tun I II III IV V VI VII VIII IX X XI XII měsíc Mel skut. Mel vyr. předp.03

59 Předpovědi poptávky Metody Regresní analýza, vyrovnání přímkou P = ( 0,159. t + 4,46). I t 4,6 = ,159*1 (první měsíc) 1,13 = 8 / 4.6 1,71 = ( )/ 48,68 = ( ,159*5)*1.71 Indexy Indexy Por.císlo Indexy Predpoved Mesíc Spotreba Vyrovnání 001 Spotreba Vyrovnání 00 mesíce prumerné prodeje 001 prímkou v mesíci 00 prímkou v mesíci rok 003 v mesíci 003 I 36 4,6 1,46 5 6,54 1,96 5 1,71 48,68 II 8 4,78 1,13 8 6,70 1,05 6 1,09 31,17 III 0 4,94 0,80 1 6,86 0,78 7 0,79,78 IV 18 5,10 0,7 15 7,0 0,56 8 0,64 18,40 V 18 5,6 0,71 0 7,18 0,74 9 0,7 1,07 VI 5,4 0,87 6 7,34 0, ,91 6,57 VII 30 5,58 1,17 4 7,50 1, ,35 39,71 VIII 3 5,74 1,4 31 7,66 1,1 3 1,18 34,95 IX 6 5,90 1,00 7,81 0, ,90 6,68 X 7 6,06 1, ,97 1, ,3 39,5 XI 0 6, 0,76 8 8,13 1, ,88 6,41 XII 11 6,38 0,4 17 8,9 0, ,51 15,37

60 Předpovědi poptávky Metody Srovnání předpovědních metod 80,00 60,00 tun 40,00 0,00 0,00 I II III IV V VI VII VIII IX X XI XII měsíc Regrese Holt Regrese 1

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných

Více

EKONOMIKA PODNIKU PŘEDNÁŠKA č.2

EKONOMIKA PODNIKU PŘEDNÁŠKA č.2 MATERIÁL 5.1. CHARAKTERISTIKA EKONOMIKA PODNIKU PŘEDNÁŠKA č.2 Ing. Jan TICHÝ, Ph.D. jan.tich@seznam.cz Materiál: a) základní materiál b) pomocný materiál c) provozní hmoty d) obaly ad a) zpracovává se

Více

Forecasting, demand planning a řízení zásob: Skrytý potenciál. Tomáš Hladík Logio

Forecasting, demand planning a řízení zásob: Skrytý potenciál. Tomáš Hladík Logio Forecasting, demand planning a řízení zásob: Skrytý potenciál Tomáš Hladík Logio 14.3.2012 Obsah Cíl správného řízení zásob Proč segmentovat portfolio? Dobrý forecasting je základ Jak na pomaluobrátkové

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice OPERAČNÍ VÝZKUM 11. TEORIE ZÁSOB Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Manažerská ekonomika přednáška OPTIMALIZACE ZÁSOB, MODERNÍ PŘÍSTUPY K ŘÍZENÍ ZÁSOB, STRATEGIE NÁKUPU 1. OPTIMALIZACE ZÁSOB

Manažerská ekonomika přednáška OPTIMALIZACE ZÁSOB, MODERNÍ PŘÍSTUPY K ŘÍZENÍ ZÁSOB, STRATEGIE NÁKUPU 1. OPTIMALIZACE ZÁSOB Manažerská ekonomika přednáška OPTIMALIZACE ZÁSOB, MODERNÍ PŘÍSTUPY K ŘÍZENÍ ZÁSOB, STRATEGIE NÁKUPU 1. OPTIMALIZACE ZÁSOB Jaký je základní přístup k řízení zásob? Je to tzv. optimalizační přístup, který

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

ŘÍZENÍ MATERIÁLOVÝCH TOKŮ V LOGISTICKÉM ŘETĚZCI

ŘÍZENÍ MATERIÁLOVÝCH TOKŮ V LOGISTICKÉM ŘETĚZCI ŘÍZENÍ MATERIÁLOVÝCH TOKŮ V LOGISTICKÉM ŘETĚZCI - maximalizace zisku zvýšení tržeb, snížení nákladů - logistický řetězec - veškeré subjekty, které se podílejí na vytváření hodnoty (výroby, dodavatelé,

Více

Oběžný majetek. Peníze Materiál Nedokončená výroba Hotové výrobky Pohledávky Peníze. Plánování a normování materiálových zásob.

