uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů:

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů:"

Transkript

1 I. Bezpečnostníkódy úvod základní pojmy počet zjistitelných a opravitelných chyb 2prvkové těleso a lineární prostor jednoduché bezpečnostní kódy lineární kódy Hammingův kód smysluplnost bezpečnostních kódů kódy a mnohočleny násobení mnohočlenů dělení mnohočlenů kódy generované mnohočleny detekce shluků chyb cyklické kódy JPO 2005/6 c A. Pluháček

2 uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů: a K 1 K 2 K α β γ δ a=(a 1,...,a k ) původníinformace b=(b 1,...,bn) slovo,vektor,znak { { kódová, přípustné, slova anebo znaky nekódová, nepřípustné. b JPO 2005/6 I 1 c A. Pluháček

3 uvedení do problematiky ii principy: zjišťování(detekce) chyb: slovo není kódovým slovem opravy(korekce) chyb: slovosenahradí nejpodobnějším kódovýmslovem K 1 umožňujezjistit1chybu(aleijinýlichýpočetchyb) K 2 umožňujezjistit1chybu(aleijinýlichýpočetchyb) K 3 umožňujezjistit2chyby(aleinějakýjinýpočetchyb) aneboopravit1chybu,alenikolivobojí!!! příklad: kód K 3 přijato(přečteno) ψ=11100 αselišíve3bitech βselišíve4bitech správné slovo: δ=11110 = γselišíve2bitech a = 11(pravděpodobně) δselišíve1bitu JPO 2005/6 I 2 c A. Pluháček

4 uvedení do problematiky iii příklad a původnídata (kbitů) 11 b kódovéslovo (nbitů) e chyba (n bitů) c přijaté slovo (n bitů) s syndrom (m bitů) 010 d opravenádata(kbitů) 11 JPO 2005/6 I 3 c A. Pluháček (opraveno)

5 základní pojmy kód: a b, aleněkdypouzemnožinakódovýchslov!!! kód(n, k): a b, kdebje nbitovéaaje kbitové k... informačníobsah(entropie) m=n k... nadbytečnost(redundance) systematickýkód: a b, kde b i = a i pro i k bity b i pro i k... informačníčástslova bity b i pro i > k... kontrolníčástslova příklady: K 1 jesystematickýkód(3,2) K 2 jenesystematickýkód(3,2) K 3 jesystematickýkód(5,2) Hammingova vzdálenost: vzdálenost dvou slov počet odlišných bitů např.vzdálenost11100a01011jerovna4 kódová vzdálenost kvzd minimální vzdálenost dvojic kódových slov, např. K 1 : kvzd=2, K 2 : kvzd=2, K 3 : kvzd=3 JPO 2005/6 I 4 c A. Pluháček

6 geometrická interpretace Hammingovy vzdálenosti Ò Ò K 1 K 3 JPO 2005/6 I 5 c A. Pluháček

7 počet zjistitelných a opravitelných chyb Je-li kódová vzdálenost kde kvzd=dch+och+1, dch a och jsou přirozená čísla a platí dch och, lze detekovat(zjistit) dch chyb a opravit och z nich. příklady: kvzd=2 lzezjistit1chybu,alenelzejiopravit kvzd=3 lzezjistit2chybu,alenelzejeopravit anebo zjistit a opravit 1 chybu (je třeba se rozhodnout pro jednu alternativu) kvzd=4 lzezjistit3chybu,alenelzejeopravit anebozjistit2chybyaaleopravitjenom1chybu JPO 2005/6 I 6 c A. Pluháček

8 2prvkové těleso a lineární prostor 2prvkové těleso GF(2): 0+0=0 0 0=0 0+1=1 0 1=0 1+0=1 1 0=0 1+1=0 1 1=1 tzn. XOR tzn. AND x+x=0 x=+x x+0=x a x+1=x [Galoise field] lineární/ vektorový prostor nad tělesem GF(2): v=(v 1,...,v j ), u=(u 1,...,u j ), a 0=(0,...,0) v+u=(v 1 + u 1,..., v j + u j ) v+0=v a v+v=0 0 v=0 a 1 v=v v=+v JPO 2005/6 I 7 c A. Pluháček (opraveno)

