uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů:

Rozměr: px
Začít zobrazení ze stránky:

Download "uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů:"

Transkript

1 I. Bezpečnostníkódy úvod základní pojmy počet zjistitelných a opravitelných chyb 2prvkové těleso a lineární prostor jednoduché bezpečnostní kódy lineární kódy Hammingův kód smysluplnost bezpečnostních kódů kódy a mnohočleny násobení mnohočlenů dělení mnohočlenů kódy generované mnohočleny detekce shluků chyb cyklické kódy JPO 2005/6 c A. Pluháček

2 uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů: a K 1 K 2 K α β γ δ a=(a 1,...,a k ) původníinformace b=(b 1,...,bn) slovo,vektor,znak { { kódová, přípustné, slova anebo znaky nekódová, nepřípustné. b JPO 2005/6 I 1 c A. Pluháček

3 uvedení do problematiky ii principy: zjišťování(detekce) chyb: slovo není kódovým slovem opravy(korekce) chyb: slovosenahradí nejpodobnějším kódovýmslovem K 1 umožňujezjistit1chybu(aleijinýlichýpočetchyb) K 2 umožňujezjistit1chybu(aleijinýlichýpočetchyb) K 3 umožňujezjistit2chyby(aleinějakýjinýpočetchyb) aneboopravit1chybu,alenikolivobojí!!! příklad: kód K 3 přijato(přečteno) ψ=11100 αselišíve3bitech βselišíve4bitech správné slovo: δ=11110 = γselišíve2bitech a = 11(pravděpodobně) δselišíve1bitu JPO 2005/6 I 2 c A. Pluháček

4 uvedení do problematiky iii příklad a původnídata (kbitů) 11 b kódovéslovo (nbitů) e chyba (n bitů) c přijaté slovo (n bitů) s syndrom (m bitů) 010 d opravenádata(kbitů) 11 JPO 2005/6 I 3 c A. Pluháček (opraveno)

5 základní pojmy kód: a b, aleněkdypouzemnožinakódovýchslov!!! kód(n, k): a b, kdebje nbitovéaaje kbitové k... informačníobsah(entropie) m=n k... nadbytečnost(redundance) systematickýkód: a b, kde b i = a i pro i k bity b i pro i k... informačníčástslova bity b i pro i > k... kontrolníčástslova příklady: K 1 jesystematickýkód(3,2) K 2 jenesystematickýkód(3,2) K 3 jesystematickýkód(5,2) Hammingova vzdálenost: vzdálenost dvou slov počet odlišných bitů např.vzdálenost11100a01011jerovna4 kódová vzdálenost kvzd minimální vzdálenost dvojic kódových slov, např. K 1 : kvzd=2, K 2 : kvzd=2, K 3 : kvzd=3 JPO 2005/6 I 4 c A. Pluháček

6 geometrická interpretace Hammingovy vzdálenosti Ò Ò K 1 K 3 JPO 2005/6 I 5 c A. Pluháček

7 počet zjistitelných a opravitelných chyb Je-li kódová vzdálenost kde kvzd=dch+och+1, dch a och jsou přirozená čísla a platí dch och, lze detekovat(zjistit) dch chyb a opravit och z nich. příklady: kvzd=2 lzezjistit1chybu,alenelzejiopravit kvzd=3 lzezjistit2chybu,alenelzejeopravit anebo zjistit a opravit 1 chybu (je třeba se rozhodnout pro jednu alternativu) kvzd=4 lzezjistit3chybu,alenelzejeopravit anebozjistit2chybyaaleopravitjenom1chybu JPO 2005/6 I 6 c A. Pluháček

8 2prvkové těleso a lineární prostor 2prvkové těleso GF(2): 0+0=0 0 0=0 0+1=1 0 1=0 1+0=1 1 0=0 1+1=0 1 1=1 tzn. XOR tzn. AND x+x=0 x=+x x+0=x a x+1=x [Galoise field] lineární/ vektorový prostor nad tělesem GF(2): v=(v 1,...,v j ), u=(u 1,...,u j ), a 0=(0,...,0) v+u=(v 1 + u 1,..., v j + u j ) v+0=v a v+v=0 0 v=0 a 1 v=v v=+v JPO 2005/6 I 7 c A. Pluháček (opraveno)