Oběžný majetek. Peníze Materiál Nedokončená výroba Hotové výrobky Pohledávky Peníze. Plánování a normování materiálových zásob. Součástí oběžného majetku jsou: zásoby oběžný finanční majetek pohledávky Oběžný majetek Charakteristickým rysem oběžného majetku je jednorázová spotřeba, v procesu výroby mění svoji formu. Tato změna

Více

TOKOZ PRODUCTION SYSTEM (TPS) procesní systém pro plánování a řízení výroby

TOKOZ PRODUCTION SYSTEM (TPS) procesní systém pro plánování a řízení výroby TOKOZ PRODUCTION SYSTEM (TPS) procesní systém pro plánování a řízení výroby Jak v TOKOZu řídíme a plánujeme výrobu. Klíčová omezení: široký sortiment, malé dávky, sdílené technologie. Zadání pro TOKOZ

Více

Metodický list č. 1 FUNKCE, ZISK A VZTAHY MEZI ZÁKLADNÍMI EKONOMICKÝMI VELIČINAMI PODNIKU

Metodický list č. 1 FUNKCE, ZISK A VZTAHY MEZI ZÁKLADNÍMI EKONOMICKÝMI VELIČINAMI PODNIKU Metodické listy pro kombinované studium předmětu MANAŽERSKÁ EKONOMIKA Přednášející: Ing. Jana Kotěšovcová Metodický list č. 1 Název tematického celku: ZALOŽENÍ PODNIKU, VÝNOSY, NÁKLADY, NÁKLADOVÉ FUNKCE,

Více

Téma 5: Řízení oběžného majetku

Téma 5: Řízení oběžného majetku Téma 5: Řízení oběžného majetku 1. Charakteristika oběžného majetku a jeho struktury 2. Celková potřeba oběžného majetku 3. Řízení oběžného majetku - řízení zásob - řízení pohledávek - řízení peněžních

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Semestrální práce z předmětu MAB

Semestrální práce z předmětu MAB Západočeská univerzita v Plzni Fakulta aplikovaných věd Semestrální práce z předmětu MAB Modely investičního rozhodování Helena Wohlmuthová A07148 16. 1. 2009 Obsah 1 Úvod... 3 2 Parametry investičních

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Obsah. Nákup jako základní podniková funkce 3. Řízení podnikové funkce nákupu 13. Zákon krajností v souvislosti s časem 11

Obsah. Nákup jako základní podniková funkce 3. Řízení podnikové funkce nákupu 13. Zákon krajností v souvislosti s časem 11 Obsah Kapitola 1 Nákup jako základní podniková funkce 3 1.1 Základní podnikové funkce a jejich vazby 4 1.2 Charakteristika podnikové funkce nákupu 6 1.3 Objekty a formy nákupu 8 Shrnutí 10 Otázky a náměty

Více

Řízení zásob v automotive. Ing. Miroslav Kaňok m.kanok@seznam.cz Mobil: 725 524 164

Řízení zásob v automotive. Ing. Miroslav Kaňok m.kanok@seznam.cz Mobil: 725 524 164 Řízení zásob v automotive Ing. Miroslav Kaňok m.kanok@seznam.cz Mobil: 725 524 164 1. Co jsou zásoby? zásobou se rozumí množství materiálu/komponent, které jsou v daném okamžiku disponibilní k mat. zabezpečení

Více

Téma: Investice do akcií společnosti ČEZ

Téma: Investice do akcií společnosti ČEZ Matematika a byznys Téma: Investice do akcií společnosti ČEZ Alena Švédová A07146 Investice do akcií společnosti ČEZ ÚVOD Tímto tématem, které jsem si pro tuto práci zvolila, bych chtěla poukázat na to,

Více

Systémy plánování a řízení výroby AROP III

Systémy plánování a řízení výroby AROP III Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Systémy plánování a řízení výroby AROP III Technická univerzita v Liberci Výrobní

Více

ROZVAHA STRUKTURA, OBSAH, VÝZNAM PRO UŽIVATELE. ANALÝZA MAJETKOVÉ STRUKTURY. OPTIMÁLNÍ KAPITÁLOVÁ STRUKTURA 4.1 Podstata podvojného účetnictví. 4.2 Rozvaha, její funkce a druhy. 4.3 Obsah a uspořádání