9 jednoduché bezpečnostní kódy i 1 opakovací(repetiční) kód (n, 1): b 1 =...= bn= a 1 př.: n= kvzd=n velká redundance = malý informační obsah 2 koktavý kód (jk, k): jkrát se opakuje totéž(k bitů) př.: j=3, k=4 K nebo K K K kvzd=j velká redundance = malý informační obsah JPO 2005/6 I 8 c A. Pluháček

10 jednoduché bezpečnostní kódy ii 3parita (k+1, k): a=(a 1,...,a k ) b=(b 1,...,bn), kde n=k+1 b 1 = a 1,..., b k = a k, b n = p, kde p=a 1 + +a k parita(sudá) b 1 + +b n =0 chyby vektorchybe=(e 1,...,en) c=(c 1,...,cn)=b+e žádnáchyba c 1 + +c n =0 syndroms=s=c 1 + +c n s=0 žádnáchybaanebosudýpočetchyb s 0 chybaanebochyby(lichýpočet) příklady: 1. a= a=11110 b= b= e= e= c= c= s=1 s=0 JPO 2005/6 I 9 c A. Pluháček

11 3 parita (k+1, k): jednoduché bezpečnostní kódy iii pokračování b=(a 1,...,a k, p) minimální redundance pouze detekce 1 chyby parita { sudá: p=a1 + +a k lichá: p=a 1 + +a k +1 4 příčná a podélná parita: kbitovéa,kde k=kr ks krřádkůakssloupců každý řádek a každý sloupec zabezpečen paritou př.: k=4=2 2 b=(a 1,...,a 4, p 1,...,p 4 ), resp.b=(a 1,...,a 4, p 1,...,p 5 ): kód(8,4) a 1 a 2 p 1 a 3 a 4 p 2 p 3 p 4 kvzd=3 kód(9,4) a 1 a 2 p 1 a 3 a 4 p 2 p 3 p 4 p 5 kvzd=4 JPO 2005/6 I 10 c A. Pluháček

12 lineární kódy i Příklad: 4 bity zabezpečené 3 paritami b 1 = a 1 b 2 = a 2 b 3 = a 3 b 4 = a 4 b 5 = a 1 + a 2 + a 4 = p 1 b 6 = a 1 + a 3 + a 4 = p 2 b 7 = a 2 + a 3 + a 4 = p 3 b=a G, kde G= b 1 + b 2 + b 4 + b 5 =0 b 1 + b 3 + b 4 + b 6 =0 b 2 + b 3 + b 4 + b 7 = generovací matice JPO 2005/6 I 11 c A. Pluháček

13 lineární kódy ii c 1 + c 2 + c 4 + c 5 = s 1 c 1 + c 3 + c 4 + c 6 = s 2 c 2 + c 3 + c 4 + c 7 = s 3 s=c H T, kde H= s=(s 1, s 2, s 3 ) syndrom kontrolní matice Kódovými slovy jsou lineární kombinace řádků matice G. Množina kódových slov tvoří lineární(neboli vektorový) prostor lineární kód kódová slova tvoří lineární prostor. pozn.: Opakovacíi koktavé kódyavšechnykódyzabezpečené sudými paritami jsou lineární kódy. JPO 2005/6 I 12 c A. Pluháček

14 lineární kódy iii b H T =0 s=c H T =e H T s=c H T =(b+e) H T =0+e H T Syndromzávisípouzenachybě! špatně i-týbitvc e= jedničkavpozici i s=c H T =e H T = i-týsloupecmaticeh Příklad: a=1101, b=a G= e= c= s=c H T =111 špatně4.bit kódproopravu1chyby: sloupce matice H musí být nenulové a vzájemně různé JPO 2005/6 I 13 c A. Pluháček

15 lineární kódy iv G=(I k, F) H=( F T, I m ) I m ai k... jednotkovématice m mak k početsloupcůoboumatic n=m+k Nemá-li matice požadovaný tvar, lze u ní zaměňovat řádky, přičítat k řádkům lineární kombinaci jiných řádků. Nestačí-li to, lze permutovat sloupce matice, ale u získané druhé matice je třeba provést opačnou permutaci sloupců. JPO 2005/6 I 14 c A. Pluháček

16 Hammingův kód i Hammingův kód: tzv. perfektníkódproopravu1chyby, jinak: matice Ho mřádcíchmávšech n=2 m 1sloupců tedy: m n k JPO 2005/6 I 15 c A. Pluháček

