MENDELOVA UNIVERSITA V BRNĚ LESNICKÁ A DŘEVAŘSKÁ FAKULTA ÚSTAV NAUKY O DŘEVĚ

Rozměr: px
Začít zobrazení ze stránky:

Download "MENDELOVA UNIVERSITA V BRNĚ LESNICKÁ A DŘEVAŘSKÁ FAKULTA ÚSTAV NAUKY O DŘEVĚ"

Transkript

1 MENDELOVA UNIVERSITA V BRNĚ LESNICKÁ A DŘEVAŘSKÁ FAKULTA ÚSTAV NAUKY O DŘEVĚ POROVNÁNÍ VYBRANÝCH VLASTNOSTÍ BĚLOVÉHO DŘEVA A DŘEVA NEPRAVÉHO JÁDRA BUKU bakalářská práce Brno 2011 Jan Pouchanič

2 Čestné prohlášení Prohlašuji, že jsem bakalářskou práci na téma,, Porovnání vybraných vlastností bělového dřeva a dřeva nepravého jádra buku zpracovával sám a uvedl jsem všechny použité prameny. Dále souhlasím, aby moje bakalářská práce byla zveřejněna v souladu s 47b Zákona č. 111/1998 Sb., o vysokých školách a uložena v knihovně Mendelovy university v Brně, případně zpřístupněna ke studijním účelům ve shodě s Vyhláškou rektora MENDELU o archivaci elektronické podoby závěrečných prací. zavazuji se, že před sepsáním licenční smlouvy o využití autorských práv díla s jinou osobou či subjektem si vyžádám písemné stanovisko university o tom, že předmětná licenční smlouva není v rozporu s oprávněnými zájmy university a zavazuji se uhradit případný příspěvek na úhradu nákladů spojených se vznikem díla dle řádné kalkulace. V Brně dne. podpis 1

3 Poděkování: Velké poděkování patří vedoucímu mé bakalářské práce panu doc. Dr. Ing. Petru Horáčkovi za odborné vedení, pomoc při plnění úkolů, poskytnuté rady a mnoho věnovaného času. Také bych chtěl poděkovat všem, kteří mě v průběhu studia podporovali, pomáhali mi a sdíleli se mnou vše, co s sebou studium přineslo. 2

4 Jan Pouchanič Porovnání vybraných vlastností bělového dřeva a dřeva nepravého jádra buku Abstrakt Nepravé jádro bukového dřeva se v dřevozpracujícím průmyslu považuje za vadu a snižuje tak výtěžnost materiálu, čímž navyšuje cenu konečného výrobku. Již samotný markantní rozdíl v barvě oproti běli naznačuje, že se jedná o části kmene s odlišnými vlastnostmi. Práce se zabývá porovnáním vybraných fyzikálních a mechanických vlastností dřeva v zóně nepravého jádra a dřeva bělového buku. Pro zjištění daných vlastností byla vyrobena zkušební tělíska vyhovující daným zkušebním normám. Byly naměřeny hodnoty, zpracované na tabulkovém procesoru, statisticky vyhodnoceny mezi sebou a porovnány s dostupnými literárními zdroji. Z fyzikálních vlastností byla zkoumána hustota a rozměrová stálost při změně vlhkosti. Z mechanických vlastností to byl modul pružnosti a mez pevnosti v tlaku rovnoběžně s vlákny. Všechny zkoumané vlastnosti vykazovali mezi jednotlivými soubory statisticky významné odlišnosti. Výsledky ukazují, že nepravé jádro buku má oproti běli vyšší hustotu, rozměrové vlhkostní změny, mez pevnosti v tlaku ve směru vláken a poměrnou deformaci při tlaku ve směru vláken. Naopak je tomu pouze u modulu pružnosti v tlaku ve směru vláken. Klíčová slova: Buk lesní, nepravé jádro, fyzikální a mechanické vlastnosti dřeva 3

5 Jan Pouchanič Comparison of selected properties of normal wood and false core wood of beech Abstract Wood technology industry considers false core of beech as defective, what decreases mass yield and increases price of final product. Visible colour difference between false core and normal beech wood indicates two parts of wood with differences properties. This Thesis deals with comparison of selected physical and mechanical properties of false core wood and normal wood of beech. There were made trial objects with special properties for measurement of the properties. There measured values were processed in a spreadsheet program and statistically evaluated, compared with each other and with literary works available. As for investigated physical properties the density and humidity dimension stability were measured. As for investigated mechanical properties the module of elasticity parallel to grain and compression parallel to grain. All investigated properties have showed statistically important differences between false core file and normal wood file. Results show that beech false core has bigger density, humidity dimension changes, compression parallel to grain and relative deformation parallel to grain. False core has only smaller module of elasticity parallel to grain. Key words: Beech, beech false core, physical a mechanical wood properties 4

6 Obsah 1. Úvod Cíl práce Literární přehled Charakteristika dřeviny Struktura bukového dřeva Makroskopická stavba buku Běl Vyzrálé dřevo Nepravé jádro Mikroskopická stavba buku Zvláštnosti běle Anatomická struktura nepravého jádra Vlastnosti bukového dřeva Fyzikální vlastnosti Mechanické vlastnosti Materiál a metodika Výroba vzorků Popis jednotlivých operací Zjišťování fyzikálních vlastností Měření hustoty Měření sesychání Zjišťování mechanických vlastností Měření meze pevnosti a modulu pružnosti v tlaku ve směru vláken Statistické vyhodnocení Aritmetický průměr

7 4.4.2 Směrodatná odchylka Variační koeficient T-testy středních hodnot Korelační a regresní analýza výsledky Výsledky fyzikálních vlastností Hustota Radiální sesychání Tangenciální sesychání Podélné sesychání Objemové sesychání Koeficient radiálního sesychání Koeficient tangenciálního sesychání Koeficient objemového sesychání Výsledky mechanických vlastností Mez pevnosti v tlaku ve směru vláken Modul pružnosti v tlaku ve směru vláken Maximální deformace při tlaku ve směru vláken Zjišťování závislostí Zjišťování závislosti objemového sesychání na hustotě Zjišťování závislosti meze pevnosti v tlaku ve směru vláken na hustotě diskuse Hustota Vlhkostní rozměrové změny Mez pevnosti, modul pružnosti a deformace v tlaku ve směru vláken Závislosti Závěr

8 8. Summary... Chyba! Záložka není definována. 9. Použitá literatura přílohy Obrázková příloha Naměřené hodnoty

9 1. ÚVOD Buk je průmyslovou velmi využívanou dřevinou, poskytující dřevo tvrdé, pevné, houževnaté s dobrými zpracovatelskými vlastnostmi, vhodnými pro široké spektrum použití. Mnohé z jeho vlastností převyšují vlastnosti našich běžných dřevin. Přes všechny jeho výhody doprovází bukové dříví i mnoho nežádaných jevů snižujících možnost využití suroviny. Jednou z nejvýznamnějších nevýhod je tvorba tzv. nepravého jádra, které je v praxi chápáno jako vada snižující kvalitu vstupního sortimentu do výroby a tím i výtěžnost. Problematika nepravého jádra je dosti rozšířená a již v dávné minulosti se s ní zabývalo mnoho autorů. Úplné počátky jeho studia spadají do doby 1. poloviny 19 stol., kdy o bukovém dřevě hovoří Hartig a jiní autoři té doby. Největší rozvoj ovšem spadá do doby 30. let 20. stol., do doby krátce po hromadném vzniku tzv. mrazového nepravého jádra. Každá doba při tom přinesla nové poznatky v závislosti na nových metodách a možnostech výzkumu. První kroky jeho studia jsou ve znamení zjišťování struktury a podmínek tvorby. Teprve s rostoucím uplatňováním a průmyslovým zpracováním buku začátkem 20. stol. se dostává do popředí zájem o studium fyzikálních, mechanických a zejména technologických vlastností. Veškeré snahy směřují k rozvoji jeho zpracování a vhodnému způsobu použití. Rostoucí obliba zpracování bukového dřeva na pražce přinesla také otázku odolnosti běle buku a jeho nepravého jádra vůči degradujícím činitelům. Tento směr si výzkum zachoval i po masivním vzniku tzv. mrazového nepravého jádra ve 30. letech 20. století. V době 2. světové války se zvyšuje spotřeba dřeva a výzkum nabývá soustavnějšího charakteru. Opět se vědci pokouší novými způsoby osvětlit vznik nepravého jádra a prověřují i vlastnosti. Bylo také zjištěno mnoho poznatků o chemickém složení. V neposlední řadě věnují autoři čím dál větší pozornost závislosti frekvence výskytu a velikosti nepravého jádra buku na věku porostu či velikosti oddenkového výřezu a snaží se vznik nepravého jádra eliminovat. Nutno říci, že všechny vyjmenované oblasti výzkumu neprobíhaly,,izolovaně v určitých časových intervalech, ale postupem času se plynule rozvíjely, vzájemně prolínaly, a jedna druhou ovlivňovaly. Ačkoli vznik, frekvence výskytu, struktura a stavba nepravého jádra buku je v literatuře dobře popsána, vědecké literatury o jeho mechanických a fyzikálních vlastnostech je znatelně méně. 8

10 2. CÍL PRÁCE Práce si klade za cíl analyzovat vybrané vlastnosti nepravého jádra a bělového dřeva buku lesního na vlastních tělískách. Naměřené hodnoty porovnat mezi sebou a mezi dostupnými literárními prameny a případné odlišnosti či shody ve zjištěných vlastnostech prodiskutovat v souvislosti s využitím bukového dřeva v praxi. Z fyzikálních vlastností se bude porovnávat hustota a koeficient sesychání. Z mechanických vlastností je to pak pevnost a pružnost dřeva v tlaku rovnoběžně s vlákny. Výsledky budou statisticky zpracovány a vyhodnoceny s pomocí statistického programu STATISTICA a MICROSOFT OFFICE EXCEL

11 3. LITERÁRNÍ PŘEHLED 3.1 Charakteristika dřeviny Buk lesní (Fagus sylvatica L.) je rozšířen po celé České republice, kde zaujímá ha. Tato hodnota představuje 7,21% celkové výměry lesů v ČR (údaje pro rok 2009). Do budoucna při tom lesníci plánují zvýšení podílu buku na 18% oproti přirozené skladbě, kde představuje 40%. Při pohledu do statistiky zjistíme, že podíl buku v našich lesích neustále roste např. oproti roku 2000 kde je 6%, což může svědčit o oblíbenosti tohoto porostu ze strany lesníků. Zvýšením podílu buku ze 7 na 18%, ale může nastat určitý problém s jeho zpracováním. Dřevařský průmysl ČR je orientován hlavně na zpracování jehličnatého dřeva a většina BK dříví se již dnes stává papírenskou štěpkou, či dokonce palivem. Zde se dostáváme do rozporu, zda budoucí zvýšení podílu buku bude ideální i z dřevařského pohledu. Výše celkové roční těžby buku pro rok 2009 byl m 3 b.k. a tato surovina se dále zpracovává. Školní lesní podnik Masaryků les Křtiny, odkud pocházejí zkušební vzorky, má v současné době rozlohu lesních pozemků ha. Nachází se v oblasti bezprostředně navazující na severní okraj jihomoravské metropole Brna, sahající až k městu Blansku. Zastoupení bukového porostu je zde 29,2% a roční těžby se v průměru pohybují okolo m 3. Svojí kvalitou připadá m 3 na kulatinové sortimenty, m 3 pak na vlákninu. Bukové dříví je díky svým příznivým vlastnostem mnohostranně využitelné. O způsobu využití však rozhoduje hlavně jakost, určena mimo jiné i výskytem nepravého jádra. Z pilařské výroby se zpracovává na truhlářské řezivo (fošny prkna) a pražce. Výrobou BK řeziva se v ČR zabývá pila Olomoučany, která ročně zpracovává okolo 9000 m 3 kulatiny a průměrně vyrobí 5400m 3 řeziva. Z dýhárenského zpracování se bukové dříví využívá zejména na výrobu loupané dýhy pro překližkárenský průmysl. Vyrábí se zejména celobukové překližky multiplex apod. Největším výrobcem bukových překližek v ČR je Dyas a.s.. Ročně zpracovává 30 tis. m 3 BK kulatiny a vyrobí 10 tis. m 3 celobukových překližek. Vyrábí se také krájené dýhy určené pro dýhování. V nábytkářství se buk pro své vlastnosti používá zejména na ohýbaný nábytek. Výrobou ohýbaného nábytku se zabývá společnost TON a.s. Ta ovšem do své výroby nakupuje připravené hranolky zejména ze zahraničí. 10