Více

Aplikace matematiky v ekonomii

Aplikace matematiky v ekonomii KMA/SZZAE Aplikace matematiky v ekonomii Matematické modely v ekonomii 1. Klasifikace prostředků matematického modelování v ekonomii. 2. Modely síťové analýzy: metody CPM a PERT. 3. Modely hromadné obsluhy:

Více

Matematika a statistika

Matematika a statistika KMA/SZZMS Matematika a statistika Matematika 1. Číselné posloupnosti: Definice, vlastnosti, operace s posloupnostmi; limita posloupnosti a její vlastnosti, operace s limitami 2. Limita funkce jedné proměnné:

Více

Pojem investování a druhy investic

Pojem investování a druhy investic Investiční činnost Pojem investování a druhy investic Rozhodování o investicích Zdroje financování investic Hodnocení efektivnosti investic Metody hodnocení investic Ukazatele hodnocení efektivnosti investic

Více

Příloha účetní závěrky

Příloha účetní závěrky A.1. Informace podle 7 odst.3 zákona A.2. Informace podle 7 odst.4 zákona A.3. Informace podle 7 odst.5 zákona Účetní metody jsou v souladu se zákonem o účetnictví. O zásobách se účtuje způsobem A Rozúčtování

Více

Výnosy & Náklady Hospodářský výsledek. cv. 6

Výnosy & Náklady Hospodářský výsledek. cv. 6 Výnosy & Náklady Hospodářský výsledek cv. 6 Základní pojmy Náklad peněžní částka, kterou podnik účelně vynaložil na získání výnosů, tj. použil je k provedení určitého výkonu.(spotřeba výrobních faktorů

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

Ing. Radovan Nečas Mgr. Miroslav Hroza

Ing. Radovan Nečas Mgr. Miroslav Hroza Výzkumný ústav stavebních hmot, a.s. Hněvkovského, č.p. 30, or. 65, 617 00 BRNO zapsaná v OR u krajského soudu v Brně, oddíl B, vložka 3470 Aktivační energie rozkladu vápenců a její souvislost s ostatními

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Písemná práce k modulu Statistika

Písemná práce k modulu Statistika The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem

Více

Řízení zásob pomocí předpovídání prodejů

Řízení zásob pomocí předpovídání prodejů Řízení zásob pomocí předpovídání prodejů 18.09.2012 Radek Hartman, Daniel Mašek I 18.9.2012 U&SLUNO a.s. I Sadová 28 I 702 00 Ostrava I u-sluno@u-sluno.cz I www.u-sluno.cz OBSAH A CÍLE PREZENTACE Proč

Více

ERP systémy ve výrobních podnicích

ERP systémy ve výrobních podnicích ERP systémy ve výrobních podnicích David Čech, konzultant Klasifikace ERP systémů Klasifikace ERP systémů Best of Breed oborová řešení Připraveno výrobcem a jeho vývojovými partnery podle požadavků daného

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

Obor účetnictví a finanční řízení podniku

Obor účetnictví a finanční řízení podniku Obor účetnictví a finanční řízení podniku TEST Z FINANČNÍHO ÚČETNICTVÍ celkem 40 bodů Zvolte nejvhodnější odpověď na následující otázky (otázky se nevztahují k žádnému z početních příkladů a nijak na sebe

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Úvod do účetních souvztažností

Úvod do účetních souvztažností Obsah ČÁST I Úvod do účetních souvztažností KAPITOLA 1 Předmět a význam účetnictví...................... 1000 KAPITOLA 2 Regulace účetnictví v České republice.............. 1050 KAPITOLA 3 Harmonizace

Více

Informační systémy a plánování výroby

Informační systémy a plánování výroby Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Informační systémy a plánování výroby Technická univerzita v Liberci INVESTICE DO

Více

Předmluva 11 Typografická konvence použitá v knize 12

Předmluva 11 Typografická konvence použitá v knize 12 Obsah Předmluva 11 Typografická konvence použitá v knize 12 Kapitola 1 Modelování, simulace a analýza za použití Excelu 13 Modelování 13 Tabulkový model 15 Netabulkový model 17 Simulace 18 Analýza 19 Nástroje

Více

Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT

Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: Číslo projektu: Název projektu školy: Šablona III/2: EU PENÍZE ŠKOLÁM CZ.1.07/1.5.00/34.0536 Výuka s ICT na SŠ obchodní České