9 jednoduché bezpečnostní kódy i 1 opakovací(repetiční) kód (n, 1): b 1 =...= bn= a 1 př.: n= kvzd=n velká redundance = malý informační obsah 2 koktavý kód (jk, k): jkrát se opakuje totéž(k bitů) př.: j=3, k=4 K nebo K K K kvzd=j velká redundance = malý informační obsah JPO 2005/6 I 8 c A. Pluháček

10 jednoduché bezpečnostní kódy ii 3parita (k+1, k): a=(a 1,...,a k ) b=(b 1,...,bn), kde n=k+1 b 1 = a 1,..., b k = a k, b n = p, kde p=a 1 + +a k parita(sudá) b 1 + +b n =0 chyby vektorchybe=(e 1,...,en) c=(c 1,...,cn)=b+e žádnáchyba c 1 + +c n =0 syndroms=s=c 1 + +c n s=0 žádnáchybaanebosudýpočetchyb s 0 chybaanebochyby(lichýpočet) příklady: 1. a= a=11110 b= b= e= e= c= c= s=1 s=0 JPO 2005/6 I 9 c A. Pluháček

11 3 parita (k+1, k): jednoduché bezpečnostní kódy iii pokračování b=(a 1,...,a k, p) minimální redundance pouze detekce 1 chyby parita { sudá: p=a1 + +a k lichá: p=a 1 + +a k +1 4 příčná a podélná parita: kbitovéa,kde k=kr ks krřádkůakssloupců každý řádek a každý sloupec zabezpečen paritou př.: k=4=2 2 b=(a 1,...,a 4, p 1,...,p 4 ), resp.b=(a 1,...,a 4, p 1,...,p 5 ): kód(8,4) a 1 a 2 p 1 a 3 a 4 p 2 p 3 p 4 kvzd=3 kód(9,4) a 1 a 2 p 1 a 3 a 4 p 2 p 3 p 4 p 5 kvzd=4 JPO 2005/6 I 10 c A. Pluháček

12 lineární kódy i Příklad: 4 bity zabezpečené 3 paritami b 1 = a 1 b 2 = a 2 b 3 = a 3 b 4 = a 4 b 5 = a 1 + a 2 + a 4 = p 1 b 6 = a 1 + a 3 + a 4 = p 2 b 7 = a 2 + a 3 + a 4 = p 3 b=a G, kde G= b 1 + b 2 + b 4 + b 5 =0 b 1 + b 3 + b 4 + b 6 =0 b 2 + b 3 + b 4 + b 7 = generovací matice JPO 2005/6 I 11 c A. Pluháček

13 lineární kódy ii c 1 + c 2 + c 4 + c 5 = s 1 c 1 + c 3 + c 4 + c 6 = s 2 c 2 + c 3 + c 4 + c 7 = s 3 s=c H T, kde H= s=(s 1, s 2, s 3 ) syndrom kontrolní matice Kódovými slovy jsou lineární kombinace řádků matice G. Množina kódových slov tvoří lineární(neboli vektorový) prostor lineární kód kódová slova tvoří lineární prostor. pozn.: Opakovacíi koktavé kódyavšechnykódyzabezpečené sudými paritami jsou lineární kódy. JPO 2005/6 I 12 c A. Pluháček

14 lineární kódy iii b H T =0 s=c H T =e H T s=c H T =(b+e) H T =0+e H T Syndromzávisípouzenachybě! špatně i-týbitvc e= jedničkavpozici i s=c H T =e H T = i-týsloupecmaticeh Příklad: a=1101, b=a G= e= c= s=c H T =111 špatně4.bit kódproopravu1chyby: sloupce matice H musí být nenulové a vzájemně různé JPO 2005/6 I 13 c A. Pluháček

15 lineární kódy iv G=(I k, F) H=( F T, I m ) I m ai k... jednotkovématice m mak k početsloupcůoboumatic n=m+k Nemá-li matice požadovaný tvar, lze u ní zaměňovat řádky, přičítat k řádkům lineární kombinaci jiných řádků. Nestačí-li to, lze permutovat sloupce matice, ale u získané druhé matice je třeba provést opačnou permutaci sloupců. JPO 2005/6 I 14 c A. Pluháček

16 Hammingův kód i Hammingův kód: tzv. perfektníkódproopravu1chyby, jinak: matice Ho mřádcíchmávšech n=2 m 1sloupců tedy: m n k JPO 2005/6 I 15 c A. Pluháček

