Analýza kvantitativních dat II. Standardizace v kontingenční tabulce kontrola vlivu 3 faktoru

Rozměr: px
Začít zobrazení ze stránky:

Download "Analýza kvantitativních dat II. Standardizace v kontingenční tabulce kontrola vlivu 3 faktoru"

Transkript

1 UK FHS Historická sociologie (LS 2013+) Analýza kvantitativních dat II. Standardizace v kontingenční tabulce kontrola vlivu 3 faktoru Jiří Šafr jiri.safr(zavináč)seznam.cz poslední aktualizace

2 OBSAH Připomenutí principu kontingenčních tabulek s tříděním třetího stupně Princip přímé standardizace v kontingenční tabulce (převážení podle kontrolního faktoru) Příklad 1: Sebeúcta dítěte podle náboženské orientace rodiny při kontrole vzdělání otce Příklad 2: Militantnost v boji za lidská práva podle náboženskosti při kontrole vzdělání Výpočet redukce vlivem kontrolní proměnné/ faktoru Příklad 3: Vzdělanostní aspirace podle typu školy/čtvrti při kontrole vlivu vzdělání rodičů Příklad 4 s ukázkou v SPSS: Chození do kina podle vzdělání s kontrolou vlivu věku, ve verzi: a) standardizace v konting. tab. (pro kategoriální znaky) b) parciální korelace (pro ordinální/kardinální znaky) 2

3 Nejprve připomenutí principu: Tabulky třídění třetího stupně Podrobněji viz

4 Testování/ kontrola vlivu dalšího faktoru Vytvořením samostatných tabulek podle kategorií třetí proměnné je testovaný faktor (třetí proměnná) udržován na konstantní hodnotě. souvislost mezi původními proměnnými je očištěna od zkreslujícího vlivu této další proměnné. 4

5 Testování vlivu dalšího faktoru Porovnáme intenzitu souvislosti v původní tabulce se souvislosti zjištěnou v nových tabulkách s kontrolou 3 faktoru. Když v nových tabulkách souvislost mezi původními daty zmizí/ je podstatně oslabena souvislost v původní tabulce je funkcí třetího faktoru 5

6 Třídění 3 st.: kontrola vlivu 3 proměnné: interpretace a uspořádání tabulky Souvisí účast ve volbách s věkem, i při kontrole vlivu vzdělání? Základní vzdělání Střední vzdělání Vysokoškolské vzdělání < 39 let > 60 let < 39 let > 60 let < 39 let > 60 let Volil 18% 24% 32% 36% 34% 49% 40% 50% 70% Nevolil Celkem 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % N (109) (202) (45) (97) (271) (139) (27) (62) (50) Rozdíly mezi krajními kategoriemi věku: 14 % 13 % 30 % Ptáme se: Zatímco v případě ZŠ a SŠ jsou rozdíly mezi nejmladšími a nejstaršími stejné, tak u VŠ je rozdíl větší. Vzdělání tedy do vztahu mezi volební účastí a věkem částečně intervenuje. 1. Nacházíme rozdíly v X (věk) a Y (volil) uvnitř kategorií kontrolní proměnné Z (vzdělání)? Porovnáme s tabulkou třídění 2. st. Pro X a Y. 2. Jsou rozdíly mezi krajními kategoriemi X (věk) v rámci kategorií kontrolní proměnné Z (vzdělání) stejné? 6

7 Dalším krokem pak může být Přímá standardizace vztahu podle třetí proměnné

8 Přímá standardizace v kontingenční tabulce Navazujeme na elaboraci kontrolu vlivu Standardizace je metoda původně používaná v demografii, kdy jde o kontrolu proměny nějaké struktury (kontrolovanou proměnnou je tak vlastně čas skrze vliv proměny struktury např. z hlediska věku) Princip viz přednášku Standardizace intenzitních údajů Tento princip jde aplikovat i na kontingenční tabulku (nebo tabulku průměrů v podskupinách) Ukazujeme tzv. čistý vztah dvou proměnných při kontrole vlivu třetí proměnné 8

9 Přímá standardizace v kontingenční tabulce Princip: převážení dle kategorií třetí proměnné, čímž kontrolujeme její vliv ukazujeme vztah dvou kategoriálních proměnných, jako kdyby hodnoty třetí byly v celé populaci stejné Porovnáme původní s hypotetickou - převáženou tabulkou (v níž je vztah X a Y jako kdyby v kategoriích X-nezávislá měla stejné rozložení v kategoriích Z) Jde o analogický postup k parciálním korelacím v případě tří kardinálních (ordinálních) znaků. 9

10 Příklad1 Sebeúcta dítěte podle náboženské orientace rodiny (s kontrolou vlivu Vzdělání otce) Rosenberg, M Test Factor Standardization as a Method of Interpretation. Social Forces 41(1): Text je dostupný na

11 Výsledek: Původní (hrubý) a Standardizovaný (čistý) vztah tabulku původního vztahu X a Y parcializujeme pro kategorie faktoru M (kontrolní proměnné) Standardizujme (převážíme) políčka dle struktury faktoru M (zde vzdělání otce) Porovnáme hrubou a čistou míru X a Y 11 Zdroj: [Rosenberg 1962]

12 Náboženskost a Sebeúcta, kontrola vzdělání otce: Standardizace/vážení Váhy (vzdělání otce) Váhy (podíl vzdělanostních kategorií třídění 1.st.) spočítáme z absolutních četností pro katolíky (Vys. sebeúcta): 0,1579 * 0,681 = 0,1075 Standardizace převážení dle vzdělání otce váha hodnota v daném poli Zdroj: [Rosenberg 1962] 12

13 Pokračování tabulky Tabulka má 6 panelů pro vzdělání Zdroj: [Rosenberg 1962] 13

14 Váhy: podíl (pravděpodobnost) vzdělanostních kategorií otce 8th Grade or Less Some High School High School Graduate Some College College Graduate Post-Graduate Celkem 0,1579 0,2488 0,2891 0,1019 0,1312 0,0712 1,000 14