Více

aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické dostupnosti bydlení v ČR

aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické dostupnosti bydlení v ČR aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické dostupnosti bydlení v ČR 1 aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické

Více

Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018

Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Lesnická ekonomika Připravil: Ing. Tomáš Badal Lesnická ekonomika Financování podniku Finanční

Více

Analýza návratnosti investic/akvizic

Analýza návratnosti investic/akvizic Analýza návratnosti investic/akvizic Klady a zápory Hana Rýcová Charakteristika investice: Investice jsou ekonomickou činností, kterou se subjekt (stát, podnik, jednotlivec) vzdává své současné spotřeby

Více

OBSAH ČÁST I. APLIKACE VYHLÁŠKY 500/2002 SB. A ČÚS. Úvod... 15

OBSAH ČÁST I. APLIKACE VYHLÁŠKY 500/2002 SB. A ČÚS. Úvod... 15 OBSAH 5 Úvod...................................................................... 15 ČÁST I. APLIKACE VYHLÁŠKY 500/2002 SB. A ČÚS 1 VÝZNAM ÚČETNÍ ZÁVĚRKY A JEJÍ UŽIVATELÉ........................ 19 Úvod..................................................................

Více

Ing. Vít Janoš, Ph.D.

Ing. Vít Janoš, Ph.D. Technologie dopravy Logistika 2 Ing. Vít Janoš, Ph.D. Ústav řízení dopravních procesů a logistiky ČVUT v Praze Fakulta dopravní Osnova přednášky rozhodování v logistice ABC analýza Paretovo rozdělení řízení

Více

Řízení v podniku je velmi složitý proces, proto je nutné členit 2 způsoby: vertikální, horizontální.

Řízení v podniku je velmi složitý proces, proto je nutné členit 2 způsoby: vertikální, horizontální. PODNIK Podnik je soubor hmotných, nehmotných a osobních složek podnikání. K podniku patří věci, práva a jiné majetkové hodnoty, které patří podniku a slouží mu v souvislosti s podnikáním. Z toho plyne,

Více

Úloha informačního systému při plánování a řízení nákladů v období celosvětové ekonomické a finanční krize. ORACLE Czech s..r.o. RGU CZ s.r.o.

Úloha informačního systému při plánování a řízení nákladů v období celosvětové ekonomické a finanční krize. ORACLE Czech s..r.o. RGU CZ s.r.o. Úloha informačního systému při plánování a řízení nákladů v období celosvětové ekonomické a finanční krize ORACLE Czech s..r.o. RGU CZ s.r.o. Představení společnosti RGU CZ s.r.o. Pod společným logem RGU

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

3. Účtová tř. 1 Zásoby a 2 Finanční účty

3. Účtová tř. 1 Zásoby a 2 Finanční účty 3. Účtová tř. 1 Zásoby a 2 Finanční účty Oběžný majetek - nemusí ho být v podniku mnoho - je v podniku v různých formách (ve věcné podobě jako suroviny, materiál apod., v peněžní podobě jako peníze, pohledávky,

Více

HODNOCENÍ INVESTIC. Postup hodnocení investic (investičních projektů) obvykle zahrnuje následující etapy:

HODNOCENÍ INVESTIC. Postup hodnocení investic (investičních projektů) obvykle zahrnuje následující etapy: HODNOCENÍ INVESTIC Podstatou hodnocení investic je porovnání vynaloženého kapitálu (nákladů na investici) s výnosy, které investice přinese. Jde o rozpočtování jednorázových (investičních) nákladů a ročních

Více

Daňová evidence. Obsah. Úvod do DE kdo vede DE. Ing. Štěpánka Fröhlichová. 1. Úvod do DE kdo vede DE. 2. Obsah daňové evidence

Daňová evidence. Obsah. Úvod do DE kdo vede DE. Ing. Štěpánka Fröhlichová. 1. Úvod do DE kdo vede DE. 2. Obsah daňové evidence Daňová evidence Ing. Štěpánka Fröhlichová Obsah 1. Úvod do DE kdo vede DE 2. Obsah daňové evidence 3. Forma daňové evidence 4. Peněžní deník 5. Evidence pohledávek a závazků 6. Evidence dlouhodobého majetku

