Elektrotechnický průmysl. Informační a výukový manuál pro žáky základních a středních škol

Rozměr: px
Začít zobrazení ze stránky:

Download "Elektrotechnický průmysl. Informační a výukový manuál pro žáky základních a středních škol"

Transkript

1 Informační a výukový manuál pro žáky základních a středních škol Elektrotechnický průmysl Vypracoval: Mgr. Lubomír Franek Bc. Miroslav Maďa Ing. Petr Literák Tomáš Nevřela

2 Podpora a rozvoj elektrotechnických a stavebních oborů v MSK CZ.1.07/1.1.24/ PODĚKOVÁNÍ Realizační tým Moravskoslezského energetického klastru věnuje poděkování Střední škole elektrotechnické, Ostrava, Na Jízdárně, která se podílela na realizaci projektu a přispěla tak ke zvýšení zájmu o studium elektrotechnických oborů a ke zkvalitnění praktické výuky v Moravskoslezském kraji. Informační a výukový manuál byl realizován za finančního příspění Evropské unie v rámci projektu: Podpora a rozvoj elektrotechnických a stavebních oborů v MSK.

3 » OBSAH 1. Střední škola elektrotechnická, Ostrava, Na Jízdárně 30, PŘÍSPĚVKOVÁ ORGANIZACE 1.1. Obory 2. Představení projektu 2.1. Přínosy projektu pro žáky zapojených středních škol 2.2. Přínosy projektu pro žáky základních škol 3. ELEKTROTECHNICKÝ PRŮMYSL 3.1. Elektrotechnické obory 4. STAVEBNÍ PRŮMYSL 5. systém modulárního Řízení budov 5.1. Možnosti systému 6. Využití 6.1. Komfort 6.2. Úspora energie 6.3. Bezpečnost 6.4. Osvětlení 6.5. Vytápění a chlazení 7. Rozdíl mezi klasickou a inteligentní elektroinstalací 7.1. Klasická elektroinstalace 7.2. Inteligentní elektroinstalace 7.3. Porovnání jednotlivých elektroinstalací 8. VĚTRNÉ ELEKTRÁRNY 9. PŘÍRODNÍ PODMÍNKY 10. VÝHRADY PROTI VĚTRNÝM ELEKTRÁRNÁM 11. PŘEHLED VELKÝCH VĚTRNÝCH ELEKTRÁREN NA ÚZEMÍ ČR 12. TECHNICKÉ ŘEŠENÍ STROJOVEN VĚTRNÝCH ELEKTRÁREN 13. PŘÍKLADY KONSTRUKCE VĚTRNÝCH ELEKTRÁREN 14. VĚTRNÉ ELEKTRÁRNY MALÉHO VÝKOnU 15. VÝHODY A NEVÝHODY ZAŘÍZENÍ NA VYUŽITÍ VĚTRU Výhody Nevýhody 16. Zhodnocení větrných elekráren 17. FOTOVOLTAIKA 18. Zapojení solárních článků 19. Systémy připojení fotovoltaických článků Systémy připojené k síti (grid-on) Samostatné (ostrovní) systémy grid-off 20. Fotovoltaika v architektuře 21. Solární elektrárny v ČR 22. SEZNAM POUŽITÉ Literatury

4 1 Střední škola elektrotechnická, Ostrava, Na Jízdárně 30, PŘÍSPĚVKOVÁ ORGANIZACE Střední škola elektrotechnická je moderní veřejnou střední školou a elektrotechnickým centrem Moravskoslezského kraje. Patří mezi přední elektrotechnické školy v České republice nejen díky své dlouholeté tradici, ale i perspektivám, které nabízí současným i budoucím žákům. Výuku na základě moderních školních vzdělávacích programů zajišťuje na vysoké úrovni profesionální tým pedagogů spolu se stálými partnery z řad špičkových regionálních firem, jako jsou společnosti ČEZ a.s., ArcelorMittal Ostrava a.s., Dalkia a.s., NAM systém a.s., Modemtec s.r.o. a další. Škola aktivně spolupracuje se společností ČEZ a.s., s Českým svazem zaměstnavatelů v energetice, Asociací elektrotechnického vzdělání a Czech Security Education (sdružení středních škol zabývajících se bezpečnostními systémy). V souladu s modernizací výuky a vzděláváním se škola aktivně zapojuje do řady různých projektů, jakými jsou například Inovace výukových postupů v nových zaměřeních elektrotechniky Mechatronika, Práce pod napětím Rozvody el. energie pomocí kabelových vedení a pomocí izolovaného venkovního vedení, Recyklohraní, Modernizace technického a didaktického vybavení center pro další profesní vzdělávání učitelů. Dále zajišťujeme přípravu odborníků z oblasti elektrotechniky a pořádání různých odborných kurzů pro širokou veřejnost. SŠE nabízí studium pro získání středního vzdělání s výučním listem nebo středního vzdělání s maturitní zkouškou ve schválených studijních programech Elektrikář, Elektrikář silnoproud, Mechanik elektrotechnik počítačové a zabezpečovací systémy, elektrotechnická zařízení. Velice zajímavý je také čtyřletý obor Optik s maturitní zkouškou, který je vhodný zejména pro dívky se širokou možností uplatnění v různých optických firmách. Naší nejlepší studenti mají možnost získat stipendium od elektrotechnických firem. Další výhodou studia na naší škole je možnost jednoduchého přestupu mezi maturitními a učebními obory (nejlépe během prvního nebo po prvním ročníku) v závislosti na studijních problémech či úspěších. 3

5 1.1. Obory MECHANIK ELEKTROTECHNIK ŠVP POČÍTAČOVÉ A ZABEZPEČOVACÍ SYSTÉMY Čtyřleté denní studium ukončené maturitní zkouškou poskytuje úplné střední vzdělání v oboru elektro, se zaměřením na spotřební elektrotechniku, bezpečnostní systémy a výpočetní techniku. MECHANIK ELEKTROTECHNIK ŠVP- ELEKTROTECHNICKÁ ZAŘÍZENÍ Čtyřleté denní studium ukončené maturitní zkouškou poskytuje úplné střední vzdělání se zaměřením na silnoproudá zařízení, elektrické stroje a přístroje, užití elektrické energie a automatizační a měřicí techniku. EKTRIKÁŘ Tříleté denní studium ukončené závěrečnou zkouškou (vyučení), střední odborné vzdělaní a odborná příprava pro povolání v oblasti elektrotechniky. 4

6 ELEKTRIKÁŘ SILNOPROUD Tříleté denní studium ukončené závěrečnou zkouškou (vyučení), střední odborné vzdělání a odborná příprava pro povolání v oblasti silnoproudé elektrotechniky a rozvodů elektrické energie. OPTIK Čtyřleté denní studium ukončené závěrečnou maturitní zkouškou, střední odborné vzdělaní a odborná příprava pro povolání v oblasti optiky. 2 Představení projektu Elektrotechnika a stavebnictví jsou závislé na kvalifikované, odborně připravené pracovní síle, jejichž počet neustále klesá. Moravskoslezský energetický klastr ve spolupráci se Střední školou elektrotechnickou, Ostrava, Na Jízdárně p.o. a Střední školou elektrostavební a dřevozpracující ve Frýdku Místku p.o. se rozhodli tento nepříznivý trend pozměnit. V rámci projektu, který byl financován z operačního programu vzdělávání pro konkurenceschopnost, byly na spolupracujících středních školách vytvořeny nové učebny praktické výuky MSEK, které byly vybaveny nejmodernějšími didaktickými pomůckami a funkčními výukovými modely. V rámci tohoto projektu se také pořádala celá škála exkurzí do provozu, seminářů vedených odborníky, workshopů, projektových dní pro základní školy, soutěží o hodnotné ceny a v rámci projektu byl také speciálně vytvořený internetový vzdělávací portál kde si můžete ověřit své znalosti z oblasti elektrotechniky. V současné době vybavení učeben neodpovídá trendům v oblasti elektrotechniky, obnovitelných zdrojů energie a nedostačuje počtu žáků účastnících se praktické výuky. Pro zkvalitnění a rozvoj praktického vyučování bylo nutné vytvořit výše zmíněné specializované učebny praktické výuky MSEK, které jsou vybavené moderními didaktickými pomůckami a funkčními výukovými systémy, o kterých se dozvíte více v následujících kapitolách. 5

7 Funkční výukové systémy: Obr. 1 Modulární systém elektrických vodičů Obr. 2 Systém malé větrné elektrárny Didaktické pomůcky: Solární experimentální model - Solární rotační letadélka - Solární sady 6 v 1 - Dům na solární energii - Solární experimentální stavebnice - Solární osvětlení Termokamera Testery napětí Stabilizovaný regulovatelný zdroj Zdroj pevného stabilizovaného napětí Sada elektronářadí Soubor elektromateriálu pro výuku: - Stavebnicemi MERCUR E2 elektronic - Edison 5 Obr. 3 Fotovoltaický výukový systém 2.1. Přínosy projektu pro žáky zapojených středních škol Zlepšení a zkvalitnění praktické výuky možnost pracovat s novými výukovými modely a vybavením pod dohledem odborníků z praxe a pedagogů přímo ve škole v nových učebnách praktické výuky. Získání nových informací o technologiích a postupech v oblasti elektrotechniky a stavebnictví, možnost vyzkoušet si práci s novými přístroji a vybavením a posílit tak praktické dovednosti a rozvíjet svou manuální zručnost v souladu s požadavky potencionálních zaměstnavatelů.

8 Získat studijní podporu pro praktické vyučování výukové manuály. Navázání spolupráce s potencionálními zaměstnavateli. Aktivní zapojení v rámci účasti na exkurzích a seminářích. Zvýšení kvalifikačních předpokladů zvyšující šance na trhu práce Přínosy projektu pro žáky základních škol Žáci budou mít, prostřednictvím exkurzí a projektových dnů, možnost lépe se seznámit s problematikou práce ve stavebních a elektrotechnických oborech. Větší informovanost o praktické výuce na středních školách zaměřených na elektrotechniku a stavebnictví. Aktivní formy výuku možnosti si vyzkoušet v rámci výuky práci s elektrovzdělávací hrou, exkurze přímo do výroby, přednášky a prezentace zástupců firem a středních škol. Možnost navštívit praktické vyučování přímo na středních školách. 3 ELEKTROTECHNICKÝ PRŮMYSL Elektronický průmysl je průmysl, který se v průběhu 20. století vytvořil s potřebou výroby elektronických zařízení nebo jejich částí, strojů, přístrojů, spotřební elektroniky, elektronických komponent, později počítačů a mobilních zařízení atd. a postupně se stal průmyslem globálním, kolem kterého se ročně točí mnoho miliard dolarů. Současná společnost používá celou řadu elektronických zařízení, vyráběných v automatizovaných a poloautomatizovaných továrnách po celém světě. [1] 3.1. Elektrotechnické obory Elektrotechnika se dělí na řadu oborů a podooborů. Tyto obory v zásadě můžeme rozdělit na tzv. slaboproud a silnoproud, záleží na velikosti energií, s kterými se zde pracuje. K oborům slaboproudu se řadí například elektronika a telekomunikace, k oborům silnoproudu patří elektroenergetika, elektrické stroje, elektrické přístroje, výkonová elektronika a elektrické pohony. Tyto obory mnohdy nelze zcela striktně oddělit, protože se mnohde prolínají a navazují na sebe [1]: Elektroenergetika Elektroenergetika je nejstarším elektrotechnickým oborem. Zabývá se především výrobou, přenosem a distribucí elektrické energie, také se sem řadí elektrické osvětlení a přeměna elektřiny na teplo (elektrické topení, elektrické vysoké pece, elektrické pece na sklo a podobně), spadá sem rovněž problematika ochrany před nežádoucími účinky elektrického proudu. Řadíme zde: tepelné elektrárny jaderné elektrárny vodní elektrárny sluneční elektrárny větrné elektrárny rozvodny elektrické vedení přenosové soustavy

