Přednáška 6: Neuropřenašeče: neuropeptidy a puriny

Rozměr: px
Začít zobrazení ze stránky:

Download "Přednáška 6: Neuropřenašeče: neuropeptidy a puriny"

Transkript

1 Přednáška 6: Neuropřenašeče: neuropeptidy a puriny V této přednášce se zastavíme u dvou tříd signálních molekul, které byly objeveny až po neurotransmiterech standardních. Podobně jako např. acetylcholin, u neuropeptidy mají v CNS spíše modulační úlohu. I když víme, že fungují jako neuropřenašeče, mnoho jejich dalších funkcí, popsaných u jiných neurotransmiterů, zatím zůstává neobjasněno. Jakkoliv to jsou především látky centrálně zapojené do intermediátního metabolismu, jsou koncentrovány na určitých typech synapsí a po patřičném stimulu se z ní uvolňují, aby vyvolaly patřičnou odpověď. Výrazně modulují účinky různých látek, např. kofeinu. CHARAKTERISTIKA NEUROPEPTIDŮ Poté, co vědci objevili, že i neuropeptidy mohou sloužit jako signální molekuly, nastala v neurofamakologii menší revoluce. Farmaceutický průmysl v nich a v jejich receptorech viděl nové cíle různých látek, které by mohly ovlivnit celou řadu neuronálních funkcí. Objev neuropeptidů vedl také k získání nových poznatků o normálním fungování synapse. Přes to, že o signální roli neuropeptidů se ví až asi 30 let, jejich farmakologie je však stále poměrně omezená. Peptidy jsou malé molekuly složené z aminokyselin navzájem kovalentně propojených peptidickou vazbou. Termín neuropeptidy je rezervován pro malé proteiny, které mají neurotransmiterům podobnou funkci v rámci nervového systému. Jiné signální molekuly jako růstové faktory nebo cytokiny jsou od neuropeptidů tradičně odlišovány, jakkoliv se jejich funkce mohou částečně překrývat. Některé neuropeptidy zprostředkovávají signalizaci jen v rámci CNS, jiné jsou využívány i na periferii. Kromě jejich neurotransmiterové funkce jsou některé neuropeptidy neurony uvolňovány přímo do krevního řečiště a slouží jako hormony. Jiné jsou jako hormony uvolňovány endokrinními žlázami. Neuropeptidů je popsána zatím asi stovka a mnoho jich ještě jistě bude objeveno. Oproti klasickým neuropřenašečů, jsou syntetizovány jiným způsobem a vykazují i další odlišné charakteristiky. Peptidy se tradičně dělí do skupin podle oblastí, ve kterých byla jejich funkce poprvé popsaná, nebo podle svého účinku. Tato klasifikace je ovšem lehce nepřesná, např. ACTH a α-msh se nachází nejen v neurohypofýze, ale i non-neuroendokrinních neuronech a mají i non-neuroendokrinní funkce. Stejně tak CRF účinkuje v mnoha oblastech mozku. Příklady jednotlivých skupin neuropeptidů a jejich koexistence s klasickými neuropřenašeči máte uvedeny v tabulkách. Berte ovšem prosím tyto tabulky spíš jako návod ke třídění, než jako striktní klasifikaci neuropeptidů. Noradrenalin GABA ACh Dopamin Adrenalin Serotonin galanin somatostatin VIP cholecystokinin neuropeptid Y TRH enkephalin cholecystokinin substance P neurotensin neurotensin substance P neuropeptid Y neuropeptid Y enkephalin

2 opioidní peptidy α, β, γ - endorphin, dynorphin, enkephaliny neurohypofysální peptidy vasopresin, oxytocin, neurophysiny, thyrotropin (TSH), prolaktin, luteinizační hormon (LH), FSH, ACTH, růstový hormon (GH), α-melanocyty stimulující hormon (α-msh) hypothalamické peptidy kortikotropin-relaeasing faktor (CRF), gonadotropin-releasing hormon (GnRH), hormon uvolňující růstový hormon (GHRH), somatostatin, thyrotropn-releasing hormon (TRH) tachykininy substance P, neurokinin A (NKA, = substance K, SK), neurokinin B (NKB, = substance P, SP), kassinin, eledosin gastriny (gut-brain peptidy) gastrin, cholecystokininy (CCKs), galanin, gastrinuvolňující protein (GRP), neurotensin od glukagonu odvozené od pankreatických polypeptidů odvozené jiné VIP (vasoactive intestinal polypeptide), glukagon neuropeptid Y (NPY), insuln bombesin, bradykinin, angiotensin, CGRP (calcitonin gene-related peptide), neuromedin K Prekurzorové proteiny Mnoho klasických nízkomolekulárních neuropřenašečů vzniká krokovou enzymatickou reakcí z nějakého aminokyselinového prekurzoru, který je do mozku často dopraven přes hematoencefalickou bariéru z cirkulace. Oproti tomu syntéza neuropeptidu vyžaduje transkripci DNA, její přepis do mrna a tvorbu proteinu. Proteinový produkt uvolněný z ribosomu pak není ještě přímo signální molekulou, ale velkým prekurzorovým polypeptidem vyžadujícím posttranslační úpravy. Typickým příkladem je vznik a zpracování prepropeptidu proopiomelanokortinu (POMC). POMC je prekurzorem mnoha aktivních peptidů a jeho produkty zahrnují např. adrenokortikotropní hormon (ACTH), α-melanocytystimulující hormon nebo β-endorfin. Prepropeptid obsahuje N-koncovou signální sekvenci, která nasměruje nově vzniklý protein z ribosomů do lumen endoplasmatického retikula (ER). Po transportu do ER je signální sekvence odštěpena signální peptidasou a vzniká propeptid. Propeptid je následně přenesen do Golgiho aparátu a uskladněn do velkých denzních váčků, ve kterých podléhá dalšímu zpracování. V nich je z těla buňky transportován na synapsi. Proteolytické zpracování Propeptidové prekurzory jsou konvertovány na aktivní neuropeptidy sérií kroků zahrnujících štěpení konvertasami a modifikaci na specifických aminokyselinových zbytcích. Během tohoto procesu endoproteasy rozpoznávají a štěpí dibasické aminokyselinové páry (Lys-Arg, Lys-Lys, Arg-Arg nebo Arg-Lys). Vzniklé peptidy jsou dále zpracovány exopeptidasami a různými modifikujícími enzymy. Fenomén zpracování prohormonů konvertasami byl popsán roku 1967 Donaldem F. Steinerem během studia vzniku insulinu. Dva klíčové enzymy, účastnící se zpracování POMC a dalších prekurzoruů, jsou konvertasa prohormonů 1 a 2 (PC1 a PC2). PC1 a PC2 náleží do velké rodiny prohormonových konvertas, která zahrnuje (zatím) devět členů. Bývají také označovány PCSK1-9, přičemž PSK1 = PC1 a PCSK2 = PC2. Tyto enzymy postupují krokově, nejprve rozštěpí v závislosti na typu tkáně patřičný dibasický pár a následně pokračují v dalších štěpeních. PC1 a PC2 štěpí různými způsoby POMC a stejnou proteolytickou aktivitu vykazují na proinsulinu a proglukagonu v pankreatu. PC2 hraje menší roli než PC1 v případě 2

3 proinsulinu než proglukagonu, PC1 je naopak pro štěpení glukagonu důležitější a méně využívaná pro štěpení proinsulinu než PC2. Výsledkem proteolytické aktivity PC1 i PC2 na POMC jsou malé peptidy, jejichž C nebo N konce obsahují lysinové nebo argininové zbytky. Jiný enzym, karboxypeptidasa E, pak odstraňuje C- koncové zbytky. Zatím neidentifikovaná aminopeptidasa odstraňuje zbytky N- koncové. Mnoho neuropeptidů je po štěpení konvertasami a peptidasami dále ve dvou krocích upravováno. Může docházet k N- koncové acetylaci, které často reguluje aktivitu neuropeptidu příkladem je zesílení biologické aktivity α-msh jeho acetylací. Naopak, pokud je acetylován β-endorfin, jeho aktivita výrazně klesá. Peptidy obsahující C-terminální glycin procházejí α- amidací pomocí enzymu peptidglycin α- amidující monooxygenasy (PAM). Tento amidační krok podstupuje např. α-msh. Vícekrokový mechanismus, kterým z prepropeptidů vznikají propeptidy, z těch peptidy a jejich aktivita je dále modifikována, může být zajímavě farmakologicky ovlivněn. Konvertasy prohormonů antagonisticky ovlivňují mnohé malé peptidy. Inhibitory angiotensin konvertujícího enzymu (ACE), jako např. captopril, jsou klinicky využívány v léčbě hypertenze (angiotenzin fyziologicky zvyšuje cévní tonus) nebo diabetické nefropatie. Diversita neuropeptidů Jediný propeptid, jakým je např. POMC, může dát vzniknout několika bioaktivním neuropeptidům. Jednotlivé kroky proteolytického štěpení jsou tkáňově specifické: např. v předním laloku podvěsku mozkového je POMC typicky konvertován na ACTH. V intermediátním laloku této žlázy a v neuronech produkujících POMC jsou hlavními koncovými produkty α-msh a β-endorfin. Produkty typické pro tu kterou tkáň podmiňuje tkáňově specifická exprese různých konvertas prohormonů. Značná část úprav neuropeptidů se navíc děje ve váčcích, a protože konvertasy jsou vysoce citlivé na ph a Ca 2+, závisí jejich aktivita i na změnách těchto parametrů uvnitř váčků. K diversitě neuropeptidů přispívá i jejich alternativní sestřih. Prvními neuropeptidy, u kterých se zjistilo, že jsou produkovány alternativním sestřihem, byly kalcitonin a kalcitoninovému genu příbuzný peptid (calcitonin gene-related peptide, CGRP). Tachykininy také produkují několik zástupců své rodiny alternativním sestřihem dvou preprotachykininových genů. Jeden z genů je alternativně sestřižen nejméně ve tři prepropeptidy, které dále posttranslačně produkuji pět rozdílných bioaktivních peptidů včetně neurokininu A a substance P. Skladování a výlev 3