Více

STŘEDNÍ ŠKOLA AUTOMOBILNÍ, MECHANIZACE A PODNIKÁNÍ, KRNOV, příspěvková organizace. Adresa: 794 01 Krnov, Opavská 49. 554 611 557 Fax : 554 625 946

STŘEDNÍ ŠKOLA AUTOMOBILNÍ, MECHANIZACE A PODNIKÁNÍ, KRNOV, příspěvková organizace. Adresa: 794 01 Krnov, Opavská 49. 554 611 557 Fax : 554 625 946 STŘEDNÍ ŠKOLA AUTOMOBILNÍ, MECHANIZACE A PODNIKÁNÍ, KRNOV, příspěvková organizace Adresa: 794 01 Krnov, Opavská 49 554 611 557 Fax : 554 625 946 E-mail : skola@ssamp-krnov.cz www:ssamp-krnov.cz MATURITNÍ

Více

Podniková logistika 2

Podniková logistika 2 Podniková logistika 2 Podniková strategie a logistika DNES -Kupující jsou ochotni platit stále více za individuální výrobky a služby, za vysokou kvalitu a pohotovost nabídky Nízké ceny mohou být pro někoho

Více

Allegro obchodní doklady

Allegro obchodní doklady Allegro obchodní doklady Modul obchodních dokladů nabízí vše, co je zapotřebí pro obchodování menších a středních firem. K dispozici je evidence nákupu a objednávek materiálu, systém pokrývá celý prodejní

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Automatická segmentace slov s pomocí nástroje Affisix. Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz

Automatická segmentace slov s pomocí nástroje Affisix. Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz Automatická segmentace slov s pomocí nástroje Affisix Michal Hrušecký, Jaroslava Hlaváčová Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz Motivace Při zpracování přirozeného jazyka nikdy nemůžeme mít

Více

ZÁVĚREČNÝ ÚČET ZA ROK 2013

ZÁVĚREČNÝ ÚČET ZA ROK 2013 Obec Louka ZÁVĚREČNÝ ÚČET ZA ROK 2013 (v Kč) sestavený ke dni 06.06.2014 Údaje o organizaci identifikační číslo 49463985 název Obec Louka ulice, č.p. Louka 33 obec Louka PSČ, pošta 679 74 Kontaktní údaje

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

..."..-- 5TUDlVŇ,Ä. Logistika PRAHA

.....-- 5TUDlVŇ,Ä. Logistika PRAHA "-- 5TUDlVŇ,Ä t Christa! Schulte Logistika t ( i n VCTORA ~ PUBLlSHNG PRAHA OBSAH Ị Pi'edmluva k českému vydání 1 Základy 11 Pojem logistiky 12 CHe logistiky i 121 Logistické služby 122 Logistické náklady

Více

Navrhování experimentů a jejich analýza. Eva Jarošová

Navrhování experimentů a jejich analýza. Eva Jarošová Navrhování experimentů a jejich analýza Eva Jarošová Obsah Základní techniky Vyhodnocení výsledků Experimenty s jedním zkoumaným faktorem Faktoriální experimenty úplné 2 N dílčí 2 N-p Experimenty pro studium

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Obsah podle jednotlivých kapitol

Obsah podle jednotlivých kapitol podle jednotlivých kapitol Předmluva 1 Cíl publikace 1 Práce s publikací 2 1 Mezinárodní harmonizace účetnictví a účetního výkaznictví 3 1.1 Mezinárodní harmonizace účetnictví 3 1.2 Mezinárodní standardy

Více

1. K morálnímu opotřebení dlouhodobého majetku nedochází: Vlivem vědeckotechnického pokroku Růstem produkce práce Intenzivním využíváním 2.

1. K morálnímu opotřebení dlouhodobého majetku nedochází: Vlivem vědeckotechnického pokroku Růstem produkce práce Intenzivním využíváním 2. 1. K morálnímu opotřebení dlouhodobého majetku nedochází: Vlivem vědeckotechnického pokroku Růstem produkce práce Intenzivním využíváním 2. Neomezené ručení znamená, že podnikatel ručí za závazky podniku:

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

ZÁSOBOVÁNÍ A LOGISTIKA V PODNIKU

ZÁSOBOVÁNÍ A LOGISTIKA V PODNIKU Oběžný majetek podniku a jeho koloběh ZÁSOBOVÁNÍ A LOGISTIKA V PODNIKU Oběžný majetek má obíhat, to je důležité pravidlo, protože vystihuje ekonomickou zásadu, která říká, že peníze vložené do zásob jsou