9 Elektrické stroje Elektrické stroje jsou zařízení sloužící přeměně elektrické energie na pohyb a naopak a ke změně parametrů elektrické energie. V zásadě rozlišujeme elektrické stroje točivé (motory a generátory) a netočivé (transformátory). Řadíme zde: transformátor elektrický motor generátor, alternátor dynamo, stejnosměrný motor (stejnosměrný stroj) asynchronní motor (indukční stroj) Elektrické přístroje Jako obor se zabývají zařízeními sloužícími k ovládání a měření elektrické energie. Řadíme zde: jističe, pojistky stykače, vypínače, odpojovače relé a různé měřicí přístroje jako: voltmetr ampérmetr ohmmetr wattmetr Elektrické pohony Tento obor se zabývá pohonem strojů a jiných technických zařízení pomocí elektrické energie. Podle druhu použitých strojů rozlišujeme pohony stejnosměrné a střídavé, dále rozlišujeme pohony regulované a neregulované. U neregulovaných pohonů je třeba zpravidla řešit rozběh a jištění stroje, u regulovaných pohonů dále regulaci rychlosti nebo polohy. V průmyslových aplikacích se také často nejedná o izolované pohony, ale o regulaci vícemotorových soustrojí, jako jsou různé dopravníky, jeřáby, výtahy, válcovací stolice nebo papírenské stroje. Moderní regulované pohony často zahrnují sofistikované řízení založené na frekvenčních měničích, zde často včetně počítačem řízeného provozu stroje. 4 STAVEBNÍ PRŮMYSL Stavební průmysl prochází bouřlivým rozvojem a s tím souvisí řada nových trendů. Vznikají výrobci i stavební společnosti zaměřující se na nezvyklé a inovované produkty. Využívají se nové materiály, technologie a stavební postupy. Trendem je stavba zařízení pro vlastní výrobu energie, nízkoenergetické stavby, zařízení na zpracování odpadu a další ekologicky orientované projekty. Zvyšuje se rychlost výstavby prostřednictvím již připravených dílů. Mezi trendy také nesmí chybět vývoj nových materiálů s funkční i estetickou hodnotou. V oblasti estetiky se prosazují snad všechny myslitelné styly. S rozvojem stavebnictví vznikají nové specializované firmy nabízející jedinečná, na míru připravená řešení. [2]

10 Obr. 4 Výzkumné a inovační centrum MSDK postavené v pasivním standardu Stavebnictví plní pro společnost několik funkcí [3]: sociální (bydlení, kultura, zdravotnictví, vzdělávání, sport) průmyslová výroba zemědělská výroba doprava energetika Hlavním a nejdůležitějším cílem musí být vytváření vhodného pracovního a životního prostředí pro existenci lidí, zvířat a rostlin a zároveň maximální zachování všech přírodních a kulturních památek. Stavebnictví tak představuje velmi komplexní obor lidské činnosti, zahrnující v sobě nejenom složky technické, technologické a ekonomické, ale i estetické a ekologické. Konečným cílem stavebnictví mají být potřeby člověka a jeho společnosti. Stavebnictví je členěno do čtyř základních skupin [3]: Pozemní stavby stavby pro bydlení, občanské stavby, průmyslové stavby a zemědělské stavby Dopravní a podzemní stavby mosty, silnice, tunely, železnice, letištní plochy Vodohospodářské stavby přehrady, úpravy vodních toků, meliorace Speciální stavby stožáry, podzemní kolektory 5 Informační a výukový manuál I Bc. Miroslav MAĎA I MODULÁRNÍ SYSTÉM ELEKTRICKÝCH VODIČŮ systém modulárního Řízení budov Sběrnicová elektroinstalace představuje jedinečné řešení elektroinstalace tehdy, když se staví nový dům nebo provádí kompletní rekonstrukce. Systém nabízí širokou škálu funkcí, které přináší uživateli domu příjemný komfort. Dále umožňuje integrovat jednotlivé technologie v domě, což kromě již zmíněného komfortu přináší zejména úspory. Způsob ovládání lze v průběhu času přizpůsobovat požadavkům uživatele a elektroinstalaci lze dále rozšiřovat. Velmi oblíbené je využívání aplikací pro chytré telefony nebo tablety, které představují efektivní a přehledný způsob kontroly nad domem a to kdykoliv, ať už jste doma nebo mimo svůj domov. Sběrnicový systém je schopný integrovat většinu technologií v domě a vhodnou regulací šetřit peníze za energie. Uživatel v danou chvíli nemusí řešit, zda je léto nebo zima. Jednoduše může nastavit požadovanou teplotu v místnosti a dům již automaticky ví, co má dělat. Úspory jsou nosnou myšlenkou, provázející celý inteligentní dům. Ten je pak schopný vypnout osvětlení a vytápění

11 v místnosti v době nepřítomnosti, v zimě vytáhne žaluzie, čímž umožní prohřívání domu slunečními paprsky či naopak v létě uzpůsobí žaluzie tak, aby omezil prostup paprsků do místnosti a omezil tak četnost spínání energeticky náročné klimatizace. Součástí systému je i zabezpečení. Slouží k ochraně majetku i osob. Systém umožňuje připojení záplavového, teplotního, požárního detektoru či detektoru úniku plynu. Tyto jsou pak schopny na základě nepříznivých podmínek zavřít přívod vody, plynu, spustí ventilaci apod. Užitečná je také funkce simulace přítomnosti v době, kdy není nikdo doma. Ovládání inteligentní elektroinstalace je umožněno prostřednictvím: Nástěnných vypínačů Skleněných dotykových vypínačů Dotykového (3,5 ) displeje Aplikace ihc v telefonu nebo tabletu Počítače Televizní obrazovky Tím lze zachovat jak konvenční způsob ovládání, tak jej lze doplnit o možnost ovládání celého domu z jednoho místa. Další součástí systému je multimediální nástavba, která slouží k centrální distribuci hudby, filmů nebo fotek. [4] 5.1. Možnosti systému Úspora energií díky regulaci osvětlení a vytápění Ovládání rolet, markýz, venkovních či meziokenních žaluzií Stmívání světel, světelné scény Spínání spotřebičů či elektrických zařízení na dálku Ovládání příjezdové brány, garážových vrat Logické a centrální funkce (odchodové tlačítko, ) Možnost manuálního ovládání i automatického režimu Reakce na (nežádoucí) otevření okna nebo dveří Reakce na pohyb osob (žádoucí i nežádoucí) Vzdálený dohled přes smartphone, tablet nebo PC Možnost ovládání přes TV obrazovku Integrace zařízení třetích stran (kamery, klimatizace ) [4] Obr. 5 Ukázka modulárního systému

12 6 Využití 6.1. Komfort Centrální ovládání sběrnicového systému nám umožní jedním tlačítkem ovládat celé skupiny spotřebičů, světelné i topné okruhy nebo všechny elektrospotřebiče najednou. Tím lze dosáhnout neomezených možností například při odchodu z domu zapomeneme vypnout osvětlení nebo žehličku ze zásuvky. Jedním stisknutím tlačítka odpojím nebezpečné silové okruhy a zhasnu všechny světla v domě. To se ovšem nesmí dotknout spotřebičů, které jsou na elektrické energii závislé (lednička, mraznička apod.). Celý dům lze ovládat dálkově a to prostřednictvím webového rozhraní internetu nebo pomocí mobilní GSM sítě. Stejné funkce, jako má centrální ovladač, můžeme dosáhnout posláním jedné SMS nebo pouhým prozvoněním GSM brány napojené do systému. Velkým trendem jsou rolety nebo žaluzie. Ty lze efektivně ovládat jednotlivě, po skupinách (místnostech) či všechny najednou a to jak manuálně pomocí tlačítka, tak automaticky podle uživatelem nastaveného týdenního programu nebo na základě informací přijatých z venkovních senzorů osvětlení, rychlosti větru či deště. Hlavní výhodou je kombinace všech těchto technologií. Při nastavených scénách např. KINO se mi při zapnutí TV spustí žaluzie, světelné okruhy v dané místnosti sníží svou intenzitu na příjemných 20% a zesilovač se přepne do filmového módu. Po přerušení této scény se vše opět vrátí do původního stavu. Uživatel má volbu mezi neměnným závazkem prostřednictvím klasické elektroinstalace nebo flexibilitou a samotným komfortem, který mu nabídne inteligentní elektroinstalace. Shrnutí: stmívací funkce (postupný náběh/doběh, světelné scény apod.) ovládání pomocí telefonu, dotykového displeje, tabletu, smartphonu nebo prostřednictvím internetu (kompletní přehled o stavu systému) ovládání pomocí klasického ovladače IR paprsek ovládání hlasem regulace teploty pomocí automaticky nastavených programů nebo podle potřeb uživatele [4] 6.2. Úspora energie Je-li v domě efektivním způsobem řízeno vytápění, lze pomocí inteligentního systému dosáhnout energetických úspor až 30%, což už není nezanedbatelné číslo. Toto ovšem není tvořeno pouze vhodnou regulací vytápění, ale také kvalitní tepelnou izolací budovy, kvalitními okny a v neposlední řadě uživatelem samotným. Systém sám dokáže reagovat na otevření okna v místnosti při větrání. Vypne v dané místnosti topení a tím tak šetří energii spotřebovanou na vytápění. Při odchodu z domu automaticky přepne do úsporného režimu. Analogicky se chová po příchodu domů. Topení ovšem není jedinou funkcí, kde dokáže chytrý systém ušetřit. Toho lze docíliti zapínáním a vypínáním elektrických přístrojů během nepřítomnosti uživatele. Tato možnost plní jak funkci úspornou, tak funkci bezpečnostní. Shrnutí: regulace vytápění, klimatizace omezené spínání na základě pokynů uživatele nebo podle časového plánu

13 regulace osvětlení (lze dosáhnout až 10% úspory energií) spínání na základě senzorů (při soumraku, při určité teplotě apod.) odstavení určitých spotřebičů při dosažení denního limitu spotřeby energií nebo na základě tarifu elektroměru [4] 6.3. Bezpečnost Většina inteligentních elektroinstalací dokáže integrovat zabezpečovací systém alarm a tím ho povyšuje na vyšší úroveň. Neplní pouze bezpečnostní funkci, když není uživatel doma, ale dokáže mu pomoci v jeho přítomnosti. Mezi základní funkce patří opatření proti předcházení vzniku požáru, kdy může systém automaticky po detekci kouře odpojit varnou desku, či zamezit přívod plynu. Základem každého zabezpečovacího systému je ústředna, která je v inteligentní elektroinstalaci nahrazena centrální řídicí jednotkou. Systém tvoří řada detektorů: PIR detektory reagující na vyzařování v infračerveném spektru. MW detektory (micro wave) pracují na principu mikrovlnného záření. Duální čidla kombinace jednotlivých detektorů Magnetické kontakty - tyto senzory se umisťují na okna a dveře a signalizují jejich otevření. Na základě informací získaných od detektoru může systém například přerušit v dané místnosti vytápění. Detektor tříštění skla akustický snímač nastavený přesně na frekvence zvuku rozbíjeného, lámaného, tříštěného, případně i řezaného skla. Infrazávory - detekují přerušení neviditelného paprsku. Inteligentní elektroinstalace umožňuje vytvořit iluzi, že se v domě pohybují lidé. Je to preventivní opatření, které má odvádět pozornost od případných pachatelů v době nepřítomnosti uživatele. Shrnutí: alarm s dalšími rozšířitelnými funkcemi (simulace přítomnosti v domě) systém lze zastřežit pomocí klávesnice, karty nebo sepnutí určité sekvence tlačítek nastavení je zaheslováno na několika úrovních ochrana domu při nepříznivých povětrnostních podmínkách (při silném dešti zatažení rolet, stáhnutí markýzy, zakrytí bazénu apod.) koncové prvky (vypínače) jsou napájeny ze sběrnice bezpečným napětím 24V [4] 6.4. Osvětlení Lze nadefinovat jednotlivé okruhy, trasy nebo skupiny osvětlení. Denní nebo noční režim. Všechny funkce jsou definovány uživatelem. Díky sběrnicovému systému lze osvětlení spínat nebo stmívat a to opět lokálně nebo po skupinách. Lze vytvářet světelné scény. Například večer podle definovaného denního programu se mi rozsvítí lampička nad postelí, část chodby vedoucí do koupelny a koupelna samotná. Osvětlení se dá také kombinovat s bezpečnostními prvky integrovanými v domě. V noci nemusím hledat vypínač na zdi. Pokud mám v místnosti detektor pohybu, ví, že mi má rozsvítit na příjemnou intenzitu, abych se nevzbudil. Všechny světelné scény si může uživatel v průběhu užívání jednoduše měnit a není závislý na prvotní instalaci, jako tomu je u klasické elektroinstalace. [4]