4 Synaptický výlev neuropeptidů se od výlevu nízkomolekulárních přenašečů poněkud liší. Oproti např. acetylcholinu neuropeptidy vznikají transkripcí, translací a dále jsou upravovány posttranslačně. Tyto procesy probíhají v somatu i axonu. Další odlišností je velikost a typ váčků, ve kterých jsou skladovány: neuropeptidy jsou obsaženy ve velkých denzních vesikulech skládaných v Golgiho komplexu a transportovanýc h na synapsi, zatímco jiné (nízkomolekulár ní) přenašeče jsou skladovány v malých světlých váčcích sestavovaných v terminále. Mnoho neuronů obsahuje v synaptickém zakončení OBA typy váčků. Neuropeptidy jsou poměrně typicky kolokalizovány s klasickými neuropřenašeči; např. v podstatě každý serotoninergní nebo katecholaminergní neuron obsahuje ve váčcích jeden či více detekovatelných neuropeptidů. Ačkoliv tyto dva odlišné typy váčků se mohou společně nacházet v jednom nervovém zakončení, uvolňovány jsou odlišným mechanismem a často za jiných fyziologických podmínek a potřeb. Malé denzní váčky (ACh a spol.) jsou sdruženy do klastrů v aktivních zónách a uvolňovány po rychlém a přechodném depolarizací navozenémvzestupu hladiny Ca 2+. K výlevu neuropeptidů je potřeba delšího a většího zvýšení hladiny Ca 2+ v nervovém zakončení, aby vápník mohl dodifundovat v dostatečné koncentraci až k jejich váčkům. Jinými slovy, k výlevu non-peptidového neuropřenašeče typu katecholaminů stačí i jediný akční potenciál, zatímco k výlevu neuropeptidů je potřeba salva akčních potenciálů. Typický 4

5 vzorec vzruchové aktivity může tedy vést k preferenčnímu výlevu jednoho nebo druhého typu neurotransmiteru, případně za sebou. mohou následovat. Funkční význam kolokalizace klasických neuropřenašečů s neuropeptidy není zatím zcela uspokojivě objasněn. Podle některých prací neuropeptidy modulují postsynaptický účinek klasických neuropřenašečů, a to buď stimulačně nebo inhibičně. Vzhledem k tomu, že k výlevu neuropeptidů je potřeba delší vzruchová aktivita, mohou pozitivní i negativní zpětnou vazbou regulovat aktivitu silně stimulovaných zakončení. Neuropeptidová signalizace na dálku Jednou z nejzajímavějších položek, ve kterých se neuropeptidy liší od klasických neuropřenašečů, je jejich osud po výlevu do synaptické štěrbiny. Zatímco například dopamin je velice rychle zpětně vychytáván do terminály a podobným způsobem je ze synaptické štěrbiny odstraněna s výjimkou acetylcholinu většina klasických neuropřenašečů, neuropeptidy tak rychle ze synaptické štěrbiny odstraňovány nejsou. Jejich deaktivace probíhá štěpením endoproteasami a exoproteasami lokalizovanými na extracelulárních membránách (nezaměňovat s konvertasami!) Peptidy také mohou urazit značnou vzdálenost, než doputují ke svým receptorům; proto také ostatně lokalizace mnoha neuropeptidů neodpovídá lokalizaci jejich receptorů. Např. substance P je vysoce koncentrována v substantia nigra, ale její receptory v této struktuře téměř chybí, zatímco v jiných částech mozku jsou detekovány hojně. Většina receptorů pro neuropeptidy je spřažena s G-proteiny. Stejně jako receptory pro klasické neuropřenašeče, i receptory pro neuropeptidy vykazují různé subtypy, nicméně tyto receptory mají pro své ligandy podstatně větší afinitu než receptory pro neuropřenašeče klasické. Např. acetylcholinový receptor váže acetylcholin s afinitou 100 µm 1 mm, zatímco neuropeptidové receptory mají afinitu ke svým ligandům v řádu nanomolů. Interakce mezi neuropeptidy a jejich receptory je poměrně komplexní. Představte si třeba molekulu noradrenalinu jen těch několik atomů, které obsahuje, může iontově nebo stericky interagovat s patřičným vazebným místem na odpovídajících receptoru, a modelování této interakce není extrémně obtížné. Teď si zkuste představit interakci neuropeptidu Y (NPY) o délce 36 aminokyselin jak se takové molekula vůbec vejde do vazebného místa receptoru spřaženého s G-proteinem? Která konformace bude mít nejvyšší afinitu pro vazbu, který aminokyselinový zbytek je pro vazbu kritický? A z kterého farmakologického pohledu mohou být připravovány nové látky, které budou dané vazebné místo antagonizovat nebo na něj budou působit agonisticky? Tyto otázky není lehké zodpovědět a v praxi se zatím pohybujeme hlavně v rovině modfikovaných peptidových analogů. Syntetické peptidy jsou degradovány různými peptidasami a nemohou procházet skrze hematoencefalickou bariéru, takže jsou užitečné v podpůrné léčbě poruch zasahujících CNS. Receptorové typy a subtypy Neuropeptidové receptory jsou příliš početné na to, abychom se jim věnovali individuálně, takže si je rozdělíme do jednotlivých rodin. Jejich přehled máte v následující tabulce. Některé neuropeptidy (TRH) se sice váží jen na jediný receptor, ale mnoho jiných (např. somatostatin) obsazuje až pět receptorových typů. V rámci každé receptorové rodiny vykazují jednotlivé subtypy receptorů své vlastní vzorce exprese v CNS i PNS. Např. dva receptory pro kortikotropin-uvolňující faktor (corticotropin-releasin factor, CRF), označované jako CRF 1 R a CRF 2 R, svou expresí alterují: tam, kde se vyskytuje jeden, není téměř detekovatelný ten druhý. Vzhledem k tomu, že se liší i afinitou k ligandům (CRF 1 R stejně silně váže CRF i příbuzný peptid urocortin, zatímco 5

6 CRF 2 R má vyšší afinitu k urocortinu než CRF), má tato rozdílná distribuce fyziologický význam. Tak jako CRF receptor, i další neuropeptidergní receptory mohou vázat víc než jeden peptid. Tato vlastnost je typická zejména pro receptory melanokortinové rodiny MC 1-5 receptory. Každý z těchto receptorů může s různou potencí aktivovat ACTH, α-mch a γ- MCH. MC 4 receptor může být antagonizován také vzdáleně příbuzných endogenním peptidem nazvaným agouti-related peptid. Tento receptor byl prvním receptorem, u kterého byl v mozku nalezen endogenní agonista i antagonista. Poměrně dlouho panovalo přesvědčení, že specifita receptoru pro ten který peptid je dána výhradně vnitřními vlastnostmi receptoru mnohé domény na extracelulárních i transmembránových doménách byly známy jako specifická vazebná místa pro určité ligandy. Toto přesvědčení vzalo za své až s objevem proteinů modifikujících aktivitu receptoru (receptor activity modifying proteins, RAMPs), které např. ovlivňují transport CGRP receptoru do membrány a jeho glykosylaci. RAMP také podmiňují afinitu GRPR receptoru k příbuznému proteinu adrenomedullinu. Zda RAMPs regulují funkce většího počtu receptorů spřažených s G-proteinem zatím není známo. Peptidergní receptory se nacházejí nejen na synapsi, ale v menší míře i na plasmatické membráně axonů, těl neuronů i dendritů. U některých subtypů je možná jejich extrasynaptická lokalizace primární. Po delší vazbě ligandu na tyto receptory spřažené s G-proteiny jsou receptory internalizovány a následně buď recyklovány, nebo degradovány. Existují ovšem i peptidergní výjimky: receptor pro neurotensin je i s navázaným ligandem transportován do těla neuronu a byl prokázán poblíž jádra. Jakkoliv zatím tato hypotéza není potvrzena, zdá se tedy, že peptidergní receptory by mohly hrát i roli v kontrole genové transkripce. Funkce neuropeptidů Funkce většiny malých neuropřenašečů byla popsána poměrně záhy, neboť existovalo množství agonistů a antagonistů, kteří mohli mimikovat jejich působení, nebo naopak simulovat jejich nedostatek. V případě neuropeptidů je ovšem množství těchto farmakologických nástrojů poněkud limitované a navíc jen někteří z peptidergních agonistů a antagonistů procházejí přes hematoencefalickou bariéru. Podobně nesnadné je stanovit tkáňovou koncentraci neuroppetidů. Například, pokud je neuronální aktivita inhibována, může koncentrace neuropeptidů v tkáni růst, protože neuropeptidy se v tichých buňkách akumulují. A naopak, vyšší aktivita neuronů může vést až ke tkáňovému vyčerpání neuropeptidů. Jakkoliv je tedy nesnadné přesně určit, zda vybraný typ zásahu vyvolá vzrůst nebo pokles hladiny neuropeptidů, mikrodialýza alespoň umožňuje přesně a přímo změřit extracelulární koncentrace neuropeptidů ve vybraných mozkových oblastech. Vzhledem k problémům s měřením hladin neuropeptidů je většina psrací zabývajících se funkcí neuropeptidů postavena na přímé injikaci neuropeptidů do specifických oblastí mozku či míchy a na pozorování fyziologických a behaviorálních změn tímto podáním vyvolaným. Injikované dávky jsou často miligramové, což je vzhledem k nannomolové afinitě neuopeptidergních receptorů nefyziologické, nicméně takto byly popsány první účinky neuropeptidů. Pozorování zpřesnila až molekulární biologie a vypínání genů pro jednotlivé neuropeptidy objasnila nová fakta a naštěstí potvrdila ta stará :) 6