15 Přímá standardizace: Vážený čistý procentní rozdíl Váhy získáme z tabulky z absolutních četností (viz další příklad) Máme-li původní mikro-data, můžeme je rychle spočítat pomocí třídění 1. stupně. Ukazujeme Vážený čistý procentní rozdíl a porovnáme ho s hrubým rozdílem (původní vztah bez kontroly) Redukce v pozorovaném vztahu dvou proměnných, způsobené zavedením 3 proměnné Spočítáme váženou sumu % závislé proměnné (zde sebeúcty) napříč kategoriemi kontrolního faktoru (vzdělání otce) 15

16 Postup standardizace podle testového faktoru Váhy: spočítáme podíly v každé testové kategorii (zde vzdělání otce), = marginální součet / celkovým počtem případů (pro všechny pole platí součet 1 resp. 100%) Pro první pole (8th Grade): = 592 tj. 15,79% resp. 0, to je naše váha pro kat. vzdělání I. Násobíme každou kategorii v políčku odpovídajícím podílem testového faktoru, tj. váhou Pro první pole High Self-esteem: 0,1579 * 0,681 a 0,1579 * 0,718 a 0,1579 * 0,648 a 0,1579 * 0,258 atd. Podobně pro všechna pole každého panelu tabulky. Parciální standardizované údaje sepíšeme do nové tabulky: Pro Jews (vysoká sebeúcta): 0, , , , ,589 = 75,8 atd. (viz další snímek) 16

17 + pro další tři panely tabulky 17

18 Vážený podíl: pro High Self-Esteem Vážený podíl získáme jako součet převážených hodnot pro vzdělanostní kategorie v kategoriích náboženské orientace rodin: pro High Self-Esteem 8th Grade or Less Some High School High School Graduate Some College College Graduate Post-Graduate celkem Catholic 0,1075 0,1704 0,2073 0,0722 0,0886 0,0519 0,698 Jewish 0,1134 0,1757 0,2154 0,0803 0,1153 0,0519 0,752 Protestant 0,1023 0,1791 0,1659 0,0712 0,0926 0,0525 0,664 18

19 Příklad1: Sebeúcta Porovnání hrubého a čistého % rozdílu mezi kategoriemi nezávislé proměnné Hrubý rozdíl (nevážený) mezi Katolíky a Židy je v nejvyšší úrovni sebeúcty 7,8% (69,7-77,5) Čistý (vážený pro vzdělání) je 6 % (69,8-75,8) To zde odpovídá 23 % redukci po kontrole vzdělání (1-(6/7,8)) 19

20 Příklad 2. Religiozita a militantnost v boji za občanská práva mezi afroameričany v USA (60. léta) se standardizací podle vzdělání [Treiman 2009: 30-33] Kapitola 2. More on the tables Text je dostupný na Úloha a tabulky jsou z původního článku Gary T. Marxe [1967]. Religion: Opiate or Inspiration of Civil Rights Militancy Among Negroes?

21 Religiozita a militantnost - radikalita v boji za lidská práva (operacionalizace) Religiozita měřena pomocí kombinace 3 otázek (frekvence návštěv bohoslužeb, ortodoxnosti přesvědčení, význam víry) sloučené do proměnné se 4 hodnotami. Militantnost v otázce boje za lidská práva měřena pomocí 7 otázek na protesty za občanská práva (názory, ochota účastnit se atd.) index konvenční militantnosti, který byl posléze rekódován na 2 kategorie (militantní/nemilitantní) 21

22 Militantnost podle Religiozity bivariátní vztah, který nás zajímá Po sloučení kategorií Not Very Religious a Not at All Religious Very Religious Somew. Relig Not very Relig. + Not at All Relig. Total Militant Nonmilitant Total N % (230) % (532) % (231) 22 (993)

23 Militantnost podle vzdělání (třídění 2.stupně) 23

24 Militantnost podle religiozity a vzdělání: základní tabulka třídění 3. stupně s panely pro kontrolní proměnnou (zde vzdělání) V = Very religious, S = Somewhat religious, N = Not religious 24

25 Zjednodušená prezentace předchozí tabulky: pouze % Militantních + otočeno o 90 st. viz předchozí snímek Závislý znak je dichotomický, proto, u % Militantních dopočet do 100 = % nemilitantních. úsporná forma prezentace v tabulce 25

26 Z ní získáme spočteme váhy: (protože nemáme původní mikro-data a nemůžeme počítat rovnou jen frekvenci vzdělání) Pokud by absolutní četnosti nebyly uvedeny u každé buňky, spočítáme si je nejprve na základě % z celkového N 1. Celkový počet případů = ( ) =993 pro ZŠ (Grammar school) je počet ( ) = 353 atd. 2. Určíme váhy (podíly ve vzdělanostních kategoriích): pro ZŠ (Grammar school): 353 / 993 = 0,356 pro SŠ (High school): 504 / 993 = 0,508 pro VŠ (College): 136 / 993 = 0,137 Součet pro váhy je 1 (po zaokrouhlení). 26

27 A vážíme standardizujeme: V principu rušíme kontrolní faktor všichni jsou jako kdyby stejně vzdělaní Váhy (podíly vzdělání): ZŠ (Grammar School) 0,356 SŠ (High School) 0,508 VŠ (College) 0,137 Váhy: ZŠ SŠ VŠ pro Velmi silně věřící (very religious): 17 % *0, %*0, % *0,137 = 29 % pro Částečně věřící: 22 % *0, %*0, % *0,137 = 31 % pro Velmi slabě věřící a nevěřící: 32 % *0, %*0, % *0,137 = 45 % Standardizované čisté podíly porovnáme s původními hrubými 27

28 Militantnost podle religiozity: Hrubá míra, čistá standardizovaná a procentní rozsah mezi krajními kategoriemi nezávislého znaku REDUKCE vlivem kontrolní proměnné/ faktoru: (1 (Čistý rozdíl / Hrubý rozdíl))*100 Pozor platí pouze pro ordinální znaky porovnáváme krajní kategorie. Hrubé (nevážené) četnosti Hrubý (nevážený) % rozdíl mezi krajními kategoriemi Vážený % rozdíl mezi krajními kategoriemi Rozsah procent mezi krajními kategoriemi nezávislé proměnné pro vztah bez a s kontrolou faktoru (zde vzdělání): 21 % hrubý rozdíl oproti 16 % čistému rozdílu (s kontrolou vzdělání) odpovídá 24 % redukci díky vlivu vzdělání (=(1-(16/21))*100). Lze tak říci, že vzdělání vysvětluje cca ¼ vztahu mezi religiozitou a militantností. Ale pozor: Předpokladem této interpretace je ordinalita kategorií nezávislé proměnné (zde 28 religiozita) a monotónnost vztahu závislé a nezávislé proměnné. [Treiman 2009: 29-31]