14 6.5. Vytápění a chlazení Vytápění a chlazení lze ovládat manuálně, v závislosti na čase nebo v závislosti na venkovní teplotě. Teplotu můžeme řídit v každé místnosti zvlášť nebo ve všech místnostech najednou, případně po skupinách. Vytápění se primárně řídí nadefinovaným týdenním programem, který lze měnit na lokálních termostatech nebo vzdáleně přes internet či mobilní telefon. Lze ovládat více druhů topení. Teplovodní podlahové, elektrické nebo klasická topná tělesa. U teplovodního vytápění se využívá elektrických termopohonů, které ovládá automaticky inteligentní systém na základě výše zmíněných požadavků. Topení se chová v závislosti na přijatých informací z řídicí jednotky. Například podle toho, jestli se v místnosti někdo nachází nebo ne, zda je otevřené v tu danou chvíli okno nebo jestli uživatel samotný vnutil místnosti požadovanou teplotu. Podobným způsobem lze ovládat i chlazení. To je řešeno opět několika způsoby. Chlazení pomocí vody, pomocí vzduchotechniky nebo pomocí klimatizace. Všechny tyto systémy umí inteligentní elektroinstalace ovládat. Jestliže je v domě použito více technologií pro ohřev teplé užitkové vody (tepelné čerpadlo, solární kolektory, plynový kotel, apod.) inteligentní systém sám rozhodne, který zdroj je na základě vnějších a vnitřních podmínek v domě, vhodnější použít. Uživatele v tu chvíli zajímá pouze požadovaná teplota a ne technologie, kterou má být daná teplota dosažena. Aktivně s vytápěcím systémem pracuje i stínící technika. V případě hrozby přehřátí domu, systém automaticky zatáhne žaluzie, naopak v zimním období při intenzivním slunečním záření žaluzie vytáhne pro dosažení větších tepelných zisků. [4] 7 Rozdíl mezi klasickou a inteligentní elektroinstalací Do stávajících a nově postavených domů přibyla spousta nových systému pro jeho bezpečnost, řízení a tvorbu pohodlí. S tím však nastává problém s velkým množstvím kabeláže, ovládacích prvků a složitou elektroinstalací k dosažení požadovaných uživatelských přání. [4] 7.1. Klasická elektroinstalace Klasická elektroinstalace byla primárně určena pro spotřebičové a světelné rozvody. Skládá se ze samostatných celků osvětlení, vytápění, ovládání topení atd. Neposílají se zde informace po sběrnici, ale spíná se přímo obvod příslušného spotřebiče. Jakékoliv změny vyvolané v klasické instalaci představují další náklady, opravy elektroinstalace, její znepřehlednění a hlavně stavební úpravy. Každý ze systémů vyžaduje samostatnou komunikační síť. [4]

15 Obr. 6 Schéma klasické elektroinstalace [4] Výhody a nevýhody klasické elektroinstalace Klasická elektroinstalace se využívá většinou v jednoduchých realizacích, kde máme v místnosti například jeden nebo dva světelné okruhy. V tomto případě by inteligentní elektroinstalace ztrácela význam. Jednou z hlavních výhod klasické elektroinstalace je její finanční nenáročnost, ta je ovšem na úkor flexibility. V současné době můžeme u klasické elektroinstalace hovořit pouze o řadě nevýhod ve srovnání s inteligencí. Mezi takové patří zejména nákladné změny spojené se změnami v elektroinstalaci, nepřehlednost kvůli většímu počtu kabelů a hlavně problémy při propojení s ostatními systémy Inteligentní elektroinstalace Inteligentní elektroinstalace slouží k ovládání a zejména integraci použitých systémů, technologií a procesů v domě. Pomocí nich lze v domě komplexně řešit centrální ovládání, které je koncipováno do jednoho funkčního celku. V rámci tohoto systému je pak možné řešit měření a regulaci, sledování spotřeby energie, ovládání a řízení osvětlení, spínání ventilace, klimatizace, řízení žaluzií, rolet, řízení elektricky ovládaných střešních oken, garážových vrat, spínání závlahových systémů až po vizualizaci celého systému na mobilní telefon, dotykový panel, tablet nebo televizi. Inteligentní elektroinstalace je navržena tak, že jednotlivé technologie jsou propojeny sběrnicí. Ta umožňuje jednoduché projektování a návrh funkcí systému. Všechny ovládací prvky jsou propojeny stejným vodičem ve většině případu se jedná o kroucený pár. [4]

16 Obr. 7 Inteligentní elektroinstalace [4] Jak už bylo řečeno, inteligentní elektroinstalace se zavádí zejména z důvodu vysokých požadavků na flexibilitu, ovládání, komfort a jednoduché instalace náročných elektrických systémů s požadavkem na minimální spotřebu energie. Spojuje klasickou silnoproudou instalaci spolu se slaboproudou technologií. Výhody a nevýhody inteligentní elektroinstalace Mezi hlavní výhody patří zejména poskytovaný komfort ovládání a řízení technologií v domě včetně spotřeby energie. U rozsáhlých systémů poskytuje inteligentní elektroinstalace určitou formu přehlednosti, jednoduchosti a komplexnosti. V tomto případě už se můžeme bavit o elektroinstalaci cenově srovnatelné nebo dokonce levnější oproti klasické instalaci. Další důležitou výhodou je možnost rozšíření systému bez ohledu na jeho náročnost nebo zapojení. Celý systém se dá postupem času měnit jak z hlediska zapojení, tak z hlediska funkcionality. Sběrnice je napájena malým napětím (27 V). Za nevýhody inteligentní elektroinstalace můžeme považovat finanční náročnost v menších aplikacích. Zde se jedná zejména o prestiž a komfort investora Porovnání jednotlivých elektroinstalací Rozhodnutí mezi klasickou a inteligentní elektroinstalací závisí na dvou hlavních faktorech. Na náročnosti elektroinstalace a na finančních prostředcích. Klasickou elektroinstalací můžeme pokrýt většinu požadavků kladených na elektrické vybavení budov. Pokud ale předpokládáme určitý komfort a řízení, má inteligentní elektroinstalace oproti klasické jasnou výhodu. Jsou jednodušší, přehlednější, umožňují snadné projektování a dodatečné rozšíření o další funkce.

17 Inteligentní elektroinstalace nespíná přímo přívod elektrické energie pomocí ovládacího prvku, ale posílá signál řídicí jednotce, která na základě toho sepne příslušné relé ovládacího aktoru. Obr. 8 Srovnání spínání žárovky u klasické a inteligentní elektroinstalace[4] U klasické instalace je tedy klasický vypínač, který po stisknutí sepne dané zařízení (světlo, topení, ventilátor apod.). Je to provedeno tak, že k vypínači je přiveden samostatně jištěný kabel, který vede až do samotného zařízení. Vypínačem se tedy přímo přerušuje napájení k danému zařízení. Každá skupina zařízení má svůj ovládací prvek, na který je napojená a je na něm závislá. U inteligentní elektroinstalace není ovládací prvek (inteligentní vypínač) přímo napojen na silové rozvody. Spínání probíhá tak, že danému tlačítku se programově přiřadí funkce, kterou má vykonat. Čili mu nastavíme, který spotřebič bude ovládat. Tím získáváme mnoho výhod. Postupem času můžeme vypínačům funkce měnit nebo přiřazovat nové. Můžeme skupiny zařízení sdružovat nebo naopak rozdělit. Sběrnice přivedená k inteligentnímu vypínači navíc plní i funkci napájení. Výhody inteligentního vypínače: Rozlišuje krátký a dlouhý stisk = více funkcí, více možností. Jeden vypínač nám umožňuje spínat i stmívat. Má integrovanou zelenou a červenou indikační diodu, která nám může dávat informaci o stavu daného zařízení. Má integrovaný teplotní senzor, na základě kterého můžeme řídit teplotu v dané místnosti. Umožňuje připojit dva bezpotenciálové kontakty (např. PIR, externí tlačítka) nebo jeden externí teplotní senzor (např. pro snímání teploty podlahy). [1] Informační a výukový manuál Bc. Miroslav MAĎA MODULÁRNÍ SYSTÉM ELEKTRICKÝCH VODIČŮ

18 8 Informační a výukový manuál I Ing. Petr LITERÁK I VĚTRNÉ ELEKTRÁRNY VĚTRNÉ ELEKTRÁRNY Větrné elektrárny jsou zařízení vyrábějící elektrickou energii prostřednictvím proudění vzduchu, to je větru. Vítr představuje energii vzniklou v důsledku otáčivého pohybu naší planety a působení slunečního záření zahřívajícího vzduch v zemské atmosféře. Vlivem rozdílů teplot v různých oblastech, vznikají i rozdíly tlakové, které způsobují horizontální proudění vzduchu, tedy vítr. Větrná energie tedy patří mezi nevyčerpatelné obnovitelné zdroje energie. Přeměna pohybové energie větru na energii mechanickou se v Evropě začíná využívat v 10. až 13. století ve větrných mlýnech pro mletí obilí nebo větrných kolech pro čerpání vody. V Čechách, na Moravě a ve Slezsku se využívala od 18. Století. K výrobě elektrické energie se používá přibližně sto let a to v souvislosti s rozvojem vývoje elektrických strojů na její výrobu. 9 PŘÍRODNÍ PODMÍNKY Větrná energie je jeden z nejdostupnějších obnovitelných zdrojů energie v ČR. Jejímu masovějšímu využívání brání sezonní kolísání rychlosti větru a technická náročnost související s jejich výstavbou a realizací elektrických vedení pro odvedení vyrobené energie do rozvodné sítě. Vhodné lokality se totiž nacházejí ve větších nadmořských výškách, obvykle nad 650 m n. m., s průměrnou roční rychlostí větru nad 4,8 m/s. Oblasti s průměrnou roční rychlostí větru znázorňuje větrný atlas České republiky vytvořený Ústavem fyziky atmosféry AV ČR. Obr. 9 Oblasti s průměrnou roční rychlostí větru v ČR