7 Vybrané peptiderdní receptorové typy a sybtypy 7

8 JEDNOTLIVÉ SYSTÉMY NEUROPEPTIDŮ Opioidní peptidy Opiodní peptidy jsou farmakologicky jedny z nejdůkladněji studovaných látek primárně kvůli svým silným analgestickým vlastnostem, ale také kvůli svému působení proti kašli (antitussika) a průjmu (antidiarhoetika). Např. morfin byl užíván už v 19. století. Velká spotřeba opiátových analgetik spolu s rizikem vzniku závislosti na nich vedla k vývoji opiátových farmak, která by závislost nezpůsobovala. Ani dnes sice nelze oddělit nejúčinnější analgetické vlastnosti opiátů od těch, které navozují závislost, výsledkem studia nicméně bylo přinejmenším objevení malých, lipofilních molekul jako naloxon a naloxetron. Naloxon se užívá v léčbě předávkování opiáty a nalotrexon, jehož působení je déledobější, se využívá při léčbě závislostí na opitátech a při léčbě alkoholismu. Termín opioidní je spojen s endogenními peptidy, které vykazují podobnou farmakologii jako opiáty, zatímco termín opiáty odkazuje na morfin a jemu příbuzná nonpeptidová analoga. Všechny známé opiodní peptidy jsou produkty tří velkých prekurzorových proteinů. Každý z nich je kódován vlastním genem. Tyto prekurzory jsou POMC, z něhož jsou odvozeny, β-endorfin a několik nonopiodních petidů, proenkefalin, z něhož pochází met-enkefalin a leu-enkefalin a prodynorfyn, který je prekurzorem dynorfinu a jemu příbuzných proteinů. Ačkoliv jsou syntetizovány z různých prekurzorů, sdílejí opioidní peptidy určité stejné aminokyselinové sekvence. Velmi často obsahují např. sekvenci čtyřech aminokyselin Tyr- Gly-Gly-Phe na svém N-konci, která bývá následována buď Met nebo leucinem. Morfinu podobné opiátové alkaloidy z opia pravděpodobně mimikují konformaci N-koncového tyrosinu endogenních peptidů. Molekulární klonování potvrdilo existenci tří typů opiodních receptorů: µ, κ a δ. Je pravděpodobné, že vznikají i jejich podtypy a že µ a δ receptory jsou schopny formovat heterodimery. Všechny tyto receptory jsou spřaženy s G-proteiny, konkrétně s G i/o rodinou. Morfinu podobné opiáty se preferenčně váží na µ receptory, které jsou spojeny se sestupnými drahami bolesti (periakaveduktální šedá hmota, rostroventrální medulla, thalamus či zadní kořeny míšní). Vyskytují se i v jiných oblastech mozku (ventrální tegmentum, ncl. accumbens), kde jsou zodpovědné za zesílený efekt opiátů. µ receptory se také vyskytují ve striatu (motorická kontrola) a locus coeruleus, ve kterém mohou vyvolávat mnohé somatické projevy závislosti na opiátech a opiátové abstinence. µ receptory také hrají z opioidních receptorů nejdůležitější roli v supraspinální analgesii. Vykazují vyskou afinitu k benzomorfanové třídě opiodních látek, jako je pentazocin. δ receptory jsou hlavními vzabnými partnery enkefalinů. Tyto receptory se vyskytují nejen z zadních kořenech míšních, ale i v oblastech mozku, které nejspíše nehrají v nocicepci žádnou úlohu. Klinické využití agonistů δ receptorů zatím není známo. Z endogenních opioidních peptidů se β-endorfiny preferenčně váží na µ receptory, enkefaliny na δ receptory a dynorfin vykazuje nejvyšší afinitu ke κ receptorům. Nicméně tyto peptidy se neváží jen na receptor, ke kterému vykazují nejvyšší afinitu, ale ke všem receptorovým subtypům opioidních receptorů. Zajímavé antiopioidní efekty vykazují látky označované jako nociceptiny nebo orphaniny. Váží se na receptory spřaženéné s G-porteiny, které vykazují vysokou míru homologie s receptory opioidními. Zvyšují vnímavost k bolestivým stimulům. 8

9 Kortikotropin uvolňující faktor Corticotropin-releasing factor (CRF) je peptid o délce 41 aminokyselin, který byl prvně izolován jako hypothalalmický faktor napomáhající podobně jako vasopressin sekreci ACTH.Je syntetizován populací neuronů paraventrikulárního jádra hypothalamu, odkud je uvolňován do portálního spojení s hypofýzou. CRF ale není secernován jen do této portální cirkulace - neurony paraventrikulárního jádra hypothalamu projkují do různých mozkových struktur. CRF je syntetizován také mimo hypothalamus, např. v centrálním jádře amygdaly. CRF uvolňovaný z amygadaly hraje kritickou roli v odpovědi mozku na stres a zřejmě přispívá i ke vniku pocitů strachu a úzkosti. Částečně je zodpovědný za negativní projevy odvykacího syndromu závislých jedinců. Může být také zapojen do long-term deprese v mozečku. Byly naklonovány dva subtypy CRF receptorů. CRF 1 R je široce exprimován v celém mozku. Jeho antagonisté mohou sloužit jako látky v terapii úzkosti a deprese. CRF2 R je koncentrován v bočních jádrech septa. Laterální septum je spojeno s emocemi, strachem a kognitivními funkcemi. Endogenním ligandem CRF2 R je urocortin (a urocortin II, jemu příbuzný). Substance P Substance P, neurokinin A (NKA, dříve označovaný jako substance K) a neurokinin B (NKB) patří do rodiny tachykininů. Všichni členové této rodiny sdílejí stejnou C-koncovou sekvenci Phe-X-Gly-Leu-Met-NH 2. Substance p a NKA jsou kódovány genem pro preprotachykinin A a vznikají alternativním sestřihem. NKB je kódován genem pro preprotachykinin B. Všechny známé tachykininové receptory (s G-proteinem spřažené) jsou označovány jako NK 1, NK 2 a NK 3 receptory. Substance P vykazuje nejvyšší afinitu k NK 1 receptoru, NKA preferenčně váže NK 2 receptor a NKB zejména NK 3 receptory. Substance P je předmětem výzkumu už dlouho. V 70. letech se věřilo, že by mohla být hlavním transmiterem nocicepce. Synapse primárních aferentních noiceptorů zadních kořenů míšních obsahují značné množství neuropeptidů, z nichž nejhojnější jsou calcitonin generelated peptid (CGRP), substance P a NKA. Substance P je v nocicepčních C vláknech kolokalizována s glutamátem. Její výlev z velkých denzních váčků vyžaduje silnější stimulus, než který by stačil pro klasický výlev glutamátu. Substance P se uvolňuje i retrográdně z volných nervových zakončení nocicepčních neuronů a přispívá k fenoménu neurogenního zánětu, při kterém interaguje s peptidem bradykininem. Při studiu myší knock-outovaných pro NK1 receptor nebo gen pro preprotachykinin A došlo k mnoha překvapením. Tyto myši sice nevykazovaly projevy neurogenního zánětu, ale jejich nocicepce byla omezena jen v určitých nocicepčních drahách. Žádnou změnu oproti přirozenému fenotypu např. nevykazovaly v mechanické hypersenzitivitě navozené zánětem. Deficity v nocicpci vykazovaly jen při aplikaci nocicepčních stimulů se vzrůstající intenzitou. Roli substance P v nocicepci tedy evidentně mohou přebírat i jiné nocicepční neuropřenašeče. Substance P a NK 1 Rs se nacházejí v amygdale. Antagonista NK 1 Rs v pokusech prováděných na mládětech morčat izolovaných od matky snižoval zvukové projevy jejich stresu. Na základě tohoto typu preklinických studií začali být antagonisté NK 1 Rs testováni jako antidepresiva a anxiolytika. Zdají se být slibní i v léčbě chemotarapií navozené nausey, kdy oproti antagonistům 5-HT 3 receptorů (odasetron) blokují nejen časnou, ale i pozdní fázi tohoto fenoménu. 9