29 Redukce efektu vysvětlující proměnné po kontrole vlivu kontrolní proměnné (faktoru) REDUKCE vlivem kontrolní proměnné (faktoru) rozdíl hrubý (původní bez kontroly) a čistý (po převážení kontrolním faktorem) pro krajní kategorie nezávislé proměnné (min a max): (1 (Čistý rozdíl / Hrubý rozdíl))*100 K jaké redukci vztahu mezi závislou a nezávislou proměnnou dochází díky vlivu kontrolní proměnné. Pozor platí pouze pro ordinální znaky, tj. tam kde porovnáváme krajní kategorie a pro monotónní vztah (tj. plynulá proměna hodnot závislé proměnné mezi kategoriemi nezávislé ordinální proměnné). 29

30 Přímá standardizace pro kontrolu vlivu dvou proměnných Kontrolovat můžeme souběžně i vliv dvou proměnných, např. vzájemný vztah vzdělání a kategorií věku Váhy budou kombinací vzájemného podílu kontrolních proměnných (zde např. vzdělání a věk). Získáme je jejich vzájemnou kontingenční tabulkou, kde budou procenta z celku (% of total) 30

31 Příklad 3. Vzdělanostní aspirace žáků 8.-9.tříd ZŠ mezi dvěma typy škol, při kontrole vlivu vzdělání rodičů [Šafr, Kalný 2012] Data z výzkumu žáků 8. a 9 tříd ve školním roce 2010/11 z odlišného prostředí čtyř základních škol, z nichž dvě se nacházely v lokalitách zasažených sociálním vyloučením a dvě v residenčních oblastech s majoritní populací.

32 Vzdělanostní aspirace žáku podle typu ZŠ a vzdělání rodičů Aspirace žáka Typ školy (lokalita) Sociálně vyloučená lokalita Majoritní populace Celkem max. Vyučení 42% 32% 36% min. SŠ-maturita 58% 68% 64% Celkem 100% 100% 100% Cramérovo V = 0,101 Na SŠ s maturitou aspiruje na školách v sociálně vyloučených lokalitách méně dětí naž na školách v lokalitách s majoritní populací. bivariátní vztah, který nás zajímá Aspirace žáka Vzdělání rodičů (vyšší) ZŠ/VYUČ SŠ/VŠ Celkem max. Vyučení 55% 30% 35% min. SŠ-maturita 45% 70% 65% Celkem 100% 100% 100% Cramérovo V = 0,208 Na aspirace má také vliv vzdělání rodičů: ve vzdělanějších rodinách jsou aspirace dětí vyšší. Vliv vzdělání rodiny (CV= 0,21) je větší než v případě typu školy (CV=0,10). potencionálně intervenující faktor, jehož vliv chceme ověřit a kontrolovat 32

33 Zároveň ale Vzdělání rodičů Typ školy (lokalita) Sociálně vyloučená lokalita Majoritní populace Celkem max. Vyučení 25% 14% 19% min. SŠ-maturita 75% 86% 81% Celkem 100% 100% 100% Cramérovo V = 0,148 Na školy v sociálně vyloučených lokalitách chodí více dětí s nižším vzděláním rodičů. Nejsou odlišné vzdělanostní aspirace na rozdílných typech škol způsobeny právě (pouze) odlišným vzdělanostním zázemím rodin žáků? (a tudíž nikoliv sociálním/institucionálním prostředím školy) Pokud ano, do jaké míry? (na základě poznatků teorie zde předpokládáme, že formativní vliv na aspirace má primárně rodina) (1.) Třídění 3. stupně (kontingenční tabulka a asociační koeficienty) a (2.) standardizace podílu aspirací (na min. SŠ-maturita) mezi dvěma typy škol podle vzdělání rodiny (max. Vyučení / min. SŠ) 33

34 1. Třídění 3. stupně: Vzdělanostní aspirace žáků podle typu školy a vzdělání rodičů: uspořádání tabulek Výstup z SPSS pro kontingenční tabulku 3. stupně vypadá takto (panely dle vzdělání rodičů jsou pod sebou lze přehodit pomocí Pivoting Trays): Výstup z SPSS upravíme (pomocí Pivoting Trays nebo v Excelu) pro klasický formát, kde kontrolní proměnná (vzdělání rodičů) je v panelech Aspirace žáka Soc.vylouč. lokalita Vzdělání rodičů ZŠ/VYUČ SŠ/VŠ Majoritní populace Soc.vylouč. lokalita Majoritní populace SŠ/VŠ 45% 44% 63% 75% ZŠ/VY 55% 56% 37% 25% Vzdělání rodičů je zde kontrolní proměnná, proto je v panelech tabulky Ideální je úsporný 3-dimenzionální formát tabulky: (s ním dále pracujeme při vážení) vynechána % pro aspirace na ZŠ/VY (tvoří dopočet do 100 %) Otočeno o 90 st. Podíl žáků aspirujících min. na maturitu podle typu školy a vzdělání rodičů Typ školy Vzdělání rodičů ZŠ/VY SŠ/VŠ Soc.vylouč. lokalita 45% 63% Majoritní populace 44% 75% Alternativně úsporná 3-dimenzionální tabulka otočena o 90 st. Vzdělání rodičů Typ školy (lokalita) Sociálně vyloučená lokalita Majoritní populace ZŠ/VYUČ 45% 44% SŠ/VŠ 63% 75% 34