12 Oblast aglomerovaných materiálů dává možnost využití bukového odpadového materiálu. Celobukové DTD (tzv. bukasky) mají vyšší objemovou hmotnost. V současné době je vyrábí skupina Krono. Díky své vysoké objemové hmotnosti poskytuje vyšší množství dřevné hmoty na jednotku objemu, což se kladně projeví v celulosopapírenském průmyslu. Největším zpracovatelem papírenské štěpky je MONDI Pulp&Paper závod Štětí. V neposlední řadě je bukové dříví cenným zdrojem chemických látek (při zpracování v retortách: aceton, dehet, líh apod.), dřevěného uhlí, je vhodné pro hydrolýzu a také se používá jako kvalitní palivové dřevo. 3.2 Struktura bukového dřeva Jak již bylo řečeno, buk je naší důležitou hospodářskou dřevinou. Jeho vlastnosti v mnohém převyšují vlastnosti jiných našich hospodářsky významných dřev. Vyniká nejen v pevnosti, ale také ve své struktuře, která je v rámci ostatních dřev velmi homogenní, čímž dává jeho specifickým vlastnostem (např. při ohýbání). Buk se řadí do dvou skupin: 1) dřeva bělová s vyzrálým dřevem, 2) dřeva s výskytem nepravého jádra (podle Šlezingerová, Gandelová 2005). Na jeho kmenech tedy můžeme pozorovat tři navzájem odlišné části kmene: běl, nepravé jádro (NJ) a vyzrálé dřevo, z nichž se běl a vyzrálé dřevo vyskytuje vždy. Nepravé jádro je pak útvar dosti rozmanitý a nepravidelný. Vytváří se v zóně vyzrálého dřeva (zřídkakdy kdy přesáhne jeho zónu) a v případě tzv. zdravého NJ je považováno za vadu nenormálního zbarvení. Jiný případ nastává, vyskytuje-li se v NJ hniloba. Pak je považováno za vadu struktury dřeva. U dřevin s pravým jádrem jaderní letokruhy pravidelně v celém svém rozsahu a postupně už několik let po jejich vytvoření. Buk tvoří jádro mnohem později a většinou nepravidelně s proměnlivou frekvencí výskytu, různým tvarem a velikostí. Ohraničení jádra (marginální linie) u buku s nepravým jádrem je jevem pravidelným, nebo téměř vždy pravidelným, což odporuje jádrům pravým, u nichž se ohraničení nikdy nevyskytuje. Dalším charakteristickým prvkem je uložení jádrových látek, jež neimpregnují buněčné stěny jsou uloženy v lumenech buněk. Všechny tyto rozdíly mezi jádrem buku a tzv. pravým jádrem např. dubu nám znemožňují hovořit o jádře buku jako pravém, ale zásadně ho nazýváme jádrem nepravým (dále NJ). Blíže o struktuře a stavbě buku pojednávají následující kapitoly. 11

13 3.3 Makroskopická stavba buku Buk je typickou roztroušeně pórovitou listnatou dřevinou s poměrně dobře zřetelnými letokruhy. V celém letokruhu se vyskytují úzké letní makroskopicky nezřetelné cévy. Dřeňové paprsky jsou viditelné na všech řezech: na radiálním tvoří zřetelná zrcadla, na tangenciálním 1-5 mm vysoké svislé pásky a na příčném řezu husté pásy probíhající kolmo na letokruhy. (Šlezingerová, Gandelová 2008) Běl Běl buku je umístěná na okraji kmene a má na čerstvém řezu žlutobílou barvu. S postupným vysycháním se jeho barva mění na světlou červenohnědou až narůžovělou barvu. Kromě světlejší barvy je charakteristická vyšší vlhkostí (70-100%) v rostoucím či čerstvě skáceném stromě, zapříčiněná dobrou průchodností vodivých buněk. Charakteristické pro běl je také přítomnost živých parenchymatických buněk dřeňových paprsků a axiálního dřevního parenchymu. Tyto buňky mají funkci zásobní (škrob) Vyzrálé dřevo Vyzrálé dřevo je typickým znakem bukového kmene. Lze ho pozorovat pouze na čerstvě skáceném stromě na příčném řezu. Oproti běli je světlejší, protože obsahuje podstatně méně vody (v čerstvě skáceném stromě má vlhkost 50-80%). Nižší vlhkost umožňuje větší průnik vzduchu do poškozeného kmene a započne tak tvorba NJ. Po srovnání obou vlhkostí se barevný rozdíl vyrovná. Vyzrálé dřevo vzniká stejným procesem zjadrnění jako jádro a má všechny jeho znaky (v Šlezingerová, Gandelová 2005). U Buku se začíná tvořit ve věku let. Podle Požgaje (1993) existuje závislost mezi šířkou koruny, velikostí transpiračního proudu a velikostí vyzrálého dřeva. Račko a Čunderlík (2010) zjistili rostoucí velikost NJ s velikostí vyzrálého dřeva Nepravé jádro Jádrem je označená vnitřní centrální část kmene, tmavší barvy a malé či žádné propustnosti způsobené zathylováním (viz. níže). S malou propustností souvisí i nižší vlhkost. Na rozdíl od běle nejsou parenchymatické buňky v zóně jádra živé a nezachovávají si svůj živý obsah. Rozdíl v barvě mezi bělí a jádrem je zvýrazňován tmavší hranicí označenou jako hraniční čára nebo marginální linie. Díky ní můžeme pozorovat vnitřní část u jednoduchého NJ. Na příčných řezech lze pak pozorovat nepravidelnost tvaru vytvořeného více okrouhlými plochami či s různými nepravidelnými výběžky. Taková jádra s vnitřními kresbami jsou 12

14 soubory jednoduchých NJ nazývaná jádra složená. V podélných řezech probíhají více méně rovnoběžně s osou kmene. Barva NJ i hraniční čáry je velmi variabilní. Lze najít hraniční čáry od nevýrazných až po barvy červenohnědé, hnědočerné po odstíny zelenošedé atd.. Běžným typem ohraničení je hnědočervená hraniční čára. V každém případě hraničící čára je vždy temnější než jádro. Barva tzv. zdravého NJ je na čerstvém řezu červenohnědá. Oxidací tříslovin zbarvení šedne. Gorczynski (v Nečesaný 1958) označuje barvu jader složených a mrazových jako červenošedou až bronzově šedou Tvary nepravého jádra Tvary bukového jádra jsou velmi mnohotvárné. Thomann (1935) v Nečesaný (1958) rozeznává vedle jednoduchého či složeného okrouhlého také zubaté, jež je okrouhlým jádrem se zubovitými výběžky a jádro s plamencovitými výběžky. Šlezingerová,Gandelová (2008) uvádí tvary následující: okrouhlá jednoduchá, okrouhlá dvojitá (1 či více okrouhlých ploch), okrouhlá mramorová (různé množství nepravidelných jader), paprskovitá či hvězdicovitá (okrouhlá s výběžky), plamencová (s radiálně orientovanými výběžky). Obr.1: Typy nepravých jader podle Mahlera a Howeckého(1991) Rozsah a výskyt nepravého jádra Průměr NJ na příčném řezu se považuje za ukazatel rozsahu NJ v kmeni. Nejmenší rozsah podle Nečesaného (1958) má malé červené jádro, které zaujímá středový válec o průměru max. 20cm. Značná variabilita hodnot je naproti tomu u mrazového, dvojčlenného a mosaikového. Jako věkovou hranici počátku vzniku NJ buku označuje Vakin a spol.(1954) věk 60 let, Žumer let v Nečesaný (1958). U nás se výskytem nepravého jádra zabýval Ondráček (2000). Prováděl měření výskytu jádra buku v oblasti školního lesního podniku,,masarykův les Křtiny. Dospěl k závěru, že četnost výskytu a velikost se zvyšuje s přibývajícím věkem porostu (a tedy i 13

15 s větší tloušťkou výřezů). Také zjistil, že s přibývajícím věkem docházelo ke změně typu jádra. V mladých porostech dominovala jednoduchá, v porostech starých jsou hlavně složená. Také podíl hniloby v nepravém jádře roste s věkem. Uvádí tyto výsledky: 1. stáří porostu: let: výskyt jádra je u 25-32% výřezů. Převažují jednoduchá - okrouhlá,plamencová. Výskyt hniloby je do 2%. 2. stáří porostu: let: zastoupení je 60-67%. Dosud převládají jednoduchá jádra. 3. V nejstarších porostech let zjistil zastoupení NJ přesahující 80%. Narostl podíl složených NJ. Výskyt hniloby je 5-22%. Dalším zjištěním byla závislost velikosti NJ na tloušťce výřezu. Jeho regresní přímka má tvar Y=1,8645x-0,1635 a tato závislost je vyjádřena ze 77%. K velmi podobným výsledkům dospěli také Suchomel a Gejdoš (2010), kteří zkoumali velikost NJ vzhledem k tloušťce výřezu v oblasti VšLP Technické university ve Zvoleně Vznik a vývoj nepravého jádra buku Vznik nepravého jádra u buku je podmíněný v zásadě dvěma hlavními faktory: přítomností vyzrálého dřeva a vniknutím vzduchu do struktury dřeva. Absence jednoho z těchto dvou faktorů znemožňuje jeho tvorbu. Poranění kmene nebo větve stromu je primární příčinou, která způsobí vnikání vzduchu do kmenu stromu. Kyslík obsažený ve vzduchu způsobí oxidaci rozpustných uhlovodíků a škrobu v živých nebo částečně odumřelých parenchymatických buňkách, přičemž vznikají hnědě zbarvené polyfenolické sloučeniny, které pronikají do sousedních pletiv a zbarvují je Bauch a Koch (2001) v Račko, Čunderlík (2010). Zároveň přes ztenčeniny mezi parenchymatickými buňkami a cévami vrůstají z parenchymatických buněk do cév thyly, které je ucpávají. Takové pletivo je jen velmi málo propustné pro tekutiny a mnozí autoři tak NJ buku chápou, jako ochranné pletivo zamezující vzniku či rozvoji hyf hub. Druhým procesem vzniku NJ je snížení vitality parenchymatických buněk hlavně v dřeňových paprscích, které je podmíněné působením extrémně nízkých teplot. Důkazem je masivní vznik NJ při velmi tuhých zimách ve Středné Evropě a v Dánsku a jižním Švédsku. Ty vyvolali vznik jádra bez vnějšího poranění kmene (mrazové trhliny). 14

16 Na Vznik NJ mají vliv hlavně klimatické podmínky, které ovlivňují vitalitu buněk, přičemž oslabené parenchymatické buňky snadněji podléhají oxidaci. Ve všech případech vzniku se jedná o fysiologický proces reakce živých buněk ve dřevě na rušivý element. 3.4 Mikroskopická stavba buku Dřevo buku je složeno ze všech buněčných typů vyskytující se v listnatém dřevě. Ze základních to jsou cévy, libriformní vlákna a parenchymatické buňky. Z přechodných typů to je hlavně vláknitá tracheida. Cévy jsou hlavními vodivými elementy. V rámci letokruhu jejich počet na vnější straně (letní dřevo) ubývá. Při tom se také zmenšuje jejich průměr. Greguss (1945) v Nečesaný (1958) udává, že průměr cév buku je µm a v jarním dřevě je přibližně 3x větší než ve dřevě letním. Další odlišnosti sledujeme v rámci poloměru kmene. Zde jsou názorné hodnoty zjištěné Hartigem (1888) v Nečesaný (1958). Ten zjistil, že podíl cév směrem od dřeně k obvodu roste. Stejně tak roste i velikost průměru cév. Uvádí, že do 30 letokruhu od dřeně je podíl cév 17% (to představuje 85 cév/mm 2 ) a jejich plocha je 0,002 mm 2. Cévy v letokruhu mají podíl 47% (135cév/ mm 2 ) a jejich plocha je 0,0035 mm 2. Podle Nečesaného (1958) se průměrná délka článků pohybuje od 350 do 800 µm, přičemž je nepřímo úměrná šířce cévy. V místě styku cév s ostatními elementy jsou vyvinuty dvojtečky. Perforace mezi jednotlivými články jsou jednoduché i žebříčkovité, přičemž jednoduché převažují v jarních a žebříčkovité v letních cévách. Mechanickou funkci zajišťují protáhlé tlustostěnné vláknité buňky tzv. libriformní vlákna. Vzájemně jsou propojeny dvojtečkami. Hartig (1888) a Trendelenburg (1939) v Nečesaný (1958) zjistili, že délka vláken se s polohou od poloměru kmene zvyšuje. Také se objevují vláknité tracheidy, které obyčejně přimykají k cévám. Axiální dřevní parenchym je v jarním dřevě rozptýlený, v letním dřevě tvoří metatracheální parenchym Dřeňové paprsky jsou tvořeny tlustostěnnými parenchymatickými buňkami s okrouhlými tečkami. Podle Nečesaného (1958) jsou vesměs heterogenní, Šlezingerová, Gandelová (2008) se přiklání k názoru, že DP jsou homogenní, někdy slabě heterogenní. Jsou 1 vrstevné až vícevrstevné (20-25 buněk). Výška může dosahovat 100 i více buněk (v průměru 5mm). Na hranici letokruhu pozorujeme rozšíření. 15

