Úloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Úloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie."

Transkript

1 Slovní úlohy - řešené úlohy Úměra, poměr Úloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie. Každý rozměr zvětšíme tak, že jeho velikost vynásobíme poměrem podobnosti k = Nové rozměry fotografie: a = 12 = 20 cm b = 9 = 15 cm Zvětšená fotografie bude mít rozměry 20 cm a 15 cm. Úloha č. 2 Obvod trojúhelníku je 126 cm. Délky jeho stran jsou v poměru 2 : 3 : 4. Určete délky stran tohoto trojúhelníku. Nejprve sečteme počet dílů: = 9 Délka odpovídající 1 dílu: 126 : 9 = 14 cm Délky stran: a = = 28 cm b = = 42 cm c = = 56 cm Ještě si ověříme, že platí trojúhelníková nerovnost: = 70 > 56 cm. Trojúhelník má strany o délkách 28 cm, 42 cm, 56 cm. 1

2 Úloha č. 3 Vzdálenost dvou míst na mapě je 175 mm. Jejich vzdálenost ve skutečnosti je 70 km. Určete měřítko mapy. 70 km = m = cm : 17,5 = cm Měřítko mapy je 1 : Úloha č. 4 Dvě obce mají na mapě s měřítkem 1 : vzdálenost 85 mm. Vypočtěte vzdálenost těchto měst na mapě s měřítkem 1 : Skutečnou vzdálenost měst zjistíme z mapy s měřítkem 1 : cm 100 m 8,5 cm 850 m V dalším kroku vypočítáme vzdálenost měst na mapě s měřítkem 1 : cm 250 m 850 : 250 = 3,4 cm = 34 mm Na mapě s měřítkem 1 : jsou obce od sebe vzdáleny 34 mm. 2

3 Úloha č. 5 Tableta obsahuje mg účinné látky (léku). Kolik tablet podáme pacientovi, který bude potřebovat denní dávku 0,75 g léku? Oba údaje si nejprve vyjádříme pomocí stejné jednotky (mg) mg 0,75 g = 750 mg 750 : = 0,5 Pacientovi podáme polovinu tablety. Úloha č. 6 Víme, že 250 m silonového vlákna má hmotnost 4 g. Jak dlouhé bude totéž vlákno o hmotnosti 1 kg? Jedná se o úlohu řešenou pomocí přímé úměrnosti: 250 m.. 4 g x m g Sestavíme trojčlenku: = a následně použijeme křížové pravidlo: 4. = /:4 = = m = 62,5 km Silonové vlákno o hmotnosti 1 kg bude dlouhé 62,5 km. 3

4 Úloha č. 7 Sedm pracovníků splní úkol za 72 hodin. Za jak dlouho by úkol splnilo devět pracovníků? Jedná se o úlohu řešenou pomocí nepřímé úměrnosti: 7 pracovníků.. 72 h 9 pracovníků.. x h Sestavíme trojčlenku: = a vyjádříme neznámou : = = 56 h Devět pracovníků by úkol splnilo za 56 hodin. Úloha č. 8 Spotřeba benzínu osobního auta činila 8,8 litru na 100 km. Po opravě auta spotřeba klesla v poměru 9:11. Jaká je spotřeba auta po opravě? Spotřebu vozu před opravou vynásobíme poměrem 8,8 7,2 l Spotřeba vozu po opravě činila 7,2 litru. 4

5 Procenta Pamatujte si: 1 % = celku, Úloha č. 9 Původní cena výrobku byla Kč. Po snížení ceny výrobek stál Kč. O kolik procent byla původní cena snížena? původní cena a = Kč nová cena. a 1 = Kč rozdíl cen = Kč Při řešení využijeme vyjádření 1 % ze základu Kč: 100 % Kč 1 %...48 Kč Počet procent určíme tak, že rozdíl cen vydělíme 1 % : 48 = 25 % Původní cena byla snížena o 25 %. Úloha č. 10 Cena výrobku x = Kč byla nejprve zvýšena o 10 % a později snížena o 20 % nové ceny. Jaká je jeho konečná cena? zvýšení ceny o 10 % 110 % = 1,10 celku snížení ceny o 20 % 80 % = 0,80 celku původní cena a = Kč cena po zdražení. a 1 = ,1 = Kč cena po zlevnění. a 2 = ,8 = 880 Kč Konečná cena výrobku je 880 Kč. 5

6 Úloha č. 11 Elektrické vedení je dlouhé 5,3 km. Na prohnutí drátů a spojování je nutno přidat 3,25 % délky. Kolik metrů drátu potřebují montéři, má-li vedení osm drátů? Nejprve spočítáme celkovou délku d všech drátů elektrického vedení bez rezervy na prohnutí. d = 5,3. 8 = 42,4 km Přidáme rezervu: 100 % + 3,25 % = 103,25 % (což představuje 1,0325 základní délky elektrického vedení) d 1 = 42,4. 1,0325 = 43,778 km = m Montéři potřebují na vedení m drátů. Úloha č. 12 Automobil jel rychlostí 75 km/h, cyklista rychlostí 5 m/s. Kolik procent rychlosti automobilu činí rychlost cyklisty? automobil 75 km.h -1 cyklista. 5 m.s -1. 3,6 = 18 km.h -1 počet procent = čá p = = 0,24 = 24 % Rychlost cyklisty činí 24 % rychlosti automobilu. 6

7 Úloha č. 13 O kolik procent se zmenší objem krychle, zmenšíme-li její hranu o 20 %? Zmenšíme-li délku hrany a krychle o 20 %, bude mít 80 % původní délky, tj. 0,8.a. Původní krychle o straně a má objem: V = a 3 Zmenšená krychle o straně a 1 = 0,8.a má objem: V 1 = (a 1 ) 3 = (0,8.a) 3 = 0,512.a 3 V 1 = 0,512.V = 51,2 %. V Objem zmenšené krychle představuje 51,2 % objemu původní krychle. 100 % 51,2 % = 48,8 % Objem krychle se zmenší o 48,8 %. Úloha č. 14 Zboží stojí Kč včetně 21% daně z přidané hodnoty (DPH). Vypočtěte cenu zboží bez DPH. Cena zboží bez DPH představuje základ tj. 100 % Kč 121 % x Kč 100 % x = : 1,21 = Kč Cena zboží bez DPH je Kč. 7