19 10 VÝHRADY PROTI VĚTRNÝM ELEKTRÁRNÁM Hlavními důvody odporu obyvatel proti výstavbě větrných elektráren je doprovodný hluk, ohrožení ptactva, poškození území při výstavbě a negativní ovlivnění rázu krajiny. Proti těmto tvrzením svědčí následující skutečnosti: ve vzdálenosti 200 m od středních a velkých větrných elektráren lze naměřit hluk pod 45 db. Při rychlosti větru nad 7 m/s je hluk způsobený prouděním vzduchu nad zemí, mezi stromy a domy větší, než hluk větrné elektrárny výzkumy prokázaly, že riziko střetu ptáků s konstrukcí větrné elektrárny je ve dne téměř nulové a noci či za mlhy mírně stoupá. Průměrný počet kolizí ptáků s větrnými elektrárnami je obdobný jako na dálnicích a mnohem menší než u vysokonapěťových elektrických vedení, při výstavbě větrných elektráren musí být respektovány zákony o ochraně přírody a krajiny. Podle těchto zákonů nejsou přípustné stavby v národních parcích, v přírodních rezervacích, v chráněných krajinných oblastech první zóny a v blízkosti národních památek Naopak výhodami větrných elektráren jsou: automatické nebo dálkové natáčení elektráren pro co nejlepší využití větrné energie možnost využití velkého rozsahu rychlosti větru a to od 3 do 26 m/s jejich vysoká účinnost, která dosahuje u konstrukcí s horizontální osou až 48% a u konstrukcí s vertikální osou okolo 38% 11 PŘEHLED VELKÝCH VĚTRNÝCH ELEKTRÁREN NA ÚZEMÍ ČR Obr. 10 Mapa lokalit na území České republiky s větrnými elektrárnami s výkonem nad 100 kw

20 12 TECHNICKÉ ŘEŠENÍ STROJOVEN VĚTRNÝCH ELEKTRÁREN Větrná elektrárna se obvykle skládá ze sklolaminátové gondoly, ve které je umístěna strojovna a z rotoru pohánějícího soustrojí elektrárny. Gondola včetně rotoru je otočně usazená na ocelovém nosném stožáru, ukotveném v betonovém základu. Obr. 11 Popis typické větrné elektrárny 1 - rotor s rotorovou hlavicí; 2 - brzda rotoru; 3 - planetová převodovka; 4 - spojka a brzda generátorového hřídele; 5 - generátor; 6 - pohon natáčení strojovny; 7 - brzda točny strojovny (gondoly); 8 - ložisko točny strojovny; 9 - hydraulický agregát brzdy rotoru a generátorového hřídele; 10 - hydraulický agregát změny geometrie lopatek rotoru Typická větrná elektrárna s horizontální osou se skládá z: rotoru umístěného na hlavním hřídeli elektrárny brzdy, která je schopná podle potřeby za několik sekund zastavit rotor převodovky upravující otáčky generátoru generátoru vyrábějícího trojfázový elektrický proud o kmitočtu 50 Hz elektromotoru pro natáčení celé strojovny hydraulického agregátu pro ovládání brzdy rotoru, natáčení lopatek rotoru a brzdy točny strojovny Hlavní elektrický rozvaděč se silnoproudými rozvody a automatizačními obvody je umístěn ve spodní části nosného stožáru. Gondola je přístupná vnitřkem stožáru, kde je vedena i veškerá kabeláž mezi elektrickým vybavením gondoly a rozvaděčem.

21 13 PŘÍKLADY KONSTRUKCE VĚTRNÝCH ELEKTRÁREN Obr. 12 Větrná elektrárna s horizontální osou Obr. 13 Větrná elektrárna Hostýnské vrchy Obr. 14 Větrné elektrárny v přímořských oblastech Obr. 15 Montáž větrné elektrárny

22 Obr. 16 Větrná elektrárna s vertikální osou otáčení Obr. 17 Jiná konstrukce elektrárny s vertikální osou Obr. 18 Větrná farma 14 VĚTRNÉ ELEKTRÁRNY MALÉHO VÝKOnU Při využití malých větrných elektráren k zajištění dostatečného množství elektrické energie pro napájení elektrických spotřebičů instalovaných v rodinném domě, obytné usedlosti či rekreačním stavení je nutné, s přihlédnutím na nestálost větrného proudění vzduchu, doplnit větrnou turbínu o další nezávislé zdroje elektřiny. Vhodné je vytvořit sestavu tvořenou malou větrnou elektrárnou a soustavou solárních panelů odpovídajícího výkonu, které společně dodávají elektrickou energii do akumulátorových baterií. Prostřednictvím DC/AC měniče je stejnosměrná elektrická energie z akumulátorů upravena na běžné střídavé napětí 230V, 50Hz sinusového průběhu. Pro případ nedostatku energie musí být použitý ještě jeden záložní nezávislý zdroj- generátor poháněný spalovacím motorem. Tímto způsobem lze zajistit dodávku elektrické energie omezeného výkonu bez připojení na veřejnou rozvodnou soustavu. Tento způsob zásobování obydlí elektrickou energii se označuje jako ostrovní systém.

23 Obr. 19 Schéma ostrovního systému pro napájení domácnosti zelenou elektřinou Toto schéma je kombinaci větrné a solární elektrárny doplněné generátorem se spalovacím motorem. Příklady instalací kombinací větrné a solární elektrárny: Obr. 20 Přiklad energeticky soběstačného ostrovního systému Obr. 21 Kombinace větrné a solární elektrárny

24 15 VÝHODY A NEVÝHODY ZAŘÍZENÍ NA VYUŽITÍ VĚTRU Výhody větrné elektrárny využívají nevyčerpatelný obnovitelný zdroj energie- vítr neohrožují životní prostředí, neboť nevytváří škodlivý odpad energie větru je velmi levný, i když nestálý zdroj energie údržba větrných elektráren je minimální Nevýhody vysoká pořizovací cena nosné konstrukce a větrného motoru s generátorem nákladné regulátory kmitočtu pro dodávku do veřejné elektrizační soustavy mění ráz krajiny ohrožují tažné ptáky nesnadná akumulace vyrobené elektrické energie pro případ bezvětří 16 Zhodnocení větrných elekráren Pro hromadnější rozšíření výstavby větrných elektráren svědčí celá řada výhod, ale i nevýhod. S přihlédnutí na stále se zvyšující spotřebu elektrické energie a ubývající zásoby fosilních paliv, zejména uhlí a ropy, bude nezbytné neustále se rozšiřující využívání obnovitelných zdrojů energie. V podmínkách České republiky se k těmto zdrojům řadí zejména větrná energie. I při komplikacích s výběrem vhodných lokalit pro budování větrných elektráren větších výkonů, bude jejich výstavba nezbytná. Výhodná se jeví i výstavba malých větrných elektráren v kombinaci se solárními panely, jako doplňkový zdroj ekologické elektrické energie pro maloodběratele. Informační a výukový manuál Ing. Petr LITERÁK VĚTRNÉ ELEKTRÁRNY

25 17 Informační a výukový manuál I Tomáš NEVŘELA I FOTOVOLTAIKA FOTOVOLTAIKA Fotovoltaika je technický obor zabývající se procesem přímé přeměny světla na elektrickou energii. Název je odvozen od slova foto (světlo) a volt (jednotka elektrického napětí). Proces přeměny probíhá ve fotovoltaickém článku. Obr. 22 Znázornění principu přeměny slunečního záření na el. energii Téměř veškerá energie, kterou na Zemi máme, pochází ze Slunce. Na území ČR dopadne za rok asi milionkrát více energie, než je roční spotřeba elektřiny. Sluneční záření lze nejefektivněji přeměňovat na teplo, přeměna na elektřinu je však dražší. Elektřinu lze získávat přímo pomocí fotovoltaických panelů nebo nepřímo pomocí větrných a vodních elektráren, nebo tepelných elektráren spalujících biomasu či bioplyn. Existují i zařízení, kde je teplo spalovacího procesu nahrazeno teplem ze speciálních slunečních kolektorů. Obr. 23 Způsob přeměny slunečního záření na elektrickou energii

26 18 Zapojení solárních článků Sériovým nebo i paralelním elektrickým propojením solárních článků vzniká po jejich zapouzdření fotovoltaický panel. Články jsou sério-paralelně elektricky spojeny tak, aby bylo dosaženo potřebného napětí a proudu. Panel musí zajistit hermetické zapouzdření solárních článků, musí zajišťovat dostatečnou mechanickou a klimatickou odolnost (např. vůči silnému větru, krupobití, mrazu apod.). Obr. 24 Vlevo zobrazení solárního článku a vpravo umístění solárních panelů s automatickým natáčením 19 Systémy připojení fotovoltaických článků Systémy připojené k síti (grid-on) Fotovoltaický zdroj elektřiny lze použít pro dodávku do distribuční sítě. Častěji se toto zapojení využívá v budovách, kdy fotovoltaika napájí přednostně spotřebiče v domě. Není-li v domě odběr, jsou přebytky prodávány do sítě. Avšak jsou tímto způsobem zkonstruovány obrovské fotovotaické elektrárny, kdy jsou fotovoltaickými panely zastavěná volná prostranství, pole, louky. Důvodem je pak především zisk díky výkupu takto vyrobené elektrické energie předními distributory. Tyto systémy se obejdou bez poměrně nákladných akumulátorů; jako nekonečně velký akumulátor jim slouží síť. Naopak vždy potřebují střídač, který přemění stejnosměrný proud z panelů na střídavý, na který jsou spotřebiče v domácnosti konstruovány. Obr. 25 Propojení solárních panelů v systému grid-on

27 Obr. 26 Vlevo ilustrační schéma připojení systému grid-on a vpravo plošné rozmístění fotovoltaických panelů Samostatné (ostrovní) systémy grid-off Ve středoevropských podmínkách se častěji využívá fotovoltaika v místech, kde není k dispozici elektřina ze sítě. Tedy v případech, kdy jsou náklady na vybudování a provoz přípojky vyšší než náklady na fotovoltaický systém (cca od vzdálenosti k rozvodné síti více než m, což je vždy nutno posoudit individuálně). Může to být chata, ale třeba i obytný automobilový přívěs, kde je možno díky slunečnímu záření využívat komfortu elektrického osvětlení, chladničky a dalších spotřebičů. Fotovoltaika také pohání nouzové telefonní budky u dálnic nebo výstražnou dopravní signalizaci. Můžeme narazit i na fotovoltaikou napájené parkovací automaty. Takové zařízení lze kdykoli snadno přemístit, bez nutnosti zásahu do infrastruktury pro napojení k síti. U připojených spotřebičů se pak klade důraz na nízkou spotřebu energie - čím menší spotřeba, tím menší a levnější je pak i fotovoltaický systém. Trh nabízí nejrůznější spotřebiče konstruované na stejnosměrný proud, od zářivek, přes chladničky, televize až třeba po vodní čerpadla. Výkony se pohybují v řádech od 100 W p do 10 kw p špičkového výkonu. Investiční náklady na ostrovní systémy jsou v rozmezí Kč/m 2, což zhruba představuje Kč/W p. Systémy s přímým napájením se používají tam, kde nevadí, že připojené elektrické zařízení je funkční jenom po dobu dostatečné intenzity slunečního záření. Jedná se pouze o propojení solárního modulu a spotřebiče. Příklad aplikace: čerpání vody pro závlahu, napájení oběhového čerpadla solárního systému pro přípravu teplé užitkové vody, pohon protislunečních clon nebo nabíjení akumulátorů malých přístrojů - mobilní telefon, svítilna atd. Obr. 27 Propojení solárních panelů přímo se spotřebičem Systémy s akumulací elektrické energie se používají tam, kde potřeba elektřiny nastává i v době bez slunečního záření. Z tohoto důvodu mají tyto ostrovní systémy speciální akumulátorové baterie, konstruované pro pomalé nabíjení i vybíjení; automobilové akumulátory se zde příliš nehodí. Optimální nabíjení a vybíjení akumulátorů je zajištěno regulátorem dobíjení. K ostrovnímu systému lze připojit spotřebiče napájené stejnosměrným proudem (napětí systému bývá zpravidla 12 nebo 24 V) a běžné síťové spotřebiče 230 V/~50 Hz napájené přes napěťový střídač.