17 Přibližný poměr pletiv buku podle Nečesaného (1958) je: cévy 24-43%, Vláknité buňky 39-56%, dřeňové paprsky 17%, dřevné parenchym 1-3%. Souhrnný přehled stavby najdeme v tabulce č. 1: struktura buku Zvláštnosti běle Výskyt thyl je základní charakteristika pro jádrové dřevo, přičemž tvorbě jádra předchází tvorba thyl v cévách běli, ležící v bezprostřední blízkosti hranice jádra. Podobně jsou na tom dřevina s NJ. Nečesaný (1958) zjistil thyly v bukové běli uspořádány v malých skupinkách maximálně 5mm od okraje marginální linie. Byly neúplně vyvinuty a uzavírali cévy jen zčásti Anatomická struktura nepravého jádra Jádrové dřevo buku se svou mikroskopickou strukturou od běle příliš neliší. Jadernění je zjevem druhotným, vznikajícím uvnitř kmene ve dřevě dříve vytvořeném. Pokud tedy jde pouze o buněčnou stavbu, není mezi bělí a jádrem rozdílu. Rozhodující jsou ovšem sekundárně vzniklé útvary v buněčných dutinách: thyly, jádrové látky a morfologické útvary hub Thyly Obecně se thyly definují jako vakovité výrůstky, které prorůstají ztenčeninami z parenchymatických buněk do sousedních cév. Podle Nečesaného (1958) thyly v bukovém dřevě pro menší světlost cév zaplňují lumen velmi rychle. Z počátku zřetelně vakovité výrůstky lze později pozorovat jako pouhé přepážky více méně uzavírající cévy. Současně pokrývají vnitřní povrch cévy. Frekvenci thyl lze pozorovat jak na podélných řezech (podélná frekvence), tak na řezech příčných (příčná frekvence). Podélná frekvence je vyjádřená počtem thyl na 1 mm délky cévy. Vanin (1932) a Paclt (1953) v Nečesaný (1958) zjistili rozdíl v podélné frekvenci thyl mezi vnitřní částí jádra a marginální linií a jejich výsledky se shodují. Také Nečesaný (1958) došel ke stejným výsledkům. Hodnoty z hraničících čar se pohybují od 8-14 a hodnoty pro vnitřní části jader 1-6 podle typu jádra. Příčnou frekvenci vyjadřuje procento zastoupení cév ucpaných thylami. Nečesaný (1958) uvádí příčnou frekvenci vnitřních částí jader 0-35% a hraničních čar %, Vanin (1932) v Nečesaný (1958) uvádí %. 16

18 Jádrové látky Jsou to zrnité nebo i kompaktní žlutě až tmavě červenohnědě zbarvené útvary uložené především v lumenech parenchymatických buněk. Z nich, prorůstáním thyl do cév, pronikají též jádrové látky jak do thyl, tak do cév. Pronikají sem patrně v tekutém stavu a tvoří tu jen povlak (neimpregnují buněčnou stěnu). Dalším místem výskytu jádrových látek jsou vláknité buňky, což je typické pro hraničící čáry. Gaumann (1946) v Nečesaný (1958) předpokládá, že podstatnou složkou jádrových látek jsou flobafény a dodává, že bezbarvé flobataniny oxydují v žluté až hnědé flobafény. Ty neimpregnují buněčnou stěnu, jak je tomu např. u dubu, ale váží se na neznámou složku jádrových látek v lumenech parenchymatických buněk. Hartig (v Nečesaný 1958) má názor, že podstatná složka jádrových látek jsou zoxidované třísloviny Výskyt hyf hub v nepravém jádře Přítomnost hub v jádře je dokázána výskytem hyf. Nečesaný (1958) použil pro analýzu výskytu hyf v jádře 120 bukových kmenů s jádrem bez hniloby (zdravé NJ). Z toho byla v 60 kmenech jádra hvězdicovitého typu a ve zbylých 60 jádra okrouhlá. Došel k závěru, že výskyt hyf v hvězdicovitých jádrech byl 81,7%, ve druhé skupině se hyfy vyskytli v 11,7% případů. Celkový poměr mezi jádry s hyfami a bez nich je v tomto případě 46,7:53,3%. Můžeme tedy říci, že většina plamencových jader obsahuje hyfy a většina okrouhlých jader bez plamencových výběžků hyfy neobsahuje. Jiný případ nastává tehdy, jestli-že se zabýváme výskytem hyf hub u NJ s hnilobou. Zde je výskyt vždy a dochází k enzymatickým pochodům buněčných stěn. Frekvence výskytu hyf se soustřeďuje do hraničních čar. 17

19 tabulka č. 1: Struktura buku (údaje převzaty z Nečesaný 1958) jev běl vyzrálé dřevo nepravé jádro poznámka barva červenohnědá až narůžovělá po srovnání vlhkosti shodná s bělí hnědočervená až hnědočerná po odstíny zelenošedé vlhkost % 50-80% 50-65% - živé parenchym. ano (oslabené ano buňky nižší vlhkostí) ne - vitalita paren. buněk vysoká nízká žádná - thyly ne zanedbatelně ano - hyfy hub ne ne (nebo omezeně) ano (podle NJ) jádrové látky ne ano (bez ano (se zbarvení) zbarvením) - podíl cév od dřeně - 17 % 120. letokruh - 47% plocha cév od dřeně 0,002 mm letokruh - 0,0035 mm 2 počet cév na cévy - (ve zdravém dřevě) mm 2 od dřeně 85 ks 120. letokruh 135 ks délka článku µm - délka librif. vláken µm - dřeň. paprsky homogenní, vrstevnatost buněk, výška 100 buněk - podíl pletiv % cévy 24-43, Vláknité buňky 39-56, dřeňové paprsky 17, dřevné parenchym 1-3 po poloměru se zvyšuje Vlastnosti bukového dřeva Vlastnosti dřeva nemůžeme zkoumat izolovaně, neboť jsou výslednicí mnoha rozličných faktorů. Jsou dány především strukturou dřeva na všech úrovních pozorování, klimatickými podmínkami při růstu stromu apod. Již samotný proces zjadernění buku poukazuje na nezměněnost mechanických a některých fyzikálních vlastností NJ a běli buku, neboť jádrové látky neimpregnují buněčné stěny. Určitý rozdíl jistě zapříčiní thyly snížením, či úplným znemožněním impregnace a také jádrové látky rušící vzhled svým odlišným zbarvením, jenž je v nábytkářství jen s výjimkami přijatelné. Také chemické složení NJ a běle buku neprokazuje rozdíl ve vlastnostech. Výskyt základních chemických konstituent (celulosa, hemicelulosy a lignin) je v obou částech 18

20 samozřejmostí. Je ovšem otázkou, jaký je mezi nimi podíl zastoupení. Nečesaný (1957) zjistil, že vnitřní část kmene je většinou více lignifikována než obvodová bez ohledu zda je zjaderněná či nikoliv. Hodnoty vyššího stupně zdřevnatění a nižšího podílu celulosy v jádrovém dřevě tedy nejsou jeho specifickým znakem, ale odpovídají normálnímu průběhu hodnot v každém bukovém kmeni. Přijetím tvrzení, že určité vlastnosti NJ a běle jsou stejné, můžeme dřevo NJ použít tam, kde nevadí odlišná barva, či špatná impregnovatelnost. Nečesaný (1960) uvádí, že rozdíly mezi fyzikálními a mechanickými vlastnostmi NJ a bělového dřeva buku jsou v průměru velmi malé a leží v mezích hodnot udávaných Kollmanem pro bukové dřevo Fyzikální vlastnosti Hustota bukového dřeva Hustota dřeva udává hmotnost jeho objemové jednotky, přičemž se nejčastěji vyjadřuje v kg.m 3 nebo g.cm 3. Jde o charakteristiku, která má významný vliv na fyzikální a mechanické vlastnosti dřeva. Například těžké dřevo je pevnější, tvrdší a odolnější proti opotřebení (Požgaj 1993). Variabilita hustoty dřeva je ovlivněná celou řadou činitelů jak vnějších (stanovištní podmínky apod.), tak vnitřních (anatomická stavba, poloha v kmeni, vlhkost apod.). Změny hustoty buku v rámci různých kmenů mají v zásadě stejně rozloženou četnost jako hustoty v rámci jednoho kmene. Poměrně malé rozpětí hodnot hustoty je způsobené tím, že buk málo reaguje na stanovištní a růstové podmínky a tak rozdíly rozpětí hustot buku z různých stanovišť nepřesahuje rozpětí hodnot kmenů jednoho stanoviště. Dále rozpětí závisí na podílu jarního a letního dřeva, přičemž v důsledku nejasného rozlišení u roztroušeně pórovitých dřevin neovlivňuje hustotu buku a je zárukou značné homogenity (Skřipeň v Kozmál 1960). Pöhler et. al (2006) zjistil, že naměřená hustota červeného NJ vykazovala při 714 kg/m 3 vyšší hodnotu v průměru o +2,74% oproti hustotě 695 kg/m 3 bělového dřeva buku. Výsledek byl statisticky významný, ale ne tak značný. Zajímavou zprávu nám také poskytují Janota a Kurjatko (1978). Z výsledků jejich práce vyplívá neprůkazný a statisticky nevýznamný rozdíl hustoty běle buku (ρ 0 =665 kg/m 3 ) a jeho nepravého jádra (ρ 0 =676 kg/m 3 ). Soubor zahrnoval celkem 1964 platných měření. 19

21 tabulka č. 2: Hustoty dřeva buku dle různých autorů hustota při W=0% (kg/m 3 ) hustota při W=12% (kg/m 3 ) Lexa, Požgaj, Wagenfuhr, Kollmann, Šlezingerová, Gandělová (2008) Horáček (2001) Buk se svojí hustotou řadí do skupiny dřev se střední hustotou Rozměrové změny bukového dřeva Buk v porovnání s našimi nejběžnějšími dřevinami vykazuje velmi vysoké hodnoty radiálního a tangenciálního sesychání a v důsledku toho i největší hodnoty sesychání objemového. Řadíme ho do skupiny dřev velmi sesychaných - bobtnavých. Skřipeň v Kozmál (1960) uvádí jako průměrné objemové sesychání buku β v =18%. Nečesaný (1958) u převažující části bukového materiálu nenalezl rozdíl v bobtnání (sesychání) NJ a běle. Naproti tomu u dubu zjistil tento rozdíl naprosto patrně. Toto si vysvětluje tím, že u buněčných stěn NJ buku nedošlo k impregnaci jádrovými látkami. S tím se ztotožňují i Trendelenburg (1939) a Bosshard (1953) v Nečesaný (1958) a uvádějí, že impregnace stěn hydrofobními jádrovými látkami sníží hygroexpanzi, jak je tomu u jádra dubu, nikoliv však u NJ buku. Pöhler et. al (2006) uvádí, že bobtnání (sesychání) červeného NJ vykazovalo v radiálním směru o +14,29% vyšší statisticky významnou hodnotu oproti běli. Ve směru tangenciálním byl zjištěn podstatně nižší rozdíl +2,27% ve prospěch červeného NJ. 20

22 tabulka č. 3: Charakteristiky sesychání dřeva buku dle různých autorů autor Lexa (1952) Ugolev (1975) Pereligin (1960) Požgaj (1993) Wagenfuhr (2000) Kollmann (1951) sesychání podélné (%) sesychání radiální (%) sesychání tangenciální (%) sesychání objemové (%) koeficient objem. sesychání (%/1%w) koeficient rad. sesychání (%/1%w) koeficient tan. sesychání (%/1%w) 0, ,3 0,3 0,3 5, ,3 5,8 5,8 11, ,5 11,8 11,8 17, ,5 17,9 17,9-0,47 0,55-0,46-0,6-0,17 0, ,32 0, Mechanické vlastnosti Porovnáme-li mechanické vlastnosti bukového dřeva s dalšími domácími průmyslovými dřevinami, jako např. dub, smrk, borovice apod. zjistíme, že pevnost bukového dřeva nezaostává za pevností porovnávaných dřevin, ale dokonce ji i značně převyšuje. To je mimo jiné také odrazem jeho vyšší hustoty Pevnost a pružnost bukového dřeva v tlaku rovnoběžně s vlákny Tlaková pevnost podél vláken je nejcharakterističtější z mechanických vlastností dřeva a nejdůležitější z praktického hlediska (Perelygin L.M. 1960). Působením tlakové síly vzniká ve zkušebním tělese napětí - tedy odpor proti vznikajícím deformacím udávaným v MPa. Odpor v momentě porušení tělesa je potom mezním stavem nazývaným mez pevnosti σ p a je tím největším napětím, které je těleso schopné přenést (pevnost dřeva). Narůstající zatížení je doprovázeno zvětšujícími se deformacemi, přičemž v případě tlaku rovnoběžně s vlákny se těleso zkracuje. Vztah mezi napětím a pružnou deformací vysvětluje Youngův modul pružnosti. Jedná se o podíl napětí a poměrné deformace (pouze v intervalu pružných deformací) odpovídající tomuto napětí udávaný též v MPa. Čím je jeho hodnota vyšší, tím větší napětí musíme vytvořit k dosáhnutí deformace. Další velmi důležitou charakteristikou 21