8 Úloha č. 15 Pan Novák si na začátku roku 2014 uložil do spořitelny Kč na 3% úrok. Vypočtěte, kolik korun bude mít na účtu na konci roku 2014 a kolik o další rok později. na konci roku 2014 a 1 = , = 1, = Kč na konci roku 2015 a 2 = , = 1, = Kč Úloha č. 16 V mořské vodě je přibližně 3,5 % soli. Kolik soli zbude po odpaření 10 kg mořské vody? 3,5 % soli představuje 0,035 celku x = 10. 0,035 = 0,35 kg Po odpaření 10 kg mořské vody zůstane 0,35 kg soli. Úloha č. 17 Krevní zkouškou bylo zjištěno v krvi řidiče 0,5 promile alkoholu. Kolik je to gramů, je-li v těle člověka přibližně 6 kg krve? 1 promile ( ) celku = 0,001 celku 0,5 = 0,0005 celku 0, = 0,003 kg = 3 g V těle řidiče jsou přibližně 3 g alkoholu. 8

9 Úloha č. 18 Číslo 72 zvětšete o 25 %. O kolik procent budete muset číslo, které vám vyšlo zmenšit, abyste opět obdrželi číslo 72? číslo 72 zvětšené o 25 % 1, = % 72.. p % Sestavíme trojčlenku: = v dalším řešení vyjádříme neznámou p: p = = 80 % 100 % 80 % = 20 % Číslo 72 představuje 20 % z čísla 90. Úloha č. 19 Čerstvé houby obsahují 90 % vody, sušené 12 % vody. Vypočtěte, kolik čerstvých hub je třeba nasbírat, abychom získali 3 kg sušených hub. 3 kg sušených hub obsahují 12 % vody = 88 % sušiny 0,88. 3 = 2,64 kg sušiny x kg čerstvých hub obsahuje 90 % vody = 10 % sušiny 2,64 kg.. 10 % x kg % Sestavíme trojčlenku: 9

10 = v dalším řešení použijeme křížové pravidlo a vyjádříme neznámou: = = 26,4 kg Musíme nasbírat 26,4 kg čerstvých hub. Úloha č. 20 Prodejna má sjednaný podíl na zisku (tzv. rabat) ve výši 15 % z prodejní ceny výrobku, jež představuje 120 % jeho výrobní ceny. Kolik procent z výrobní ceny činí zisk prodejny? a výrobní cena b prodejní cena z zisk prodejní cena představuje 120 % výrobní ceny: b = 1,20.a zisk ve výši 15 % z prodejní ceny: z = 0,15.b z = 0,15. (1,20. a) = 0,18. a Zisk prodejny činí 18 % z výrobní ceny. 10

11 Úloha č. 21 Stoupání, resp. klesání u silnic je udáváno v procentech, zatímco u železničních tratí v promile. Vypočteme ho jako poměr svislého převýšení a vodorovné vzdálenosti obou míst (na mapě, plánu). a) Vypočtěte, kolik metrů tvoří převýšení silnice mezi dvěma místy silnice vzdálenými ve vodorovném směru 850 m, je-li stoupání (resp. klesání) silnice mezi těmito místy 10 %. b) Určete stoupání (resp. klesání) železniční trati, je-li její výškový rozdíl mezi dvěma stanicemi 9 m při jejich vzdálenosti ve vodorovném směru 1,5 km. a) x m 850 m 10 % = 0,10 = x = ,10 = 85 m Převýšení silnice činí 85 m. b) 9 m 1,5 km = m 11

12 promile... 1 = celku x ( ) = x = 0,006 = 6 Železniční trať stoupá (klesá) o 6. Slovní úlohy řešené pomocí lineárních rovnic Úloha č. 22 Přičteme-li k hledanému číslu jeho třetinu, dostaneme číslo 48. Určete neznámé číslo. Hledané číslo označíme jako a sestavíme příslušnou rovnici. Je dobré uvědomit si, že k hledanému číslu přičteme jeho třetinu, tzn. (nikoli pouze. Hledané číslo je

13 Úloha č. 23 Ve třídě je 29 žáků, z toho o 5 chlapců méně než dívek. Kolik je ve třídě chlapců? Počet chlapců ve třídě označíme jako Dále vyjádříme počet dívek, kterých je o 5 více než chlapců, a sestavíme příslušnou rovnici. počet chlapců... počet dívek... / 5 /:2 Ve třídě je 12 chlapců (a 17 dívek). Úloha č. 24 Ze třídy se rozhodla čtvrtina žáků studovat na VOŠ. Později se přihlásili ještě 3 další žáci. Celkem jich tak bylo 11. Kolik žáků je ve třídě? Počet žáků ve třídě označíme jako a sestavíme příslušnou rovnici. Ve třídě bylo 32 žáků. 13

14 Úloha č. 25 Za nákup 2,5 kg pomerančů a 1,5 kg jablek se zaplatilo celkem 85 korun. Kilogram jablek je o 2 koruny levnější než kilogram pomerančů. Vypočtěte, kolik korun se zaplatilo za pomeranče. Úlohu budeme řešit pomocí soustavy 2 lineárních rovnic. cena za 1 kg pomerančů... Kč cena za 1 kg jablek... Kč /:4 /+3 Spočítali jsme, že za 1 kg pomerančů bylo zaplaceno 22 Kč. 2,5. 22 Kč = 55 Kč Za 2,5 kg pomerančů bylo zaplaceno 55 Kč. Úloha č % z neznámého čísla je o 12 méně než 23 % z téhož čísla. Určete neznámé číslo. Neznámé číslo označíme jako x a zadání přepíšeme pomocí matematického zápisu: Neznámé číslo je