28 Obr. 28 Zapojení systému s akumulací vyrobené energie Obr. 29 Vlevo ilustrační schéma připojení systému grid-off a vpravo instalace na rodinném domě 20 Fotovoltaika v architektuře Solární panely se nejčastěji umisťují tak, aby byly orientovány na jih, se sklonem 30 a 60. Tak získávají nejvíce energie. Zařízení, která panely automaticky naklápí a natáčejí za Sluncem, se příliš nepoužívají, protože jsou nákladné. U větších systémů jsou solární panely z estetických důvodů často integrovány do fasády domu, i když to z energetického hlediska není nejvýhodnější. Architekt může při návrhu využít i to, že křemíkové články lze různě zabarvit. Obr. 30 Integrace fotovoltaických panelů do fasády domu

29 Obr. 31 Fotovoltaická elektrárna v Andalusii (Španělsko) 21 Solární elektrárny v ČR Obr. 32 Vývoj nárůstu fotovoltaických elektráren

30 Obr. 33 Vývoj nárůstu výkonu fotovoltaických elektráren Obr. 34 Přehled největších solárních elektráren

31 Obr. 35 Počet fotovoltaických elektráren s výkonem nad 100kW v roce 2014 Informační a výukový manuál Tomáš NEVŘELA FOTOVOLTAIKA SEZNAM POUŽITÉ Literatury [1] Wikipedie: Elektrotechnika [online]. [cit ]. Dostupné z: [2] Stavební průmysl: Stavební průmysl [online]. [cit ]. Dostupné z: [3] Wikipedia: Stavebnictví [online]. [cit ]. Dostupné z: [4] inels: Systém inteligentní elektroinstalace. [online]. [cit ]. Dostupné z: [5] Beranovský, J.; Truxa, J. a kolektiv: Alternativní energie pro váš dům. EkoWATT,ERA group spol. s r. o. 2004, 2. Aktualizované vydání [6] Kolektiv autorů: Průvodce energetickými úsporami a obnovitelnými zdroji energie. Regionální energetické centrum, o. p. s., TG Tisk, s. r. o., Lanškroun [7] Balák, R.; Prokeš, K.: Nové zdroje energie. Praha 1984, Polytechnická knižnice [8] archív foto Google

32 Název projektu: Podpora a rozvoj elektrotechnických a stavebních projektů v MSK Registrační číslo projektu: CZ.1.07/1.1.24/ Realizátor projektu: Moravskoslezský energetický klastr, občanské sdružení Moravskoslezský energetická klastr, o.s. Studentská Ostrava Poruba IČ: Tel: ISBN

Podpora a rozvoj elektrotechnických a stavebních oborů v MSK CZ.1.07/1.1.24/02.0058

Podpora a rozvoj elektrotechnických a stavebních oborů v MSK CZ.1.07/1.1.24/02.0058 Podpora a rozvoj elektrotechnických a stavebních oborů v MSK CZ.1.07/1.1.24/02.0058 PODĚKOVÁNÍ Realizační tým Moravskoslezského energetického klastru věnuje poděkování Střední škole elektrotechnické, Ostrava,

Více

Podpora a rozvoj elektrotechnických a stavebních oborů v MSK CZ.1.07/1.1.24/02.0058

Podpora a rozvoj elektrotechnických a stavebních oborů v MSK CZ.1.07/1.1.24/02.0058 Podpora a rozvoj elektrotechnických a stavebních oborů v MSK CZ.1.07/1.1.24/02.0058 PODĚKOVÁNÍ Realizační tým Moravskoslezského energetického klastru věnuje poděkování Střední škole elektrostavební a dřevozpracující

Více

Elektrostavební a dřevozpracující průmysl. Informační a výukový manuál pro žáky základních a středních škol

Elektrostavební a dřevozpracující průmysl. Informační a výukový manuál pro žáky základních a středních škol Informační a výukový manuál pro žáky základních a středních škol Elektrostavební a dřevozpracující průmysl Vypracoval: Bc. Stanislav Míša Bc. Miroslav Maďa Ing. Petr Literák Tomáš Nevřela Podpora a rozvoj

Více

SYSTÉMY A VYBAVENÍ VĚTRNÝCH ELEKTRÁREN

SYSTÉMY A VYBAVENÍ VĚTRNÝCH ELEKTRÁREN SYSTÉMY A VYBAVENÍ VĚTRNÝCH ELEKTRÁREN Jak již bylo v předchozích kapitolách zmíněno, větrné elektrárny je možné dělit dle různých hledisek a kritérií. Jedním z kritérií je například konstrukce větrného

Více

Inteligentní elektroinstalace Ego-n Vzorový rozpočet pro rodinný dům

Inteligentní elektroinstalace Ego-n Vzorový rozpočet pro rodinný dům Inteligentní elektroinstalace Ego-n Vzorový rozpočet pro rodinný dům ABB s.r.o. Elektro-Praga Půdorysy: 1.NP Přízemí Úvod Účelem tohoto vzorového orientačního rozpočtu je seznámit investory/koncové uživatele

Více

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Úloha: Konvenční elektroinstalace Obor: Elektrikář silnoproud Ročník: 2. Zpracoval: Ing. Jaromír Budín, Ing. Jiří Šima Střední odborná škola Otrokovice, 2009 Projekt

Více

Vzorový rozpočet inteligentní elektroinstalace Ego-n pro rodinný dům

Vzorový rozpočet inteligentní elektroinstalace Ego-n pro rodinný dům Vzorový rozpočet inteligentní elektroinstalace Ego-n pro rodinný dům 05/2007 RD Olymp; G servis s.r.o., Třebíč Půdorysy: 1.NP Přízemí Úvod Účelem tohoto vzorového orientačního rozpočtu je seznámit investory/koncové

Více

Praktický návod. Inteligentní elektroinstalace obytného domu Ego-n

Praktický návod. Inteligentní elektroinstalace obytného domu Ego-n Praktický návod Inteligentní elektroinstalace obytného domu Ego-n 1. Vytvoření nového projektu 2. Nastavení komunikace Informace o projektu Nastavení domu (rozsáhlé projekty) 1. 2. 3. 4. Přidání elementu

Více

ENERGIE SLUNCE - VÝROBA ELEKTŘINY

ENERGIE SLUNCE - VÝROBA ELEKTŘINY ENERGIE SLUNCE - VÝROBA ELEKTŘINY Téměř veškerá energie, kterou na Zemi máme, pochází ze Slunce. Na území ČR dopadne za rok asi milionkrát více energie, než je roční spotřeba elektřiny. Sluneční záření

Více

Inteligentní elektroinstalace systém ABB i-bus EIB

Inteligentní elektroinstalace systém ABB i-bus EIB Inteligentní elektroinstalace systém ABB i-bus EIB Klasické systémy elektroinstalace jsou v posledních letech stále častěji nahrazovány elektroinstalacemi v takzvaném inteligentním provedení, a to zejména

Více

Opatření proti nežádoucím tokům tepelné energie a jejich začlenění do systému řízení

Opatření proti nežádoucím tokům tepelné energie a jejich začlenění do systému řízení Opatření proti nežádoucím tokům tepelné energie a jejich začlenění do systému řízení Stínící systémy, ať již interiérové nebo exteriérové významně ovlivňují tepelnou pohodu v interiéru ať se jedná o administrativní

Více

prostředků při minimálních provozních nákladech. Inteligentní budovy jsou označovány EIBG European Intelligent Building Group.

prostředků při minimálních provozních nákladech. Inteligentní budovy jsou označovány EIBG European Intelligent Building Group. Systémová technika budov Ing. Tomáš Mlčák, Ph.D. Fakulta elektrotechniky a informatiky VŠB TUO Katedra elektrotechniky www.fei.vsb.cz/kat452 Technická zařízení budov III Fakulta stavební Inteligentní budova

Více

Téma prezentace. CHYTRÝ DŮM - bezpečí, komfort, úspory energií

Téma prezentace. CHYTRÝ DŮM - bezpečí, komfort, úspory energií Téma prezentace CHYTRÝ DŮM - bezpečí, komfort, úspory energií Asociace chytrého bydlení POSLÁNÍ Asociace chytrého bydlení je spojením odborníků a firem, které mají prokazatelné zkušenosti s chytrým bydlením.

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

SILNOPROUDÁ ELEKTROTECHNIKA A ELEKTROENERGETIKA. www.uvee.feec.vutbr.cz www.ueen.feec.vutbr.cz

SILNOPROUDÁ ELEKTROTECHNIKA A ELEKTROENERGETIKA. www.uvee.feec.vutbr.cz www.ueen.feec.vutbr.cz SILNOPROUDÁ ELEKTROTECHNIKA A ELEKTROENERGETIKA www.uvee.feec.vutbr.cz www.ueen.feec.vutbr.cz FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ Bakalářský studijní program B-SEE Bakalářský studijní program

Více

STÍNÍCÍ TECHNIKA BUDOUCNOSTI

STÍNÍCÍ TECHNIKA BUDOUCNOSTI DOMÁCÍ AUTOMATIZACE STÍNÍCÍ TECHNIKA BUDOUCNOSTI DANIEL MATĚJKA PŘEDSTAVENÍ SPOLEČNOSTI LG SYSTEM (DIVIZE DOMÁCÍ AUTOMATIZACE) DOMÁCÍ AUTOMATIZACE Zpracování elektoprojektů, domovní fotovoltaické systémy,

Více

Téma prezentace. Kontrola energií a ekonomická návratnost inteligentních budov

Téma prezentace. Kontrola energií a ekonomická návratnost inteligentních budov Téma prezentace Kontrola energií a ekonomická návratnost inteligentních budov Asociace chytrého bydlení POSLÁNÍ Asociace chytrého bydlení je spojením odborníků a firem, které mají prokazatelné zkušenosti

Více

Digitální učební materiál

Digitální učební materiál Evidenční číslo materiálu: 503 Digitální učební materiál Autor: Mgr. Pavel Kleibl Datum: 21. 3. 2012 Ročník: 9. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Energie Téma:

Více

VĚTRNÉ ELEKTRÁRNY Tomáš Kostka

VĚTRNÉ ELEKTRÁRNY Tomáš Kostka VĚTRNÉ ELEKTRÁRNY Tomáš Kostka VĚTRNÁ ELEKTRÁRNA Větrná elektrárna (větrná turbína) využívá k výrobě elektrické energie kinetickou energii větru. Větrné elektrárny řadíme mezi obnovitelné zdroje energie.

Více

Návrh energetických opatření a uplatnění OZE při rekonstrukci objektu Matematicko-fyzikální fakulty UK v Praze

Návrh energetických opatření a uplatnění OZE při rekonstrukci objektu Matematicko-fyzikální fakulty UK v Praze Návrh energetických opatření a uplatnění OZE při rekonstrukci objektu Matematicko-fyzikální fakulty UK v Praze Doc. Ing. Jiří Sedlák, CSc., Ing. Radim Bařinka, Ing. Petr Klimek Czech RE Agency, o.p.s.

Více

Automatizace v developerských projektech. Ing. Jiří Tobolík, produktový manažer inels

Automatizace v developerských projektech. Ing. Jiří Tobolík, produktový manažer inels Automatizace v developerských projektech Ing. Jiří Tobolík, produktový manažer inels 1. Automatizace 2. Variabilita (Modularita) 3. Flexibilita 4. Úspora energií 5. Komfort 6. Zabezpečení (Bezpečnost)

Více

Energie větru. Vzduch proudící v přírodě, jehož směr a rychlost se. sluneční energie.