23 pružnosti je mez úměrnosti. Vypovídá o největším napětí, při kterém se těleso deformuje ještě pružně. Důležitým činitelem je vlhkost dřeva. Dřevo vlhčí je plastičtější a tím i jeho deformace jsou větší, naproti tomu je pevnost menší. Z toho vyplívá, že pro porovnání pevnostních charakteristik je nutná stejná vlhkost vzorků- w=12%, jenž je RVD při okolních podmínkách dle příslušných norem.. V případě zjištěných hodnot při jiné vlhkosti, existuje přepočtový vztah tabulka č. 4: Pevnostní charakteristiky bukového dřeva v tlaku rovnoběžně s vlákny při w=12% podle různých autorů: mez pevnosti σ p (MPa) modul pružnosti (MPa) Požgaj (1993) 56, Kollmann (1951) Lexa (1952) Wagenfuhr (2000) Peryligin (1960) 46 - zahrnut. *Peryliginův údaj pevnosti byl naměřen při w=15% a proto nebude do porovnání 22

24 4. MATERIÁL A METODIKA 4.1 Výroba vzorků Tělíska byla vyráběna ve školních dílnách na jednooperačních strojích. Pro každou zkoušku bylo vyrobeno 75 ks vzorků v zóně NJ a 75 ks vzorků běle buku, tak aby splňovali příslušné požadavky dané normami. Vstupujícím materiálem do výroby bylo neomítané BK řezivo s vysokou vlhkostí, tloušťky 60 mm a délky 4 m v počtu 15ks. Každý kus řeziva při tom byl vybrán z jiného stromu, aby se zamezilo statistické chybě špatného výběru. Vzhledem k možné proměnlivosti hustoty bukového dřeva po poloměru kmene, bylo vybráno jednak řezivo s nepravým jádrem a dále řezivo bez nepravého jádra. To poskytovalo bělová tělíska stejně vzdálená od dřeně jako v případě tělísek nepravého jádra. Pro jednodušší výrobu byly vybrány pouze fošny středové tzv. radiální s příznivým odklonem letokruhů. Charakter vstupního materiálu a výstupního produktu předurčil jako optimální model výroby příčně podélně příčný tak, jak ukazuje technologické schéma. Typ NJ na řezivu byl: jednoduché okrouhlé, složené okrouhlé a mozajkové (podle Howeckého, Mahlera 1991). Důležité také je, že žádný kus řeziva neobsahoval hnilobu a malé okrouhlé červené jádro, u kterého Pöhler et. al (2006) nacházel rozdíly ve vlastnostech oproti běli. Otázka juvenilního dřeva nebyla v této práci řešena, neboť rozdíly vlastností juvenilního a vyzrálého dřeva jsou typické zejména pro dřevo jehličnatých, nikoli roztroušeně pórovitých dřevin. To vychází z rozdílné stavby a zastoupení jarního a letního dřeva. Hodnoceny budou tedy čistě pouze vlastnosti běle a nepravého jádra. Fotodokumentace celého procesu výroby vzorků je součástí přílohy. Za pomoc při samotné výrobě paří poděkování panu Fraňkovi. 23

25 Blokové schéma výroby vzorků: sklad vstupního materiálu zkracování řeziva rovinné frézování plochy řeziva podélné rozřezání řeziva na sdružené přířezy rovinné frézování plochy a boční plochy sdružených přířezů rovinné frézování sdružených přířezů na přesnou tloušťku podélné rozřezání sdružených přířezů na jednotlivé přířezy rovinné frézování jednotlivých přířezů na přesnou šířku příčné zkracování opracovaných přířezů na přesnou délku zkušebního tělíska třídění a číslování zkušebních tělísek zkušební vzorky Popis jednotlivých operací 1) Zkracování řeziva: Účelem operace je zkrácení 4 m fošen na délku 0,5 m z důvodu snadnější manipulace materiálu a bezpečnosti práce při následných operacích. technické parametry: stroj: zkracovací pila B-Johan výkon motoru: 4KW počet otáček: 2800 min -1 nástroj: pilový kotouč z nástrojové oceli průměr: 350 mm typ ozubení: trojúhelníkové nesouměrné 24

26 2) Rovinné frézování plochy řeziva: Operace se provádí pro vytvoření rovné plochy řeziva, která je důležitá z hlediska bezpečnosti práce následující operace podélného řezání. technické parametry: stroj: srovnávací frézka B-Johan výkon motoru: 3KW počet otáček: 6000 min -1 délka x šířka stolů: 2500 x 400 mm nástroj: nože HSS 18 počet nožů: 4 úhel břitu: 42 3) Podélné rozřezání řeziva na sdružené přířezy: Zde dochází k podélnému dělení materiálu na tloušťku vzorků s nadmírou na následné opracování. Pro získání správného průběhu vláken byl použit stroj, umožňující úhlové naklápění pilového kotouče. Kotouč se naklápěl specielně pro každý 1 řez tak, aby nejvyšší povolená odchylka letokruhů od hrany příčného průřezu byla do 10. Nastavení stroje probíhalo zrakovým posouzením. technické parametry: stroj: kotoučová pila SCM Si 16n 3200 výkon motoru: 5,5KW počet otáček: 3000 min -1 naklápění pilového kotouče: 0-45 nástroj: pilový kotouč PILANA 28 LWZ rozměr: 300 x 3,2 / 2,2 x 30 typ broušení: šikmé, střídavě levé a pravé počet zubů: 28 4) Rovinné frézování plochy a boční plochy sdružených přířezů: Operace zajišťuje vytvoření rovné hladké plochy sdruženého přířezu a jeho boční plochy do pravého úhlu. technické parametry: viz. operace č. 2 5) Rovinné frézování sdružených přířezů na přesnou tloušťku: Cílem operace je vytvořit rovný hladký povrch plochy odvrácené již frézované ploše a získat jmenovitou tloušťku sdružených přířezů (tj. jmenovitá tloušťka zkušebních těles). technické parametry: stroj: tloušťkovací frézka TOS Svitavy výkon hlavního motoru: 11,5 KW počet otáček: 6000 min -1 posuvná rychlost: 6 m/min nástroj: nože HSS 18 úhel břitu: 42 počet nožů: 3 6) Podélné rozřezání sdružených přířezů na jednotlivé přířezy: Operací získáme přířezy o jmenovité tloušťce zkušebních vzorků a jmenovité šířce s nadmírou na další opracování. Pro získání čtvercového průřezu je již pilový kotouč nastaven na

27 technické parametry: viz. operace č. 3 7) Rovinné frézování jednotlivých přířezů na přesnou šířku: Přířezy o jmenovité tloušťce se rovinně frézují na jmenovitou šířku. Výstupem jsou 50 cm dlouhé lišty o cílovém průřezu. technické parametry: viz. operace č. 5 8) Příčné zkracování opracovaných přířezů na přesnou délku zkušebního tělíska: Je finální výrobní operací, kterou se zhotovují zkušební tělíska o jmenovitých rozměrech a požadovaném tvaru. technické parametry: viz. operace č. 3 (s použitím zkracovacího stolu) 9) Třídění a číslování zkušebních tělísek: Je nevýrobní operace, kterou byla na základě zrakové prohlídky vybrána a označena jen ta nejjakostnější tělíska vstupující do procesu měření. Z celkového počtu cca 500 vyrobených kusů tak zůstalo pouze 150 (75+75). Nedovolený byl výskyt: trhliny, suky, poškození hmyzem či houbami, současný výskyt běle i NJ na jednom vzorku, výskyt dřeně, vytrhaná vlákna. Značení se provádělo pořadovým číslem vzorku a písmenem: B pro běl a J pro nepravé jádro. Z technických důvodů je umístěné na tangenciálním řezu každého tělíska. 4.2 Zjišťování fyzikálních vlastností Měření hustoty Měření hustoty bylo prováděno podle normy ČSN zjišťovanie hustoty při fyzikálných a mechanických zkúškách. 1) zkušební tělesa: mají tvar pravoúhlého hranolu o základně 20x20 mm a délce orientované ve směru vláken 30 mm. Na Příčném řezu je minimální počet letokruhů 5. Norma nepředepisuje specielně ortotropní tělesa. 2) požadavky na měřicí přístroje: pro měření lineárních rozměrů se používá posuvné měřidlo s přesností 0,1mm. Na vážení se používají digitální váhy s přesností 0,01g 3) měření hustoty dřeva: pro porovnání hustoty dřeva NJ a dřeva mimo tuto zónu bylo použito hustoty v absolutně suchém stavu ρ 0 dle vzorce č. 1. Tím se eliminuje vliv nestejné vlhkosti tělísek, který by mohl nastat, měřila-li by se hustota dřeva o určité vlhkosti. Výsledek 26

28 tak nebude zatížen chybou. Pro porovnání výsledků mích a různých autorů byl použit vztah pro přepočet hustoty při w=12% dle vzorce č. 2 podle Horáčka (2001). Aby bylo možné stanovit koeficienty sesychání, byla zjišťována také hustota konvenční. Zjišťovala se vztahem č. 3 a byla dosazena do vzorce č. 5, pro zjištění MNBS. Naměřené a vypočtené hodnoty jsou zapsány do tabulky, která je součástí přílohy. Vzorec č. 1: hustota absolutně suchého dřeva dle ČSN : ρ 0 = = Vzorec č. 2: přepočtový vztah podle Horáčka (2001): ρ w = ρ 0. Vzorec č. 3: konvenční hustota dle ČSN : ρ kw = = legenda: ρ 0 hustota dřeva při w=0% (g/cm 3 ), ρ w hustota při dané vlhkosti (g/cm 3 ), ρ kw konvenční hustota dřeva (g/cm 3 ), a 0,b 0,l 0 lineární rozměry vzorku při w=0% (cm), a w,b w,l w lineární rozměry vzorku s w MNBS (cm), V 0 - objem vzorku při w=0% (cm 3 ), V w - objem vzorku při w MNBS (cm 3 ), m 0 - hmotnost vzorku při w=0% (g), w vlhkost dřeva g/g Měření sesychání Měření rozměrových změn bylo prováděno podle normy ČSN Skúšky vlastností rostlého dreva. Metoda zjišťovania napúčavosti. 1) zkušební tělesa: mají tvar pravoúhlého hranolu o základně 20x20 mm a délce orientované ve směru vláken 30 mm. Norma předepisuje použití specielně ortotropních tělísek. Úhel sklonu letokruhů ke dvěma přilehlým stranám je maximálně

29 2) požadavky na přístroje: pro měření lineárních rozměrů se používá digitální posuvné měřidlo s přesností 0,01mm. Na vážení se používají digitální váhy s přesností 0,01g. Sušení zabezpečuje sušárna o t= C. 3) měření sesychání dřeva: Vyrobené vzorky o neznámé vlhkosti byly vloženy do nádoby s vodou po dobu 1 týdne, aby získaly vlhkost nad MNBS, kdy se jejich rozměry již nezvětšují. Poté se posuvným měřítkem změřily jejich rozměry ve 3 směrech: radiálním a w, tangenciálním b w a podélném l w. Tak byly zjištěny maximální rozměry vzorků. Vzorky byly dále sušeny: nejdříve z důvodu možnosti vzniku mikrotrhlin v interiérovém prostředí po dobu 5 dnů, poté byly dosušeny v laboratorní sušárně při t= C na nulovou vlhkost tj. dvě po sobě jdoucí měření hmotnosti vzorků po 2 hodinách sušení jsou stejné. Změřením lineárních rozměrů tělísek byly získány minimální rozměry a 0, b 0, l 0. Naměřené hodnoty byly zapsány do tabulky, která je součástí přílohy a dosazeny do vzorce č. 4 pro procentuelní zjištění sesychání. MNBS byla vyjádřena pomocí vztahu č. 5 a byla dále dosazena do vztahu č. 6. Vztah č. 6 potom vyjadřuje výpočet koeficientu sesychání tj. změna příslušného rozměru v % při změně vlhkosti o 1%. Vzorec č. 4: výpočet sesychání podle Horáčka (2001): a) pro výpočet lineárního sesychání: β i max =. 100 b) pro výpočet objemového sesychání: β v max =. 100 Vzorec č. 5: výpočet MNBS podle Horáčka (2001): MNBS = ( - ). ρ H2O. 100 Vzorec č. 6: výpočet koeficientu sesychání podle Horáčka (2001): a) pro výpočet koeficientu sesychání v lineárním směru: 28