10 Neurotensin Neurotensin (NT) je peptid o délce 13 aminokyselin, vznikající z prekurozru obsahujícího také peptid neurotensinu podobný, velký 6 aminokyselin. NT je exprimován v mozku, nadledvinách a střevu, a to v mírně odlišných formách podle své tkáňové distribuce: jeho C-konce obsahuje alternativně jednu ze tří Lys-Arg sekvencí, které jsou podle typu tkáně rozdílně štěpeny. V mozku z prekurzoru vzniká NT a neuromedin N, zatímco v nadledvinách vzniká delší forma neuromedinu N, neurotensin a jeho o něco delší štěpný produkt. Ve střevu vzniká NT a delší forma neuromedinu N. Jsou známy dva typy receptorů pro neurotensin : NTS 1 a NTS 2 receptory. NTS 1 mrna je produkována v substantia nigra, ale ne ve striatu. Kupodivu, vlastní protein NTS 1 receptorů se na dopaminergních terminálách striata nachází. NT tak zřejmě moduluje dopaminergní transmisi. Exprese mrna pro neurotensin je ve striatu vyvolaná antaginisty D 2 receptorů, z nichž mnohé souží jako antipsychotika a nebo psychostimulační drogy (kokain, amfetamin). Byl naklonován i NTS 2 receptor, ale jeho úloha zatím zůstává nejasná. Neuropeptid Y Neuropeptid Y (NPY) je jedním z řady navzájem příbuzných peptidů, které tvoří rodinu pankretaických polypetidů. Jejími dalšími členy jsou pankreatický polypeptid (PP) a polypeptid YY (PYY). NPY je nejhojnějším neuropeptidem mozkové kůry. Koncentrován je i zadních kořenech míšních a v hypothalamu. V symaptiku i v CNS bývá kolokalizován s noradrenalinem. NPY a jemu příbuzné peptidy se váží na receptory označované Y 1 až Y 6, které vykazují různou afnitu pro NPY, PP i PYY. Tyto receptory se nacházejí persynapticky i postsynapticky v různých oblastech mozku. Aktivace Y 1 receptoru zřejmě souvisí s poklesem úzkostného chování, asi na úrovni amygdaly a kůry mozkové. Agonisté Y 1 receptoru by mohla být slibná anxiolytika, a vykazují i určitý antinocicepční efekt. Naproti tomu aktivace Y 5 receptoru vede ke zvýšení příjmu potravy (nejspíše na úrovni hypothalamu). Antagonisté Y 5 receptorů by tedy mohli být úspěšní v léčbě obezity. PURINY Puriny nejsou jen stavebními kameny RNA a DNA, metabolickými kofaktory nebo druhými posly jako camp nebo cgmp. Hrají také důležitou roli v signalizaci mezi neurony. Biochemie Puriny jsou dusíkaté heterocykly tvořené kondenzovaným pyrimidinovým a imidazolovým kruhem. V purinergní transmisi jsou využívány nukleosidové a nukleotidové deriváty samotného purinu. V nukleových kyselinách jsou využívány dva purinové deriváty, adenin a guanin. V rámci signalizace mezi neurony jsou využívány hlavně adenosin a ATP. Jim příbuzný je adenindinukleotid (ApnA), což je molekula sestávající ze dvou adenosinů kovalentně spojených řetězcem dvou až šesti fosfátů. Zdá se, že na neurotransmisi se do určité míry mohou podílet i nukleotidové deriváty pyrimidinového typu. 10

11 adenin purin Skladování a výlev Navzdory strukturní podobnosti, adenosin a ATP vykazují i odlišné vlastnosti. ATP a ApnA jsou skladovány v malých synaptických váčcích a uvolňovány exocytosou navozenou depolarizací a vtokem Ca 2+ do zakončení podobně jako jiné neuropřenašeče. Často jsou také detekovány ve stejných synaptických váčcích na stejné synapsi. Oproti nim je adenosin uvolňován z nonvesikulárních cytoplasmatických zásob. Mimo cytoplasmu jej mohou uvolňovat obousměrné nukleosidové transportéry. Případně může vznikat rovnou v synaptické štěrbině, kam je uvolňován ve formě ATP a během sekundy metabolizován: na membráně navázaná ectodiphosphohydrolasa konvertuje ATP na ADP a AMP. AMP je rozpustnou či s membránou asociovanou ecto-5 -nukleotidasou konvertován na adenosin. Výlev ATP tedy rovněž může být vydatným zdrojem extracelulárního adenosinu. ApnA je hydrolyzován pomaleji a zůstává v synaptické štěrbině delší dobu. Purinové transportéry Nukleosidové transportéry jsou k membráně vázané proteiny sloužící k přenosu purinových a pyrimidinových nukleosidů dovnitř a ven z mnoha typů buněk. Liší se svou substrátovou specifitou (jsou purin- nebo pyrimidinselektivní) a termodynamickými vlastnostmi. Některé koncentrují nukleosidy v buňce v závislosti na Na +. Jiné transportují nukleosidy ve směru jejich koncentračního gradientu. Farmakologicky bylo odlišeno nejméně sedm nukleosidových transportérů, z nichž čtyři byli klonováni. Jejich struktura funkce příliš známa není, ale jejich farmakologie zahrnuje některé terapeuticky využitelné látky. Patří mezi ně několik chemoterapeutik nádorového bujení (gemcitabin) a silná antivirotika jako zidovudin (AZT) užívaný v léčbě AIDS. Jsou to obvykle nukleosidové analogy. Potenciálně by se mezi nimi mohla najít i farmaka užitečná v léčbě neuropsychiatrických poruch. Purinové receptory Purinové receptory tvoří relativně velkou a různorodou skupinu proteinů, dělenou do dvou hlavních podskupin, označovaných jako P 1 a P 2 receptory. P 1 receptory jsou také známy jako adenosinové receptory A 1, A 2 a A 3. Váží adenosin a jeho analoga a jsou spřaženy s G-proteiny. Byly vyklonovány čtyři subtypy. A 1 subtyp je nejrozšířenější v mozku a v páteřní míše a vykazuje nejvyšší afinitu k adenosinu. Za jeho aktivací stojí pravděpodobně anxiolytické, antikonvulsační, analgestické a sedační účinky adenosinu. Antagonisté A 1 receptoru vyvolávají stimulační efekty. V nižších dávkách např. zvyšují pozornost (kofein), ve vyšších dávkách vyvolávají pocity úzkosti a podráždění. 11

12 A 2 receptorů byly vyklonovány dva podtypy, A 2A a A 2B, které mají k adenosinu poněkud nižší afinitu než A 1 receptor. A 2B receptory jsou široce rozšířené v celém lidském těle, ale jejich exprese v mozku a páteřní míše je nízká. Oproti nim jsou A 2A receptory vysoce koncentrovány v zadním striatu, ncl. accumbens a čichovém laloku - třemi mozkvými oblastmi s dopaminergní inervací. Interakce dopaminu a adenosinu jsou v těchto oblastech popsány. Ve striatu agonisté A 2A receptorů inhibují odpovědi navozené D 2 receptory a naopak antagonisté je mimikují i to přispívá se stimulačním účinkům kofeinu a jiných methylxanthinů. Inverzní působení A 2A a D 2 receptorů by snad mohlo být užitečné v terapii Parkinsonovy choroby. A 3 receptor je v nízkých hladinách exprimován v mozku a jeho funkce zatím není dobře popsána. Ze všech adenosinových receptorů vykazuje k adenosinu nejnižší afinitu. Zatímco A 1 a A 2 receptory váží adenosin s nanomolární afinitou, A 3 receptor potřebuje mikromolární koncentrace. P 2 receptory zahrnují dvě rodiny zástupců: P 2Y receptory spřažené s G-proteiny a P 2X receptory, které jsou ligandem ovládané iontové kanály. Bylo vyklonováno 14 P 2Y receptorů. Váží difosfáty i trifosfáty purinových i pyrimidinových nukleotidů, stejně jako ApnA. Jejich afinita k různým ligandům se liší. Např. P 2Y1 receptor váže ATP a ADP, ale ne UTP nebo UDP. Naopak, P 2Y2 receptor je aktivován ATP i UTP se stejnou potencí. Oba P 2Y1 i P 2Y2 receptory byly detekovány v mozku. Nomenklatura P 2Y receptorů je poněkud zmatečná, protože některé subtypy, u kterých se mělo za to, že jsou nakolonovány, naklonovány vlastně nebyly :) Jejich přehled máte v následující tabulce. Protein Gen Spřežení Nukleotid P2RY 1 P2RY1 G q/11 ADP P2RY 2 P2RY2 G q/11 ATP, UTP P2RY 4 P2RY4 G i a G q/11 UTP P2RY 5 / LPA 6 LPAR6 lysofosfatidová kyselina P2RY 6 P2RY6 G q/11 UDP P2RY 8 P2RY8 orphan receptor P2RY 9 / LPAR 4 / GPR23 LPAR4 lysofosfatidová kyselina P2RY 10 P2RY10 orphan receptor P2RY 11 P2RY11 G s a G q/11 ATP P2RY 12 P2RY12 G i ADP P2RY 13 P2RY13 G i ADP P2RY 14 P2RY14 G q/11 UDP-glukosa Všimněte si, že P 2Y3, P 2Y5, P 2Y7, P 2Y8 a P 2Y9, receptory vlastně nejsou ;) P 2X receptorů bylo charakterizováno 7 subtypů, u člověka se nacházejí zejména na chromosemoech 12 a 17. Jsou to kationtové kanály aktivované ATP nebo ApnA, sestávající z více podjednotek. Jejich přesná stechiometrie sice není známa, ale in vitro formují homomerní receptory. Aktivace P 2X receptorů vede k rychlým tokům Na +, K + a Ca 2+ a tím k depolarizaci buňky. Vyskytují se na periferii, na nervosvalovém spojení, v míše i mnoha oblastech mozku. Ovlivňují srdeční rytmus, svalový tonus, kontrakci vas deferens při ejakulaci nebo nocicepci overexprese P 2X4 Rs v míše vede k hypersensitizaci. Tyto 12