Energie větru. Vzduch proudící v přírodě, jehož směr a rychlost se. sluneční energie. Energie větru Energie větru Vzduch proudící v přírodě, jehož směr a rychlost se obvykle neustále mění. Příčiny: rotace země, sluneční energie. Energie větru Využitelný výkon větru asi 3 TW třetina současné

Více

Systémová elektroinstalace se systémem Foxtrot - komplexní řízení technologií administrativní budovy WOMBAT v Brně

Systémová elektroinstalace se systémem Foxtrot - komplexní řízení technologií administrativní budovy WOMBAT v Brně Kolín, 18.5.2015 Systémová elektroinstalace se systémem Foxtrot - komplexní řízení technologií administrativní budovy WOMBAT v Brně Během letošního ročníku mezinárodního veletrhu elektrotechniky, elektroniky,

Více

TEPELNÁ ČERPADLA VZUCH - VODA

TEPELNÁ ČERPADLA VZUCH - VODA TEPELNÁ ČERPADLA VZUCH - VODA www.hokkaido.cz Budoucnost patří ekologickému a ekonomickému vytápění Tepelné čerpadlo vzduch - voda Omezení emisí CO 2 Spotřeba energie Životní prostředí Principem každého

Více

FIBARO MOZEK VAŠEHO DOMOVA. Inteligentní dům CENOVĚ DOSTUPNÉ ŘEŠENÍ PRO VAŠI DOMÁCNOST BEZ NUTNOSTI STAVEBNÍCH ÚPRAV INTERIÉRU

FIBARO MOZEK VAŠEHO DOMOVA. Inteligentní dům CENOVĚ DOSTUPNÉ ŘEŠENÍ PRO VAŠI DOMÁCNOST BEZ NUTNOSTI STAVEBNÍCH ÚPRAV INTERIÉRU Inteligentní dům komplexní řešení pro ovládání světel a žaluzií, regulaci teploty a zajištění bezpečí reálné snížení provozních nákladů intuitivní ovládání pomocí telefonů a tabletů automatizace chodu

Více

Regulátor ECL Comfort 110 Pro střídavé napětí 230 V a 24 V

Regulátor ECL Comfort 110 Pro střídavé napětí 230 V a 24 V Datový list Regulátor ECL Comfort 110 Pro střídavé napětí 230 V a 24 V a zároveň je prostřednictvím čipové karty a komunikačního rozhraní uzpůsoben pro využití v nových aplikacích. Konstrukce regulátoru

Více

Alternativní zdroje energie

Alternativní zdroje energie Autor: Ivo Vymětal Pracovní list 1 Přeměny energie 1. Podle vzoru doplň zdroje a druhy energie, které se uplatní v popsaných dějích. Využij seznamu: Žárovka napájená z tepelné elektrárny. Slunce Rostliny

Více

UŽIVATELSKÁ PREZENTACE inels. www.elkoep.cz

UŽIVATELSKÁ PREZENTACE inels. www.elkoep.cz UŽIVATELSKÁ PREZENTACE inels www.elkoep.cz Chytrý dům s jeden DŮM jeden SYSTÉM jeden OVLADAČ na VŠE Technologie v domě si rozumí Technologie pracují za Vás Přináší maximální užitek Časové a finanční úspory

Více

Inteligentní dům. Intzam Ali. Vyšší odborná škola a Střední škola slaboproudé elektrotechniky Praha, Novovysočanská 48/280 - 1 -

Inteligentní dům. Intzam Ali. Vyšší odborná škola a Střední škola slaboproudé elektrotechniky Praha, Novovysočanská 48/280 - 1 - Středoškolská technika 2015 Setkání a prezentace prací středoškolských studentů na ČVUT Inteligentní dům Intzam Ali Vyšší odborná škola a Střední škola slaboproudé elektrotechniky Praha, Novovysočanská

Více

Projekt osvětlení Téryho chaty elektřinou ze slunce

Projekt osvětlení Téryho chaty elektřinou ze slunce Projekt osvětlení Téryho chaty elektřinou ze slunce Fotovoltaický systém pro Téryho chatu Energetická část projektu pro osvětlení Téryho chaty v ostrovním provozu tzn. bez připojení k rozvodné síti ( Technické

Více

VYTÁPĚNÍ A ENERGETICKY ÚSPORNÁ OPATŘENÍ PŘI PROVOZU BUDOV

VYTÁPĚNÍ A ENERGETICKY ÚSPORNÁ OPATŘENÍ PŘI PROVOZU BUDOV Projekt ROZŠÍŘENÍ VYBRANÝCH PROFESÍ O ENVIRONMENTÁLNÍ PŘESAH Č. CZ.1.07/3.2.04/05.0050 VYTÁPĚNÍ A ENERGETICKY ÚSPORNÁ OPATŘENÍ PŘI PROVOZU BUDOV ZDROJE ENERGIE V ČR ZDROJE ENERGIE V ČR Převaha neobnovitelných

Více

Inteligence nikdy nevypadala lépe

Inteligence nikdy nevypadala lépe UNICA KNX Inteligence nikdy nevypadala lépe P119536 new www.vypinac.cz UNICA KNX schopnosti a inteligence KNX ve spojení s krásou a elegancí designu UNICA V dnešní době je pro vytvoření moderních životních

Více

V zimě teplo a v létě chlad ze vzduchu! Teplo je náš živel. Tepelná čerpadla vzduch-voda splitové provedení. Logatherm WPLS Comfort

V zimě teplo a v létě chlad ze vzduchu! Teplo je náš živel. Tepelná čerpadla vzduch-voda splitové provedení. Logatherm WPLS Comfort [ Vzduch ] [ Voda ] Tepelná čerpadla [ Země ] [ Buderus ] V zimě teplo a v létě chlad ze vzduchu! Logatherm WPLS Comfort Logatherm WPLS Light Teplo je náš živel Využijte energii ze vzduchu pro příjemné

Více

Energetický audit a energetická náročnost budov, legislativa, seznámení s předmětem

Energetický audit a energetická náročnost budov, legislativa, seznámení s předmětem České vysoké učení technické v Fakulta stavební Katedra technických zařízení budov Energetický audit a energetická náročnost budov, legislativa, seznámení s předmětem prof.ing.karel 1 Energetický audit

Více

Chytrý byt za 2 dny. Technologie inhome vám přináší. Vyšší bezpečnost. Snížení spotřeby energií. Vysoký komfort a pohodlí. Zábavu na vysoké úrovni

Chytrý byt za 2 dny. Technologie inhome vám přináší. Vyšší bezpečnost. Snížení spotřeby energií. Vysoký komfort a pohodlí. Zábavu na vysoké úrovni Chytrý byt za 2 dny Technologie inhome vám přináší Vyšší bezpečnost Snížení spotřeby energií Vysoký komfort a pohodlí Zábavu na vysoké úrovni Snížení vlivu na životní prostředí Chytrý byt za 2 dny Společnost

Více

SYMPATIK Vila Aku. Obrázek RD

SYMPATIK Vila Aku. Obrázek RD SYMPATIK Vila Aku Obrázek RD Obr. Budova SYSTHERM SYMPATIK Vila Aku je předávací stanice, určená pro individuální vytápění a přípravu teplé vody v rodinných domech a malých objektech připojených na systémy

Více

X14POH Elektrické POHony. K13114 Elektrických pohonů a trakce. elektrický pohon. Silnoproudá (výkonová) elektrotechnika. spotřeba el.

X14POH Elektrické POHony. K13114 Elektrických pohonů a trakce. elektrický pohon. Silnoproudá (výkonová) elektrotechnika. spotřeba el. Předmět: Katedra: X14POH Elektrické POHony K13114 Elektrických pohonů a trakce Přednášející: Prof. Jiří PAVELKA, DrSc. Silnoproudá (výkonová) elektrotechnika podíl K13114 na výuce technická zařízení elektráren

Více

ABB i-bus KNX Vzorový rozpočet systémové elektroinstalace pro rodinný dům

ABB i-bus KNX Vzorový rozpočet systémové elektroinstalace pro rodinný dům ABB i-bus KNX Vzorový rozpočet systémové elektroinstalace pro rodinný dům Půdorysná schémata 1. NP 2. NP 2 Půdorysná schémata ABB i-bus KNX Vzorový rozpočet systémové elektroinstalace pro rodinný dům Úvod

Více

Předběžný návrh řešení systému vytápění pomocí: tepelného čerpadla Vaillant arotherm VWL (provedení vzduch/voda)

Předběžný návrh řešení systému vytápění pomocí: tepelného čerpadla Vaillant arotherm VWL (provedení vzduch/voda) Předběžný návrh řešení systému vytápění pomocí: tepelného čerpadla Vaillant arotherm VWL (provedení vzduch/voda) Nabídka č. 2310201319 Investor: pan Peter Kovalčík RD Ruda 15, Velké Meziříčí email: peter.kovalcik@seznam.cz

Více

JAK SE ELEKTŘINA DISTRIBUUJE

JAK SE ELEKTŘINA DISTRIBUUJE JAK SE ELEKTŘINA DISTRIBUUJE aneb: z elektrárny ke spotřebiči prof. Úsporný 2 3 Z ELEKTRÁRNY KE SPOTŘEBIČI Abychom mohli využívat pohodlí, které nám nabízí elektřina, potřebujeme ji dostat z elektráren

Více

Inteligentní elektroinstalace. vidí slyší komunikuje. ABB s.r.o. Elektro-Praga

Inteligentní elektroinstalace. vidí slyší komunikuje. ABB s.r.o. Elektro-Praga Inteligentní elektroinstalace vidí slyší komunikuje ABB s.r.o. Elektro-Praga Pro nové stavby a rekonstrukce inteligentní elektroinstalace Ego-n A v čem je inteligentní elektroinstalace lepší oproti běžné?

Více

Efektivní energie (NRQRPLFN¾ RKďHY YRG\ Y GRP FQRVWL SRPRF WHSHOQªKR ÎHUSDGOD

Efektivní energie (NRQRPLFN¾ RKďHY YRG\ Y GRP FQRVWL SRPRF WHSHOQªKR ÎHUSDGOD Efektivní energie Jak to funguje Tepelné čerpadlo vzduch / voda získává energii z atmosféry. Tento systém vyžaduje pouze 1 kw elektrické energie k výrobě 3 až 5 kw tepelné energie. 2-4 kw ENERGIE ZE VZDUCHU

Více

s ohřevem vody a hydraulickým modulem ARIANEXT - 8 kw (připravujeme 10 a 12 kw)

s ohřevem vody a hydraulickým modulem ARIANEXT - 8 kw (připravujeme 10 a 12 kw) Tepelné čerpadlo VZDUCH - VODA s ohřevem vody a hydraulickým modulem ARIANEXT - 8 kw (připravujeme 10 a 12 kw) kompaktní tepelné čerpadlo s doplňkovým elektroohřevem ARIANEXT COMPACT 8 kw ARIANEXT PLUS

Více

Smart City a MPO. FOR ENERGY 2014 19. listopadu 2014. Ing. Martin Voříšek

Smart City a MPO. FOR ENERGY 2014 19. listopadu 2014. Ing. Martin Voříšek Smart City a MPO FOR ENERGY 2014 19. listopadu 2014 Ing. Martin Voříšek Smart City Energetika - snižování emisí při výrobě elektřiny, zvyšování podílu obnovitelných zdrojů, bezpečnost dodávek Doprava snižování

Více

TEPELNÁ ČERPADLA VZUCH - VODA

TEPELNÁ ČERPADLA VZUCH - VODA TEPELNÁ ČERPDL VZUCH - VOD www.hokkaido.cz Budoucnost patří ekologickému a ekonomickému vytápění Tepelné čerpadlo vzduch - voda Principem každého tepelného čerpadla vzduch - voda je přenos tepla z venkovního

Více

Doporučení pro vedení kabeláže a přípravu kabelových tras při plánování a provádění instalací systému Control4

Doporučení pro vedení kabeláže a přípravu kabelových tras při plánování a provádění instalací systému Control4 Doporučení pro vedení kabeláže a přípravu kabelových tras při plánování a provádění instalací systému Control4 Seznam technologií Ovládání žaluzií, rolet a markýz Ovládání světel Ovládání elektrických

Více

10. Energeticky úsporné stavby

10. Energeticky úsporné stavby 10. Energeticky úsporné stavby Klíčová slova: Nízkoenergetický dům, pasivní dům, nulový dům, aktivní dům, solární panely, fotovoltaické články, tepelné ztráty objektu, součinitel prostupu tepla. Anotace

Více

ROČNÍKOVÝ PROJEKT: ZABEZPEČENÍ OBJEKTU: (Zabezpečení libovolného objektu)

ROČNÍKOVÝ PROJEKT: ZABEZPEČENÍ OBJEKTU: (Zabezpečení libovolného objektu) Střední průmyslová škola elektrotechnická a zařízení pro další vzdělávání pedagogických pracovníků v Žatci ROČNÍKOVÝ PROJEKT: ZABEZPEČENÍ OBJEKTU: (Zabezpečení libovolného objektu) Datum vypracování: 18.5.2011

Více

Zásobování Šluknovského výběžku elektřinou. Podklady pro poradu

Zásobování Šluknovského výběžku elektřinou. Podklady pro poradu Zásobování Šluknovského výběžku elektřinou Podklady pro poradu Dispozice vedení Varianty řešení 1. 2. 3. 4. 5. 6. Střídavé kabelové vedení 110 kv Stejnosměrné kabelové vedení 110 kv Kompaktní (estetické)

Více

Úspěšné absolvování naší školy je vstupní bránou nejen na technické fakulty českých vysokých škol, ale i na start úspěšné profesní dráhy.