15 Úloha č. 27 Ve třídě 1. A se psala čtvrtletní práce z matematiky. Desetina žáků dostala jedničku, třetina dostala dvojku. Trojku dostaly čtyři patnáctiny žáků a čtyřku pětina žáků. Kolik žáků psalo čtvrtletní práci, když pětku dostali tři z nich? Celkový počet žáků označíme jako a sestavíme příslušnou rovnici. / / Čtvrtletní práci psalo 30 žáků. Úloha č. 28 Ze 2 druhů čaje v ceně 300 Kč za 1 kg a 420 Kč za 1 kg se má připravit 20 kg směsi v ceně 330 Kč za 1 kg. Kolik kg každého druhu čaje je třeba smíchat? Cena čajové směsi: Kč Úlohu budeme řešit pomocí soustavy 2 lineárních rovnic. počet kg levnějšího čaje... počet kg dražšího čaje... rovnice vyjadřující cenu čaje rovnice vyjadřující hmotnost čaje řešení soustavy rovnic dosazovací metodou /: 15

16 kg kg Je třeba smíchat 15 kg levnějšího a 5 kg dražšího čaje. Úloha č. 29 První traktorista zorá lán pole za 10 hodin, druhý traktorista zorá stejně velké pole za 15 hodin. Za kolik hodin zorají toto pole, budou-li pracovat společně? Základní typ úlohy o společné práci.... část pole, kterou by první traktorista zoral za hodin... část pole, kterou by druhý traktorista zoral za hodin Budou-li oba traktoristé pracovat společně po dobu hodin, zorají celé pole (celek): /: Úlohy o společné práci vedou k řešení typické rovnice, ve které je na pravé straně číslo 1 vyjadřující celek vytvořený společnou prací. Traktoristé společně zorají pole za 6 hodin. 16

17 Vyjadřování neznámé ze vzorce Úloha č. 30 a) Ze vzorce pro dráhu rovnoměrného pohybu vyjádřete rychlost. Řešíme jako rovnici o neznámé /: b) Ze vzorce pro objem kvádru vyjádřete délku hrany Řešíme jako rovnici o neznámé /: ) c) Ze vzorce pro obsah lichoběžníku vyjádřete délku základny. Řešíme jako rovnici o neznámé /: 17

RNDr. Zdeněk Horák 23. 11. 2013 VII.

RNDr. Zdeněk Horák 23. 11. 2013 VII. Jméno RNDr. Zdeněk Horák Datum 23. 11. 2013 Ročník VII. Vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE Vzdělávací obor MATEMATIKA Tematický okruh ZLOMKY Téma klíčová slova Slovní úlohy se zlomky, početní

Více

Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013

Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013 Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013 Test přijímací zkoušky bude obsahovat úlohy uzavřené, kdy žák vybírá správnou odpověď ze čtyř nabízených variant (správná je vždy právě

Více

2.5.27 Promile. Předpoklady: 020526

2.5.27 Promile. Předpoklady: 020526 2.5.27 Promile Předpoklady: 020526 Pedagogická poznámka: Na odhady nechávám jen chvíli cca 2 minut. Pak si kontrolujeme výsledky (2, 1, 0, -1 bod) a říkáme si, jak k odhadu dospět. Pak si žáci zjistí přesné

Více

ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ

ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN! Test obsahuje 30 úloh na 60 minut. Každá úloha má právì jedno správné øešení. Za správné øešení získáš 2 body. Za chybnou odpovìï ztratíš

Více

Slovní úlohy řešené lineární rovnicí. pracovní list. Základní škola Zaječí, okres Břeclav Školní 402, 691 05, příspěvková organizace

Slovní úlohy řešené lineární rovnicí. pracovní list. Základní škola Zaječí, okres Břeclav Školní 402, 691 05, příspěvková organizace Slovní úlohy řešené lineární rovnicí pracovní list Název školy: Číslo projektu: Autor: Základní škola Zaječí, okres Břeclav Školní 402, 691 05, příspěvková organizace CZ.1.07/1.4.00/21.1131 Mgr. Lenka

Více

Projekt: Zlepšení výuky na ZŠ Schulzovy sady registrační číslo: CZ.1.07./1.4.00/21.2581. Datum: 7. 02. - 10. 2. 2012. Ročník: 7.

Projekt: Zlepšení výuky na ZŠ Schulzovy sady registrační číslo: CZ.1.07./1.4.00/21.2581. Datum: 7. 02. - 10. 2. 2012. Ročník: 7. Projekt: Zlepšení výuky na ZŠ Schulzovy sady registrační číslo: CZ.1.07./1.4.00/21.2581 Autor: Marie Smolíková Datum: 7. 02. - 10. 2. 2012 Ročník: 7. Vzdělávací oblast: Vzdělávací obor: Tematický okruh:

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ..7/.5./4.82 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

Více

1 z 7 18.6.2012 8:14. 1. otázka. Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem čísla 25? 2. otázka

1 z 7 18.6.2012 8:14. 1. otázka. Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem čísla 25? 2. otázka Stonožka 9 - M 2011 - náhled testu http://ib.scio.cz/test?t=ceow8rrhgtr79v2xq7/zcppky1fbxbzulq... 1 z 7 18.6.2012 8:14 1. otázka Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem

Více

Autor: Jana Krchová Obor: Matematika. Procenta

Autor: Jana Krchová Obor: Matematika. Procenta Procenta Vypočítej zpaměti: a) 123 : 78 : 4356 : 10 82 : 28 190 : 6 : b) 9 : 0,5 : 0,34 : 6,4 : 0,072 : 0,73 : Vypočítej: 3 a) : 4 2 5 : 6 7 : 5 12 : 7 15 : 1 2 3 4 8 b) 1 : 2 : 3 : 2 : 5 : 2 5 4 7 9 1

Více

Slovní úlohy na směsi a roztoky. pracovní list. Základní škola Zaječí, okres Břeclav Školní 402, 691 05, příspěvková organizace

Slovní úlohy na směsi a roztoky. pracovní list. Základní škola Zaječí, okres Břeclav Školní 402, 691 05, příspěvková organizace Slovní úlohy na směsi a roztoky pracovní list Název školy: Číslo projektu: Autor: Základní škola Zaječí, okres Břeclav Školní 402, 691 05, příspěvková organizace CZ.1.07/1.4.00/21.1131 Mgr. Lenka Němetzová