35 Vzdělanostní aspirace žáků podle typu školy a vzdělání rodičů: interpretace Aspirace žáka Soc.vylouč. lokalita Vzdělání rodičů ZŠ/VYUČ Majoritní populace Soc.vylouč. lokalita SŠ/VŠ Majoritní populace SŠ/VŠ 45% 44% 63% 75% ZŠ/VY 55% 56% 37% 25% Cramérovo V 0,010 0,133 Rozdíl mezi vzděláním rodičů (s/bez maturity) mezi panely tabulky: ve školách ze sociálně vyloučených lokalit: = 18 % bodů ve školách z lokalit s majoritní populací : = 31 % bodů Rozdíly mezi typy škol jsou v kategoriích vzdělání rodičů odlišné: pro nižší vzdělání rodičů (ZŠ/VY) nezáleží na typu školy (koeficient asociace CrV=0), zatímco u vyššího vzdělání rodičů (SŠ/VŠ) je ve školách z lokalit s majoritní populací vyšší podíl zájmu o maturitní obory (SŠ/VŠ) (CrV=0,13). interakční efekt vzdělání rodičů a typu školy (byť relativně slabý): nejvyšší aspirace mají žáci z výše vzdělaných rodin a v prostředí škol z lokalit s majoritní populací. Možné sociologické interpretace: Podmínkou nutnou k osvojení si aspirací je vzdělání rodičů, načež záleží na škole, kam děti rodiče pošlou (respektive v případě škol z lokalit se sociálně znevýhodněnými žáky se nesnaží, aby tam jejich děti nezůstaly ). Prostředí školy v lokalitách s majoritní populací se uplatňuje pouze v případě žáků z rodin s vyšším vzděláním: kvalita výuky a aspirace spolužáků (celková hladina ve třídě/škole) pravděpodobně zvyšuje jejich aspirace na maturitu. 35 Pozor ovšem, neznáme mnoho okolností podmínek, za kterých mechanismus působí (zda žáci přímo bydlí / nebydlí v sociálně znevýhodněné lokalitě, zda rodiče školu vybírali nebo ne, jaká je forma výuky na školách atd.).

36 Standardizace převážení aspirací na SŠ/VŠ v typech škol podle vzdělání rodičů Váhy: máme-li mikro-data získáme je z třídění 1. stupně (Frequencies v SPSS), jinak je musíme spočítat z absolutních četností (viz předchozí příklad 2.) Vzdělání rodičů Validní % VÁHY ZŠ/VYUČ 18,7 0,187 SŠ/VŠ 81,3 0,813 celkem 100% 1 Tabulka 3. stupně % aspirujících na maturitu podle typu školy a vzdělání rodičů s hrubým (neváženým) vztahem: Typ školy Vzdělání rodičů ZŠ/VY SŠ/VŠ Soc.vylouč. lokalita 45% 63% Majoritní populace 44% 75% Standardizace (převážení dle vzdělání rodičů): Typ školy Vzdělání rodičů Vážený Hrubý ZŠ/VY SŠ/VŠ podíl podíl Soc.vylouč. lokalita 0,187 * 45% + 0,813 * 63% = 59,5% 58,4% Majoritní populace 0,187 * 44% + 0,813 * 75% = 69,3% 68,2% rozdíl mezi typem škol: 9,82 % oproti 9,75 %, odpovídá -0,1 % rozdílu díky vlivu vzdělání rodičů (=(1-(9,82/9,75)). Lze tedy říci, že vzdělání rodiny k vysvětlení vztahu mezi typem školy a vzdělanostními aspiracemi nic nepřidává. Zřejmě tedy prostředí školy působí nezávisle na rodině, tj. navíc nad vliv rodiny. Interpretace je to ale značně omezená, neznáme mnoho dalších podmínek. Celkem 9,82% 9,75% Typ školy (lokalita) Sociálně Aspirace žáka Majoritní vyloučená populace lokalita Celkem max. Vyučení 42% 32% 36% 36 min. SŠ-maturita 58% 68% 64% 100% 100% 100%

37 Poznámky k příkladům 1, 2, 3 Př. 1 Sebeúcta dětí: závislý znak Sebeúcta je ordinální (má 3 kategorie), nezávislý Náboženská orientace rodiny je nominální a kontrolní faktor Vzdělání otce je ordinální (6 kategorií). Tabulka je uvedena v pravděpodobnostech (nikoliv %). Protože nezávislý znak je nominální, porovnáván je hrubý-čistý % rozsah vždy navzájem pro dvě kategorie (nábož. orient. rodiny: např. Katolíci-Židé, Katolíci-Protestanti ) Př. 2 Militantnost afroameričanů: závislý znak Militantnost je dichotomický (má 2 kategorie), nezávislý Náboženskost je ordinální a kontrolní faktor Vzdělání je ordinální (3 kategorie). Proto porovnání hrubého-čistého % rozsahu je provedeno pro krajní kategorie (Velmi silně věřící - Velmi slabě věřící/nevěřící). Váhy pro vzdělání zde byly spočítány přímo z tabulky. Př. 1 Aspirace dětí: závislý znak Vzdělanostní aspirace je dichotomický (má 2 kategorie), nezávislý Typ školy je nominální (2 kategorie) a kontrolní faktor Vzdělání rodiny je nominální (2 kategorie).k dispozici byla mikro-data (v SPSS), proto jsme váhu určili snadno pomocí třídění 1. stupně pro vzdělání rodičů. Porovnání % rozsahu ukazuje, že rozdíl mezi hrubým a čistým podílem zde není (-0,1%). 37

38 Jak na to s tabulkami z SPSS: úprava tabulek třídění 3. stupně A ještě jeden příklad (č. 4): Chození do kina podle vzdělání při kontrole vlivu věku a) kategoriální verze znaků přímá standardizace v kont. tabulce b) číselná (ordinální/kardinální) verze znaků parciální korelace

39 Krok 1. bivariátní vztah: Chození do kina podle vzdělání Kino vzd3 Vzdělání (3k.) ZŠ+VY SŠ VŠ Total 0 93,5% 85,2% 86,2% 89,7% 1 min.1x za měsíc 6,5% 14,8% 13,8% 10,3% Total 100,0% 100,0% 100,0% 100,0% Pokud jde o ordinální znak má smysl sledovat pro krajní kategorie nezávislé proměnné (zde vzdělání) hrubý % rozdíl. Zde ovšem pozor, vztah není monotónní(!): SŠ a VŠ chodí stejně často. U nominálního znaku porovnáváme jednotlivé kategorie mezi sebou (viz příklad se Sebeúctou dítěte podle náboženské orientace rodiny: protestantská/ židovská/katolická). Hrubý rozdíl v krajních kategoriích vzdělání: 6,5% 13,8% = 7,3 % Poznámka: Původní ordinální proměnná Chození do kina q1_b byla nejprve dichotomizována na: 1= chodí min.1x za měsíc a 0 = méně často. 39 Zdroj: data ISSP 2007, ČR