17 Hammingův kód ii příklad Hammingův kód(7,4) H= operace: 1+2 1, 3+1 3, H = G= Jako kontrolní matici, lze použít matici H i matici H. JPO 2005/6 I 16 c A. Pluháček

18 Hammingův kód iii kodér Hammingův kódu(7,4) G= JPO 2005/6 I 17 c A. Pluháček

19 Hammingův kód iv dekodér Hammingův kódu(7,4) H= JPO 2005/6 I 18 c A. Pluháček

20 smysluplnost bezpečnostních kódů Má vůbec smysl používat bezpečnostní kódy? parita: polovina chyb??? Hammingůvkód: n z 2 n 1chyb???...??? Pravděpodobnost: P... pravděpodobnost výskytu chybného bitu ( nbitů ichybných: ni ) P i (1 P) n i jinak: příklad: P = b/1µsec nějakáchyba kód nějakáchyba sec (33,32) sudýpočetchyb ,3roků kód nějakáchyba (38,32) neopravitelnáchyba ,0roků JPO 2005/6 I 19 c A. Pluháček

21 kódy a mnohočleny mnohočleny nad tělesem GF(2): C(x)=c n 1 x n 1 + +c 1 x+c 0 c i GF(2) x? mnohočleny stupně < n: vektorový/lineární prostor(bez skalárního součinu) izomorfní s prostorem uspořádaných ntic: c n 1 x n 1 + +c 0 (c n 1,..., c 0 ) př.: n=7 x 5 +x 3 +x izomorfie jen: součet & násobení skalárem mnohočleny: násobení a dělení mnohočlenů obv. postup analogie s okruhem celých čísel dělitelnost značení: P(x) Q(x)... P(x)jedělitelem Q(x) P(x) Q(x)... P(x)nenídělitelem Q(x) JPO 2005/6 I 20 c A. Pluháček

22 násobení mnohočlenů i G(x)=x 3 +x+1 A(x)=x 2 +1 B(x)=G(x) A(x)=? (x 3 +x+1) (x 2 +1) x 5 +x 3 +x 2 x 3 + x+1 x 5 + x 2 +x+1=b(x) zkrácený zápis: g=1011 a=0101 b=g a=? = b JPO 2005/6 I 21 c A. Pluháček

23 násobení mnohočlenů ii JPO 2005/6 I 22 c A. Pluháček

24 dělení mnohočlenů i C(x):G(x) C(x)=x 6 +x 2 +x G(x)=x 3 +x+1 1 x x 5 +0 x 4 +0 x 3 +1 x 2 +1 x + 0 = 1 x 3 1 x x 5 +1 x 4 +1 x 3 0 x x 4 +1 x 3 +1 x 2 = 0 x 2 0 x x 4 +0 x 3 +0 x 2 1 x x 3 +1 x 2 +1 x = 1 x 1 x x 3 +1 x 2 +1 x 1 x x 2 +0 x + 0 = 1 1 x x 2 +1 x x x + 1 zbytek C(x)%G(x)=x+1 podíl C(x) G(x)=x 3 +x+1 zkrácený zápis: JPO 2005/6 I 23 c A. Pluháček

25 dělení mnohočlenů ii C(x):G(x) C(x)=x 6 +x 2 +x=c 6 x 6 + +c 0 G(x)=x 3 +x+1 = g 3 x 3 + +g 0 dělení přímo ve zkráceném zápise: : 1011= JPO 2005/6 I 24 c A. Pluháček

26 dělení mnohočlenů iii JPO 2005/6 I 25 c A. Pluháček

27 kódy generované mnohočleny A(x) a... původníinformace B(x) b... vyslanéslovo G(x)... generovací mnohočlen B(x)=A(x) G(x) C(x) c... přijatéslovo E(x) e... chybovýmnohočlen C(x)=B(x)+E(x) S(x)... syndrom S(x)=C(x)%G(x) B(x)%G(x)=0 S(x)=C(x)%G(x)=E(x)%G(x) syndrom závisí pouze na chybách JPO 2005/6 I 26 c A. Pluháček

28 detekce shluků chyb E(x)=E (x) x j x E (x) = E(x)jeshlukchybdélky l=(deg E (x))+1 posunutýojmístdoleva př.: E(x)=x 5 +x 3 +x shlukchybdélky4 E (x)=x 3 +x j=2 deg E (x)=3 detekcechyb: S(x)=E(x)%G(x)=0? x G(x) = x j nemávliv E (x)%g(x)=0? deg E (x) <deg G(x) E (x) 0 } = E (x)%g(x) 0 = detekceshlukůchybdélky l m=deg G(x) Např.kódgenerovanýmnohočlenem G(x)=x 16 +1zjišťuje shlukychybdélky l 16 JPO 2005/6 I 27 c A. Pluháček