Úspěšné absolvování naší školy je vstupní bránou nejen na technické fakulty českých vysokých škol, ale i na start úspěšné profesní dráhy. Slovo ředitele Střední škola elektrotechnická patří mezi přední elektrotechnické školy v České republice nejen díky své dlouholeté tradici, ale i díky perspektivám, které nabízí současným i budoucím žákům.

Více

Střešní fotovoltaický systém

Střešní fotovoltaický systém Střešní fotovoltaický systém Elektrická energie Vašeho stávajícího dodavatele je a bude jen dražší, staňte se nezávislí a pořiďte si vlastní fotovoltaickou elektrárnu již dnes. Fotovoltaická elektrárna

Více

Řídicí jednotky, řada VCB

Řídicí jednotky, řada VCB Řídicí jednotky, řada VCB Řídicí jednotky VCB pro vzduch Řídicí jednotka VCB je ideální zařízení pro regulaci malých a středních vzduchotechnických zařízení bez vazby na nadřazené systémy MaR. Umožňuje

Více

Eaton bezdrátový systém xcomfort

Eaton bezdrátový systém xcomfort This is a photographic template your photograph should fit precisely within this rectangle. Eaton bezdrátový systém xcomfort Moderní elektroinstalace pro budovy a byty Ing. Jaromír Pávek, Produktový manažer

Více

EUROPEAN TRADESMAN PROJECT NOTES ON ELECTRICAL TESTS OF ELECTRICAL INSTALLATIONS. Obnovitelné zdroje energií v domácnostech

EUROPEAN TRADESMAN PROJECT NOTES ON ELECTRICAL TESTS OF ELECTRICAL INSTALLATIONS. Obnovitelné zdroje energií v domácnostech EUROPEAN TRADESMAN PROJECT NOTES ON ELECTRICAL TESTS OF ELECTRICAL INSTALLATIONS Obnovitelné zdroje energií v domácnostech The European Tradesman - Renewable Energy Sources - Germany 2 Problém: Celosvětová

Více

Administrativní budova a školicí středisko v energeticky pasivním standardu

Administrativní budova a školicí středisko v energeticky pasivním standardu Administrativní budova a školicí středisko v energeticky pasivním standardu? Představení společnosti Vznik společnosti r. 1992 Počet zaměstnanců 50 Centrum pasivního domu (CPD) Moravskoslezského energetického

Více

MONTÁŽNÍ NÁVOD Venkovní svítilna s detektorem pohybů (PIR) Provedení: Bílý držák, foukané sklo Obj. č.: 61 16 54

MONTÁŽNÍ NÁVOD Venkovní svítilna s detektorem pohybů (PIR) Provedení: Bílý držák, foukané sklo Obj. č.: 61 16 54 MONTÁŽNÍ NÁVOD Venkovní svítilna s detektorem pohybů (PIR) Provedení: Bílý držák, foukané sklo Obj. č.: 61 16 54 Venkovní osvětlení LiftBoy TECHNIC s detektorem pohybů (technika PIR) s úhlem záběru 270

Více

ALTERNATIVNÍ ZDROJE ENERGIE

ALTERNATIVNÍ ZDROJE ENERGIE ALTERNATIVNÍ ZDROJE ENERGIE Využití energie slunce Na zemský povrch dopadá průměrně 0,2 kw/m 2 V ČR dopadne na 1 m 2 přibližně 1000 kwh energie ročně Je několik možností, jak přeměnit energii slunečního

Více

PIR technologie US technologie

PIR technologie US technologie Jednoduché a úsporné senzory Legrand nabízí moderní senzory pro efektivní řešení řízení osvětlení. Samostatné autonomní senzory 1 výstup: Autonomní pohybové senzory (str. 134 a 136) Autonomní přítomnostní

Více

Systém inteligentního řízení moderních domů. Vzorový rozpoč et GILD Single. http://www.gildsystem.com 2009 ESTELAR s.r.o. strana 1 (celkem 15)

Systém inteligentního řízení moderních domů. Vzorový rozpoč et GILD Single. http://www.gildsystem.com 2009 ESTELAR s.r.o. strana 1 (celkem 15) Systém inteligentního řízení moderních domů Vzorový rozpoč et GILD Single http://www.gildsystem.com 2009 ESTELAR s.r.o. strana 1 (celkem 15) Úvod Vzorové kalkulace systému GILD jsou vypracovány jako příklady

Více

Energetické systémy pro nízkoenergetické stavby

Energetické systémy pro nízkoenergetické stavby Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií Ústav elektroenergetiky Energetické systémy pro nízkoenergetické stavby Systémy pro vytápění a přípravu TUV doc. Ing. Petr

Více

Energetika v ČR XVIII. Solární energie

Energetika v ČR XVIII. Solární energie Energetika v ČR XVIII Solární energie Slunce snímek v oblasti rtg záření http://commons.wikimedia.org/wiki/file:sun_in_x-ray.png Projevy sluneční energie: - energie fosilních paliv (která vznikla z rostlinné

Více

Zlepšení kvality života v budovách se systémem ABB i-bus KNX Perspektivy bydlení 2012

Zlepšení kvality života v budovách se systémem ABB i-bus KNX Perspektivy bydlení 2012 Ing.Richard Müller, 25.4.2012 Zlepšení kvality života v budovách se systémem ABB i-bus KNX Perspektivy bydlení 2012 April 30, 2012 Slide 1 Budete stavět svůj dům? A už jste se někdy setkali s tím: že tímto

Více

Omezená distribuce elektřiny při dlouhodobém výpadku napájení distribuční soustavy z přenosové soustavy ČR

Omezená distribuce elektřiny při dlouhodobém výpadku napájení distribuční soustavy z přenosové soustavy ČR Omezená distribuce elektřiny při dlouhodobém výpadku napájení distribuční soustavy z přenosové soustavy ČR Ing. František Mejta Ing. Milan Moravec mejta@egu.cz moravec@egu.cz www.egu.cz Obsah 1. K problémům

Více

Ovládejte i místa, kam se jen tak nedostanete. www.devi.cz

Ovládejte i místa, kam se jen tak nedostanete. www.devi.cz Ovládejte i místa, kam se jen tak nedostanete Devilink BezdrátovéF ovládání I G H T Vašeho I N G pohodlí FOR www.devi.cz BARE FEET D E V I L I N K B E Z D R ÁT O V É O V U nás v DEVI jsme hrdí, že nenabízíme

Více

VOLITELNÉ PŘÍSLUŠENSTVÍ k modulační elektronice ST 480 zpid (kotle A15; TKA) nebo ST 880 zpid (kotle PK)

VOLITELNÉ PŘÍSLUŠENSTVÍ k modulační elektronice ST 480 zpid (kotle A15; TKA) nebo ST 880 zpid (kotle PK) VOLITELNÉ PŘÍSLUŠENSTVÍ k modulační elektronice ST 480 zpid (kotle A15; TKA) nebo ST 880 zpid (kotle PK) ST 290 v1, v2, v3 - Pokojový regulátor termostat Funkce řízení pokojové teploty, týdenní program

Více

ECO TEPELNÁ ČERPADLA VZDUCH/VODA Pro novostavby, nízkoenergetické a pasivní domy

ECO TEPELNÁ ČERPADLA VZDUCH/VODA Pro novostavby, nízkoenergetické a pasivní domy ECO TEPELNÁ ČERPADLA VZDUCH/VODA Pro novostavby, nízkoenergetické a pasivní domy OCHSNER ELW - ECO VZDUCH/VODA Tepelná čerpadla pro vytápění Ideální systém pro každé použití Tepelné čerpadlo OCHSNER ELW

Více

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Úloha: Sběrnicová elektroinstalace Obor: Elektrikář silnoproud Ročník: 2. Zpracoval: Ing. Jaromír Budín, Ing. Jiří Šima Střední odborná škola Otrokovice, 2009 Projekt

Více

hoblovky hřídele jeřáby lisy ložiska motory potrubí pružiny regulační přístroje součásti soustruhy stroje

hoblovky hřídele jeřáby lisy ložiska motory potrubí pružiny regulační přístroje součásti soustruhy stroje tt 06 Průmysl a služby doprava. letecká doprava. potrubní doprava. silniční doprava. vodní doprava. železniční doprava grafika metalografie odpadní vody průmysl. elektrotechnika SAMOSTATNÝ MIKROTEZAURUS

Více

Żaluzje wewnątrzszybowe

Żaluzje wewnątrzszybowe Vnitřní žaluzie do oken Żaluzje wewnątrzszybowe Benátské žaluzie zabudované uvnitř izolačních skel Vnitřní žaluzie do oken bez vad Horizontální žaluzie byly nejrozšířenějším způsobem omezení nadměrného

Více

Rozvody nn část I. Rozvody nn v obytných a průmyslových prostorách. Ing. M. Bešta

Rozvody nn část I. Rozvody nn v obytných a průmyslových prostorách. Ing. M. Bešta Rozvody nn v obytných a průmyslových prostorách 1) Bytová rozvodnice BR Bytovou rozvodnicí začíná bytový rozvod nn. Většinou je bytová rozvodnice místem rozdělení vodiče PEN na vodič střední a ochranný,

Více

KATALOG OPATŘENÍ a KATALOG DOBRÉ RRAXE

KATALOG OPATŘENÍ a KATALOG DOBRÉ RRAXE a KATALOG DOBRÉ RRAXE Výstup je vytvořen v rámci projektu ENERGYREGION (pro využití místních zdrojů a energetickou efektivnost v regionech) zaměřujícího se na vytváření strategií a konceptů využívání obnovitelných

Více

je zvoleným způsobem (po telefonu nebo internetu) o situaci

je zvoleným způsobem (po telefonu nebo internetu) o situaci Elektronické zabezpečení bytů a domů zpracoval: Tomáš Petřík MU PdF EZS-elektronické zabezpečovací systémy EZS jsou významným pomocníkem při ochraně majetku. Hlavní funkcí EZS je vyhlášení poplachu v případě

Více

Vyšší úcinnost, více komfortu, méne nákladu: Nová rádiová regulace Uponor s dynamickým rízením spotreby energie (DEM)