30 K βi = b) pro výpočet objemového koeficientu sesychání: K βv = legenda: β i max maximální sesychání v příslušném směru (%), R w rozměr vzorku v příslušném směru při W MNBS (mm), R 0 - rozměr vzorku v příslušném směru při W = 0% (mm), značení příslušného směru: a radiální (a 0, a w ), b tangenciální (b 0, b w ), l podélný (l 0, l w ), β v max maximální objemové sesychání (%), V w objem vzorku v příslušném směru při W MNBS (mm 3 ), V 0 - rozměr vzorku v příslušném směru při W = 0% (mm 3 ), MNBS- mez nasycení buněčných stěn (MH) (%), ρ kw hustota konvenční dřeva (g/cm 3 ), ρ 0 hustota dřeva při w=0% (g/cm 3 ), ρ H2O hustota vody = 1 g/cm 3, K βi koeficient sesychání v daném směru (%/1%), K βv koeficient objemového sesychání (%/1%) 4.3. Zjišťování mechanických vlastností Měření meze pevnosti a modulu pružnosti v tlaku ve směru vláken Měření meze pevnosti a modulu pružnosti v tlaku podél vláken bylo prováděno podle norem ČSN Drevo. Medza pevnosti v tlaku v smere vlákien a ČSN Skúšky vlastností rastlého dreva. Metóda zisťovania modulu pružnosti v tlaku pozdlž vlákien. 1) zkušební tělesa: mají tvar pravoúhlého hranolu o základně 20x20 mm a délce orientované ve směru vláken 30 mm. Norma nepředepisuje specielně ortotropní tělesa. 2) požadavky na přístroje: pro měření lineárních rozměrů se používá posuvné měřidlo s přesností 0,01mm. Zkušební stroj pracuje s přesností zatížení do 1% a zajišťuje rychlost porušení tělesa v čase 1+-0,5 min. od začátku zatěžování. 3) měření mechanických vlastností v tlaku ve směru vláken: Pomocí posuvného měřítka byly uprostřed délky tělesa změřeny příčné lineární rozměry (radiální, tangenciální) každého vzorku o nulové vlhkosti. Tyto hodnoty byly zaneseny do programu test-xpert. v5.01, jenž je ovládacím programem měřicího stroje. Vzorky byly poté po jednom vkládány 29

31 do čelistí měřicího stroje, opatřeny extenzometrem a programem byl stroj spouštěn. Zjišťování meze pevnosti v tlaku ve směru vláken probíhalo automaticky pomocí výpočetní techniky napojené na stroj podle vztahu č. 7. Výsledek byl zaokrouhlen na celé 0,5 MPa. Pro porovnání mezí pevností v tlaku ve směru vláken uvedených v literárním přehledu (při w=12%) a mnou naměřených (při w=0%) byl použit přepočtový vztah č. 8. Modul pružnosti v tlaku ve směru vláken byl zjišťován též pomocí výpočetní techniky podle vztahu č. 9. Výsledek byl zaokrouhlen na celé stovky MPa. Pro porovnání vlastních hodnot s literárními zdroji (při w=12%) byl použit přepočet č. 10. Dále byla zjišťována maximální deformace v momentě porušení tělesa. Naměřené hodnoty jsou zaneseny v tabulkách, které jsou součástí přílohy. Vzorec č. 7: výpočet meze pevnosti v tlaku ve směru vláken podle ČSN : σ max = 0110: Vzorec č. 8: přepočtový vztah meze pevnosti v tlaku ve směru vláken podle ČSN 49 σ max 12 = σ max w. (1 + α. (w-12)) α - opravný vlhkostní koeficient pro všechny dřeviny 0,04 Vzorec č. 9: výpočet modulu pružnosti v tlaku ve směru vláken podle ČSN : E = ε = : Vzorec č. 10: přepočtový vztah modulu pružnosti v tlaku ve směru vláken podle ČSN E 12 = E w. (1 + α. (w-12)) α - opravný vlhkostní koeficient pro všechny dřeviny 0,02 30

32 legenda: σ max mez pevnosti v tlaku rovnoběžně s vlákny při w=0% (MPa), a,b lineární rozměry příčného průřezu vzorků (mm), F max maximální zatížení (N), σ max 12 mez pevnosti v tlaku rovnoběžně s vlákny při w=12% (MPa), σ max w mez pevnosti v tlaku rovnoběžně s vlákny při w v době zkoušky (MPa), w vlhkost tělesa v době zkoušky (%), E modul pružnosti v tlaku rovnoběžně s vlákny při w=0% (MPa), E 12 modul pružnosti v tlaku rovnoběžně s vlákny při w=12% (MPa), E w modul pružnosti v tlaku rovnoběžně s vlákny při w v době zkoušky (MPa), σ - napětí v oblasti pružných deformací (MPa), ε - poměrná deformace v podélném směru odpovídající napětí σ, l deformace tělesa (mm), l délka tělesa (mm) 4.4 Statistické vyhodnocení U každého souboru naměřených dat byl vyhodnocen aritmetický průměr, minimální a maximální hodnota, směrodatná odchylka a variační koeficient. Pro porovnání souborů dat mezi bělí a nepravým jádrem byl použit t-test středních hodnot. Závislost mezi jednotlivými veličinami byla zjišťována na základě korelační a regresní analýzy. Grafické vyjádření zajišťují krabicové grafy. Zvolená hladina významnosti α = 0,05. Při výběru (třídění) zkušebních tělísek nebyl vybírán stejný počet jedinců z každé 1 fošny, ale všechny tělíska byla dána na 1 hromadu, ze kterých se vybrali reprezentanti. Podobně bylo postupováno při výběru fošen, ze kterých jsou vzorky vyrobeny. Díky tomu se jedná o dvoustupňový náhodný výběr. Z celkového počtu měření (tj ) nebyla do statistického vyhodnocení zahrnuta ta měření, jež vykazovala extrémní hodnoty, či chybná měření. Takové hodnoty totiž narušují normální rozdělení souboru, a proto by nebylo možné použít parametrický test s vyšší sílou testu Aritmetický průměr Aritmetickým průměrem charakterizujeme hodnotu, okolo níž kolísají jednotlivé prvky souboru (Drápela, Zach 2002). Používá se pro neroztříděný soubor. = aritmetický průměr x i reprezentant N rozsah souboru 31

33 4.4.2 Směrodatná odchylka Je nejlepší charakteristikou variability. Její rozměr je stejný jako rozměr veličiny, což je její hlavní výhodou (Drápela, Zach 2002). S = S směrodatná odchylka x j reprezentant Variační koeficient Je relativní mírou variability. Používá se k porovnání variability různých souborů. S% = T-testy středních hodnot U těchto testů testujeme shodu středných hodnot. Protože se jedná o soubory dat s měřením 2 skupin vzorků, byl použit dvouvýběrový t-test s nezávislými výběry. Předpokladem možnosti jeho využití je normální rozdělení souborů naměřených dat. V případě, že soubor či soubory neměly normální rozdělení, byla využita Box-Coxova transformace. Zjištění normálního rozdělení souboru bylo provedeno pomocí Shapiro- Wilkova testu. Před použitím vlastního t-testu je nutné provést testování homogenity rozptylů pomocí vhodného F-testu. Nebyla-li zamítnuta nulová hypotéza o homogenitě rozptylů, byl použit t- test s rovností rozptylů. Byla-li zamítnuta nulové hypotéza o homogenitě rozptylů, byl použit t-test s nerovností rozptylů Korelační a regresní analýza Zkoumá vztahy mezi jevy. Zjišťuje existenci vlivu změny úrovně nezávislé proměnných na změnu úrovně závislého znaku. Pro zjištěnou existenci vlivu vytváří vhodný matematický model závislosti, doplněný o parametry modelu. Též měří těsnost závislosti a ověřuje hypotézy o statistické významnosti závislosti. Pro potřeby této práce byl použit lineární model. 32

vznik: během růstu stromu během těžby a dopravy během uskladnění postihují kvalitu, zejména fyzikální a mechanické vlastnosti

vznik: během růstu stromu během těžby a dopravy během uskladnění postihují kvalitu, zejména fyzikální a mechanické vlastnosti VADY SUROVÉHO DŘÍVÍ VADA = změna vnějšího vzhledu dřeva, porušení jeho pravidelné struktury, odchylky od normální stavby dřeva, které nepříznivě ovlivňují jeho účelové využití. postihují kvalitu, zejména

Více

ZÁKLADY ARBORISTIKY. Barbora Vojáčková, a kol. Mendelova univerzita v Brně Lesnická a dřevařská fakulta. Skriptum 2013

ZÁKLADY ARBORISTIKY. Barbora Vojáčková, a kol. Mendelova univerzita v Brně Lesnická a dřevařská fakulta. Skriptum 2013 ZÁKLADY ARBORISTIKY Barbora Vojáčková, a kol. Skriptum 2013 Mendelova univerzita v Brně Lesnická a dřevařská fakulta 1 2 Mendelova univerzita v Brně Lesnická a dřevařská fakulta 2013 Učební text pro předmět

Více

Mendelova zemědělská a lesnická univerzita v Brně

Mendelova zemědělská a lesnická univerzita v Brně Mendelova zemědělská a lesnická univerzita v Brně Bobtnání dřeva Fyzikální vlastnosti dřeva Protokol č.3 Vypracoval: Pavel Lauko Datum cvičení: 24.9.2002 Obor: DI Datum vyprac.: 10.12.02 Ročník: 2. Skupina:

Více

Mikroskopická stavba dřeva listnatých dřevin cvičení

Mikroskopická stavba dřeva listnatých dřevin cvičení Dřevo a jeho ochrana Mikroskopická stavba dřeva listnatých dřevin cvičení Dřevo a jeho ochrana 2 Mikroskopická stavba dřeva Listnaté dřeviny - vývojově mladší -> anatomické elementy již specializovány

Více

STAVBA ROSTLINNÉHO TĚLA

STAVBA ROSTLINNÉHO TĚLA STAVBA DŘEVA STAVBA ROSTLINNÉHO TĚLA JEDNODĚLOŽNÉ ROSTLINY X DVOJDĚLOŽNÉ ROSTLINY JEDNODĚLOŽNÉ ROSTLINY palmy, bambus Nemohou druhotně tloustnout (přirůstat)!! DVOUDĚLOŽNÉ ROSTLINY mají sekundární dělivé

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.18 Dřeviny Kapitola 31 Vady tvaru kmene

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.18 Dřeviny Kapitola 5 Části kmene Příčný

Více

MIKROSKOPICKÁ STAVBA DŘEVA JEHLIČNANY

MIKROSKOPICKÁ STAVBA DŘEVA JEHLIČNANY MIKROSKOPICKÁ STAVBA DŘEVA JEHLIČNANY jehličnan versus listnáč X JEHLIČNANY LISTNÁČE letní tracheida libriformní vlákno kambiální iniciála jarní tracheida tracheida parenchym céva parenchym JEHLIČNANY

Více

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2008, ročník VIII, řada stavební článek č.

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2008, ročník VIII, řada stavební článek č. Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2008, ročník VIII, řada stavební článek č. 4 Antonín LOKAJ 1, Kristýna VAVRUŠOVÁ 2 DESTRUKTIVNÍ TESTOVÁNÍ VYBRANÝCH

Více

MENDELOVA UNIVERZITA V BRNĚ LESNICKÁ A DŘEVAŘSKÁ FAKULTA Ústav základního zpracování dřeva. Bakalářská práce

MENDELOVA UNIVERZITA V BRNĚ LESNICKÁ A DŘEVAŘSKÁ FAKULTA Ústav základního zpracování dřeva. Bakalářská práce MENDELOVA UNIVERZITA V BRNĚ LESNICKÁ A DŘEVAŘSKÁ FAKULTA Ústav základního zpracování dřeva Analýza příčin vzniku transparentnosti SM konstrukčních dýh v závodě DYAS.EU Bakalářská práce 2010 Jiří Pelikán

Více

Nasáklivost dřevin Diplomová práce

Nasáklivost dřevin Diplomová práce MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ LESNICKÁ A DŘEVAŘSKÁ FAKULTA ÚSTAV NAUKY O DŘEVĚ Nasáklivost dřevin Diplomová práce Vedoucí práce: Ing. Eva Přemyslovská, Ph.D. Vypracoval: Bc. Ladislav

Více

Výřez kmenem listnáče. parenchymatická medula

Výřez kmenem listnáče. parenchymatická medula Xylotomie (nauka o struktuře a vlastnostech dřeva) Dřevo (z technického hlediska) = lignifikované vodivé pletivo kmenů stromů (deuteroxylém) vznikající dostředivým dělením buněk kambia. Kmeny manoxylické:

Více

OBSAH 1 ÚVOD... 7. 1.1 Výrobek a materiál... 7 1.2 Přehled a klasifikace materiálů pro výrobu... 8 2 ZDROJE DŘEVA... 13

OBSAH 1 ÚVOD... 7. 1.1 Výrobek a materiál... 7 1.2 Přehled a klasifikace materiálů pro výrobu... 8 2 ZDROJE DŘEVA... 13 OBSAH 1 ÚVOD................................................. 7 1.1 Výrobek a materiál........................................ 7 1.2 Přehled a klasifikace materiálů pro výrobu..................... 8 2

Více

FAST VŠB - TECHNICKÁ UNIVERZITA OSTRAVA. Fakulta stavební. Stavební hmoty II. Filip Khestl, Pavel Mec

FAST VŠB - TECHNICKÁ UNIVERZITA OSTRAVA. Fakulta stavební. Stavební hmoty II. Filip Khestl, Pavel Mec FAST VŠB - TECHNICKÁ UNIVERZITA OSTRAVA Fakulta stavební Stavební hmoty II Filip Khestl, Pavel Mec 2013 OBSAH Obsah... 1 1 Úvod... 1 2 Dřevo... 2 2.1 Definice dřeva... 3 2.2 Rozdělení základních dřevin...