29 cyklické kódy cyklický kód: 1. lineární kód 2. cyklický posuv kódového slova kódové slovo Každý kód generovaný mnohočlenem je lineární. Předp. G(x) (x n 1),kde njedélkakódovéhoslova Potom H(x) G(x) H(x)=x n 1 a kód generovaný mnohočlenem G(x) je cyklický. H(x)... kontrolnímnohočlen př.: x 7 +1=(x 3 +x+1)(x 4 +x 2 +x+1) Kód(7,4)generovaný G(x)=x 3 +x+1jecyklický. H(x)=x 4 +x 2 +x+1jekontrolnímnohočlen. Skutečnost, že kód je cyklický, je důležitá pro opravy shluků chyb. JPO 2005/6 I 28 c A. Pluháček

Cyklickékódy. MI-AAK(Aritmetika a kódy)

Cyklickékódy. MI-AAK(Aritmetika a kódy) MI-AAK(Aritmetika a kódy) Cyklickékódy c doc. Ing. Alois Pluháček, CSc., 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha&

Více

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP Kódy pro odstranění redundance, pro zabezpečení proti chybám Demonstrační cvičení 5 INP Princip kódování, pojmy Tady potřebujeme informaci zabezpečit, utajit apod. zpráva 000 111 000 0 1 0... kodér dekodér

Více

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika.

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Lineární kódy, část 2 Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 22.12.2014: Lineární kódy, část 2 1/12 Dnešní přednáška 1 Analýza Hammingova (7, 4)-kódu.

Více

PŘEDNÁŠKA PS 6 Přenos dat v počítačových sítích

PŘEDNÁŠKA PS 6 Přenos dat v počítačových sítích PŘEDNÁŠKA PS 6 Přenos dat v počítačových sítích Část 2 Osnova Metody detekce chybovosti Pravděpodobnost chyby ve zprávě Parita Kontrolní blokový součet (pseudosoučet) Redundantní cyklické kódy Jiný způsob

Více

Kódování signálu. Problémy při návrhu linkové úrovně. Úvod do počítačových sítí. Linková úroveň

Kódování signálu. Problémy při návrhu linkové úrovně. Úvod do počítačových sítí. Linková úroveň Kódování signálu Obecné schema Kódování NRZ (bez návratu k nule) NRZ L NRZ S, NRZ - M Kódování RZ (s návratem k nule) Kódování dvojí fází Manchester (přímý, nepřímý) Diferenciální Manchester 25.10.2006

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

Co byste měl/a zvládnout po 6. týdnu

Co byste měl/a zvládnout po 6. týdnu Co byste měl/a zvládnout po 6. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B01LAG Zvládnutá látka po 6. týdnu 1/8 Slovník základních pojmů Monomorfismus,

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

É č É Í Ř Á Ě ž š č č š š šť Ť Ý č č Ť Ť Ť č Ť č šť Í č č č š š ď ž Ť Á č Í Ó š Ž š Č Ť č Ť č Ť ď č š Č Ď ž ž š č č č Ú Š š Ť Č š ž š š č Ú š č š É Š š šš š Ť č č č č š č š Ť č č ž š č Ť č š Ť š č š č

Více

Co byste měl/a zvládnout po 4. týdnu

Co byste měl/a zvládnout po 4. týdnu Co byste měl/a zvládnout po 4. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B0LAG Zvládnutá látka po 4. týdnu /9 Slovník základních pojmů Množina generátorů

Více

Teorie kódování se zabývá tím, jak rychle a spolehlivě přenášet informace z jednoho místa na druhé. Mezi její aplikace patří například minimalizace

Teorie kódování se zabývá tím, jak rychle a spolehlivě přenášet informace z jednoho místa na druhé. Mezi její aplikace patří například minimalizace Kapitola 8 Samoopravné kódy Teorie kódování se zabývá tím, jak rychle a spolehlivě přenášet informace z jednoho místa na druhé. Mezi její aplikace patří například minimalizace šumu při přehrávání kompaktních