40 2. krok. třídění 3.stupně přidáme do panelu kontrolní faktor (věk) V SPSS pro třídění 3.stupně dostaneme tuto tabulku: panely s kategoriemi kontrolní proměnné (zde věk) jsou pod sebou. CROSSTABS Kino BY vzd3 BY vek3 /CEL COL. Pro rychlý výpočet nám to stačí označíme si pouze ty buňky, které použijeme pro vážení, pro standardní presentaci tabulky v textu ji ale musíme upravit. 40

41 Úprava tabulky tř. 3. st. v SPSS Chceme panely (s kontrolní proměnnou) vedle sebe. Pivoting trays (rozkliknout tabulku) a poměrně dost složitě myší přetáhneme proměnné, tak jak je chceme: 1. vzdělaní v COLUMN o řádek dolů, 2. pak nad něj přetáhneme věk původní stav naše úprava 41

42 Příprava tabulky třídění 3. st. z SPSS pro standardizaci Výsledkem je tato tabulka, kde je panelizován kontrolní faktor (věk) uvnitř něj sou kategorie nezávislé proměnné (vzdělání) Tuto tabulku je vhodné ještě zjednodušit promazat negativní kategorie, tvoří dopočet do 100 % (zde 0 - Nechodí do kina) A pak případně pootočit o 90 st. 42

43 A nebo jiné zadání pořadí proměnných v CROSSTABS rovnou pro standardizaci Musíme ale ještě promazat negativní kategorie (0 nechodí do kina) a nebo stačí příslušný řádek si označit a můžeme začít vážit 43

44 Rychle upravená předchozí tabulka z SPSS a samotné vážení-standardizace v Excelu upravená (promazaná) tabulka, ze které již můžeme snadno vážit-standardizovat podle věku: vek3 Váhy: tř. 1.stupně pro věk kontrolní faktor (% dělíme 100 pravděpodobnost) FREQ vek3. Vzdělání ZŠ+VY kino 1 33% 5% 2% SŠ kino 1 36% 11% 5% VŠ kino 1 31% 13% 9% Celkem kino 1 34% 8% 3% Vážíme-standardizujeme podle věku. Váhy věku zde máme přímo spočítané % věku: 10-29let = 0, let = 0,30 50+let = 0,52 pro ZŠ+VY: 33 * 0, * 0, * 0,52 = 8,2 pro SŠ: 36 * 0, * 0, * 0,52 = 13,8 pro VŠ: 31 * 0, * 0, * 0,52 = 13,8 Čistý rozdíl (vážený podle věku) mezi krajními kategoriemi vzdělání: 8,2 13,8 = 5,6% 44

45 V Excelu (výstup z SPSS) kino * vzd3 Vzdělání (3k.) Crosstabulation % within vzd3 Vzdělání (3k.) vzd3 Vzdělání (3k.) 1 ZŠ+VY 2 SŠ 3 VŠ Total kino 0 93,50% 85,20% 86,20% 89,70% 1 6,50% 14,80% 13,80% 10,30% Total 100,00% 100,00% 100,00% 100,00% kino * vzd3 Vzdělání (3k.) * vek3 Crosstabulation % within vzd3 Vzdělání (3k.) vzd3 Vzdělání (3k.) vek3 1 ZŠ+VY 2 SŠ 3 VŠ Total standardizace kino 0 67,50% 63,90% 69,20% 65,60% pro 0, ,50% 36,10% 30,80% 34,40% věk Total 100,00% 100,00% 100,00% 100,00% kino 0 95,20% 89,50% 87,50% 92,00% 0,3 1 4,80% 10,50% 12,50% 8,00% Total 100,00% 100,00% 100,00% 100,00% kino 0 98,20% 94,90% 91,20% 96,80% 0,52 1 1,80% 5,10% 8,80% 3,20% Total 100,00% 100,00% 100,00% 100,00% hrubý čistý 1 ZŠ+VY 6,50% 8,19% 2 SŠ 14,80% 3 VŠ 13,80% 13,84% rozd 1a3-7,30% -5,65% rozdil -1,65% 45

46 Velikost redukce ve vztahu (kino x vzdělání) způsobená kontrolním faktorem (věk) Rozdíl mezi krajními kategoriemi vzdělání ZŠ+VY a VŠ: Čistý (vážený podle věku) = 5,6 % Hrubý (původní bivariátní) = 7,3 % Rozdíl Hrubý Čistý = (7,3 5,6) = 1,7 % Redukce díky vlivu věku ( jaký podíl ve vztahu chození do kina a vzdělání jde na vrub věku): = (1 (5,6 /7,3) = 0,233 = 23 % Lze tak říci, že věk vysvětluje cca ¼ vztahu mezi chozením do kina a vzděláním. Ale pozor: Předpokladem této interpretace je monotónnost vztahu závislé a nezávislé proměnné a tomu tak zde nebylo: prakticky totiž není rozdíl mezi chozením do kina u SŠ (14,8 %) a VŠ (13,8 %). Výsledek tak zde platí spíše pro dichotomii vzdělání s/ bez 46 maturity (ZŠ+VY vs. SŠ+VŠ).

47 Řešení b) pro kardinální znaky parciální korelace kino vzdělání při kontrole vlivu věku (původní kardinální/ordinální verze proměnných) Původní (bivariátní) korelace Parciální (+ kontrola věku) korelace Rozložení závislé proměnné je výrazně nesymetrické a odchyluje se od normálního rozložení. Použití korelací je tak zde problematické (a už vůbec nesprávné je použití Pearsonova R). Původní korelace mezi chozením do kina a věkem R=0,24 zavedením kontroly vlivu věku klesá na R=0,18. Po kontrole vlivu věku došlo k poklesu Pearsonova korelačního koeficientu R o 25,2 % =(1-0,178/0,238). A správně bychom měli ještě ověřit, zda je tento pokles statisticky významný (platný i v celé populaci), viz dále Z-test (nebo výpočet intervalů spolehlivosti). PARTIAL CORR q1_b WITH vzd4 BY vek /STATISTICS CORR. Zdroj: Data ISSP 2007 (Poznámka: proměnná q1_b má maximum 5=nikdy, proto je zde vypočtená korelace záporná.) 47