Více

Pravidla pro sestavování regulačních výkazů pro držitele licence na obchod s plynem skupina 24

Pravidla pro sestavování regulačních výkazů pro držitele licence na obchod s plynem skupina 24 Příloha č. 8 k vyhlášce č. 404/2005 Sb. Pravidla pro sestavování regulačních výkazů pro držitele licence na obchod s plynem skupina 24 Pravidla stanoví způsob vyplňování regulačních výkazů, kterými jsou:

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY. učební text. Jan Famfulík. Jana Míková. Radek Krzyžanek

Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY. učební text. Jan Famfulík. Jana Míková. Radek Krzyžanek Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY učební text Jan Famfulík Jana Míková Radek Krzyžanek Ostrava 2007 Recenze: Prof. Ing. Milan Lánský, DrSc. Název: Teorie údržby Autor: Ing.

Více

Podniková ekonomika : efektivnost podniku; přednáška pro 1. ročník VOŠE. Ing. Vlastimil K. Vyskočil, CSc. 2005

Podniková ekonomika : efektivnost podniku; přednáška pro 1. ročník VOŠE. Ing. Vlastimil K. Vyskočil, CSc. 2005 Podniková ekonomika : efektivnost podniku; přednáška pro 1. ročník VOŠE Ing. Vlastimil K. Vyskočil, CSc. 2005 Efektivnost podniku a její základní kategorie Výrobní faktory a jejich klasifikace Kombinace

Více

Čistá současná hodnota a vnitřní výnosové procento

Čistá současná hodnota a vnitřní výnosové procento Čistá současná hodnota a vnitřní výnosové procento Co je to čistá současná hodnota? Čistá současná hodnota představuje rozdíl mezi diskontovanými peněžními příjmy z určité činnosti a výdaji na tuto činnost.

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Pracovní list pro téma III.2.9 Podnikání Praktický příklad na založení firmy VY_32_INOVACE_329_20

Více

Pomocný analytický přehled

Pomocný analytický přehled Pomocný analytický přehled sestavený k 31.12.2012 Název účetní jednotky: Město Zábřeh Sídlo: Masarykovo náměstí 510/6 789 01 Zábřeh Právní forma: územní samosprávný celek Předmět činnosti: výkon státní

Více

Sestavování rozpočtové výsledovky, rozvahy a rozpočtu peněžních toků + integrace finančního a věcného plánu

Sestavování rozpočtové výsledovky, rozvahy a rozpočtu peněžních toků + integrace finančního a věcného plánu Sestavování rozpočtové výsledovky, rozvahy a rozpočtu peněžních toků + integrace finančního a věcného plánu Úloha 1 Podnik Firma vyrábí cyklistické rukavice. Předběžná kalkulace variabilních nákladů na

Více

MATURITNÍ ZKOUŠKA ve školním roce 2014/2015

MATURITNÍ ZKOUŠKA ve školním roce 2014/2015 MATURITNÍ ZKOUŠKA ve školním roce 2014/2015 Maturitní zkouška se skládá ze společné části a profilové části. 1. Společná část maturitní zkoušky Dvě povinné zkoušky a) český jazyk a literatura b) cizí jazyk

Více

Střední odborná škola Luhačovice

Střední odborná škola Luhačovice Střední odborná škola Luhačovice Obor: 63-41-M/01 Ekonomika a podnikání, ŠVP Management umění a reklamy Školní rok: 2014/2015 Témata pro ústní maturitní zkoušku z odborných předmětů 1. Základní funkce

Více

Tab. č. 1 Druhy investic

Tab. č. 1 Druhy investic Investiční činnost Investice představuje vydání peněz dnes s představou, že v budoucnosti získáme z uvedených prostředků vyšší hodnotu. Vzdáváme se jisté spotřeby dnes, ve prospěch nejistých zisků v budoucnosti.