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

KÓDOVÁNÍ A KOMPRESE DAT

KÓDOVÁNÍ A KOMPRESE DAT KÓDOVÁNÍ A KOMPRESE DAT URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH RADIM FARANA ČÍSLO OPERAČNÍHO PROGRAMU: CZ..7 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST OPATŘENÍ:

Více

Lineární algebra nad obecným Z m, lineární kódy

Lineární algebra nad obecným Z m, lineární kódy Lineární algebra nad obecným Z m, lineární kódy Jiří Velebil: X01DML 19. listopadu 2010: Lineární algebra a kódy 1/19 Minule: soustavy lineárních rovnic nad Z p, p prvočíslo, stejně jako nad R. Dále nad

Více

Kódování cyklické kódy Coding cyclic code. Jakub Kettner

Kódování cyklické kódy Coding cyclic code. Jakub Kettner Kódování cyklické kódy Coding cyclic code Jakub Kettner Bakalářská práce 8 UTB ve Zlíně, Fakulta aplikované informatiky, 8 UTB ve Zlíně, Fakulta aplikované informatiky, 8 UTB ve Zlíně, Fakulta aplikované

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu.

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu. 6 Kapitola 2 Příklady z predikátové logiky 2.1 Formule predikátové logiky 2.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolu uvedených

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

METODY KÓDOVÁNÍ, ŠIFROVÁNÍ A BEZPEČNOSTI DAT

METODY KÓDOVÁNÍ, ŠIFROVÁNÍ A BEZPEČNOSTI DAT METODY KÓDOVÁNÍ, ŠIFROVÁNÍ A BEZPEČNOSTI DAT URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH RADIM FARANA ČÍSLO OPERAČNÍHO PROGRAMU: CZ..7 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Způsoby realizace této funkce:

Způsoby realizace této funkce: KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je výstup určen jen výhradně kombinací vstupních veličin. Hodnoty výstupních veličin nezávisejí na předcházejícím stavu logického obvodu, což znamená, že kombinační

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Seminář pro učitele středních a vysokých škol, Plzeň, 30. března 2012 jsou všude Některé oblasti využití: CD přehrávače mobilní

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Mřížkové kódování. Ivan Pravda

Mřížkové kódování. Ivan Pravda Mřížkové kódování Ivan Pravda Autor: Ivan Pravda Název díla: Mřížkové kódování Zpracoval(a): České vysoké učení technické v Praze Fakulta elektrotechnická Kontaktní adresa: Technická 2, Praha 6 Inovace

Více

BI-JPO (Jednotky počítače) Cvičení

BI-JPO (Jednotky počítače) Cvičení BI-JPO (Jednotky počítače) Cvičení Ing. Pavel Kubalík, Ph.D., 2010 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,

Více

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Matematika pro studenty ekonomie Vydala Grada Publishing, a.s. U Průhonu 22, 70 00 Praha 7 tel.: +420 234 264 40, fax: +420 234 264 400 www.grada.cz jako svou

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

Seminář z MATLABU. Jiří Krejsa. A2/710 krejsa@fme.vutbr.cz

Seminář z MATLABU. Jiří Krejsa. A2/710 krejsa@fme.vutbr.cz Seminář z MATLABU Jiří Krejsa A2/710 krejsa@fme.vutbr.cz Obsah kurzu Posluchači se seznámí se základy systému Matlab, vědeckotechnickými výpočty, programováním v Matlabu včetně pokročilých technik, vizualizací

Více

š ú ě Ú ě ě ú Ú Ý Í Ě Í Ú Í Á Ý Ů Ý Ů Í ě Á Í ě Č ú ř ě ň ř ů ň ř ů Č ň ř ů ů ň ř ů Í ň ř šť š ů ř ř ě ř ř ů ň ů ř ě ř š ř ř ř ů ř ů ř ů ř ř ř ů ě ě ě ř ř ů ř ů ě š ě ř ů Ú ř ě ř ř ě Č ř ů ř ř ě ř ů ř

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

MAT 1 Mnohočleny a racionální lomená funkce

MAT 1 Mnohočleny a racionální lomená funkce MAT 1 Mnohočleny a racionální lomená funkce Studijní materiály Pro listování dokumentem NEpoužívejte kolečko myši nebo zvolte možnost Full Screen. Brno 2012 RNDr. Rudolf Schwarz, CSc. First Prev Next Last