Více

Vážení návštěvníci, Pracovníci Botanické zahrady PřF UP Olomouc.

Vážení návštěvníci, Pracovníci Botanické zahrady PřF UP Olomouc. Vážení návštěvníci, vítáme vás v Botanické zahradě Přírodovědecké fakulty Univerzity Palackého v Olomouci. V prostoru před zahradním domkem jsme pro vás připravili výstavu Krása dřeva našich jehličnanů

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.17 Technická příprava výroby Kapitola 3

Více

Materiály charakteristiky potř ebné pro navrhování

Materiály charakteristiky potř ebné pro navrhování 2 Materiály charakteristiky potřebné pro navrhování 2.1 Úvod Zdivo je vzhledem k velkému množství druhů a tvarů zdicích prvků (cihel, tvárnic) velmi různorodý stavební materiál s rozdílnými užitnými vlastnostmi,

Více

OCELOVÉ A DŘEVĚNÉ PRVKY A KONSTRUKCE Část: Dřevěné konstrukce

OCELOVÉ A DŘEVĚNÉ PRVKY A KONSTRUKCE Část: Dřevěné konstrukce OCELOVÉ A DŘEVĚNÉ PRVKY A KONSTRUKCE Část: Dřevěné konstrukce Přednáška č. 1 Doc. Ing. Antonín Lokaj, Ph.D. VŠB Technická univerzita Ostrava, Fakulta stavební, Katedra konstrukcí, Ludvíka Podéště 1875,

Více

Mendelova zemědělská a lesnická univerzita v Brně. Variabilita hustoty dřeva jasanu po poloměru kmene. Lesnická a dřevařská fakulta

Mendelova zemědělská a lesnická univerzita v Brně. Variabilita hustoty dřeva jasanu po poloměru kmene. Lesnická a dřevařská fakulta Mendelova zemědělská a lesnická univerzita v Brně Lesnická a dřevařská fakulta Ústav nauky o dřevě Variabilita hustoty dřeva jasanu po poloměru kmene Bakalářská práce Akademický rok: 2006/07 Vypracoval:

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.16 Vady dřeva Kapitola 18 Hniloba Tomáš

Více

Mendelova univerzita v Brně

Mendelova univerzita v Brně Mendelova univerzita v Brně Lesnická a dřevařská fakulta Ústav nauky o dřevě Vliv vlhkosti na rychlost šíření zvuku dřevem Bakalářská práce 2013/2014 Kundera Hynek Prohlášení: Prohlašuji, že jsem bakalářskou

Více

VLIV TUHOSTI PÍSTNÍHO ČEPU NA DEFORMACI PLÁŠTĚ PÍSTU

VLIV TUHOSTI PÍSTNÍHO ČEPU NA DEFORMACI PLÁŠTĚ PÍSTU 68 XXXIV. mezinárodní konference kateder a pracovišť spalovacích motorů českých a slovenských vysokých škol VLIV TUHOSTI PÍSTNÍHO ČEPU NA DEFORMACI PLÁŠTĚ PÍSTU Pavel Brabec 1, Celestýn Scholz 2 Influence

Více

ČVUT v Praze, Fakulta stavební. seminář Stanovení vlastností materiálů při hodnocení existujících konstrukcí Masarykova kolej, 3. 4.

ČVUT v Praze, Fakulta stavební. seminář Stanovení vlastností materiálů při hodnocení existujících konstrukcí Masarykova kolej, 3. 4. STANOVENÍ VLASTNOSTÍ KONSTRUKČNÍHO DŘEVA PETR KUKLÍK ČVUT v Praze, Fakulta stavební seminář Stanovení vlastností materiálů při hodnocení existujících konstrukcí Masarykova kolej, 3. 4. 2007 Inovace metod

Více

MODELOVÉ SROVNÁNÍ VÝNOSOVOSTI NÍZKÉHO A VYSOKÉHO DUBOVÉHO LESA

MODELOVÉ SROVNÁNÍ VÝNOSOVOSTI NÍZKÉHO A VYSOKÉHO DUBOVÉHO LESA MODELOVÉ SROVNÁNÍ VÝNOSOVOSTI NÍZKÉHO A VYSOKÉHO DUBOVÉHO LESA KNEIFL MICHAL, KADAVÝ JAN Ústav hospodářské úpravy lesa, Lesnická a dřevařská fakulta, MZLU v Brně, Zemědělská 3, 13 Brno, Česká republika

Více

10.1 Úvod. 10.2 Návrhové hodnoty vlastností materiálu. 10 Dřevo a jeho chování při požáru. Petr Kuklík

10.1 Úvod. 10.2 Návrhové hodnoty vlastností materiálu. 10 Dřevo a jeho chování při požáru. Petr Kuklík 10 10.1 Úvod Obecná představa o chování dřeva při požáru bývá často zkreslená. Dřevo lze zapálit, může vyživovat oheň a dále ho šířit pomocí prchavých plynů, vznikajících při vysoké teplotě. Proces zuhelnatění

Více

evo lení d eva - d evo jehli natých d evin - d evo listnatých d evin Hustota d eva

evo lení d eva - d evo jehli natých d evin - d evo listnatých d evin Hustota d eva Dřevo Dřevo je pevné pletivo stonků vyšších rostlin, které označujeme jako dřeviny. Dřevo je zahrnováno mezi obnovitelné zdroje energie, jako jeden z druhů biomasy. Je to snadno dostupný přírodní materiál,

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.16 Vady dřeva Kapitola 4 Vady tvaru kmene

Více

2D A 3D SNÍMACÍ SYSTÉMY PRŮMĚRU A DÉLKY KULATINY ROZDÍLY VE VLASTNOSTECH A VÝSLEDCÍCH MĚŘENÍ

2D A 3D SNÍMACÍ SYSTÉMY PRŮMĚRU A DÉLKY KULATINY ROZDÍLY VE VLASTNOSTECH A VÝSLEDCÍCH MĚŘENÍ TRIESKOVÉ A BEZTRIESKOVÉ OBRÁBANIE DREVA 2006 12. - 14. 10. 2006 159 2D A 3D SNÍMACÍ SYSTÉMY PRŮMĚRU A DÉLKY KULATINY ROZDÍLY VE VLASTNOSTECH A VÝSLEDCÍCH MĚŘENÍ Karel Janák Abstract Different methods

Více

Optimalizace třídění výřezů na pile Belcredi Líšeň, s.r.o. ve vztahu k výtěži řeziva MENDELOVA UNIVERZITA V BRNĚ. Bakalářská práce

Optimalizace třídění výřezů na pile Belcredi Líšeň, s.r.o. ve vztahu k výtěži řeziva MENDELOVA UNIVERZITA V BRNĚ. Bakalářská práce MENDELOVA UNIVERZITA V BRNĚ Lesnická a dřevařská fakulta Ústav základního zpracování dřeva Optimalizace třídění výřezů na pile Belcredi Líšeň, s.r.o. ve vztahu k výtěži řeziva Bakalářská práce 2012/2013

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice REKONSTRUKCE DOKONČOVACÍCH PRACÍ Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

Keramika spolu s dřevem, kostmi, kůží a kameny patřila mezi první materiály, které pravěký člověk zpracovával.

Keramika spolu s dřevem, kostmi, kůží a kameny patřila mezi první materiály, které pravěký člověk zpracovával. Keramika Keramika spolu s dřevem, kostmi, kůží a kameny patřila mezi první materiály, které pravěký člověk zpracovával. Chceme li definovat pojem keramika, můžeme říci, že je to materiál převážně krystalický,

Více

Makroskopická stavba dřeva

Makroskopická stavba dřeva Makroskopická stavba dřeva přednáška 2 Definice juvenilního dřeva nachází se u jehličnatých i listnatých dřevin výsledek normálních fyziologických pochodů centrální část kmene odlišná stavba a vlastnosti

Více

Dřevo hlavní druhy dřeva, vlastnosti, anizotropie

Dřevo hlavní druhy dřeva, vlastnosti, anizotropie Dřevo hlavní druhy dřeva, vlastnosti, anizotropie Dřevo Dřevo je vnitřní zdřevnatělá část kmenu, větví a kořenů bez kůry a lýka. Strom obsahuje 70 až 90 objemových % dřeva. Tvorba dřevní hmoty probíhá

Více

2 MECHANICKÉ VLASTNOSTI SKLA

2 MECHANICKÉ VLASTNOSTI SKLA 2 MECHANICKÉ VLASTNOSTI SKLA Pevnost skla reprezentující jeho mechanické vlastnosti nejčastěji bývá hlavním parametrem jeho využití. Nevýhodou skel je jejich poměrně nízká pevnost v tahu a rázu (pevnost

Více

Beton. Be - ton je složkový (kompozitový) materiál

Beton. Be - ton je složkový (kompozitový) materiál Fakulta stavební VŠB TUO Be - ton je složkový (kompozitový) materiál Prvky betonových konstrukcí vlastnosti materiálů, pracovní diagramy, spolupůsobení betonu a výztuže Nejznámějším míchaným nápojem je

Více

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09, Karlovy Vary Autor: BOHUSLAV VINTER Název materiálu:

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09, Karlovy Vary Autor: BOHUSLAV VINTER Název materiálu: Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09, Karlovy Vary Autor: BOHUSLAV VINTER Název materiálu: VY_32_INOVACE_17_TECHNOLOGIE DŘEVAŘSKÉ PRVOVÝROBY_T1 Číslo projektu:

Více

terénní praktikum : Pila Ptení jméno a příjmení : třída : datum :

terénní praktikum : Pila Ptení jméno a příjmení : třída : datum : Pracovní list vytvořil : Mgr. Lenka Krčová lektor terénních praktik : Mgr. Petr Žůrek terénní praktikum : Pila Ptení jméno a příjmení : třída : datum : Základní škola Prostějov, Dr. Horáka 24 1) Jistě

Více

Mendelova zemědělská a lesnická univerzita v Brně Fakulta lesnická a dřevařská Ústav základního zpracování dřeva. Bakalářská práce

Mendelova zemědělská a lesnická univerzita v Brně Fakulta lesnická a dřevařská Ústav základního zpracování dřeva. Bakalářská práce Mendelova zemědělská a lesnická univerzita v Brně Fakulta lesnická a dřevařská Ústav základního zpracování dřeva Bakalářská práce TECHNOLOGICKÉ POSTUPY A PŘEDPISY PRO MONTÁŽ VYBRANÝCH TYPŮ DŘEVĚNÝCH PODLAHOVIN

Více

Mechanika hornin. Přednáška 2. Technické vlastnosti hornin a laboratorní zkoušky

Mechanika hornin. Přednáška 2. Technické vlastnosti hornin a laboratorní zkoušky Mechanika hornin Přednáška 2 Technické vlastnosti hornin a laboratorní zkoušky Mechanika hornin - přednáška 2 1 Dělení technických vlastností hornin 1. Základní popisné fyzikální vlastnosti 2. Hydrofyzikální

Více

Nové normy na specifikace dřevních pelet, dřevních briket, dřevní štěpky a palivového dřeva pro maloodběratele

Nové normy na specifikace dřevních pelet, dřevních briket, dřevní štěpky a palivového dřeva pro maloodběratele Nové normy na specifikace dřevních pelet, dřevních briket, dřevní štěpky a palivového dřeva pro maloodběratele Technologické trendy při vytápění pevnými palivy 2011, Horní Bečva 9. 10.11.2011 TÜV NORD