17 Hammingův kód ii příklad Hammingův kód(7,4) H= operace: 1+2 1, 3+1 3, H = G= Jako kontrolní matici, lze použít matici H i matici H. JPO 2005/6 I 16 c A. Pluháček

18 Hammingův kód iii kodér Hammingův kódu(7,4) G= JPO 2005/6 I 17 c A. Pluháček

19 Hammingův kód iv dekodér Hammingův kódu(7,4) H= JPO 2005/6 I 18 c A. Pluháček

20 smysluplnost bezpečnostních kódů Má vůbec smysl používat bezpečnostní kódy? parita: polovina chyb??? Hammingůvkód: n z 2 n 1chyb???...??? Pravděpodobnost: P... pravděpodobnost výskytu chybného bitu ( nbitů ichybných: ni ) P i (1 P) n i jinak: příklad: P = b/1µsec nějakáchyba kód nějakáchyba sec (33,32) sudýpočetchyb ,3roků kód nějakáchyba (38,32) neopravitelnáchyba ,0roků JPO 2005/6 I 19 c A. Pluháček

21 kódy a mnohočleny mnohočleny nad tělesem GF(2): C(x)=c n 1 x n 1 + +c 1 x+c 0 c i GF(2) x? mnohočleny stupně < n: vektorový/lineární prostor(bez skalárního součinu) izomorfní s prostorem uspořádaných ntic: c n 1 x n 1 + +c 0 (c n 1,..., c 0 ) př.: n=7 x 5 +x 3 +x izomorfie jen: součet & násobení skalárem mnohočleny: násobení a dělení mnohočlenů obv. postup analogie s okruhem celých čísel dělitelnost značení: P(x) Q(x)... P(x)jedělitelem Q(x) P(x) Q(x)... P(x)nenídělitelem Q(x) JPO 2005/6 I 20 c A. Pluháček

22 násobení mnohočlenů i G(x)=x 3 +x+1 A(x)=x 2 +1 B(x)=G(x) A(x)=? (x 3 +x+1) (x 2 +1) x 5 +x 3 +x 2 x 3 + x+1 x 5 + x 2 +x+1=b(x) zkrácený zápis: g=1011 a=0101 b=g a=? = b JPO 2005/6 I 21 c A. Pluháček

23 násobení mnohočlenů ii JPO 2005/6 I 22 c A. Pluháček

24 dělení mnohočlenů i C(x):G(x) C(x)=x 6 +x 2 +x G(x)=x 3 +x+1 1 x x 5 +0 x 4 +0 x 3 +1 x 2 +1 x + 0 = 1 x 3 1 x x 5 +1 x 4 +1 x 3 0 x x 4 +1 x 3 +1 x 2 = 0 x 2 0 x x 4 +0 x 3 +0 x 2 1 x x 3 +1 x 2 +1 x = 1 x 1 x x 3 +1 x 2 +1 x 1 x x 2 +0 x + 0 = 1 1 x x 2 +1 x x x + 1 zbytek C(x)%G(x)=x+1 podíl C(x) G(x)=x 3 +x+1 zkrácený zápis: JPO 2005/6 I 23 c A. Pluháček

25 dělení mnohočlenů ii C(x):G(x) C(x)=x 6 +x 2 +x=c 6 x 6 + +c 0 G(x)=x 3 +x+1 = g 3 x 3 + +g 0 dělení přímo ve zkráceném zápise: : 1011= JPO 2005/6 I 24 c A. Pluháček

26 dělení mnohočlenů iii JPO 2005/6 I 25 c A. Pluháček

27 kódy generované mnohočleny A(x) a... původníinformace B(x) b... vyslanéslovo G(x)... generovací mnohočlen B(x)=A(x) G(x) C(x) c... přijatéslovo E(x) e... chybovýmnohočlen C(x)=B(x)+E(x) S(x)... syndrom S(x)=C(x)%G(x) B(x)%G(x)=0 S(x)=C(x)%G(x)=E(x)%G(x) syndrom závisí pouze na chybách JPO 2005/6 I 26 c A. Pluháček