Více

Přijímačky nanečisto - 2011

Přijímačky nanečisto - 2011 Přijímačky nanečisto - 2011 1. Vypočtěte: 0,5 2 + (-0,5) 2 (- 0,1) 3 = a) 0,001 b) 0,51 c) 0,499 d) 0,501 2. Vypočtěte: a) 0,4 b) - 0,08 c) 2 3 d) 2 3. Určete číslo s tímto rozvinutým zápisem v desítkové

Více

Přehled učiva matematiky 7. ročník ZŠ

Přehled učiva matematiky 7. ročník ZŠ Přehled učiva matematiky 7. ročník ZŠ I. ARITMETIKA 1. Zlomky a racionální čísla Jestliže rozdělíme něco (= celek) na několik stejných dílů, nazývá se každá část celku zlomkem. Zlomek tři čtvrtiny = tři

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

Slovní úlohy na procenta

Slovní úlohy na procenta Slovní úlohy na procenta 1. Krev činí v lidském těle přibližně 7,6 % hmotnosti těla. Kolik kg krve je v těle dospělého člověka, který má hmotnost 80 kg? Kolik procent hmotnosti bude činit krev v těle téhož

Více

1.1.5 Poměry a úměrnosti II

1.1.5 Poměry a úměrnosti II 1.1.5 Poměry a úměrnosti II Předpoklady: 1104 U následujících úloh je nutné poznat, zda jde o přímou nebo nepřímou úměrnost případně příklad, který není možné řešit ani jedním z obou postupů. Pedagogická

Více

Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková

Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková VY_42_INOVACE_MA1_01-36 Název školy Základní škola Benešov, Jiráskova 888 Číslo projektu CZ.1.07/1.4.00/21.1278 Název projektu Pojďte s námi Číslo a název šablony klíčové aktivity IV/2 Inovace a zkvalitnění

Více

Úlohy. b) číslo 0,8 o 35% d) číslo 220 o 22 % 1 % ze z 10,80 Kč č 10,80 Kč 103,5 = 1117,80 Kč

Úlohy. b) číslo 0,8 o 35% d) číslo 220 o 22 % 1 % ze z 10,80 Kč č 10,80 Kč 103,5 = 1117,80 Kč 2. Obnos 1080 Kč představuje základ z, ze kterého počítáme procentovou část č, odpovídající počtu procent p 3,5; vypočítanou procentovou část pak přičteme k základu. 1. způsob: z 1080 Kč p 103,5 č... Kč

Více

Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek)

Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek) Mária adloňová Fajn MATIKA (nejen) na přijímačky 50 řešených příkladů (vorek) 0 Mgr. Mária adloňová FajnMATIKA (nejen) na přijímačky 50 řešených příkladů (reklamní vorek) Mgr. Mária adloňová, 0 Vydavatel

Více

M - Slovní úlohy řešené rovnicí - pro učební obory

M - Slovní úlohy řešené rovnicí - pro učební obory M - Slovní úlohy řešené rovnicí - pro učební obory Autor: Mgr. Jaromír Jurek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s využitím odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

Procenta. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz.

Procenta. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. Variace 1 Procenta Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Procenta U příkladů, kde se vyskytují procenta,

Více

1. Na stole jsou tři hromádky jablek. Na první je o třináct jablek méně než na druhé, na třetí hromádce je o osm

1. Na stole jsou tři hromádky jablek. Na první je o třináct jablek méně než na druhé, na třetí hromádce je o osm 1. Na stole jsou tři hromádky jablek. Na první je o třináct jablek méně než na druhé, na třetí hromádce je o osm jablek více než na první. Kolik jablek je dohromady na stole, víš-li, že na druhé hromádce

Více

Očekávaný výstup Zvládnutí řešení slovních úloh, vedoucích k sestavení dvou rovnic o dvou neznámých. Speciální vzdělávací potřeby.

Očekávaný výstup Zvládnutí řešení slovních úloh, vedoucích k sestavení dvou rovnic o dvou neznámých. Speciální vzdělávací potřeby. Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Ing. Renata Dupalová Datum 18.7.2014 Ročník 9. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika

Více

Zkouška Jestliže 17 % z 215 t je 36,55 t, potom 83 % z 215 t je 215 t 36,55 t = 178,45 t.

Zkouška Jestliže 17 % z 215 t je 36,55 t, potom 83 % z 215 t je 215 t 36,55 t = 178,45 t. Úlohy na procenta Řešíme buď: Přes jedno procento. Užitím vzorce č = z. p, kde č je část základu odpovídající danému počtu procent, z je základ, p je počet procent odpovídající dané části základu vyjádřený

Více

Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je 3 m dlouhý.

Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je 3 m dlouhý. DDÚ Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je m dlouhý. Na délce válce vůbec nezáleží, záleží na jeho obvodu, poloměr je 110 cm, vypočítám

Více

Chemické výpočty. = 1,66057. 10-27 kg

Chemické výpočty. = 1,66057. 10-27 kg 1. Relativní atomová hmotnost Chemické výpočty Hmotnost atomů je velice malá, řádově 10-27 kg, a proto by bylo značně nepraktické vyjadřovat ji v kg, či v jednontkách odvozených. Užitečnější je zvolit

Více

Kód uchazeče ID:... Varianta: 14

Kód uchazeče ID:... Varianta: 14 Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2013 Kód uchazeče ID:.................. Varianta: 14 1. V lednu byla zaměstnancům zvýšena mzda o 16 % prosincové mzdy. Následně

Více

Racionální čísla. Množinu racionálních čísel značíme Q. Zlomky můžeme při počítání s nimi:

Racionální čísla. Množinu racionálních čísel značíme Q. Zlomky můžeme při počítání s nimi: Racionální čísla Racionální číslo je číslo vyjádřené ve tvaru zlomku p kde p je celé číslo a q je q číslo přirozené. Tento zápis je jednoznačný pokud čísla p, q jsou nesoudělná, zlomek je v základním tvaru.

Více

Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M.

Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M. Přípravný kurz - Matematika Téma: Slovní úlohy Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M.Hetmerová 12 19 9:02 Zapamatujte

Více

MATEMATIKA. 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5. vážil celý nákup? (A) 4,25 kg (B) 4,5 kg (C) 5 kg (D) 5,25 kg 6.

MATEMATIKA. 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5. vážil celý nákup? (A) 4,25 kg (B) 4,5 kg (C) 5 kg (D) 5,25 kg 6. MATEMATIKA 9. třída. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 7 (B) M = 4N (C) M N

Více

Obecné informace: Typy úloh a hodnocení:

Obecné informace: Typy úloh a hodnocení: Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:

Více

ZLOMKY A DESETINNÁ ČÍSLA. Růžena Blažková

ZLOMKY A DESETINNÁ ČÍSLA. Růžena Blažková ZLOMKY A DESETINNÁ ČÍSLA Růžena Blažková Úvod Se zlomky a s desetinnými čísly se setkává každý člověk, jak v běžném životě, tak v pracovních či zájmových činnostech. Z matematického hlediska není rozdíl

Více

Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 6.

Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 6. 5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 6. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo ČÍSLO A PROMĚNNÁ M9101 provádí

Více

ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ

ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ 5 NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN! Test obsahuje 30 úloh na 60 minut. Každá úloha má právì jedno správné øešení. Za správné øešení získáš 2 body. Za chybnou odpovìï ztratíš

Více

Stereometrie pro učební obory

Stereometrie pro učební obory Variace 1 Stereometrie pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz 1. Vzájemná poloha prostorových

Více

S = 2. π. r ( r + v )

S = 2. π. r ( r + v ) horní podstava plášť výška válce průměr podstavy poloměr podstavy dolní podstava Válec se skládá ze dvou shodných podstav (horní a dolní) a pláště. Podstavou je kruh. Plášť má tvar obdélníka, který má

Více

Příklady k opakování učiva ZŠ

Příklady k opakování učiva ZŠ Příklady k opakování učiva ZŠ 1. Číslo 78 je dělitelné: 8 7 3. Rozhodněte, které z následujících čísel je dělitelem čísla 94: 4 14 15 3. Určete všechny dělitele čísla 36:, 18, 4, 9, 6, 3, 1, 3, 6, 1 3,

Více

VY_42_Inovace_10_MA_1.01_ Slovní úlohy pracovní list

VY_42_Inovace_10_MA_1.01_ Slovní úlohy pracovní list Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0394 VY_42_Inovace_10_MA_1.01_ Slovní úlohy pracovní list Název školy Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor

Více

8. ročník - školní kolo

8. ročník - školní kolo PVTHAGORIÁDA 2012/2013 8. ročník - školní kolo ZADÁNí 1) Které číslo nepatří mezi ostatní? 225; 168; 144; 289; 324; 196; 121; 361 2) Tyč byla rozříznuta na poloviny, poté jednu část dále rozřízli na dva

Více

10a) Procenta, promile

10a) Procenta, promile 10a) Procenta, promile 1% (procento) je 1 setina základu Při výpočtu příkladů, které se týkají procent se setkáváme se třemi základními pojmy : základ ( z ), počet procent ( p ), procentová část (č ).

Více

Vzorové příklady k přijímacím zkouškám. 1) Doplňte číselné řady o další dvě čísla. a) 3, 6, 12, 24, 48, 96,... b) 875, 764, 653, 542, 431,...

Vzorové příklady k přijímacím zkouškám. 1) Doplňte číselné řady o další dvě čísla. a) 3, 6, 12, 24, 48, 96,... b) 875, 764, 653, 542, 431,... Vzorové příklady k přijímacím zkouškám ) Doplňte číselné řady o další dvě čísla. a), 6,, 4, 48, 96,... b) 87, 764, 6, 4, 4,... c), 6, 8,,, 0, 6,... d),,, 7,,, 7, 9,,... e) ; ; ; ; ; 8 ) Doplňte číslo místo.

Více

Úlohy soutěže MaSo, 23. listopadu 2007

Úlohy soutěže MaSo, 23. listopadu 2007 Úlohy soutěže MaSo, 23. listopadu 2007 1. Jednou v noci král Honza III. Hrozný nemohl spát, a proto šel do královské kuchyně, kde našel balíček lupínků. Snědl 1/8 lupínků. Za chvíli přišla hladová královna

Více

Přímá a nepřímá úměrnost

Přímá a nepřímá úměrnost Přímá a ne - rovnice: y = k.x + c - graf: přímka - platí: čím víc, tím víc - př.: spotřeba benzínu motorovým vozidlem a vzdálenost, kterou vozidlo urazí při stejném výkonu ne k - rovnice: y c x - graf:

Více

Základní škola Kaznějov, příspěvková organizace, okres Plzeň-sever

Základní škola Kaznějov, příspěvková organizace, okres Plzeň-sever Základní škola Kaznějov, příspěvková organizace, okres Plzeň-sever DIGITÁLNÍ UČEBNÍ MATERIÁL Název projektu Registrační číslo projektu UČENÍ JE SKRYTÉ BOHATSTVÍ INOVACE VÝUKY ZŠ KAZNĚJOV CZ.1.07/1.1.12/02.0029

Více

1. Tři shodné obdélníky jsou rozděleny různými způsoby. První je rozdělen na 4 shodné části, poslední obdélník na 6 shodných částí.

1. Tři shodné obdélníky jsou rozděleny různými způsoby. První je rozdělen na 4 shodné části, poslední obdélník na 6 shodných částí. . Tři shodné obdélníky jsou rozděleny různými způsoby. První je rozdělen na 4 shodné části, poslední obdélník na 6 shodných částí. Vyjádřete zlomkem, jakou část druhého obdélníku tvoří zatmavená plocha..

Více

Slovní úlohy v učivu matematiky 1. stupně základní školy

Slovní úlohy v učivu matematiky 1. stupně základní školy Slovní úlohy v učivu matematiky 1. stupně základní školy V každé matematické úloze jde o to, abychom dokázali platnost (pravdivost) nějakého výroku. Podle toho, o jaký výrok jde, máme různé druhy úloh.

Více

Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M.

Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M. Přípravný kurz - Matematika Téma: Slovní úlohy Klíčová slova: matematizace reálných úloh, přímá a nepřímá úměrnost, společná práce, zlomky, procenta, části celku Autor: Mgr.M.Hetmerová 12 19 9:02 Jak pracovat

Více

Ekvivalentní úpravy soustavy rovnic v oboru reálných čísel: Metody řešení soustavy dvou rovnic o dvou neznámých:

Ekvivalentní úpravy soustavy rovnic v oboru reálných čísel: Metody řešení soustavy dvou rovnic o dvou neznámých: Soustava rovnic o dvou neznámých Soustavou rovnic nazýváme dvojici rovnic, která má platit současně. Řešením takové soustavy je uspořádaná dvojice kořenů [x, y],která splňuje obě rovnice. Ekvivalentní

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,

Více

Poměry a úměrnosti. Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku

Poměry a úměrnosti. Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku Poměry a úměrnosti Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku S poměrem lze pracovat jako se zlomkem a : b = a b porovnávat,

Více

P Y T H A G O R I Á DA. 37. ročník 2013/2014 8. R O Č N Í K

P Y T H A G O R I Á DA. 37. ročník 2013/2014 8. R O Č N Í K P Y T H A G O R I Á DA 37. ročník 013/014 8. R O Č N Í K Š K O L N Í K O L O Adresář krajských garantů soutěží na školní rok - 013/014 Kraj Krajský úřad pověřená osoba * Mgr. Michaela Knappová. Magistrát

Více

a se nazývá aritmetická právě tehdy, když existuje takové číslo d R

a se nazývá aritmetická právě tehdy, když existuje takové číslo d R Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ Mgr. Tomáš MAŇÁK. březen 014 Název zpracovaného celku: ARITMETICKÁ POSLOUPNOST A JEJÍ UŽITÍ ARITMETICKÁ POSLOUPNOST Teorie: Posloupnost každé ( ) n n1

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

Variace. Poměr, trojčlenka

Variace. Poměr, trojčlenka Variace 1 Poměr, trojčlenka Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Poměr Poměr je matematický zápis

Více

MATEMATIKA / 1. ROČNÍK. Strategie (metody a formy práce)

MATEMATIKA / 1. ROČNÍK. Strategie (metody a formy práce) MATEMATIKA / 1. ROČNÍK Učivo Čas Strategie (metody a formy práce) Pomůcky Numerace v oboru do 7 30 pokládání koleček rozlišování čísel znázorňování kreslení a představivost třídění - číselné obrázky -

Více

Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď C C B B C

Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď C C B B C Matematické myšlení: Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď. Které číslo doplníte místo 6 8 0. Které číslo doplníte místo 5 7 7 5 3. Které číslo doplníte místo 70 7 76

Více

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5 MATEMATIKA 9. TŘÍDA 1. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 17 (B) M = 4N (C) M

Více

DOPLŇKOVÝ STUDIJNÍ MATERIÁL CHEMICKÉ VÝPOČTY. Zuzana Špalková. Věra Vyskočilová

DOPLŇKOVÝ STUDIJNÍ MATERIÁL CHEMICKÉ VÝPOČTY. Zuzana Špalková. Věra Vyskočilová DOPLŇKOVÝ STUDIJNÍ MATERIÁL CHEMICKÉ VÝPOČTY Zuzana Špalková Věra Vyskočilová BRNO 2014 Doplňkový studijní materiál zaměřený na Chemické výpočty byl vytvořen v rámci projektu Interní vzdělávací agentury

Více

CVIČENÍ č. 3 STATIKA TEKUTIN

CVIČENÍ č. 3 STATIKA TEKUTIN Rovnováha, Síly na rovinné stěny CVIČENÍ č. 3 STATIKA TEKUTIN Příklad č. 1: Nákladní automobil s cisternou ve tvaru kvádru o rozměrech H x L x B se pohybuje přímočarým pohybem po nakloněné rovině se zrychlením

Více

Vitamín C, kyselina askorbová

Vitamín C, kyselina askorbová Středoškolská technika 2010 Setkání a prezentace prací středoškolských studentů na ČVUT Vitamín C, kyselina askorbová Veronika Valešová Gymnázium Pardubice, Dašická ulice 1083, Pardubice Cíl Mým cílem

Více

Vyučovací předmět: Matematika. Charakteristika vyučovacího předmětu

Vyučovací předmět: Matematika. Charakteristika vyučovacího předmětu Vyučovací předmět: Matematika Školní vzdělávací program pro základní vzdělávání Základní školy a mateřské školy Dobrovice Charakteristika vyučovacího předmětu Obsahové, časové a organizační vymezení předmětu

Více

MATEMATIKA Srovnávací pololetní práce; příklady 7. ročník, II. pololetí

MATEMATIKA Srovnávací pololetní práce; příklady 7. ročník, II. pololetí MATEMATIKA Srovnávací pololetní práce; příklady 7. ročník, II. pololetí I. Celá čísla,vypočítejte: -3 + 8-5 + 2-9 4 8 8 2-6 + 9-6 2 25 + 32 4 5-8 + 5-6 2-6 + 4-2 + 30 8 9 42 20-9 + 3 9 +25 4 7-3 + 0 9

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou čtyři červené

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 15. 10. 2013 Obtížnost 1 Úloha 1 Přednáška trvala 80 minut a skončila

Více

Slovní úlohy řešené rovnicí pro učební obory

Slovní úlohy řešené rovnicí pro učební obory Variace 1 Slovní úlohy řešené rovnicí pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Slovní

Více

Kinematika pohyb rovnoměrný

Kinematika pohyb rovnoměrný DUM Základy přírodních věd DUM III/2-T3-03 Téma: Kinematika rovnoměrný Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Kinematika rovnoměrný Kinematika je jedna ze základních

Více

Úlohy na procvičení z matematiky před nástupem na SPŠST Panská

Úlohy na procvičení z matematiky před nástupem na SPŠST Panská Úlohy na procvičení z matematiky před nástupem na SPŠST Panská PROCENTA Kolik je 0 % ze? Určete základ, je-li 0 rovno % Kolik procent je 0 ze 7? Najděte číslo, které je o % větší, než číslo 0 Je zlomek