Struktura a funkce biomakromolekul

Struktura a funkce biomakromolekul Struktura a funkce biomakromolekul KBC/BPOL 10. Struktury signálních komplexů Ivo Frébort Typy hormonů Steroidní hormony deriváty cholesterolu, regulují metabolismus, osmotickou rovnováhu, sexuální funkce

Více

Bunka a bunecné interakce v patogeneze tkánového poškození

Bunka a bunecné interakce v patogeneze tkánového poškození Bunka a bunecné interakce v patogeneze tkánového poškození bunka - stejná genetická výbava - funkce (proliferace, produkce látek atd.) závisí na diferenciaci diferenciace tkán - specializovaná produkce

Více

9. Léčiva CNS - úvod (1)

9. Léčiva CNS - úvod (1) 9. Léčiva CNS - úvod (1) se se souhlasem souhlasem autora autora ál školy koly -techlogic techlogické Jeho Jeho žit bez bez souhlasu souhlasu autora autora je je ázá Nervová soustava: Centrální nervový

Více

EXTRACELULÁRNÍ SIGNÁLNÍ MOLEKULY

EXTRACELULÁRNÍ SIGNÁLNÍ MOLEKULY EXTRACELULÁRNÍ SIGNÁLNÍ MOLEKULY 1 VÝZNAM EXTRACELULÁRNÍCH SIGNÁLNÍCH MOLEKUL V MEDICÍNĚ Příklad: Extracelulární signální molekula: NO Funkce: regulace vazodilatace (nitroglycerin, viagra) 2 3 EXTRACELULÁRNÍ

Více

Biochemie nervové soustavy. Pavla Balínová

Biochemie nervové soustavy. Pavla Balínová Biochemie nervové soustavy Pavla Balínová Osnova semináře: Struktura a chemické složení nervové tkáně Energetický metabolismus nervové tkáně Mozkomíšní mok (likvor) Synaptický přenos nervového vzruchu

Více

Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy)

Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy) Neuron Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy) Základní stavební jednotky Neuron přenos a zpracování informací Gliové buňky péče o neurony, metabolická,

Více

Toxikologie PřF UK, ZS 2016/ Toxikodynamika I.

Toxikologie PřF UK, ZS 2016/ Toxikodynamika I. Toxikodynamika toxikodynamika (řec. δίνευω = pohánět, točit) interakce xenobiotika s cílovým místem (buňkou, receptorem) biologická odpověď jak xenobiotikum působí na organismus toxický účinek nespecifický

Více

Struktura a funkce biomakromolekul KBC/BPOL

Struktura a funkce biomakromolekul KBC/BPOL Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je

Více

Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy)

Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy) Buňka Neuron Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy) Základní stavební jednotky Neuron přenos a zpracování informací Gliové buňky péče o neurony, metabolická,

Více

Bílkoviny a rostlinná buňka

Bílkoviny a rostlinná buňka Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin

Více

Struktura a funkce biomakromolekul KBC/BPOL

Struktura a funkce biomakromolekul KBC/BPOL Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je

Více

Farmakologie vegetativního nervového systému. Receptory sympatiku a parasympatiku a možnosti jejich ovlivnění.

Farmakologie vegetativního nervového systému. Receptory sympatiku a parasympatiku a možnosti jejich ovlivnění. Farmakologie vegetativního nervového systému. Receptory sympatiku a parasympatiku a možnosti jejich ovlivnění. Centrální nervový systém Aferentní systém MOZEK A MÍCHAM Eferentní systém Periferní nervový

Více

Mgr. Šárka Vopěnková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_02_3_20_BI2 HORMONÁLNÍ SOUSTAVA

Mgr. Šárka Vopěnková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_02_3_20_BI2 HORMONÁLNÍ SOUSTAVA Mgr. Šárka Vopěnková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_02_3_20_BI2 HORMONÁLNÍ SOUSTAVA NADLEDVINY dvojjediná žláza párově endokrinní žlázy uložené při horním pólu ledvin obaleny tukovým

Více

Rozdělení svalových tkání: kosterní svalovina (příčně pruhované svaly) hladká svalovina srdeční svalovina (myokard)

Rozdělení svalových tkání: kosterní svalovina (příčně pruhované svaly) hladká svalovina srdeční svalovina (myokard) Fyziologie svalstva Svalstvo patří ke vzrušivým tkáním schopnost kontrakce a relaxace veškerá aktivní tenze a aktivní pohyb (cirkulace krve, transport tráveniny, řeč, mimika, lidská práce) 40% tělesné

Více

Membránový potenciál, zpracování a přenos signálu v excitabilních buňkách

Membránový potenciál, zpracování a přenos signálu v excitabilních buňkách Membránový potenciál, zpracování a přenos signálu v excitabilních buňkách Difuze Vyrovnávání koncentrací látek na základě náhodného pohybu Osmóza (difuze rozpouštědla) Dva roztoky o rúzné koncentraci oddělené

Více

Nervová soustává č love ká, neuron r es ení

Nervová soustává č love ká, neuron r es ení Nervová soustává č love ká, neuron r es ení Pracovní list Olga Gardašová VY_32_INOVACE_Bi3r0110 Nervová soustava člověka je pravděpodobně nejsložitěji organizovaná hmota na Zemi. 1 cm 2 obsahuje 50 miliónů

Více

Hormony, neurotransmitery. Obecné mechanismy účinku. Biochemický ústav LF MU 2016 (E.T.)

Hormony, neurotransmitery. Obecné mechanismy účinku. Biochemický ústav LF MU 2016 (E.T.) Hormony, neurotransmitery. Obecné mechanismy účinku. Biochemický ústav LF MU 2016 (E.T.) Komunikace mezi buňkami. Obecné mechanismy účinku hormonů a neurotransmiterů. Typy signálních molekul v neurohumorálních

Více

ATC hormony. Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje. Mgr. Helena Kollátorová

ATC hormony. Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje. Mgr. Helena Kollátorová ATC hormony Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje Březen 2011 Mgr. Helena Kollátorová Hormony jsou sloučeniny, které slouží v těle mnohobuněčných

Více

Intracelulární Ca 2+ signalizace

Intracelulární Ca 2+ signalizace Intracelulární Ca 2+ signalizace Vytášek 2009 Ca 2+ je universální intracelulární signalizační molekula (secondary messenger), která kontroluje řadu buměčných metabolických a vývojových cest intracelulární

Více

HORMONY Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje

HORMONY Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje HORMONY Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje 21.9. 2009 Mgr. Radka Benešová Obecné zásady řízení a regulací: V organismu rozlišujeme dva základní

Více

*Mléko a mléčné výrobky obsahují řadu bioaktivních

*Mléko a mléčné výrobky obsahují řadu bioaktivních www.bileplus.cz Mléko a mléčné výrobky obsahují řadu bioaktivních látek (vápník, mastné kyseliny, syrovátka, větvené aminokyseliny) ovlivňující metabolismus tuků spalování tuků Mléčné výrobky a mléčné

Více

Obecný metabolismus.

Obecný metabolismus. mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 Obecný metabolismus. Regulace glykolýzy a glukoneogeneze (5). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie,

Více

Mechanismy hormonální regulace metabolismu. Vladimíra Kvasnicová

Mechanismy hormonální regulace metabolismu. Vladimíra Kvasnicová Mechanismy hormonální regulace metabolismu Vladimíra Kvasnicová Osnova semináře 1. Obecný mechanismus působení hormonů (opakování) 2. Příklady mechanismů účinku vybraných hormonů na energetický metabolismus

Více

Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza

Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových

Více

1. ZÁKLADY NEUROBIOLOGY A NEUROCHEMIE Zdeněk Fišar 1.1 Neurony 1.2 Glie 1.3 Membrány 1.3.1 Struktura a funkce 1.3.2 Složení biomembrán 1.3.