28 detekce shluků chyb E(x)=E (x) x j x E (x) = E(x)jeshlukchybdélky l=(deg E (x))+1 posunutýojmístdoleva př.: E(x)=x 5 +x 3 +x shlukchybdélky4 E (x)=x 3 +x j=2 deg E (x)=3 detekcechyb: S(x)=E(x)%G(x)=0? x G(x) = x j nemávliv E (x)%g(x)=0? deg E (x) <deg G(x) E (x) 0 } = E (x)%g(x) 0 = detekceshlukůchybdélky l m=deg G(x) Např.kódgenerovanýmnohočlenem G(x)=x 16 +1zjišťuje shlukychybdélky l 16 JPO 2005/6 I 27 c A. Pluháček

29 cyklické kódy cyklický kód: 1. lineární kód 2. cyklický posuv kódového slova kódové slovo Každý kód generovaný mnohočlenem je lineární. Předp. G(x) (x n 1),kde njedélkakódovéhoslova Potom H(x) G(x) H(x)=x n 1 a kód generovaný mnohočlenem G(x) je cyklický. H(x)... kontrolnímnohočlen př.: x 7 +1=(x 3 +x+1)(x 4 +x 2 +x+1) Kód(7,4)generovaný G(x)=x 3 +x+1jecyklický. H(x)=x 4 +x 2 +x+1jekontrolnímnohočlen. Skutečnost, že kód je cyklický, je důležitá pro opravy shluků chyb. JPO 2005/6 I 28 c A. Pluháček

Cyklickékódy. MI-AAK(Aritmetika a kódy)

Cyklickékódy. MI-AAK(Aritmetika a kódy) MI-AAK(Aritmetika a kódy) Cyklickékódy c doc. Ing. Alois Pluháček, CSc., 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha&

Více

Kódy pro detekci a opravu chyb. INP 2008 FIT VUT v Brně

Kódy pro detekci a opravu chyb. INP 2008 FIT VUT v Brně Kódy pro detekci a opravu chyb INP 2008 FIT VUT v Brně 1 Princip kódování 0 1 0 vstupní data kodér Tady potřebujeme informaci zabezpečit, utajit apod. Zakódovaná data: 000 111 000 Může dojít k poruše,

Více

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika.

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Lineární kódy, část 2 Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 22.12.2014: Lineární kódy, část 2 1/12 Dnešní přednáška 1 Analýza Hammingova (7, 4)-kódu.

Více

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP Kódy pro odstranění redundance, pro zabezpečení proti chybám Demonstrační cvičení 5 INP Princip kódování, pojmy Tady potřebujeme informaci zabezpečit, utajit apod. zpráva 000 111 000 0 1 0... kodér dekodér

Více

8 Kořeny cyklických kódů, BCH-kódy

8 Kořeny cyklických kódů, BCH-kódy 24 8 Kořeny cyklických kódů, BCH-kódy Generující kořeny cyklických kódů Nechť K je cyklický kód délky n nad Z p s generujícím polynomem g(z). Chceme najít rozšíření T tělesa Z p, tedy nějaké těleso GF

Více

PŘEDNÁŠKA PS 6 Přenos dat v počítačových sítích

PŘEDNÁŠKA PS 6 Přenos dat v počítačových sítích PŘEDNÁŠKA PS 6 Přenos dat v počítačových sítích Část 2 Osnova Metody detekce chybovosti Pravděpodobnost chyby ve zprávě Parita Kontrolní blokový součet (pseudosoučet) Redundantní cyklické kódy Jiný způsob

Více

Kódování signálu. Problémy při návrhu linkové úrovně. Úvod do počítačových sítí. Linková úroveň

Kódování signálu. Problémy při návrhu linkové úrovně. Úvod do počítačových sítí. Linková úroveň Kódování signálu Obecné schema Kódování NRZ (bez návratu k nule) NRZ L NRZ S, NRZ - M Kódování RZ (s návratem k nule) Kódování dvojí fází Manchester (přímý, nepřímý) Diferenciální Manchester 25.10.2006

Více

Informace, kódování a redundance

Informace, kódování a redundance Informace, kódování a redundance INFORMACE = fakt nebo poznatek, který snižuje neurčitost našeho poznání (entropii) DATA (jednotné číslo ÚDAJ) = kódovaná zpráva INFORAMCE = DATA + jejich INTERPRETACE (jak

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

Kódováni dat. Kódy používané pro strojové operace

Kódováni dat. Kódy používané pro strojové operace Kódováni dat Před zpracováním dat například v počítači je třeba znaky převést do tvaru, kterému počítač rozumí, tj. přiřadit jim určité kombinace bitů. Tomuto převodu se říká kódování. Kód je předpis pro