48 Parciální korelace Při výpočtu parciální korelace můžeme kontrolovat i vliv více proměnných souběžně. Krom běžného statistického testu nenulovosti parciálního korelačního koeficientu v populaci (H0: R=0), viz předchozí výstup z SPSS, lze také testovat, zda skutečně k poklesu (nebo případně vzestupu) u parciální korelace došlo (Ra- Rb), tj. platí, že rozdíl mezi Ra (původní bivariátní korelace) a Rb (parciální s kontrolou 3. proměnné) platí i v celé populaci (výpočet pomocí z-testu viz dále). Více o korelacích najdete v prezentaci (včetně výpočtu parciální korelace dosazením původních bivariátních korelací do vzorce, a to i pro neparametrické-pořadové korelace) Korelace a asociace: vztahy mezi kardinálními/ ordinálními znaky Úlohu lze také řešit pomocí vícerozměrné regresní analýzy, kde jsou možnosti mnohem bohatší. Viz presentaci Regresní analýza, analýza rozptylu (úvod) 48

49 Parciální korelace: z-test statistické významnosti změny korelačního koeficientu po zavedení kontrolní proměnné Pokud chceme zobecnit výsledky parciální korelace, měli bychom ještě provést test, zda se parciální korelační koeficient (tj. s kontrolou vzdělání) statisticky významně lišší od původního bivariátního (zero-order) (pouze vztah kino-vzdělání). K tomu lze využít např. web-kalkulátor Significance of the Difference Between Two Correlation Coefficients (alternativně lze spočítat intervaly spolehlivosti pro Ra Rb) H0: Ra = Rb výsledek se zavedením kontroly pro třetí proměnnou nezměnil Původní (bivariátní) Parciální (+ kontrola věku) Vzhledem k tomu, že předpokládáme pokles korelace, testujeme jednostrannou alternativu hypotézy (one-tailed). Zde je tedy nulová hypotéza H0: Ra > Rb. Hodnota z je menší než 1,96, tj. dosažená hladina významnosti p je menší než 0,05 nulovou hypotézu nemůžeme zamítnout platí tedy, že na zvolené hl. α 5% nelze tvrdit, že by došlo k poklesu korelace mezi chozením do kina a vzděláním, zavedením kontroly pro věk. Nicméně zde je výsledek poměrně hraniční a z věcného 49 hlediska pokles korelace lze smysluplně interpretovat.

50 Literatura Rosenberg, M Test Factor Standardization as a Method of Interpretation. Social Forces 41(1): Marx, G. T Religion: Opiate or Inspiration of Civil Rights Militancy Among Negroes? American Sociological Review 32 (1): Šafr, J., B. Kalný (v recenzi). Vzdělanostně profesní aspirace žáků z rodin ohrožených sociálním vyloučením. in Sborník z 4. mezinárodní konference Dilemata sociální pedagogiky v postmoderním světě, Institut mezioborových studií Brno, dubna Treiman, Donald J Quantitative data analysis: doing social research to test ideas. San Francisco: Jossey-Bass. 50

Kontingenční tabulky analýza kategoriálních dat: Úvod. Třídění 2. stupně

Kontingenční tabulky analýza kategoriálních dat: Úvod. Třídění 2. stupně UK FHS Historická sociologie a Řízení a supervize (2011, 2012, 2013, 2014) Analýza kvantitativních dat I. & Praktikum elementární analýzy dat Kontingenční tabulky analýza kategoriálních dat: Úvod. Třídění

Více

Spokojenost se životem

Spokojenost se životem SEMINÁRNÍ PRÁCE Spokojenost se životem (sekundárních analýza dat sociologického výzkumu Naše společnost 2007 ) Předmět: Analýza kvantitativních revize Šafr dat I. Jiří (18/2/2012) Vypracoval: ANONYMIZOVÁNO

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

Excel mini úvod do kontingenčních tabulek

Excel mini úvod do kontingenčních tabulek UK FHS Řízení a supervize v sociálních a zdravotnických organizacích (ZS 2005+) Kvantitativní metody výzkumu v praxi Excel mini úvod do kontingenčních tabulek (nepovinnáčást pro KMVP) Jiří Šafr jiri.safratseznam.cz

Více

Návod na statistický software PSPP část 2. Kontingenční tabulky

Návod na statistický software PSPP část 2. Kontingenční tabulky Návod na statistický software PSPP část 2. Kontingenční tabulky Jiří Šafr FHS UK poslední revize 31. srpna 2010 Logika kontingenčních tabulek... 2 Postup vytváření kontingenčních tabulek v PSPP (SPSS)....

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

Korelace. Komentované řešení pomocí MS Excel

Korelace. Komentované řešení pomocí MS Excel Korelace Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A2:B84 (viz. obrázek) Prvotní představu o tvaru a síle závislosti docházky a počtu bodů nám poskytne

Více

Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou

Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................

Více

Kontingenční tabulka: vztahy mezi kategorizovanými znaky - míry asociace/korelace, znaménkové schéma

Kontingenční tabulka: vztahy mezi kategorizovanými znaky - míry asociace/korelace, znaménkové schéma UK FHS Historická sociologie (LS 2011+) Analýza kvantitativních dat II. Kontingenční tabulka: vztahy mezi kategorizovanými znaky - míry asociace/korelace, znaménkové schéma Jiří Šafr jiri.safr(zavináč)seznam.cz

Více

Analýza kvantitativních dat II. 2. Vztahy mezi kategorizovanými znaky v kontingenční tabulce

Analýza kvantitativních dat II. 2. Vztahy mezi kategorizovanými znaky v kontingenční tabulce UK FHS Historická sociologie (LS 2011) Analýza kvantitativních dat II. 2. Vztahy mezi kategorizovanými znaky v kontingenční tabulce Jiří Šafr jiri.safr(zavináč)seznam.cz poslední aktualizace 23.4. 2011

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul 7: Třídění druhého stupně. Kontingenční tabulky Co se dozvíte v tomto modulu? Co je třídění druhého stupně Jak vytvořit a interpretovat kontingenční

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

ZX510 Pokročilé statistické metody geografického výzkumu. Téma: Měření síly asociace mezi proměnnými (korelační analýza)

ZX510 Pokročilé statistické metody geografického výzkumu. Téma: Měření síly asociace mezi proměnnými (korelační analýza) ZX510 Pokročilé statistické metody geografického výzkumu Téma: Měření síly asociace mezi proměnnými (korelační analýza) Měření síly asociace (korelace) mezi proměnnými Vztah mezi dvěma proměnnými existuje,