Více

Čtvrťáci a matematika VIII

Čtvrťáci a matematika VIII Čtvrťáci a matematika VIII Poznáváme čísla do 1 000 000 a větší než milión 1. Nejdříve odhadněte a pak spočítejte, kolik je tu základních čtverců sítě. 1 2. Rozepište čísla do tabulky a čísla zapsaná v

Více

Digitální učební materiál

Digitální učební materiál Projekt: Digitální učební materiál Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

výška (cm) počet žáků

výška (cm) počet žáků Statistika samostatná práce 1) Ve školním roce /13 bylo v Brně 5 základních škol, ve kterých bylo celkem 5 tříd. Tyto školy navštěvovalo 1 3 žáků. Určete a) kolik tříd průměrně měla jedna ZŠ, b) kolik

Více

Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro

Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro Příjímací zkoušky 01 Přípravný kurz k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) 1. Číselné obory 1.1. Doplňte číslo do rámečku tak, aby platila rovnost: 1.1.1.

Více

MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň

MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň Obsahové, časové a organizační vymezení Předmět Matematika se vyučuje jako samostatný předmět v 6. až 8. ročníku 4 hodiny týdně, v 9. ročníku 3

Více

Vypočítejte délku tělesové úhlopříčky krychle o hraně délky a cm.

Vypočítejte délku tělesové úhlopříčky krychle o hraně délky a cm. Vypočítejte délku tělesové úhlopříčky krychle o hraně délky a cm. 8 cm u s = 11,3137085 cm pomocí Pythagorovy věty z pravoúhlého ABC u t = 13,85640646 cm opět pomocí Pythagorovy věty z pravoúhlého ACA'

Více

57 LINEÁRNÍ rovnice slovní úlohy I 25.4.2014.notebook. April 21, 2016. Rozcvička

57 LINEÁRNÍ rovnice slovní úlohy I 25.4.2014.notebook. April 21, 2016. Rozcvička Rozcvička A B 1 Ve třídě je celkem 28 žáků. Chlapců je o 4 méně než děvčat. Kolik je ve třídě chlapců a kolik děvčat? celkem... 28 žáků chlapci... x 4...12 chlapců dívky... x... 16 dívek 2 Celková výměra

Více

SBÍRKA ZÁKONŮ ČESKÉ REPUBLIKY

SBÍRKA ZÁKONŮ ČESKÉ REPUBLIKY SBÍRKA ZÁKONŮ ČESKÉ REPUBLIKY Profil aktualizovaného znění: Titul původního předpisu: Vyhláška o způsobu zhotovení některých druhů hotově baleného zboží, jehož množství se vyjadřuje v jednotkách hmotnosti

Více

CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ MATEMATIKA A JEJÍ APLIKACE MATEMATIKA Mgr. Dana Rauchová

CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ MATEMATIKA A JEJÍ APLIKACE MATEMATIKA Mgr. Dana Rauchová CHARAKTERISTIKA VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ MATEMATIKA A JEJÍ APLIKACE MATEMATIKA Mgr. Dana Rauchová Obsah vzdělávacího oboru Matematika a její aplikace je rozdělen na čtyři tématické

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Ke každé z jednoduchých úloh přiřaď,

Více

Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace

Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Identifikační údaje školy Číslo projektu Číslo a název šablony Autor Tematická oblast Číslo a název materiálu Anotace Vytvořeno 18.6.2013 Určeno pro Přílohy VÝUKOVÝ MATERIÁL Vyšší odborná škola a Střední

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_4_Mechanická práce a energie Ing. Jakub Ulmann 4 Mechanická práce a energie 4.1 Mechanická práce 4.2

Více

f) Kolik je 51% z 173 Kč?

f) Kolik je 51% z 173 Kč? Hodina 1 Procenta úvod 2. Vypočítej 1% z těchto základů: a) 140 kg; b) 250 m; c) 4,87 hl; d) 54 780 cm; e) 6,5 h; f) 25 C; g) 0,89 km; h) 2 1 dm; i) 3 2 m 2 ; j) 10 000 m 3 3. Doplň následující tabulku

Více

METODICKÉ LISTY. výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Karlových Varech. číslo)

METODICKÉ LISTY. výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Karlových Varech. číslo) METODICKÉ LISTY výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Karlových Varech reg. č. projektu: CZ.1.07/1.3.11/02.0003 Sada metodických listů: KABINET MATEMATIKY

Více

Matematika. Až zahájíš práci, nezapomeò:

Matematika. Až zahájíš práci, nezapomeò: 9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení

Více

Matematická statistika

Matematická statistika Matematická statistika Daniel Husek Gymnázium Rožnov pod Radhoštěm, 8. A8 Dne 12. 12. 2010 v Rožnově pod Radhoštěm Osnova Strana 1) Úvod 3 2) Historie matematické statistiky 4 3) Základní pojmy matematické

Více

4. Lineární nerovnice a jejich soustavy

4. Lineární nerovnice a jejich soustavy 4. Lineární nerovnice a jejich soustavy 9. ročník 4. Lineární nerovnice a jejich soustavy 5 > 0 ostrá nerovnost 5.0 50 neostrá nerovnost ( používáme pouze čísla) ZNAKY NEROVNOSTI: > je větší než < je menší

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454. Název DUM: Výkon v příkladech

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454. Název DUM: Výkon v příkladech Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Výkon v příkladech

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

Statistika. Počet přestupků. 1 2 3 4 5 6 7 8 9 10 11 12 počet odebraných bodů za jeden přestupek. Statistický soubor 1

Statistika. Počet přestupků. 1 2 3 4 5 6 7 8 9 10 11 12 počet odebraných bodů za jeden přestupek. Statistický soubor 1 Statistika Statistický soubor 1 Při měření výšky u žáků jedné třídy byly zjištěny tyto údaje (v cm): 1,176,17,176,17,17,176,17,17,17. a) Objasněte základní pojmy (stat. soubor, rozsah souboru, stat. jednotka,

Více

Otázky z kapitoly Základní poznatky

Otázky z kapitoly Základní poznatky Otázky z kapitoly Základní poznatky 4. ledna 2016 Obsah 1 Krokované příklady (0 otázek) 1 2 Mnohočleny a lomené výrazy (88 otázek) 1 2.1 Obtížnost 2 (78 otázek)....................................... 1

Více

Grafické sčítání úseček teorie

Grafické sčítání úseček teorie Grafické sčítání úseček teorie Nezáleží na tom, kterou úsečku přeneseme na polopřímku jako první. Úsečka AD je grafickým součtem úseček AB a CD. Příklad 1 Hana jde ze školy na poštu, z pošty do knihovny.