1. ZÁKLADY NEUROBIOLOGY A NEUROCHEMIE Zdeněk Fišar 1.1 Neurony 1.2 Glie 1.3 Membrány 1.3.1 Struktura a funkce 1.3.2 Složení biomembrán 1.3. 1. ZÁKLADY NEUROBIOLOGY A NEUROCHEMIE 1.1 Neurony 1.2 Glie 1.3 Membrány 1.3.1 Struktura a funkce 1.3.2 Složení biomembrán 1.3.3 Membránový transport 1.3.4 Receptory 1.3.4.1 Regulace 1.3.4.2 Adaptace 1.3.4.3

Více

Farmakologie. -věda o lécích používaných v medicíně -studium účinku látek na fyziologické procesy -biochemie s jasným cílem

Farmakologie. -věda o lécích používaných v medicíně -studium účinku látek na fyziologické procesy -biochemie s jasným cílem Farmakologie -věda o lécích používaných v medicíně -studium účinku látek na fyziologické procesy -biochemie s jasným cílem Léky co v organismu ovlivňují? Většina léků působí přes vazbu na proteiny u nichž

Více

Regulace metabolizmu lipidů

Regulace metabolizmu lipidů Regulace metabolizmu lipidů Principy regulace A) krátkodobé (odpověď s - min): Dostupnost substrátu Alosterické interakce Kovalentní modifikace (fosforylace/defosforylace) B) Dlouhodobé (odpověď hod -

Více

Exprese genetické informace

Exprese genetické informace Exprese genetické informace Stavební kameny nukleových kyselin Nukleotidy = báze + cukr + fosfát BÁZE FOSFÁT Nukleosid = báze + cukr CUKR Báze Cyklické sloučeniny obsahující dusík puriny nebo pyrimidiny

Více

(VIII.) Časová a prostorová sumace u kosterního svalu. Fyziologický ústav LF MU, 2016 Jana Svačinová

(VIII.) Časová a prostorová sumace u kosterního svalu. Fyziologický ústav LF MU, 2016 Jana Svačinová (VIII.) Časová a prostorová sumace u kosterního svalu Fyziologický ústav LF MU, 2016 Jana Svačinová Kontrakce příčně pruhovaného kosterního svalu Myografie metoda umožňující registraci kontrakce svalů

Více

HYPERALGEZIE Co bychom o ní měli vědět? J Lejčko, ARK, CLB, FN Plzeň

HYPERALGEZIE Co bychom o ní měli vědět? J Lejčko, ARK, CLB, FN Plzeň HYPERALGEZIE Co bychom o ní měli vědět? J Lejčko, ARK, CLB, FN Plzeň Neurofyziologie bolesti Bolest je dynamický fenomén Není jen pouhá nocicepce Komplexní fenomén, pro percepci bolesti jsou klíčová vyšší

Více

Bp1252 Biochemie. #11 Biochemie svalů

Bp1252 Biochemie. #11 Biochemie svalů Bp1252 Biochemie #11 Biochemie svalů Úvod Charakteristickou funkční vlastností svalu je schopnost kontrakce a relaxace Kontrakce následuje po excitaci vzrušivé buněčné membrány je přímou přeměnou chemické

Více

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA

Více

SOMATOLOGIE Vnitřní systémy

SOMATOLOGIE Vnitřní systémy SOMATOLOGIE Vnitřní systémy VY-32-INOVACE-59 AUTOR: Mgr. Ludmila Kainarová ENDOKRINNÍ SYSTÉM ENDOKRINNÍ SYSTÉM Endokrinní systém je systém žláz s vnitřní sekrecí. Endokrinní žlázy produkují výměšky hormony,

Více

Hormony HORMONY chemické messengery, které jsou transportovány v tělesných tekutinách Funkce: modulátory systémových a celulárních odpovědí

Hormony HORMONY chemické messengery, které jsou transportovány v tělesných tekutinách Funkce: modulátory systémových a celulárních odpovědí Hormony HORMONY 5. 5. 2004 chemické messengery, které jsou transportovány v tělesných tekutinách Funkce: modulátory systémových a celulárních odpovědí Účinky: lokální generalizované Účinek hormonů sekrece

Více

Exprese genetické informace

Exprese genetické informace Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu

Více

PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY

PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY 1 VÝZNAM MEMBRÁNOVÝCH RECEPTORŮ V MEDICÍNĚ Příklad: Membránové receptory: adrenergní receptory (receptory pro adrenalin a noradrenalin) Funkce: zprostředkování

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická Nervová soustava Společná pro celou sadu oblast

Více

7. Regulace genové exprese, diferenciace buněk a epigenetika

7. Regulace genové exprese, diferenciace buněk a epigenetika 7. Regulace genové exprese, diferenciace buněk a epigenetika Aby mohl mnohobuněčný organismus efektivně fungovat, je třeba, aby se jednotlivé buňky specializovaly na určité funkce. Nový jedinec přitom

Více

19.b - Metabolismus nukleových kyselin a proteosyntéza

19.b - Metabolismus nukleových kyselin a proteosyntéza 19.b - Metabolismus nukleových kyselin a proteosyntéza Proteosyntéza vyžaduje především zajištění primární struktury. Informace je uložena v DNA (ev. RNA u některých virů) trvalá forma. Forma uskladnění

Více

AUG STOP AAAA S S. eukaryontní gen v genomové DNA. promotor exon 1 exon 2 exon 3 exon 4. kódující oblast. introny

AUG STOP AAAA S S. eukaryontní gen v genomové DNA. promotor exon 1 exon 2 exon 3 exon 4. kódující oblast. introny eukaryontní gen v genomové DNA promotor exon 1 exon 2 exon 3 exon 4 kódující oblast introny primární transkript (hnrna, pre-mrna) postranskripční úpravy (vznik maturované mrna) syntéza čepičky AUG vyštěpení

Více

Vrozené trombofilní stavy

Vrozené trombofilní stavy Vrozené trombofilní stavy MUDr. Dagmar Riegrová, CSc. Název projektu: Tvorba a ověření e-learningového prostředí pro integraci výuky preklinických a klinických předmětů na Lékařské fakultě a Fakultě zdravotnických

Více

Regulace metabolických drah na úrovni buňky

Regulace metabolických drah na úrovni buňky Regulace metabolických drah na úrovni buňky EB Obsah přednášky Obecné principy regulace metabolických drah na úrovni buňky regulace zajištěná kompartmentací metabolických dějů změna absolutní koncentrace

Více

Lékařská chemie a biochemie modelový vstupní test ke zkoušce

Lékařská chemie a biochemie modelový vstupní test ke zkoušce Lékařská chemie a biochemie modelový vstupní test ke zkoušce 1. Máte pufr připravený smísením 150 ml CH3COOH o c = 0,2 mol/l a 100 ml CH3COONa o c = 0,25 mol/l. Jaké bude ph pufru, pokud přidáme 10 ml

Více

Léčiva ovlivňující dopaminergní, serotonergní a histaminový systém + opakování na zápočet

Léčiva ovlivňující dopaminergní, serotonergní a histaminový systém + opakování na zápočet Léčiva ovlivňující dopaminergní, serotonergní a histaminový systém + opakování na zápočet Seminář v rámci Obecné farmakologie magisterského studia všeobecného lékařství 3. úsek studia 3. lékařská fakulta

Více

Propojení metabolických drah. Alice Skoumalová

Propojení metabolických drah. Alice Skoumalová Propojení metabolických drah Alice Skoumalová Metabolické stavy 1. Resorpční fáze po dobu vstřebávání živin z GIT (~ 2 h) glukóza je hlavní energetický zdroj 2. Postresorpční fáze mezi jídly (~ 2 h po

Více

2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:

2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné: Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících

Více

Energetický metabolizmus buňky

Energetický metabolizmus buňky Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie

Více

ŽLÁZY S VNITŘNÍ SEKRECÍ. Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje

ŽLÁZY S VNITŘNÍ SEKRECÍ. Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje ŽLÁZY S VNITŘNÍ SEKRECÍ Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje Srpen 2010 Mgr. Radka Benešová ŽLÁZY S VNITŘNÍ SEKRECÍ Hormony jsou produkty

Více

DUM č. 10 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

DUM č. 10 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika projekt GML Brno Docens DUM č. 10 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 26.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Procesy následující bezprostředně po transkripci.