Více

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost

Více

Analýza dat z dotazníkových šetření

Analýza dat z dotazníkových šetření Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší

Více

Statistické testování hypotéz II

Statistické testování hypotéz II PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení

Více

Jana Vránová, 3. lékařská fakulta UK

Jana Vránová, 3. lékařská fakulta UK Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Popisná statistika. Komentované řešení pomocí MS Excel

Popisná statistika. Komentované řešení pomocí MS Excel Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry

Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz

PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,

Více

Úvod do analýzy rozptylu

Úvod do analýzy rozptylu Úvod do analýzy rozptylu Párovým t-testem se podařilo prokázat, že úprava režimu stravování a fyzické aktivity ve vybrané škole měla vliv na zlepšené hodnoty HDLcholesterolu u školáků. Pro otestování jsme

Více

Výzkum sociální změny

Výzkum sociální změny UK FHS Historická sociologie (ZS 2011) Design kvantitativního výzkumu Výzkum sociální změny 6. část poslední aktualizace 26.11. 2011 Jiří Šafr jiri.safr(at)seznam.cz Zkoumání sociální změny V centru zájmu

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

Pearsonův korelační koeficient

Pearsonův korelační koeficient I I.I Pearsonův korelační koeficient Úvod Předpokládejme, že náhodně vybereme n objektů (nebo osob) ze zkoumané populace. Často se stává, že na každém z objektů měříme ne pouze jednu, ale několik kvantitativních

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu

Více

LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR

LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR Ve většině případů pracujeme s výběrovým souborem a výběrové výsledky zobecňujeme na základní soubor. Smysluplné

Více

ADDS cvičení 7. Pavlína Kuráňová

ADDS cvičení 7. Pavlína Kuráňová ADDS cvičení 7 Pavlína Kuráňová Analyzujte závislost věku obyvatel na místě kde nejčastěji tráví dovolenou. (dotazník dovolená, sloupce Jaký je Váš věk a Kde nejčastěji trávíte dovolenou) Analyzujte závislost

Více

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické

Více

Kontrola: Sečteme-li sloupec,,četnost výskytu musí nám vyjít hodnota rozsahu souboru (našich 20 žáků)

Kontrola: Sečteme-li sloupec,,četnost výskytu musí nám vyjít hodnota rozsahu souboru (našich 20 žáků) Základní výpočty pro MPPZ Teorie Aritmetický průměr = součet hodnot znaku zjištěných u všech jednotek souboru, dělený počtem všech jednotek souboru Modus = hodnota souboru s nejvyšší četností Medián =

Více

LEKCE02a ANALÝZA ROZLOŽENÍ KATEGORIZOVANÝCH DAT vzorový výsledek cvičení

LEKCE02a ANALÝZA ROZLOŽENÍ KATEGORIZOVANÝCH DAT vzorový výsledek cvičení SOC1/ LEKCE : ANALÝZA ROZLOŽENÍ KATEGORIZOVANÝCH A SPOJITÝCH DAT: LEKCEa ANALÝZA ROZLOŽENÍ KATEGORIZOVANÝCH DAT vzorový výsledek cvičení CVIČENÍ.1: Je česká populace věřící, nebo nevěřící? Tuto otázku

Více

Jana Vránová, 3.lékařská fakulta UK, Praha. Hypotézy o populacích

Jana Vránová, 3.lékařská fakulta UK, Praha. Hypotézy o populacích Jana Vránová, 3.lékařská fakulta UK, Praha Hypotézy o populacích Příklad IQ test: Předpokládejme, že z nějakého důvodu ministerstvo školství věří, že studenti absolventi středních škol v Hradci Králové

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan 1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Podobnosti a vzdálenosti ve vícerozměrném prostoru, asociační matice II Jiří Jarkovský, Simona Littnerová Vícerozměrné statistické metody Práce s asociační maticí Vzdálenosti

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6 1. Příklad Byly sledovány rodinné stavy nevěst a ženichů při uzavírání sňatků a byla vytvořena následující tabulka četností. Stav Svobodný Rozvedený Vdovec Svobodná 37 10 6 Rozvedená 8 12 8 Vdova 5 8 6

Více

Téma 9: Vícenásobná regrese

Téma 9: Vícenásobná regrese Téma 9: Vícenásobná regrese 1) Vytvoření modelu V menu Statistika zvolíme nabídku Vícerozměrná regrese. Aktivujeme kartu Detailní nastavení viz obr.1. Nastavíme Proměnné tak, že v příslušném okně viz.

Více

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr Kurz SPSS: Jednoduchá analýza dat Jiří Šafr vytvořeno 29. 6. 2009 Dva základní typy statistiky 1. Popisná statistika: metody pro zjišťování a sumarizaci informací grfy, tabulky, popisné chrakteristiky

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. SEMINÁRNÍ PRÁCE Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné

Více

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Třídění statistických dat

Třídění statistických dat 2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.

Více

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Kvantitativní metody výzkumu v praxi PRAKTIKUM. Příprava výzkumného projektu

Kvantitativní metody výzkumu v praxi PRAKTIKUM. Příprava výzkumného projektu UK FHS Řízení a supervize v sociálních a zdravotnických organizacích (LS 2007) Kvantitativní metody výzkumu v praxi PRAKTIKUM část 1 Příprava výzkumného projektu Jiří Šafr jiri.safr@seznam.cz vytvořeno

Více

Statistická a věcná významnost. Statistická významnost. Historie hypotézy a testů. Hypotézy a statistické testy.

Statistická a věcná významnost. Statistická významnost. Historie hypotézy a testů. Hypotézy a statistické testy. Statistická a věcná významnost Statistická významnost Petr Soukup 5.11.2009 Fisher (1925) Historie hypotézy a testů Null and alternative hypothesis (NHST) (Neyman&Pearson, 1937) Dnes běžná praxe a součást

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých

Více

Vymezení důležitých pojmů. nulová hypotéza, alternativní hypotéza testování hypotézy hladina významnosti (alfa) chyba I. druhu, chyba II.