Více

MATEMATIKA. 7. třída. Scio Matematika ukázkový test 7. třída

MATEMATIKA. 7. třída. Scio Matematika ukázkový test 7. třída MATEMATIKA 7. třída 1. Pavel musí vypracovat slohovou práci o rozsahu 4000 slov. Za půl hodiny napíše v průměru 100 slov. Kolik hodin Pavel potřebuje pro vytvoření slohové práce, pokud se chce po dopsání

Více

a) Slovní úlohy o směsích b) Slovní úlohy o pohybu c) Slovní úlohy o společné práci

a) Slovní úlohy o směsích b) Slovní úlohy o pohybu c) Slovní úlohy o společné práci 9. ročník a) Slovní úlohy o směsích b) Slovní úlohy o pohybu c) Slovní úlohy o společné práci d) Logické slovní úlohy Obecný postup řešení slovní úlohy: 1. Určení neznámých 2. Stanovení dvou vztahů rovnosti

Více

Desetinná čísla pracovní listy pro ročník stupňované podle náročnosti Irena Budínová Pedagogická fakulta MU

Desetinná čísla pracovní listy pro ročník stupňované podle náročnosti Irena Budínová Pedagogická fakulta MU Desetinná čísla pracovní listy pro 6. 7. ročník stupňované podle náročnosti Irena Budínová Pedagogická fakulta MU irena.budinova@seznam.cz Moderní výuka by se měla co nejvíce orientovat na individualitu

Více

Rovnice ve slovních úlohách

Rovnice ve slovních úlohách Rovnice ve slovních úlohách Při řešení slovních úloh postupujeme obvykle takto (matematizace): 1. V textu úlohy vyhledáme veličinu, která je neznámá, a její číselnou hodnotu označíme vhodným písmenem (

Více

Na odměny ve školní soutěži bylo koupeno 25 tužek. Dražší tužky byly za 20 Kč, lacinější za 15 Kč. Celá zaplacená částka byla 455 Kč.

Na odměny ve školní soutěži bylo koupeno 25 tužek. Dražší tužky byly za 20 Kč, lacinější za 15 Kč. Celá zaplacená částka byla 455 Kč. Na odměny ve školní soutěži bylo koupeno 25 tužek. Dražší tužky byly za 20 Kč, lacinější za 15 Kč. Celá zaplacená částka byla 455 Kč. Kolik kusů tužek od každého druhu bylo koupeno? 16 ks dražších a 9

Více

i 8 klouzků a 4 kozáky. Zbylé 4 praváky rozkrájela na plátky a nechala sušit. Kolik babek našel Michal?

i 8 klouzků a 4 kozáky. Zbylé 4 praváky rozkrájela na plátky a nechala sušit. Kolik babek našel Michal? (1) 1. Michal Muchomůrka rád sbírá houby. Jednou se vrátil z lesa s plným košíkem. Dvacet procent hub od každého druhu ale bylo červivých, a tak je paní Muchomůrková musela vyhodit. Protože řízky jsou

Více

Variace. Mechanika kapalin

Variace. Mechanika kapalin Variace 1 Mechanika kapalin Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Pascalův zákon, mechanické vlastnosti

Více

Téma 1: Numerické výpočty (číselné množiny, druhy čísel, absolutní hodnota, zaokrouhlování, dělitelnost čísel, společný násobek a dělitel čísel)

Téma 1: Numerické výpočty (číselné množiny, druhy čísel, absolutní hodnota, zaokrouhlování, dělitelnost čísel, společný násobek a dělitel čísel) Téma : Numerické výpočty (číselné množiny, druhy čísel, absolutní hodnota, zaokrouhlování, dělitelnost čísel, společný násobek a dělitel čísel) Příklady Číselná osa ) Která z následujících čísel neleží

Více

výška (cm) počet žáků

výška (cm) počet žáků Statistika 1) Ve školním roce 1997/119 bylo v Brně 3 základních škol, ve kterých bylo celkem 1 tříd. Tyto školy navštěvovalo 11 5 žáků. Určete a) kolik tříd průměrně měla jedna ZŠ, b) kolik žáků průměrně

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_15 ŠVP Podnikání RVP 64-41-L/51

Více

Procenta. 100, tzn. desetinné číslo 0,45. Jméno pochází z per cento, znamenajícího na sto.

Procenta. 100, tzn. desetinné číslo 0,45. Jméno pochází z per cento, znamenajícího na sto. Procenta Procenta jsou způsobem, jak vyjádřit část celku (setiny, tzn. zlomek) pomocí celého čísla. Zápis např. 45% je ve skutečnosti jenom zkratkou pro zlomek 45 100, tzn. desetinné číslo 0,45. Jméno

Více

( ) Zadání SPORT 2014. 1. Kolik % z 2,5 Kč je 0,5 Kč? a) 5% b) 10% c) 20% d) 25% 2. Žák popleta v písemce napsal: ( x 1) x 1

( ) Zadání SPORT 2014. 1. Kolik % z 2,5 Kč je 0,5 Kč? a) 5% b) 10% c) 20% d) 25% 2. Žák popleta v písemce napsal: ( x 1) x 1 Zadání SPORT 0. Kolik % z,5 Kč 0,5 Kč? a) 5% b) 0% c) 0% d) 5%. Žák popleta v písemce napsal: ( x ) x =. Pro která x ho výpočet správný? a) x = b) x = c) x = 0 d) pro žádné x. Určete délku x podle údajů

Více