Více

Šifrování Kafková Petra Kryptografie Věda o tvorbě šifer (z řečtiny: kryptós = skrytý, gráphein = psát) Kryptoanalýza Věda o prolamování/luštění šifer Kryptologie Věda o šifrování obecné označení pro kryptografii

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Splněno ANO/NE/hodnota

Splněno ANO/NE/hodnota část 1 - software pro přípravu interaktivních výukových hodin postavený na aktivní účasti žáků základní specifikace: autorský objektově orientovaný výukový software v českém jazyce s implementovanou galerií

Více

Kapitola 1: Lineární prostor

Kapitola 1: Lineární prostor Lineární prostor Kapitola 1: Lineární prostor Chcete-li ukončit prohlížení stiskněte klávesu Esc. Chcete-li pokračovat stiskněte klávesu Enter.. p.1/15 Lineární prostor Lineární prostoralineární podprostor

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

Ě ÁÁ Ú é é ý ů ý ů é ý ů é é ú Ž ý ů é ů é é Ě ÁÁ Ú é Ý ž ý ž ý ý ů ž ů ň é Ž ý Ž ů ý é é é é ý ž Í Ě ÁÁ Ú é é ň é Ž ý ž Ž Í ý é ý Í ů ý ý ý é ý é ý é ň Ž Ž Ě ÁÁ Ú é é ý Ý é é ý Ž Í Í é ž Í Ž Ě ÁÁ Ú é

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L.

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Soustavy o jedné rovnici neboli rovnice. Algebraické rovnice: Polynom= 0. POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Rovnice 1. stupně: lineární, ax + b = 0, a 0. Řešení: x = b a. Rovnice 2. stupně:

Více

Úvod do informačních technologií

Úvod do informačních technologií Úvod do informačních technologií přednášky Jan Outrata září prosinec 2009 (aktualizace září prosinec 2012) Jan Outrata (KI UP) Úvod do informačních technologií září prosinec 2012 1 / 34 Reprezentace dat

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

OBECNÉ METODY VYROVNÁNÍ

OBECNÉ METODY VYROVNÁNÍ OBECNÉ METODY VYROVNÁNÍ HYNČICOVÁ TEREZA, H2IGE1 2014 ÚVOD Z DŮVODU VYLOUČENÍ HRUBÝCH CHYB A ZVÝŠENÍ PŘESNOSTI NIKDY NEMĚŘÍME DANOU VELIČINU POUZE JEDNOU VÝSLEDKEM OPAKOVANÉHO MĚŘENÍ NĚKTERÉ VELIČINY JE

Více

4. Co je to modulace, základní typy modulací, co je to vícestavová fázová modulace, použití. Znázorněte modulaci, která využívá 4 amplitud a 4 fází.

4. Co je to modulace, základní typy modulací, co je to vícestavová fázová modulace, použití. Znázorněte modulaci, která využívá 4 amplitud a 4 fází. Písemná práce z Úvodu do počítačových sítí 1. Je dán kanál bez šumu s šířkou pásma 10kHz. Pro přenos číslicového signálu lze použít 8 napěťových úrovní. a. Jaká je maximální baudová rychlost? b. Jaká je

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Matematika Název Ročník Autor

Matematika Název Ročník Autor Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná

Více

dr. Gollové vyjít, se podívat sem. Když si budete ty příklady jen tupě pročítat, tak se naučíte lim 0. Pokud máte

dr. Gollové vyjít, se podívat sem. Když si budete ty příklady jen tupě pročítat, tak se naučíte lim 0. Pokud máte Úvod Právě se díváte na moje řešení příkladů z X01AVT z roku 2007/2008. Zajisté obsahují spousty chyb a nedokáže je pochopit nikdo včetně autora, ale aspoň můžou posloužit jako menší návod k tomu, jak

Více

Navrhování experimentů a jejich analýza. Eva Jarošová

Navrhování experimentů a jejich analýza. Eva Jarošová Navrhování experimentů a jejich analýza Eva Jarošová Obsah Základní techniky Vyhodnocení výsledků Experimenty s jedním zkoumaným faktorem Faktoriální experimenty úplné 2 N dílčí 2 N-p Experimenty pro studium

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Matematická analýza 1b. 9. Primitivní funkce