Vyšší úcinnost, více komfortu, méne nákladu: Nová rádiová regulace Uponor s dynamickým rízením spotreby energie (DEM) INDOOR CLIMATE SOLUTIONS RÁDIOVÁ REGULACE S DEM FUNKCÍ Vyšší úcinnost, více komfortu, méne nákladu: Nová rádiová regulace Uponor s dynamickým rízením spotreby energie (DEM) Úcinný a pritom jednoduchý zpusob

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

Lumius smarthome inteligentní řešení pro rodinné bydlení. Vývoj a realizace pasivního domu v Lužických horách

Lumius smarthome inteligentní řešení pro rodinné bydlení. Vývoj a realizace pasivního domu v Lužických horách Lumius smarthome inteligentní řešení pro rodinné bydlení Vývoj a realizace pasivního domu v Lužických horách Mapa širších vztahů - RD Polevsko RD Polevsko Lumius smarthome Efektivní cesta využití obnovitelných

Více

F O T O V O L T A I C K Ý O H Ř E V T U V S A K T I V N Í M P Ř I Z P Ů S O B E N Í M T Y P O V É Ř E Š E N Í 7,5 kwp / 7,5 kw / 0,75 m 3

F O T O V O L T A I C K Ý O H Ř E V T U V S A K T I V N Í M P Ř I Z P Ů S O B E N Í M T Y P O V É Ř E Š E N Í 7,5 kwp / 7,5 kw / 0,75 m 3 F O T O V O L T A I C K Ý O H Ř E V T U V S A K T I V N Í M P Ř I Z P Ů S O B E N Í M T Y P O V É Ř E Š E N Í 7,5 kwp / 7,5 kw / 0,75 m 3 A 1. T e c h n i c k á z p r á v a Vypracoval: Asolar s.r.o., Palliardiho

Více

EFEKTIVNÍ ENERGETICKÝ REGION DOLNÍ BAVORSKO

EFEKTIVNÍ ENERGETICKÝ REGION DOLNÍ BAVORSKO EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍČECHY DOLNÍ BAVORSKO Vytápěnía využitíobnovitelných zdrojůenergie se zaměřením na nízkoenergetickou a pasivní výstavbu OTOPNÁ SOUSTAVA Investice do Vaší budoucnosti Projekt

Více

Sundaram KS. Vysoce účinný sinusový měnič a nabíječ. Uživatelská konfigurace provozu. Snadná montáž. Detailní displej.

Sundaram KS. Vysoce účinný sinusový měnič a nabíječ. Uživatelská konfigurace provozu. Snadná montáž. Detailní displej. Sundaram KS Vysoce účinný sinusový měnič a nabíječ Sundaram KS 1K/2K/3K Sundaram KS 4K/5K > Střídač s čistým sinusovým průběhem > Výběr rozsahu vstupního napětí pro domácí spotřebiče a osobní počítače

Více

Domácí automatizace. Bezdrátově ovládané systémy

Domácí automatizace. Bezdrátově ovládané systémy Domácí automatizace Bezdrátově ovládané systémy Systémy s bezdrátovým ovládáním Domácí automatizace nabízí řešení zjednodušeného ovládání a automatizaci elektrických spotřebičů přináší pohodlí, bezpečnost

Více

Osnova kurzu. Rozvod elektrické energie. Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 3

Osnova kurzu. Rozvod elektrické energie. Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 3 Osnova kurzu 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 1 Základy teorie elektrických obvodů 2 Základy teorie elektrických

Více

ABB i-bus KNX Vzorový rozpočet systémové elektroinstalace pro rodinný dům

ABB i-bus KNX Vzorový rozpočet systémové elektroinstalace pro rodinný dům ABB i-bus KNX Vzorový rozpočet systémové elektroinstalace pro rodinný dům Půdorysná schémata 1. NP SAUNA GARÁŽ BAZÉNOVÁ HALA WC VSTUPNÍ HALA CHODBA CHODBA KOUPEL. OBYTNÁ HALA KUCHYNĚ JÍDELNA OBÝVACÍ POKOJ

Více

Akční plán energetiky Zlínského kraje

Akční plán energetiky Zlínského kraje Akční plán energetiky Zlínského kraje Ing. Miroslava Knotková Zlínský kraj 19/12/2013 Vyhodnocení akčního plánu 2010-2014 Priorita 1 : Podpora efektivního využití energie v majetku ZK 1. Podpora přísnějších

Více

EGE, spol. s r.o. je tradiční český výrobce speciálních zařízení pro energetický průmysl, zejména zapouzdřených vodičů, zhášecích tlumivek a

EGE, spol. s r.o. je tradiční český výrobce speciálních zařízení pro energetický průmysl, zejména zapouzdřených vodičů, zhášecích tlumivek a EGE, spol. s r.o. je tradiční český výrobce speciálních zařízení pro energetický průmysl, zejména zapouzdřených vodičů, zhášecích tlumivek a stožárových konstrukcí. EGE ke všem svým výrobkům zajišťuje

Více

Obnovitelné zdroje elektrické energie fotovoltaické elektrárny

Obnovitelné zdroje elektrické energie fotovoltaické elektrárny Obnovitelné zdroje elektrické energie fotovoltaické elektrárny Stručný úvod do problematiky Plk.Josef Petrák HZS Královéhradeckého kraje Únor 2011 Legislativní rámec OSN a EU 1.Kjótský protokol (ratifikace

Více

PARTNER V OBLASTI VODNÍHO HOSPODÁŘSTVÍ

PARTNER V OBLASTI VODNÍHO HOSPODÁŘSTVÍ www.prvnielektro.cz PARTNER V OBLASTI VODNÍHO HOSPODÁŘSTVÍ Systémy pro čerpání, přečerpávání a čištění průmyslových a odpadních vod Odvodňování rozsáhlých ploch První Elektro, a.s. specialista na elektrotechnologie

Více

ABB i-bus KNX Inteligentní elektroinstalace pro Váš perfektní dům

ABB i-bus KNX Inteligentní elektroinstalace pro Váš perfektní dům ABB i-bus KNX Inteligentní elektroinstalace pro Váš perfektní dům Inteligentní elektroinstalace Klasické systémy elektroinstalace jsou v posledních letech stále častěji nahrazovány elektroinstalacemi v

Více

Společnost ELKO EP, leader na českém trhu inteligentních instalací s více, než čtyřmi sty realizací, chce co nejvíce zpopularizovat možnosti a výhody

Společnost ELKO EP, leader na českém trhu inteligentních instalací s více, než čtyřmi sty realizací, chce co nejvíce zpopularizovat možnosti a výhody Společnost ELKO EP, leader na českém trhu inteligentních instalací s více, než čtyřmi sty realizací, chce co nejvíce zpopularizovat možnosti a výhody co nejširší skupině lidí a dokázat, že inteligentní

Více

Perspektivy bydlení. 25.4.2012 Brno

Perspektivy bydlení. 25.4.2012 Brno Perspektivy bydlení 25.4.2012 Brno Systémy pro řízení budov TEBIS Fußzeileneintrag 13.03.2009 2 Popis systému Hlavní rozdíly oproti běžným elektrickým instalacím jsou: spínání jednotlivých obvodů pro osvětlení,

Více

Jak vidí ukládání energie FitCraft Energy s.r.o.

Jak vidí ukládání energie FitCraft Energy s.r.o. Jak vidí ukládání energie FitCraft Energy s.r.o. 8. 10. 2015 Martin Dorazil Vedoucí výzkumu a vývoje Ing. Miroslav Šafár Jednatel Miroslav Hanzelka Konzultant Miiroslav Hanzelka 2015 Agenda Úvod Potřeba

Více

Úspora spotřeby energií Pohodlné používání a ovládání Flexibilní přizpůsobení a rozvoj Bezpečné používání a lepší ochrana

Úspora spotřeby energií Pohodlné používání a ovládání Flexibilní přizpůsobení a rozvoj Bezpečné používání a lepší ochrana ELEGANTNÍ A JEDNODUCHÁ AUTOMATIZACE ELEGANTNÍ A JEDNODUCHÁ AUTOMATIZACE Úspora spotřeby energií Pohodlné používání a ovládání Flexibilní přizpůsobení a rozvoj Bezpečné používání a lepší ochrana Rozumíme

Více

Systémový manažer E8.5064 pro kaskády kotlů s připojením na solární kolektor a kotle na pelety Použití:

Systémový manažer E8.5064 pro kaskády kotlů s připojením na solární kolektor a kotle na pelety Použití: Systémový manažer E8.5064 pro kaskády kotlů s připojením na solární kolektor a kotle na pelety Použití: Regulátor kaskády s modulovanými hořáky s připojením na solární topení. Regulátor kaskády se spínanými

Více

KONDENZAČNÍ TURBO PLYNOVÉ TOPIDLO FOTOVOLTAIKA

KONDENZAČNÍ TURBO PLYNOVÉ TOPIDLO FOTOVOLTAIKA KONDENZAČNÍ TURBO PLYNOVÉ TOPIDLO FOTOVOLTAIKA BALI BTFS E32 elektronické zapalování hořák vybaven třemi hořákovými trubicemi a ionizační kontrolou plamene atmosférický hořák z nerezové oceli sekundární

Více

ABB i-bus KNX Systém inteligentní elektroinstalace pro nevšední řešení

ABB i-bus KNX Systém inteligentní elektroinstalace pro nevšední řešení ABB i-bus KNX Systém inteligentní elektroinstalace pro nevšední řešení Systémová technika ABB i-bus KNX Moderní inteligentní systém pro elektrické instalace Na elektrické instalace v budovách jsou kladeny

Více

Fotovoltaické. systémy na budovách

Fotovoltaické. systémy na budovách Fotovoltaické systémy na budovách plk. Ing. Zdeněk k Hošek Ministerstvo vnitra - generální ředitelství Hasičského záchranného sboru ČR Obnovitelné zdroje energie Legislativní rámec OSN a EU Obnovitelné

Více

Doporučení pro vedení kabeláže a přípravu kabelových tras při plánování a provádění instalací systému Control4

Doporučení pro vedení kabeláže a přípravu kabelových tras při plánování a provádění instalací systému Control4 Doporučení pro vedení kabeláže a přípravu kabelových tras při plánování a provádění instalací systému Control4 Seznam připojovaných technologií Řídicí systém Control4 Topení a klimatizace centrální zdroj

Více

Moderní správa VO a inteligentní VO

Moderní správa VO a inteligentní VO Moderní správa VO a inteligentní VO Budoucnost již dnes? Hynek Bartík Někteří prodejci slibují úspory i 80% Vypínač spoří 100% 2 Minimalizace celkových nákladů co? Co chceme od veřejného osvětlení? Investiční

Více

Energetické zdroje budoucnosti

Energetické zdroje budoucnosti Energetické zdroje budoucnosti Energie a společnost Jakýkoliv živý organismus potřebuje dodávku energie (potrava) Lidská společnost dále potřebuje značné množství energie k zabezpečení svých aktivit Doprava

Více

PODPOROVANÁ OPATŘENÍ. Systémy měření a regulace Výroba energie pro vlastní spotřebu

PODPOROVANÁ OPATŘENÍ. Systémy měření a regulace Výroba energie pro vlastní spotřebu POPIS OBVYKLÝCH ÚSPORNÝCH OPATŘENÍ PODPOROVANÁ OPATŘENÍ Rozvody elektřiny, plynu a tepla v budovách Systémy měření a regulace Výroba energie pro vlastní spotřebu Osvětlení budov a průmyslových areálů Snižování

Více

Návod k obsluze. Konstrukce a technické parametry:

Návod k obsluze. Konstrukce a technické parametry: Návod k obsluze "Carbon crystal - kompozitní nástěnný infra topný systém" je systém vytápění, které kombinuje sálavé infra vytápění a konvenční vytápění v jednom panelu. Přeměna elektřiny na teplo má až

Více