Více

SORTIMENTACE DŘÍVÍ. Sestavil: Ing. Jiří Franc

SORTIMENTACE DŘÍVÍ. Sestavil: Ing. Jiří Franc SORTIMENTACE DŘÍVÍ Sestavil: Ing. Jiří Franc dohoda dodavatele a odběratele je vždy nadřazena obecně přijatým předpisům 2 Měření a sortimentace dříví v ČR do 31.3.1997 vycházelo měření z původních národních

Více

Ochrana dřeva ve stavbách

Ochrana dřeva ve stavbách Petr Ptáček Ochrana dřeva ve stavbách Vydala Grada Publishing, a.s. U Průhonu 22, Praha 7 obchod@grada.cz, www.grada.cz tel.: +420 220 386 401, fax: +420 220 386 400 jako svou XXXX. publikaci Odpovědná

Více

BRNO UNIVERSITY OF TECHNOLOGY ÚSTAV TECHNOLOGIE STAVEBNÍCH HMOT A DÍLCŮ FACULTY OF CIVIL ENGINEERING

BRNO UNIVERSITY OF TECHNOLOGY ÚSTAV TECHNOLOGIE STAVEBNÍCH HMOT A DÍLCŮ FACULTY OF CIVIL ENGINEERING VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV TECHNOLOGIE STAVEBNÍCH HMOT A DÍLCŮ FACULTY OF CIVIL ENGINEERING INSTITUTE OF TECHNOLOGY OF BUILDING MATERIALS AND COMPONENTS

Více

Mikroskopická stavba dřeva jehličnatých dřevin cvičení

Mikroskopická stavba dřeva jehličnatých dřevin cvičení Mikroskopická stavba dřeva jehličnatých dřevin cvičení 2 Mikroskopická stavba dřeva Rostlinný organismus - základní stavební jednotkou jsou buňky (= anatomické elementy) různého typu (např. parenchymatická

Více

Výukový materiál, prezentace

Výukový materiál, prezentace Název školy Číslo projektu Autor Název šablony Název DUMu Stupeň a typ vzdělání Vzdělávací obor Tematický okruh Druh učebního materiálu Cílová skupina Anotace Klíčová slova Střední odborná škola Luhačovice

Více

NAVRHOVÁNÍ DŘEVĚNÝCH KONSTRUKCÍ DŘEVO, VLASTNOSTI DŘEVA část 1.

NAVRHOVÁNÍ DŘEVĚNÝCH KONSTRUKCÍ DŘEVO, VLASTNOSTI DŘEVA část 1. Téma: NAVRHOVÁNÍ DŘEVĚNÝCH KONSTRUKCÍ DŘEVO, VLASTNOSTI DŘEVA část 1. Vypracoval: Ing. Roman Rázl TE NTO PR OJ E KT J E S POLUFINANC OVÁN EVR OPS KÝ M S OC IÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

Více

SYSTÉM TECHNICKO-EKONOMICKÉ ANALÝZY VÝROBY TEKUTÉHO KOVU - CESTA KE SNIŽOVÁNÍ NÁKLADŮ

SYSTÉM TECHNICKO-EKONOMICKÉ ANALÝZY VÝROBY TEKUTÉHO KOVU - CESTA KE SNIŽOVÁNÍ NÁKLADŮ SYSTÉM TECHNICKO-EKONOMICKÉ ANALÝZY VÝROBY TEKUTÉHO KOVU - CESTA KE SNIŽOVÁNÍ NÁKLADŮ FIGALA V. a), KAFKA V. b) a) VŠB-TU Ostrava, FMMI, katedra slévárenství, 17. listopadu 15, 708 33 b) RACIO&RACIO, Vnitřní

Více

Ing. Lubomír Kacálek III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_TDŘ0513Vady dřeva I. vady struktury dřeva

Ing. Lubomír Kacálek III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_TDŘ0513Vady dřeva I. vady struktury dřeva Název školy Číslo projektu Autor Název šablony Název DUMu Stupeň a typ vzdělání Vzdělávací obor Tematický okruh Druh učebního materiálu Cílová skupina Anotace Klíčová slova Střední odborná škola Luhačovice

Více

Těžba a doprava dříví

Těžba a doprava dříví Škola + praxe = úspěch na trhu práce reg. č. CZ.1.07/2.1.00/32.0012 Vyšší odborná škola lesnická a Střední lesnická škola Bedřicha Schwarzenberga Písek Učební texty z předmětu Těžba a doprava dříví Ing.

Více

MIKROSKOPICKÁ STAVBA DŘEVA LISTNÁČE

MIKROSKOPICKÁ STAVBA DŘEVA LISTNÁČE MIKROSKOPICKÁ STAVBA DŘEVA LISTNÁČE JEHLIČNANY LISTNÁČE letní tracheida libriformní vlákno kambiální iniciála jarní tracheida tracheida parenchym céva parenchym LISTNATÉ DŘEVINY vývojově mladší složitější

Více

VYZTUŽOVÁNÍ STRUKTURY BETONU OCELOVÝMI VLÁKNY. ČVUT Fakulta stavební, katedra betonových konstrukcí a mostů, Thákurova 7, 166 29 Praha 6, ČR

VYZTUŽOVÁNÍ STRUKTURY BETONU OCELOVÝMI VLÁKNY. ČVUT Fakulta stavební, katedra betonových konstrukcí a mostů, Thákurova 7, 166 29 Praha 6, ČR VYZTUŽOVÁNÍ STRUKTURY BETONU OCELOVÝMI VLÁKNY Karel Trtík ČVUT Fakulta stavební, katedra betonových konstrukcí a mostů, Thákurova 7, 166 29 Praha 6, ČR Abstrakt Článek je zaměřen na problematiku vyztužování

Více

Přehled fyzikálních vlastností dřeva

Přehled fyzikálních vlastností dřeva Dřevo a jeho ochrana Přehled fyzikálních vlastností dřeva cvičení Dřevo a jeho ochrana 2 Charakteristiky dřeva jako materiálu Anizotropie = na směru závislé vlastnosti Pórovitost = porézní materiál Hygroskopicita

Více

RNDr. Jan Pretel Organizace Český hydrometeorologický ústav, Praha Název textu Předpoklady výskytu zvýšené sekundární prašnosti

RNDr. Jan Pretel Organizace Český hydrometeorologický ústav, Praha Název textu Předpoklady výskytu zvýšené sekundární prašnosti Autor RNDr. Jan Pretel Organizace Český hydrometeorologický ústav, Praha Název textu Předpoklady výskytu zvýšené sekundární prašnosti Blok BK14 - Sekundární prašnost Datum Prosinec 2001 Poznámka Text neprošel

Více

Chemické složení dřeva

Chemické složení dřeva Dřevo a jeho ochrana Chemické složení dřeva cvičení strana 2 Dřevo a jeho ochrana 2 Dřevo Znalost chemického složení je nezbytná pro: pochopení submikroskopické stavby dřeva pochopení činnosti biotických

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.15 Konstrukční materiály Kapitola 13 OSB

Více

Mendelova zemědělská a lesnická univerzita v Brně Lesnická a dřevařská fakulta Ústav základního zpracování dřeva

Mendelova zemědělská a lesnická univerzita v Brně Lesnická a dřevařská fakulta Ústav základního zpracování dřeva Mendelova zemědělská a lesnická univerzita v Brně Lesnická a dřevařská fakulta Ústav základního zpracování dřeva Konstrukce dřevěných schodišť Bakalářská práce Brno 2008 Martin Cvrček 1 zadání 2 Prohlašuji,

Více

MIKROSKOPICKÁ STAVBA DŘEVA

MIKROSKOPICKÁ STAVBA DŘEVA MIKROSKOPICKÁ STAVBA DŘEVA JEHLIČNANY starší jednoduchá stavba pravidelnost JEHLIČNANY LISTNÁČE letní tracheida libriformní vlákno kambiální iniciála jarní tracheida tracheida parenchym céva parenchym

Více

VLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA.

VLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA. VLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA. Petr Tomčík a Jiří Hrubý b a) VŠB TU Ostrava, Tř. 17. listopadu 15, 708 33 Ostrava, ČR b) VŠB TU Ostrava, Tř. 17. listopadu 15,

Více

Obnova "Aleje filosofů"

Obnova Aleje filosofů Revitalizace zámeckého návrší v Litomyšli Obnova "Aleje filosofů" TECHNICKÁ ZPRÁVA Obsah: 1. Inventarizace stromů a kvalitativní hodnocení... 3 1.1 Charakteristika území a rostoucích dřevin... 3 1.2 Metodika

Více

snímače využívají trvalé nebo pružné deformace měřicích členů

snímače využívají trvalé nebo pružné deformace měřicích členů MĚŘENÍ SÍLY snímače využívají trvalé nebo pružné deformace měřicích členů a) Měřiče s trvalou deformací měřicích členů Jsou málo přesné Proto se používají především pro orientační měření tvářecích sil,

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.18 Dřeviny Kapitola 21 Buk Ing. Hana Márová

Více

Mendelova univerzita v Brně. Lesnická a dřevařská fakulta. Ústav základního zpracování dřeva

Mendelova univerzita v Brně. Lesnická a dřevařská fakulta. Ústav základního zpracování dřeva Mendelova univerzita v Brně Lesnická a dřevařská fakulta Ústav základního zpracování dřeva STROJE A NÁSTROJE PRO ŘEZÁNÍ DŘEVA Bakalářská práce 2013/2014 David Ševčík Prohlášení Prohlašuji, že jsem bakalářskou

Více

Technologické procesy (Tváření)

Technologické procesy (Tváření) Otázky a odpovědi Technologické procesy (Tváření) 1) Co je to plasticita kovů Schopnost zůstat neporušený po deformaci 2) Jak vzniká plastická deformace Nad mezi kluzu 3) Co jsou to dislokace Porucha krystalové

Více

Zde Vám představujeme základní české dřeviny. Smrk. Borovice. Modřín

Zde Vám představujeme základní české dřeviny. Smrk. Borovice. Modřín Zde Vám představujeme základní české dřeviny Smrk Dřevo smrku je smetanově bílé až nahnědlé, s výraznými letokruhy. Na všech třech řezech (příčný, podélný, tečný) snadno zaznamenáme zřetelné barevné odlišení

Více

OBRÁBĚNÍ DŘEVA. Mgr. Jan Straka

OBRÁBĚNÍ DŘEVA. Mgr. Jan Straka OBRÁBĚNÍ DŘEVA Mgr. Jan Straka Obrábění je technologický pochod, kterým vytváříme požadovaný tvar obrobku ve stanovených rozměrech a v požadované kvalitě obrobených ploch. Obrábění se dělí podle způsobu

Více

Kompostování réví vinného s travní hmotou. Composting of vine cane with grass

Kompostování réví vinného s travní hmotou. Composting of vine cane with grass Kompostování réví vinného s travní hmotou Composting of vine cane with grass Oldřich Mužík, Vladimír Scheufler, Petr Plíva, Amitava Roy Výzkumný ústav zemědělské techniky Praha Abstract The paper deals

Více

NÁVRH MATERIÁLU A POVRCHOVÉ ÚPRAVY PRO ŘEZNÉ NÁSTROJE URČENÝCH K OBRÁBĚNÍ PRYŽOVÝCH HADIC ZPEVNĚNÝCH KEVLAREM

NÁVRH MATERIÁLU A POVRCHOVÉ ÚPRAVY PRO ŘEZNÉ NÁSTROJE URČENÝCH K OBRÁBĚNÍ PRYŽOVÝCH HADIC ZPEVNĚNÝCH KEVLAREM NÁVRH MATERIÁLU A POVRCHOVÉ ÚPRAVY PRO ŘEZNÉ NÁSTROJE URČENÝCH K OBRÁBĚNÍ PRYŽOVÝCH HADIC ZPEVNĚNÝCH KEVLAREM Bc. Jiří Hodač Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika

Více

Mendelova univerzita v Brně. Analýza vybraných mechanických vlastností konstrukčních materiálů pro dřevostavby

Mendelova univerzita v Brně. Analýza vybraných mechanických vlastností konstrukčních materiálů pro dřevostavby Mendelova univerzita v Brně Lesnická a dřevařská fakulta Ústav základního zpracování dřeva Analýza vybraných mechanických vlastností konstrukčních materiálů pro dřevostavby Diplomová práce Vedoucí práce:

Více

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09, Karlovy Vary Autor: BOHUSLAV VINTER Název materiálu:

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09, Karlovy Vary Autor: BOHUSLAV VINTER Název materiálu: Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09, Karlovy Vary Autor: BOHUSLAV VINTER Název materiálu: VY_32_INOVACE_18_TECHNOLOGIE VÝROBY DÝH_T1 Číslo projektu: CZ

Více

ORGANIZAČNÍ A STUDIJNÍ ZÁLEŽITOSTI

ORGANIZAČNÍ A STUDIJNÍ ZÁLEŽITOSTI 1. cvičení ORGANIZAČNÍ A STUDIJNÍ ZÁLEŽITOSTI Podmínky pro uznání části Konstrukce aktivní účast ve cvičeních, předložení výpočtu zadaných příkladů. Pomůcky pro práci ve cvičeních psací potřeby a kalkulačka.