Matematická analýza 1b. 9. Primitivní funkce Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26 Obsah 1 Matice 3 11 Operace s maticemi 4 12 Soustavy lineárních rovnic 11 13 Maticové rovnice a výpočet inverzní matice 15 14 Elementární matice 19 15 Cvičení 21 16 Řešení 22 2 Vektory a vektorové prostory

Více

STŘEDOŠKOLSKÁ MATEMATIKA

STŘEDOŠKOLSKÁ MATEMATIKA STŘEDOŠKOLSKÁ MATEMATIKA MOCNINY, ODMOCNINY, ALGEBRAICKÉ VÝRAZY VŠB Technická univerzita Ostrava Ekonomická fakulta 006 Mocniny, odmocniny, algebraické výrazy http://moodle.vsb.cz/ 1 OBSAH 1 Informace

Více

1. 1 P Ř I R O Z E N Á Č Í S L A

1. 1 P Ř I R O Z E N Á Č Í S L A 1. Č Í S E L N É O B O R Y 1. 1 P Ř I R O Z E N Á Č Í S L A Přirozená čísla (definice, značení, množinový zápis) Číslice (cifry 0 9) Číslo (rozvinutý resp. zkrácený zápis přirozeného čísla v desítkové

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Rovnice s parametrem (17. - 18. lekce)

Rovnice s parametrem (17. - 18. lekce) Rovnice s parametrem (17. - 18. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 22. října 2011 Lineární rovnice s parametrem

Více

Ý š é š ó š ž š žé ó Š é ď Ý é é ž é ž š ž Ť é š é é Ř š é ď é ž é ž é é ž Ť é ď é šš é ž é ž é ž ů ž ž é Ť Ť Ř š é ž ž ď Ú š é ž š š ž š é ž š é é š ž é ž é ž ů é ž é ž é Č é é ž š š é é Ř š ž Ž š é é

Více

ď ď ď š Ý š š É Ý šš š š š šš š š š š Ě š Ó ď šš š šš ď Ě šš š šš Ě š Ě Ě Ú š š š Ě š š ď Ě š š Ž š Ě š Č š Ý ď š š ď š Ý Ť š š š š š Ý š ď ď š š Á Á É š š š Ž šš ď ř ň ř ř š Ý ď š š š š š š Ť Ě š Ť š

Více

š Ý š š Ú ž ž š ž š š ž š Í š š ž š Ú ž ž ž šš ž ž ž šš ž ž š ž ž š š ž ž ž šš ž ň Č ž ž ž ž šš ž ž ž š š š ó š š ž š ž š ž Ú ž š ž š š Ú ň š š ó š ž š ž š Ž ň š š š š š š š ž š š ž š š š š š š š š š š

Více

Teorie informace 21.9.2014. Obsah. Kybernetika. Radim Farana Podklady pro výuku

Teorie informace 21.9.2014. Obsah. Kybernetika. Radim Farana Podklady pro výuku Teorie Radim Farana Podklady pro výuku Obsah Seznámení s problematikou a obsahem studovaného předmětu. Základní pojmy z Teorie, jednotka, informační obsah zprávy, střední délka zprávy, redundance. Kód.

Více

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Variace 1 Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

SEMESTRÁLNÍ PRÁCE 3.5 Klasifikace analýzou vícerozměrných dat

SEMESTRÁLNÍ PRÁCE 3.5 Klasifikace analýzou vícerozměrných dat UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ KATEDRA ANALYTICKÉ CHEMIE LICENČNÍ STUDIUM - STATISTICKÉ ZPRACOVÁNÍ DAT SEMESTRÁLNÍ PRÁCE Ing. Věra Fialová BIOPHARM VÝZKUMNÝ ÚSTAV BIOFARMACIE A VETERINÁRNÍCH

Více

[1] Důkaz: Necht p(x) = a n x n +... + a 1 x + a 0 = 0 pro všechna x C,

[1] Důkaz: Necht p(x) = a n x n +... + a 1 x + a 0 = 0 pro všechna x C, Výsledky operací jsou tedy popsány pomocí svých koeficientů algoritmicky. Na vstupu do algoritmu jsou koeficienty polynomů, které sčítáme resp. násobíme. S proměnnou x algoritmy nepracují. Polynomy Polynom

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11 Témata k ústní maturitní zkoušce z předmětu Účetnictví profilové části maturitní zkoušky Školní rok 2012/2013 třída: 4.T 1. Legislativní úprava účetnictví 2. Účetní dokumentace 3. Manažerské účetnictví

Více

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy)