Více

PREZENTACE ANTIGENU A REGULACE NA ÚROVNI Th (A DALŠÍCH) LYMFOCYTŮ PREZENTACE ANTIGENU

PREZENTACE ANTIGENU A REGULACE NA ÚROVNI Th (A DALŠÍCH) LYMFOCYTŮ PREZENTACE ANTIGENU PREZENTACE ANTIGENU A REGULACE NA ÚROVNI Th (A DALŠÍCH) LYMFOCYTŮ PREZENTACE ANTIGENU Podstata prezentace antigenu (MHC restrikce) byla objevena v roce 1974 V současnosti je zřejmé, že to je jeden z klíčových

Více

Metabolismus bílkovin. Václav Pelouch

Metabolismus bílkovin. Václav Pelouch ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE 2004 Metabolismus bílkovin Václav Pelouch kapitola ve skriptech - 3.2 Výživa Vyvážená strava člověka musí obsahovat: cukry (50 55 %) tuky (30 %) bílkoviny (15 20 %)

Více

Systém HLA a prezentace antigenu. Ústav imunologie UK 2.LF a FN Motol

Systém HLA a prezentace antigenu. Ústav imunologie UK 2.LF a FN Motol Systém HLA a prezentace antigenu Ústav imunologie UK 2.LF a FN Motol Struktura a funkce HLA historie struktura HLA genů a molekul funkce HLA molekul nomenklatura HLA systému HLA asociace s nemocemi prezentace

Více

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán

Více

Obecná fyziologie smyslů. Co se děje na membránách.

Obecná fyziologie smyslů. Co se děje na membránách. Obecná fyziologie smyslů Co se děje na membránách. Svět smyslů úloha mozku. Paralelní dráhy specializované na určitou vlastnost (kvalitu). V rámci dráhy ještě specializace na konkrétní hodnotu. Transformace

Více

Farmakodynamika II. Typy receptorů, transdukce (přenos) signálu. Příklady farmakologického ovlivnění receptorů v různých typech tkání.

Farmakodynamika II. Typy receptorů, transdukce (přenos) signálu. Příklady farmakologického ovlivnění receptorů v různých typech tkání. Farmakodynamika II Typy receptorů, transdukce (přenos) signálu. Příklady farmakologického ovlivnění receptorů v různých typech tkání. MVDr. Leoš Landa, Ph.D. TRANSDUKCE SIGNÁLU (PŘENOS SIGNÁLU) Obecné

Více

ZDRAVÝ SPÁNEK Ing. Vladimír Jelínek

ZDRAVÝ SPÁNEK Ing. Vladimír Jelínek ZDRAVÝ SPÁNEK Ing. Vladimír Jelínek ZDRAVÝ SPÁNEK Spánek byl po celá tisíciletí považován za pasivní jev blízký bezesné smrti. Shakespeare ve svém Hamletovi považuje smrt za sestru spánku 2 ZDRAVÝ SPÁNEK

Více

Přednášky z lékařské biofyziky Lékařská fakulta Masarykovy univerzity v Brně

Přednášky z lékařské biofyziky Lékařská fakulta Masarykovy univerzity v Brně Přednášky z lékařské biofyziky Lékařská fakulta Masarykovy univerzity v Brně Biologické membrány a bioelektrické jevy Autoři děkují doc. RNDr. K. Kozlíkové, CSc., z LF UK v Bratislavě za poskytnutí některých

Více

ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv

ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv Urbanová Anna ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv strukturní rysy mrna proces degradace každá mrna v

Více

Obecná fyziologie smyslů. Co se děje na membránách.

Obecná fyziologie smyslů. Co se děje na membránách. Obecná fyziologie smyslů Co se děje na membránách. Svět smyslů úloha mozku. Paralelní dráhy specializované na určitou vlastnost (kvalitu). V rámci dráhy ještě specializace na konkrétní hodnotu. Transformace

Více

NUKLEOVÉ KYSELINY. Základ života

NUKLEOVÉ KYSELINY. Základ života NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním

Více

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu Test pro přijímací řízení magisterské studium Biochemie 2019 1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná

Více

Biosyntéza a degradace proteinů. Bruno Sopko

Biosyntéza a degradace proteinů. Bruno Sopko Biosyntéza a degradace proteinů Bruno Sopko Obsah Proteosyntéza Post-translační modifikace Degradace proteinů Proteosyntéza Tvorba aminoacyl-trna Iniciace Elongace Terminace Tvorba aminoacyl-trna Aminokyselina

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován

Více

Adiktologie 1. ročník, zimní semestr 2005/2006

Adiktologie 1. ročník, zimní semestr 2005/2006 Adiktologie 1. ročník, zimní semestr 2005/2006 Název předmětu: Neurovědy Číslo předmětu: Není Semestr: Zimní 2005/2006 Vyučující: MUDr. Tomáš Páleníček Prof. MUDr. Soňa Nevšímalová, DrSc. Konzultační hodiny:

Více

The cell biology of rabies virus: using stealth to reach the brain

The cell biology of rabies virus: using stealth to reach the brain The cell biology of rabies virus: using stealth to reach the brain Matthias J. Schnell, James P. McGettigan, Christoph Wirblich, Amy Papaneri Nikola Skoupá, Kristýna Kolaříková, Agáta Kubíčková Historie

Více

ENZYMY A NUKLEOVÉ KYSELINY

ENZYMY A NUKLEOVÉ KYSELINY ENZYMY A NUKLEOVÉ KYSELINY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 28. 3. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí

Více

Monitorování léků. RNDr. Bohuslava Trnková, ÚKBLD 1. LF UK. ls 1

Monitorování léků. RNDr. Bohuslava Trnková, ÚKBLD 1. LF UK. ls 1 Monitorování léků RNDr. Bohuslava Trnková, ÚKBLD 1. LF UK ls 1 Mechanismus působení léčiv co látka dělá s organismem sledování účinku léčiva na: - orgánové úrovni -tkáňové úrovni - molekulární úrovni (receptory)

Více

7. Nervová soustava člověka

7. Nervová soustava člověka 7. Nervová soustava člověka anatomie nervové soustavy a stavba neuronu Nervová soustava člověka je rozlišena na: 1. CNS - centrální nervovou soustavu (hlava - řídící centrum, mícha zprostředkovává funkce)

Více

Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY

Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY Inovace profesní přípravy budoucích učitelů chemie CZ.1.07/2.2.00/15.0324 Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY Obsah 1 Úvod do problematiky přírodních látek... 2 2 Vitamíny... 2 2.

Více

NAŘÍZENÍ KOMISE (EU) /... ze dne , kterým se mění nařízení (ES) č. 847/2000, pokud jde o definici pojmu podobný léčivý přípravek

NAŘÍZENÍ KOMISE (EU) /... ze dne , kterým se mění nařízení (ES) č. 847/2000, pokud jde o definici pojmu podobný léčivý přípravek EVROPSKÁ KOMISE V Bruselu dne 29.5.2018 C(2018) 3193 final NAŘÍZENÍ KOMISE (EU) /... ze dne 29.5.2018, kterým se mění nařízení (ES) č. 847/2000, pokud jde o definici pojmu podobný léčivý přípravek (Text

Více

Struktura proteinů. - testík na procvičení. Vladimíra Kvasnicová

Struktura proteinů. - testík na procvičení. Vladimíra Kvasnicová Struktura proteinů - testík na procvičení Vladimíra Kvasnicová Mezi proteinogenní aminokyseliny patří a) kyselina asparagová b) kyselina glutarová c) kyselina acetoctová d) kyselina glutamová Mezi proteinogenní

Více

Biochemie kosti. Anatomie kosti. Kostní buňky. Podpůrná funkce. Udržování homeostasy minerálů. Sídlo krvetvorného systému

Biochemie kosti. Anatomie kosti. Kostní buňky. Podpůrná funkce. Udržování homeostasy minerálů. Sídlo krvetvorného systému Biochemie kosti Podpůrná funkce Udržování homeostasy minerálů Sídlo krvetvorného systému Anatomie kosti Haversovy kanálky okostice lamely oddělené lakunami Kostní buňky Osteoblasty Osteocyty Osteoklasty

Více

Senzorická fyziologie

Senzorická fyziologie Senzorická fyziologie Čití - proces přenosu informace o aktuálním stavu vnitřního prostředí a zevního okolí do formy signálů v CNS Vnímání (percepce) - subjektivní vědomá interpretace těchto signálů na

Více

Nukleové kyseliny. DeoxyriboNucleic li Acid

Nukleové kyseliny. DeoxyriboNucleic li Acid Molekulární lární genetika Nukleové kyseliny DeoxyriboNucleic li Acid RiboNucleic N li Acid cukr (deoxyrobosa, ribosa) fosforečný zbytek dusíkatá báze Dusíkaté báze Dvouvláknová DNA Uchovává genetickou

Více

Molekulární mechanismy řídící expresi proteinů

Molekulární mechanismy řídící expresi proteinů Molekulární mechanismy řídící expresi proteinů Aleš ampl Proteiny Proteios - první místo (řecky) = Bílkoviny u většiny buněčných typů tvoří nejméně 50% jejich suché hmoty hrají klíčovou úlohu ve většině

Více

Fyziologie synapsí. Rostislav Tureček. Ústav experimentální medicíny, AVČR Oddělení neurofyziologie sluchu.

Fyziologie synapsí. Rostislav Tureček. Ústav experimentální medicíny, AVČR Oddělení neurofyziologie sluchu. Fyziologie synapsí Rostislav Tureček Ústav experimentální medicíny, AVČR Oddělení neurofyziologie sluchu turecek@biomed.cas.cz Signály v nervovém systému 1) Elektrické 2) Chemické Thomas C. Südhof Nobel

Více

FARMAKODYNAMIKA. Doc. PharmDr. František Štaud, Ph.D.