Více

NUMERICKÉ MODELOVÁNÍ ZDIVA. 1. Současný stav problematiky

NUMERICKÉ MODELOVÁNÍ ZDIVA. 1. Současný stav problematiky NUMERICKÉ MODELOVÁNÍ ZDIVA 1. Současný stav problematiky V současné době chybí přesné a obecně použitelné modely zdiva, které by výstižně vyjadřovaly jeho skutečné vlastnosti a přitom se daly snadno použít

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.18 Dřeviny Kapitola 8 Mikroskopická stavba

Více

BIOMASA OBNOVITELNÝ ZDROJ ENERGIE

BIOMASA OBNOVITELNÝ ZDROJ ENERGIE INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 BIOMASA OBNOVITELNÝ ZDROJ ENERGIE

Více

DIAGNOSTICS OF A HYDRAULIC PUMP STATUS USING ACOUSTIC EMISSION

DIAGNOSTICS OF A HYDRAULIC PUMP STATUS USING ACOUSTIC EMISSION DIAGNOSTICS OF A HYDRAULIC PUMP STATUS USING ACOUSTIC EMISSION Varner D., Černý M., Mareček J. Department of Engineering and Automobile Transport, Faculty of Agronomy, Mendel University of Agriculture

Více

Produktový list BSH CECO

Produktový list BSH CECO Produktový list BSH CECO Základní popis Vrstvený lepený hranol v dřevině smrk (Picea abies), přímý, vyrobeno na zakázku v SRN firmou NORDLAM GmbH dle EN 386/14080 jako výrobek certifikovaný prodávajícím

Více

Realizace pěstební a těžební činnosti

Realizace pěstební a těžební činnosti Realizace pěstební a těžební činnosti Ukázka realizace pěstební činnosti (na příkladu zalesňování) Kontrola sazenic před výsadbou (třídění sadebního materiálu; standard a nestandard) Sazenice se před výsadbou

Více

11. Omítání, lepení obkladů a spárování

11. Omítání, lepení obkladů a spárování 11. Omítání, lepení obkladů a spárování Omítání, lepení obkladů a spárování 11.1 Omítání ve vnitřním prostředí Pro tyto omítky platí EN 998-1 Specifikace malt pro zdivo Část 1: Malty pro vnitřní a vnější

Více

JAKÁ JE BUDOUCNOST LESA NÍZKÉHO NA LESNÍ SPRÁVĚ ZNOJMO?

JAKÁ JE BUDOUCNOST LESA NÍZKÉHO NA LESNÍ SPRÁVĚ ZNOJMO? JAKÁ JE BUDOUCNOST LESA NÍZKÉHO NA LESNÍ SPRÁVĚ ZNOJMO? Ot. Březiny 682, 675 71 Náměšť nad Oslavou VOBORNÍK PŘEMYSL ABSTRAKT: Les nízký se u LČR,s.p. Lesní správě Znojmo vyskytuje na plochách okolo 2.500ha

Více

Hraniční duby určení věku

Hraniční duby určení věku Hraniční duby určení věku Úvodem. Panem starostou ing. Petrem Hejlem jsem byl upozorněn na mohutné duby, rostoucí na hranici mezi Suchdolem a Roztoky. Mohlo by se jednat o hraniční duby, které by si pak

Více

Dřevo je vnitřní zdřevnatělá část kmenu, větví a kořenů bez kůry a lýka. Strom obsahuje 70 až 90 objemových % dřeva.

Dřevo je vnitřní zdřevnatělá část kmenu, větví a kořenů bez kůry a lýka. Strom obsahuje 70 až 90 objemových % dřeva. Dřevo Dřevo je vnitřní zdřevnatělá část kmenu, větví a kořenů bez kůry a lýka. Strom obsahuje 70 až 90 objemových % dřeva. Tvorba dřevní hmoty probíhá fotosyntetickými a biochemickými reakcemi v kambiu

Více

PŘÍLOHA Č. 3 ZADÁVACÍ KODUMENTACE TECHNICKÁ ZPRÁVA

PŘÍLOHA Č. 3 ZADÁVACÍ KODUMENTACE TECHNICKÁ ZPRÁVA PŘÍLOHA Č. 3 ZADÁVACÍ KODUMENTACE TECHNICKÁ ZPRÁVA Název stavby: Výměna podlahy tělocvičny Místo stavby: k.ú. Moravská Třebová 698806 Kraj: Pardubický Obec: Moravská Třebová Ulice: J. K. Tyla Parc.č.:

Více

INFLUENCE OF CONSTRUCTION OF TRANSMISSION ON ECONOMIC PARAMETERS OF TRACTOR SET TRANSPORT

INFLUENCE OF CONSTRUCTION OF TRANSMISSION ON ECONOMIC PARAMETERS OF TRACTOR SET TRANSPORT INFLUENCE OF CONSTRUCTION OF TRANSMISSION ON ECONOMIC PARAMETERS OF TRACTOR SET TRANSPORT Vykydal P., Žák M. Department of Engineering and Automobile Transport, Faculty of Agronomy, Mendel University in

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.16 Vady dřeva Kapitola 14 Nepravé jádro

Více

TEPELNÉ ZPRACOVÁNÍ KONSTRUKČNÍCH OCELÍ SVOČ - 2008. Jana Martínková, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika

TEPELNÉ ZPRACOVÁNÍ KONSTRUKČNÍCH OCELÍ SVOČ - 2008. Jana Martínková, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika TEPELNÉ ZPRACOVÁNÍ KONSTRUKČNÍCH OCELÍ SVOČ - 2008 Jana Martínková, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT Práce obsahuje charakteristiku konstrukčních ocelí

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.18 Dřeviny Kapitola 12 Smrk Ing. Hana Márová

Více

HISTORICKÉ TECHNOLOGIE VÝROBY HUDEBNÍCH NÁSTROJŮ MODUL M5

HISTORICKÉ TECHNOLOGIE VÝROBY HUDEBNÍCH NÁSTROJŮ MODUL M5 CZ.1.07/1.1.08/01.0009 Rozvoj klíčových kompetencí v odborném vzdělávání na Střední odborné škole Luhačovice HISTORICKÉ TECHNOLOGIE VÝROBY HUDEBNÍCH NÁSTROJŮ MODUL M5 1 OBSAH 1. lekce: Dřevo... 4 1.1.

Více

Stavba dřeva. Reakční dřevo. přednáška

Stavba dřeva. Reakční dřevo. přednáška Reakční dřevo přednáška 2 Definice 3 Reakční dřevo používáme pro označení tlakového a tahového dřeva. tlakové dřevo se tvoří u jehličnatých dřevin tahové dřevo se tvoří u listnatých dřevin Místo výskytu

Více

Les provází člověka od počátku dějin, pouze v tomto období však byl přírodním výtvorem. S proměnou člověka v zemědělce docházelo k masivnímu kácení a

Les provází člověka od počátku dějin, pouze v tomto období však byl přírodním výtvorem. S proměnou člověka v zemědělce docházelo k masivnímu kácení a I. Les provází člověka od počátku dějin, pouze v tomto období však byl přírodním výtvorem. S proměnou člověka v zemědělce docházelo k masivnímu kácení a žďáření (vypalování) lesů, na jejichž místě byla

Více

POSOUZENÍ PROVOZNÍ PEZPEČNOSTI VYBRANÝCH DŘEVIN OBEC VRÁTKOV

POSOUZENÍ PROVOZNÍ PEZPEČNOSTI VYBRANÝCH DŘEVIN OBEC VRÁTKOV POSOUZENÍ PROVOZNÍ PEZPEČNOSTI VYBRANÝCH DŘEVIN OBEC VRÁTKOV prosinec 2014 Lokalita Vrátkov 17 282 01 Český Brod Zhotovitel Ing. Václav Bažant Ph.D. Přehvozdí 13 281 63 Kostelec nad Černými lesy Tel.:

Více

P O N U K O V Ý L I S T

P O N U K O V Ý L I S T NABÍDKOVÝ LIST CTR 550 Pilous Železná 9, 619 00 Brno, Czech Republic Tel.: +420 543 25 20 10 e-mail: wood@pilous.cz, www.pilous.cz Max. (mm) 3110 27 35 0,9 mm 550 400 365 365 Max. průměr kmene 550 mm Délka

Více

Řez stromů. David Hora, DiS. Předcertifikační školení certifikace. European Tree Worker. Evropský arborista

Řez stromů. David Hora, DiS. Předcertifikační školení certifikace. European Tree Worker. Evropský arborista Řez stromů David Hora, DiS. Předcertifikační školení certifikace European Tree Worker Evropský arborista Vztah: lidé stromy - lidé stromy dokáží žít bez nás my bez nich ne, doprovází nás celou historií

Více

Výrobní program 2.1 2.2 2.3 2.4. www.cetris.cz/rady-a-informace/

Výrobní program 2.1 2.2 2.3 2.4. www.cetris.cz/rady-a-informace/ www.cetris.cz/rady-a-informace/ Výroba cementotřískových desek CETRIS Přednosti desek CETRIS Složení cementotřískových desek CETRIS Druhy cementotřískových desek CETRIS Balení, skladování, manipulace Parametry

Více

INFORMACE O PRODUKTECH. www.feelwood.cz

INFORMACE O PRODUKTECH. www.feelwood.cz INFORMACE O PRODUKTECH pokládka péče www.feelwood.cz obsah Feel Wood masivní podlahy Masivní podlaha je špičkový produkt mezi dřevěnými podlahami. Masivní podlahy FEEL WOOD jsou vyráběny z masivního kusu

Více

Strana 1 Příloha č.1

Strana 1 Příloha č.1 I. Názvosloví Strana 1 Příloha č.1 TECHNICKÉ PODMÍNKY PRO DODÁVKY VLÁKNINOVÉHO DŘÍVÍ PRO KUPUJÍCÍHO PLATNÉ V Biocelu Paskov a.s. ROK 2016 1. Vlákninové dříví pro kupujícího - odvětvený, zkrácený kmen,

Více

DETERMINATION OF MECHANICAL AND ELASTO-PLASTIC PROPERTIES OF MATERIALS BY NANOINDENTATION METHODS

DETERMINATION OF MECHANICAL AND ELASTO-PLASTIC PROPERTIES OF MATERIALS BY NANOINDENTATION METHODS DETERMINATION OF MECHANICAL AND ELASTO-PLASTIC PROPERTIES OF MATERIALS BY NANOINDENTATION METHODS HODNOCENÍ MECHANICKÝCH A ELASTO-PLASTICKÝCH VLASTNOSTÍ MATERIÁLŮ VYUŽITÍM NANOINDENTACE Martin Vizina a

Více

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09, Karlovy Vary Autor: BOHUSLAV VINTER Název materiálu:

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09, Karlovy Vary Autor: BOHUSLAV VINTER Název materiálu: Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09, Karlovy Vary Autor: BOHUSLAV VINTER Název materiálu: VY_32_INOVACE_10_PŘÍPRAVA DŘEVA 1_T1 Číslo projektu: CZ 1.07/1.5.00/34.1077

Více

PROTIHLUKOVÁ STĚNA Z DŘEVOCEMENTOVÝCH ABSORBČNÍCH DESEK

PROTIHLUKOVÁ STĚNA Z DŘEVOCEMENTOVÝCH ABSORBČNÍCH DESEK PROTIHLUKOVÁ STĚNA Z DŘEVOCEMENTOVÝCH ABSORBČNÍCH DESEK Rudolf Hela, Oldřich Fiala, Jiří Zach V příspěvku je popsán systém protihlukových stěn za využití odpadu z těžby a zpracování dřeva. Pro pohltivou

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV BETONOVÝCH A ZDĚNÝCH KONSTRUKCÍ FACULTY OF CIVIL ENGINEERING INSTITUTE OF CONCRETE AND MASONRY STRUCTURES ŽELEZOBETONOVÁ

Více

HLEDÁNÍ ZÁVISLOSTÍ A VZTAHŮ MEZI METODAMI HODNOCENÍ DŘEVĚNÝCH PRVKŮ

HLEDÁNÍ ZÁVISLOSTÍ A VZTAHŮ MEZI METODAMI HODNOCENÍ DŘEVĚNÝCH PRVKŮ Energeticky efektivní budovy 2015 sympozium Společnosti pro techniku prostředí 15. října 2015, Buštěhrad HLEDÁNÍ ZÁVISLOSTÍ A VZTAHŮ MEZI METODAMI HODNOCENÍ DŘEVĚNÝCH PRVKŮ Robert Jára 1), Jan Pošta 2),

Více