Více

1. Základní ekonomické pojmy Rozdíl mezi mikroekonomií a makroekonomií Základní ekonomické systémy Potřeba, statek, služba, jejich členění Práce,

1. Základní ekonomické pojmy Rozdíl mezi mikroekonomií a makroekonomií Základní ekonomické systémy Potřeba, statek, služba, jejich členění Práce, 1. Základní ekonomické pojmy Rozdíl mezi mikroekonomií a makroekonomií Základní ekonomické systémy Potřeba, statek, služba, jejich členění Práce, druhy práce, pojem pracovní síla Výroba, výrobní faktory,

Více

Metodický list. Makroekonomie I METODICKÝ LIST

Metodický list. Makroekonomie I METODICKÝ LIST Metodický list pro 3. soustředění kombinovaného Bc. studia předmětu Makroekonomie I METODICKÝ LIST Předmět Makroekonomie I Typ studia KS Semestr 2. Způsob zakončení Zápočet, ústní zkouška Přednášející

Více

Tomáš Cipra: Pojistná matematika: teorie a praxe. Ekopress, Praha 2006 (411 stran, ISBN: 80-86929-11-6, druhé aktualizované vydání) 1. ÚVOD...

Tomáš Cipra: Pojistná matematika: teorie a praxe. Ekopress, Praha 2006 (411 stran, ISBN: 80-86929-11-6, druhé aktualizované vydání) 1. ÚVOD... Tomáš Cipra: Pojistná matematika: teorie a praxe. Ekopress, Praha 2006 (411 stran, ISBN: 80-86929-11-6, druhé aktualizované vydání) OBSAH I. POJIŠŤOVNICTVÍ A FINANCE 1. ÚVOD... 13 2. POJIŠTĚNÍ JAKO OCHRANA

Více

Zboží - výrobky, které účetní jednotka nakupuje za účelem prodeje a prodává je. (Patří k nim i vlastní výrobky, předané do vlastních prodejen.

Zboží - výrobky, které účetní jednotka nakupuje za účelem prodeje a prodává je. (Patří k nim i vlastní výrobky, předané do vlastních prodejen. 1 Základy účetnictví 6. přednáška Zásoby - mají za úkol zajistit plynulost výroby, - snaha o snižování (optimalizaci) zásob (JIT) Člení se a/ nakupované materiálové zásoby a zboží, b/ vytvořené vlastní

Více

PŘEHLED TÉMAT K MATURITNÍ ZKOUŠCE

PŘEHLED TÉMAT K MATURITNÍ ZKOUŠCE Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. Držitel certifikátu dle ISO 9001 PŘEHLED TÉMAT K MATURITNÍ ZKOUŠCE Předmět: EKONOMIKA Obor vzdělávání: 64-41-l/51 Podnikání - dálková forma

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

Efektivní řízení zásob náhradních dílů v údržbě Autoři: Tomáš Hladík, Marek Šucha, Petr Tulach konzultanti údržby LOGIO, www.logio.

Efektivní řízení zásob náhradních dílů v údržbě Autoři: Tomáš Hladík, Marek Šucha, Petr Tulach konzultanti údržby LOGIO, www.logio. Efektivní řízení zásob náhradních dílů v údržbě Autoři: Tomáš Hladík, Marek Šucha, Petr Tulach konzultanti údržby LOGIO, www.logio.cz Abstract: Spare parts inventory management is an important function

Více

4.5 Stanovení hodnoticích kritérií a požadavky na jejich obsah

4.5 Stanovení hodnoticích kritérií a požadavky na jejich obsah nadhodnocením ukazatele výkonu). Současně se objektivností rozumí, že technické podmínky nebyly nastaveny diskriminačně, tedy tak, aby poskytovaly některému uchazeči konkurenční výhodu či mu bránily v

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

9. Účetní výkazy 702 Konečný účet rozvažný (v tis. Kč)

9. Účetní výkazy 702 Konečný účet rozvažný (v tis. Kč) 9. Účetní výkazy Obsah kapitoly: Účetní závěrka postup, obsah Vazba mezi účetní uzávěrkou a závěrkou Vazba mezi účty a výkazy Konečný účet rozvažný, účet zisků a ztrát Rozvaha, výkaz zisku a ztráty Mlékárny

Více

PILOTNÍ ZKOUŠKOVÉ ZADÁNÍ

PILOTNÍ ZKOUŠKOVÉ ZADÁNÍ INSTITUT SVAZU ÚČETNÍCH KOMORA CERTIFIKOVANÝCH ÚČETNÍCH CERTIFIKACE A VZDĚLÁVÁNÍ ÚČETNÍCH V ČR ZKOUŠKA ČÍSLO 9 MANAŽERSKÉ ÚČETNICTVÍ PILOTNÍ ZKOUŠKOVÉ ZADÁNÍ ÚVODNÍ INFORMACE Struktura zkouškového zadání:

Více

ANALÝZA POPTÁVKY PO PIVU NA ZÁKLADĚ RODINNÝCH ÚČTŮ. D. Žídková katedra zemědělské ekonomiky, PEF Vysoká škola zemědělská, 165 21 Praha 6 - Suchdol

ANALÝZA POPTÁVKY PO PIVU NA ZÁKLADĚ RODINNÝCH ÚČTŮ. D. Žídková katedra zemědělské ekonomiky, PEF Vysoká škola zemědělská, 165 21 Praha 6 - Suchdol ANALÝZA POPTÁVKY PO PIVU NA ZÁKLADĚ RODINNÝCH ÚČTŮ. D. Žídková katedra zemědělské ekonomiky, PEF Vysoká škola zemědělská, 165 21 Praha 6 - Suchdol Anotace: Příspěvek charakterizuje poptávku po pivu v domácnostech

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Majetková a kapitálová struktura podniku

Majetková a kapitálová struktura podniku Majetková a kapitálová struktura podniku Aktiva Na zahájení činnosti potřebuje podnik finanční zdroje kapitál, peníze vlastní x cizí (dluhy, závazky). Výrobní podnik přemění tento kapitál ve výrobní faktory.

Více

Majetek. MAJETEK členění v rozvaze. Dlouhodobý majetek

Majetek. MAJETEK členění v rozvaze. Dlouhodobý majetek Majetek Podnikání se bez majetku neobejde, různé druhy podnikání ovlivňují i skladbu a velikost majetku. Základem majetku jsou peníze, za které se nakupují potřebné majetkové části. Rozvaha (bilance) písemný

Více

TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA. VZOR PŘIJÍMACÍ ZKOUŠKY DO NAVAZUJÍCÍHO STUDIA Obor: Podniková ekonomika

TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA. VZOR PŘIJÍMACÍ ZKOUŠKY DO NAVAZUJÍCÍHO STUDIA Obor: Podniková ekonomika TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA VZOR PŘIJÍMACÍ ZKOUŠKY DO NAVAZUJÍCÍHO STUDIA Obor: Podniková ekonomika UPOZORNĚNÍ: Všechny potřebné výpočty se provádějí do zadání, používání kalkulaček

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

MATURITNÍ OKRUHY Z TEORETICKÝCH A PRAKTICKÝCH PŘEDMĚTŮ TÉMATA 3. ČÁSTÍ PRACOVNÍCH LISTŮ K ÚSTNÍ ČÁSTI SPOLEČNÉ MATURITNÍ ZKOUŠKY Z ANGLICKÉHO JAZYKA

MATURITNÍ OKRUHY Z TEORETICKÝCH A PRAKTICKÝCH PŘEDMĚTŮ TÉMATA 3. ČÁSTÍ PRACOVNÍCH LISTŮ K ÚSTNÍ ČÁSTI SPOLEČNÉ MATURITNÍ ZKOUŠKY Z ANGLICKÉHO JAZYKA STŘEDNÍ ŠKOLA AUTOMOBILNÍ, KRNOV, příspěvková organizace Adresa: 794 01 Krnov, Opavská 49 554 611 557 Fax: 554 625 946 E-mail: skola@ssa-krnov.cz www.ssa-krnov.cz MATURITNÍ OKRUHY Z TEORETICKÝCH A PRAKTICKÝCH

Více

Poznámky k ekonomickému ukazateli IRR. výnos do splatnosti...

Poznámky k ekonomickému ukazateli IRR. výnos do splatnosti... Poznámky k ekonomickému ukazateli IRR (Remarks on the economic criterion the Internal Rate of Return ) Carmen Simerská IRR... vnitřní míra výnosnosti, vnitřní výnosové procento, výnos do splatnosti...

Více

Kalkulace nákladů I. všeobecný kalkulační vzorec, metody kalkulace, kalkulace dělením postupná, průběžná

Kalkulace nákladů I. všeobecný kalkulační vzorec, metody kalkulace, kalkulace dělením postupná, průběžná Kalkulace nákladů I. všeobecný kalkulační vzorec, metody kalkulace, kalkulace dělením postupná, průběžná 1. Jaký je význam kalkulací? Ke stanovení vnitropodnikových cen výkonů Ke kontrole a rozboru hospodárnosti

Více