FARMAKODYNAMIKA. Doc. PharmDr. František Štaud, Ph.D. FARMAKODYNAMIKA Doc. PharmDr. František Štaud, Ph.D. Katedra farmakologie a toxikologie Univerzita Karlova v Praze Farmaceutická fakulta v Hradci Králové FARMAKODYNAMIKA studuje účinky léčiv a jejich mechanizmy

Více

Mozek a chování, vnější prostředí neuronu

Mozek a chování, vnější prostředí neuronu Mozek a chování, vnější prostředí neuronu Studijní literatura SILBERNAGL, Stefan a Agamemnon DESPOPOULOS. Atlas fyziologie člověka. 6. přepracované vydání. Praha: Grada, 2004. GANONG, William F. Přehled

Více

Kosterní svalstvo tlustých a tenkých filament

Kosterní svalstvo tlustých a tenkých filament Kosterní svalstvo Základní pojmy: Sarkoplazmatické retikulum zásobárna iontů vápníku - depolarizace membrány uvolnění vápníku v blízkosti kontraktilního aparátu vazba na proteiny zajišťující kontrakci

Více

Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.

Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D. Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec

Více

Glykolýza Glukoneogeneze Regulace. Alice Skoumalová

Glykolýza Glukoneogeneze Regulace. Alice Skoumalová Glykolýza Glukoneogeneze Regulace Alice Skoumalová Metabolismus glukózy - přehled: 1. Glykolýza Glukóza: Univerzální palivo pro buňky Zdroje: potrava (hlavní cukr v dietě) zásoby glykogenu krev (homeostáza

Více

BIOCHEMICKÉ PODKLADY NEUROPSYCHIATRICKÝCH A NEURODEGENERATIVNÍCH CHOROB

BIOCHEMICKÉ PODKLADY NEUROPSYCHIATRICKÝCH A NEURODEGENERATIVNÍCH CHOROB BIOCHEMICKÉ PODKLADY NEUROPSYCHIATRICKÝCH A NEURODEGENERATIVNÍCH CHOROB Jan ILLNER Jana Švarcová MYASTENIA GRAVIS Charakterizace: opakující se epizody svalové slabosti a unavitelnosti akcentované po fyzické

Více

Gymnázium, Brno, Elgartova 3

Gymnázium, Brno, Elgartova 3 Gymnázium, Brno, Elgartova 3 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: GE Vyšší kvalita výuky Číslo projektu: CZ.1.07/1.5.00/34.0925 Autor: Mgr. Hana Křivánková Téma:

Více

Těsně před infarktem. Jak předpovědět infarkt pomocí informatických metod. Jan Kalina, Marie Tomečková

Těsně před infarktem. Jak předpovědět infarkt pomocí informatických metod. Jan Kalina, Marie Tomečková Těsně před infarktem Jak předpovědět infarkt pomocí informatických metod Jan Kalina, Marie Tomečková Program, osnova sdělení 13,30 Úvod 13,35 Stručně o ateroskleróze 14,15 Měření genových expresí 14,00

Více

glukóza *Ivana FELLNEROVÁ, PřF UP Olomouc*

glukóza *Ivana FELLNEROVÁ, PřF UP Olomouc* Prezentace navazuje na základní znalosti Biochemie, stavby a transportu přes y Doplňující prezentace: Proteiny, Sacharidy, Stavba, Membránový transport, Symboly označující animaci resp. video (dynamická

Více

VEGETATIVNÍ NERVOVÝ SYSTÉM

VEGETATIVNÍ NERVOVÝ SYSTÉM VEGETATIVNÍ NERVOVÝ SYSTÉM Vegetativní nervový systém = autonomní (nezávislý na vůli) Udržuje základní životní funkce, řídí a kontroluje tělo, orgány Řídí hladké svaly (cévní i mimocévní), exokrinní sekreci

Více

Obesita a redukční režimy

Obesita a redukční režimy Obesita a redukční režimy Výuka na VŠCHT Doc. MUDr Lubomír Kužela, DrSc Obezita definice I. Na základě Relativní nadváhy Lehká obezita 120 140 % ideální hmotnosti Výrazná obezita 140 200 % ideální hmotnosti

Více

DUM č. 11 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

DUM č. 11 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika projekt GML Brno Docens DUM č. 11 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 30.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Princip genové exprese, intenzita překladu

Více

LÁTKOVÉ ŘÍZENÍ ORGANISMU

LÁTKOVÉ ŘÍZENÍ ORGANISMU LÁTKOVÉ ŘÍZENÍ ORGANISMU PhDr. Jitka Jirsáková, Ph.D. LÁTKOVÉ ŘÍZENÍ ORGANISMU je uskutečňováno prostřednictvím: hormonů neurohormonů tkáňových hormonů endokrinní žlázy vylučují látky do krevního oběhu

Více

AMPK AMP) Tomáš Kuc era. Ústav lékar ské chemie a klinické biochemie 2. lékar ská fakulta, Univerzita Karlova v Praze

AMPK AMP) Tomáš Kuc era. Ústav lékar ské chemie a klinické biochemie 2. lékar ská fakulta, Univerzita Karlova v Praze AMPK (KINASA AKTIVOVANÁ AMP) Tomáš Kuc era Ústav lékar ské chemie a klinické biochemie 2. lékar ská fakulta, Univerzita Karlova v Praze 2013 AMPK PROTEINKINASA AKTIVOVANÁ AMP přítomna ve všech eukaryotních

Více

Fyziologická regulační medicína

Fyziologická regulační medicína Fyziologická regulační medicína Otevírá nové obzory v medicíně! Pacienti hledající dlouhodobou léčbu bez nežádoucích účinků mohou být nyní uspokojeni! 1 FRM italská skupina Zakladatelé GUNY 2 GUNA-METODA

Více

NEMEMBRÁNOVÉ ORGANELY. Ribosomy Centrioly (jadérko) Cytoskelet: aktinová filamenta (mikrofilamenta) intermediární filamenta mikrotubuly

NEMEMBRÁNOVÉ ORGANELY. Ribosomy Centrioly (jadérko) Cytoskelet: aktinová filamenta (mikrofilamenta) intermediární filamenta mikrotubuly NEMEMBRÁNOVÉ ORGANELY Ribosomy Centrioly (jadérko) Cytoskelet: aktinová filamenta (mikrofilamenta) intermediární filamenta mikrotubuly RIBOSOMY Částice složené z rrna a proteinů, skládají se z velké kulovité

Více

Vlastnosti neuronových sítí. Zdeněk Šteffek 2. ročník 2. LF UK v Praze

Vlastnosti neuronových sítí. Zdeněk Šteffek 2. ročník 2. LF UK v Praze Vlastnosti neuronových sítí Zdeněk Šteffek 2. ročník 2. LF UK v Praze 7. 3. 2011 Obsah Neuronální pooly Divergence Konvergence Prolongace signálu, kontinuální a rytmický signál Nestabilita a stabilita

Více

Základy molekulární biologie KBC/MBIOZ

Základy molekulární biologie KBC/MBIOZ Základy molekulární biologie KBC/MBIOZ Mária Majeská Čudejková 3. Proteosyntéza Centrální dogma molekulární biologie Rozluštění genetického kódu in vitro Marshall Nirenberg a Heinrich Matthaei zjistili,

Více

Molekulárn. rní. biologie Struktura DNA a RNA

Molekulárn. rní. biologie Struktura DNA a RNA Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace

Více

HYPOTHALAMUS Centrální řízení některých tělesných funkcí

HYPOTHALAMUS Centrální řízení některých tělesných funkcí MUDr. Josef Jonáš HYPOTHALAMUS Centrální řízení některých tělesných funkcí 1 Hypotalamus je část mezimozku diencefala Zdroj: www.stockmedicalart.com 2 Hypotalamus Ovládá vegetativní centra : řídí tělesnou

Více

BrainVitality. Stárnoucí mozek prochází postupnými strukturálnímí a funkčními změnami.

BrainVitality. Stárnoucí mozek prochází postupnými strukturálnímí a funkčními změnami. Stárnoucí mozek prochází postupnými strukturálnímí a funkčními změnami. Mozek se začíná zmenšovat od 25 let a v 70 letech ztratil už 25 % své velikosti. Mozková činnost spotřebuje 20-25 % veškerého kyslíku,

Více

5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku

5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku 5. Příjem, asimilace a fyziologické dopady anorganického dusíku Zdroje dusíku dostupné v půdě: Amonné ionty + Dusičnany = největší zdroj dusíku v půdě Organický dusík (aminokyseliny, aminy, ureidy) zpracování

Více

Nervová soustava je základním regulačním systémem organizmu psa. V organizmu plní základní funkce jako:

Nervová soustava je základním regulačním systémem organizmu psa. V organizmu plní základní funkce jako: Nervová soustava je základním regulačním systémem organizmu psa. V organizmu plní základní funkce jako: Přijímá podněty smyslovými orgány tzv. receptory (receptory), Kontroluje a poskytuje komplexní komunikační

Více