Vymezení důležitých pojmů. nulová hypotéza, alternativní hypotéza testování hypotézy hladina významnosti (alfa) chyba I. druhu, chyba II. Testování hypotéz 1. vymezení důležitých pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test 4. t-test pro nezávislé výběry 5. t-test pro závislé výběry Vymezení důležitých pojmů nulová

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 3 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

SOFTWARE STAT1 A R. Literatura 4. kontrolní skupině (viz obr. 4). Proto budeme testovat shodu středních hodnot µ 1 = µ 2 proti alternativní

SOFTWARE STAT1 A R. Literatura 4. kontrolní skupině (viz obr. 4). Proto budeme testovat shodu středních hodnot µ 1 = µ 2 proti alternativní ŘEŠENÍ PRAKTICKÝCH ÚLOH UŽITÍM SOFTWARE STAT1 A R Obsah 1 Užití software STAT1 1 2 Užití software R 3 Literatura 4 Příklady k procvičení 6 1 Užití software STAT1 Praktické užití aplikace STAT1 si ukažme

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008 Statistika (MD30P03Z, MD30P03U) ak. rok 007/008 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara (naposledy upraveno. listopadu 007) 1(4) Mann-Whitney párový Wilcoxon párový znaménkový

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis nekategorizovaných dat Co se dozvíte v tomto modulu? Kdy používat modus, průměr a medián. Co je to směrodatná odchylka. Jak popsat distribuci

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B

TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,

Více

Cvičení 12: Binární logistická regrese

Cvičení 12: Binární logistická regrese Cvičení 12: Binární logistická regrese Příklad: V roce 2014 konalo státní závěrečné zkoušky bakalářského studia na jisté fakultě 167 studentů. U každého studenta bylo zaznamenáno jeho pohlaví (0 žena,

Více

Regrese. používáme tehdy, jestliže je vysvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA

Regrese. používáme tehdy, jestliže je vysvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA Regrese používáme tehd, jestliže je vsvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA Specifikace modelu = a + bx a závisle proměnná b x vsvětlující proměnná Cíl analýz Odhadnout hodnot

Více

PSY117/454 Statistická analýza dat v psychologii. Zobrazení dvojrozměrných dat Bodový graf - Scatterplot Korelační koeficient

PSY117/454 Statistická analýza dat v psychologii. Zobrazení dvojrozměrných dat Bodový graf - Scatterplot Korelační koeficient PSY117/454 Statistická analýza dat v psychologii Zobrazení dvojrozměrných dat Bodový graf - Scatterplot Korelační koeficient Analýza vztahů mezi dvěma proměnnými Souvisí nějak? Výška a váha Známky u jednotlivých

Více

1.1 Úvod... 1 1.2 Data... 1. 3 Statistická analýza dotazníkových dat 8. Literatura 10

1.1 Úvod... 1 1.2 Data... 1. 3 Statistická analýza dotazníkových dat 8. Literatura 10 MÍRY STATISTICKÉ VAZBY, VÝBĚROVÁ ŠETŘENÍ, STATISTICKÁ ANALÝZA DOTAZNÍKOVÝCH DAT Obsah 1 Statistická data 1 1.1 Úvod.......................................... 1 1. Data...........................................

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více

(motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination.

(motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination. Neparametricke testy (motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination. Andrew Lang) 1. Příklad V následující tabulce jsou

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Cvičení ze statistiky - 3. Filip Děchtěrenko

Cvičení ze statistiky - 3. Filip Děchtěrenko Cvičení ze statistiky - 3 Filip Děchtěrenko Minule bylo.. Dokončili jsme základní statistiky, typy proměnných a začali analýzu kvalitativních dat Tyhle termíny by měly být známé: Histogram, krabicový graf

Více

TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE

TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.

Více

Metody sociálních výzkumů. Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika.

Metody sociálních výzkumů. Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika. Metody sociálních výzkumů Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika. Statistika Význam slova-vychází ze slova stát, s jeho administrativou

Více

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu.

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu. Analýza rozptylu Analýza rozptylu umožňuje ověřit významnost rozdílu mezi výběrovými průměry většího počtu náhodných výběrů, umožňuje posoudit vliv různých faktorů. Podle počtu analyzovaných faktorů rozlišujeme

Více

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu)

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Frank Wilcoxon (1892 1965): Americký statistik a chemik Nechť X 1,..., X n je náhodný výběr ze

Více

Deskriptivní statistika (kategorizované proměnné)

Deskriptivní statistika (kategorizované proměnné) Deskriptivní statistika (kategorizované proměnné) Nejprve malé opakování: - Deskriptivní statistika se zabývá popisem dat, jejich sumarizaci a prezentací. - Kategorizované proměnné jsou všechny proměnné,

Více

Analýza dat na PC I.

Analýza dat na PC I. CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika

Více

MĚŘENÍ, TYPY VELIČIN a TYPY ŠKÁL

MĚŘENÍ, TYPY VELIČIN a TYPY ŠKÁL MĚŘENÍ, TYPY VELIČIN a TYPY ŠKÁL Matematika a stejně i matematická statistika a biometrie s námi hovoří řečí čísel. Musíme tedy vlastnosti nebo intenzitu vlastností jedinců změřit kvantifikovat. Měřením

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul V: Nekategorizovaná data Metodologie pro ISK 2, jaro 2014. Ladislava Z. Suchá Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis

Více

STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů

STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů 1) Test na velikost rozptylu Test na velikost rozptylu STATISTICA nemá. 2) Test na velikost střední hodnoty V menu Statistika zvolíme nabídku Základní

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

TECHNIKA UMĚLÝCH PROMĚNNÝCH V PRŮŘEZOVÉ ANALÝZE A V MODELECH ČASOVÝCH ŘAD

TECHNIKA UMĚLÝCH PROMĚNNÝCH V PRŮŘEZOVÉ ANALÝZE A V MODELECH ČASOVÝCH ŘAD TECHNIKA UMĚLÝCH PROMĚNNÝCH V PRŮŘEZOVÉ ANALÝZE A V MODELECH ČASOVÝCH ŘAD Umělé (dummy) proměnné se používají, pokud chceme do modelu zahrnout proměnné, které mají kvalitativní či diskrétní charakter,

Více

Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy

Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy Relativní riziko a poměr šancí Princip korelace dvou náhodných veličin Korelační koeficienty Pearsonůva Spearmanův Korelace a kauzalita

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více