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy) Euklidovský prostor Euklidovy Základy (pohled do historie) dnešní definice kartézský souřadnicový systém vlastnosti rovin v E n speciální vlastnosti v E 3 (vektorový součin) a) eprostor, 16, b) P. Olšák,

Více

TAB CENA Model Modelový rok Motor Kód motoru HTG Originální díl HTG Economy díl SLEVA BEZ dph AGN APK, AQY, AEG AGU, ARZ, AUM, ARX AZJ AZF AQW AQV ATZ

TAB CENA Model Modelový rok Motor Kód motoru HTG Originální díl HTG Economy díl SLEVA BEZ dph AGN APK, AQY, AEG AGU, ARZ, AUM, ARX AZJ AZF AQW AQV ATZ Economy sortiment Material Přední díl výfuku Přední díl výfuku 1997-2005 Přední díl výfuku 19997-2005 Přední díl výfuku I Přední díl výfuku TAB CENA Model Modelový rok Motor Kód motoru HTG Originální díl

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Spočítá prvky daného konkrétního souboru do 6., Zvládne zápis číselné řady 0 6 Užívá a zapisuje vztah rovnosti a nerovnosti Numerace v oboru 0 6 Manipulace s předměty, třídění předmětů do skupin. Počítání

Více

MONTÁŽNÍ KATALYZÁTORY

MONTÁŽNÍ KATALYZÁTORY MONTÁŽNÍ KATALYZÁTORY Katalyzátory ŠKODA - pøehled náhled obj. èíslo OE aplikace K001M K001MK 6U0 131 701HX 6U0 131 701HX Škoda Felicia 1.3 do r.v. 11/98 (keramika) Škoda Felicia 1.3 do r.v. 11/98 (kov)

Více

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA G5 VÝSTUP 5.1 Teorie množin, provádí správně operace s množinami, výroková logika množiny vyžívá při řešení úloh; pracuje správně s výroky, užívá správně logické spojky a kvantifikátory;

Více

Zobrazení dat Cíl kapitoly:

Zobrazení dat Cíl kapitoly: Zobrazení dat Cíl kapitoly: Cílem této kapitoly je sezn{mit čten{ře se způsoby z{pisu dat (čísel, znaků, řetězců) v počítači. Proto jsou zde postupně vysvětleny číselné soustavy, způsoby kódov{ní české

Více

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou, Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:

Více

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů... [1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

Popis programu EnicomD

Popis programu EnicomD Popis programu EnicomD Pomocí programu ENICOM D lze konfigurovat výstup RS 232 přijímačů Rx1 DIN/DATA a Rx1 DATA (přidělovat textové řetězce k jednotlivým vysílačům resp. tlačítkům a nastavovat parametry

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

I. kolo kategorie Z7

I. kolo kategorie Z7 60. ročník Matematické olympiády I. kolo kategorie Z7 Z7 I 1 Součin číslic libovolného vícemístného čísla je vždy menší než toto číslo. Pokud počítáme součin číslic daného vícemístného čísla, potom součin

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose 3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,

Více

takţe podmínka vypadá takto jmenovatel = 0 jmenovatel 0 něco < 0 něco 0 vnitřek 0 vnitřek > 0 cos(argument) = 0 sin(argument) =

takţe podmínka vypadá takto jmenovatel = 0 jmenovatel 0 něco < 0 něco 0 vnitřek 0 vnitřek > 0 cos(argument) = 0 sin(argument) = ZJIŠŤOVÁNÍ DEFINIČNÍHO OBORU FUNKCÍ Definiční obor funkce f(x) zjišťujeme tímto postupem: I. Vypíšeme si všechny výrazy pro které by mohlo být něco zakázáno a napíšeme podmínky pro to, aby se ty zakázané

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu matematika a ve volitelných předmětech Deskriptivní geometrie,

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Obsah metodiky. Obsah metodiky... 2 Úvod... Cíle využití metody e-learningu ... ... ... 6 Kurz Matematika Svobodová...

Obsah metodiky. Obsah metodiky... 2 Úvod... Cíle využití metody e-learningu ... ... ... 6 Kurz Matematika Svobodová... Metodika aktivity 04 E-learning Matematika v rámci projektu Škola pro praktický život Zpracovala: Mgr. Zdeňka Hudcová Mgr. Martina Svobodová 2010 TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝ SOCIÁLNÍ FONDEM

Více