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

KIV/ZI Základy informatiky MS EXCEL MATICOVÉ FUNKCE A SOUHRNY

KIV/ZI Základy informatiky MS EXCEL MATICOVÉ FUNKCE A SOUHRNY KIV/ZI Základy informatiky MS EXCEL MATICOVÉ FUNKCE A SOUHRNY cvičící: Tomáš Ptáček zimní semestr 2012 MS EXCEL MATICE (ÚVOD) Vektor: (1D) v = [1, 2, 3, 5, 8, 13] Např.: matice sousednosti Matice: (2D)

Více

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j. Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

5. Maticová algebra, typy matic, inverzní matice, determinant.

5. Maticová algebra, typy matic, inverzní matice, determinant. 5. Maticová algebra, typy matic, inverzní matice, determinant. Matice Matice typu m,n je matice složená z n*m (m >= 1, n >= 1) reálných (komplexních) čísel uspořádaných do m řádků a n sloupců: R m,n (resp.

Více

ZADÁNÍ ZKOUŠKOVÉ PÍSEMNÉ PRÁCE Z PŘEDMĚTU LINEÁRNÍ ALGEBRA PRO IT. Verze 1.1A

ZADÁNÍ ZKOUŠKOVÉ PÍSEMNÉ PRÁCE Z PŘEDMĚTU LINEÁRNÍ ALGEBRA PRO IT. Verze 1.1A Verze 1.1A Čas na práci: 1 minut Za každý úkol můžete získat maximálně 1 bodů. Řešení každého příkladu zapisujte čitelně a srozumitelně, 2x 1 +4x 3 +3x 4 = 4 x 1 +2x 2 +4x 3 3x 4 = 1 2x 1 +x 2 x 3 3x 4

Více

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012 Algebra - třetí díl Lenka Zalabová Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita v Českých Budějovicích zima 2012 Obsah 1 Dělitelnost 2 Grupy zbytkových tříd 3 Jedna z

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

Co byste měl/a zvládnout po 6. týdnu

Co byste měl/a zvládnout po 6. týdnu Co byste měl/a zvládnout po 6. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B01LAG Zvládnutá látka po 6. týdnu 1/8 Slovník základních pojmů Monomorfismus,

Více

Informace v počítači. Výpočetní technika I. Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelu.cz

Informace v počítači. Výpočetní technika I. Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelu.cz .. Informace v počítači Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelu.cz Osnova přednášky Úvod do teorie informace základní pojmy měření množství informace ve zprávě přenos a kódování

Více

Osnova přednášky. Informace v počítači. Interpretace dat. Údaje, data. Úvod do teorie informace. Výpočetní technika I. Ochrana dat

Osnova přednášky. Informace v počítači. Interpretace dat. Údaje, data. Úvod do teorie informace. Výpočetní technika I. Ochrana dat Osnova přednášky 2/44 Informace v počítači Ing Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelucz základní pojmy měření množství informace ve zprávě přenos a kódování dat parita kontrolní

Více

matice([[1,1,0,0,0],[1,1,1,0,0],[0,1,1,0,0],[0,0,0,1,1],[0,0,0,1,1]],1). matice([[1,1,1],[1,1,0],[1,0,1]],2).

matice([[1,1,0,0,0],[1,1,1,0,0],[0,1,1,0,0],[0,0,0,1,1],[0,0,0,1,1]],1). matice([[1,1,1],[1,1,0],[1,0,1]],2). % Zápočtový program % souvislost grafu % popis algoritmu a postupu % Program využívá algoritmu na násobení matic sousednosti A. % Příslušná mocnina n matice A určuje z kterých do kterých % vrcholů se lze

Více

Algebraické struktury s jednou binární operací

Algebraické struktury s jednou binární operací 16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

Lineární algebra nad obecným Z m, lineární kódy

Lineární algebra nad obecným Z m, lineární kódy Lineární algebra nad obecným Z m, lineární kódy Jiří Velebil: X01DML 19. listopadu 2010: Lineární algebra a kódy 1/19 Minule: soustavy lineárních rovnic nad Z p, p prvočíslo, stejně jako nad R. Dále nad

Více

Teorie grup 1 Příklad axiomatické teorie

Teorie grup 1 Příklad axiomatické teorie Teorie grup 1 Příklad axiomatické teorie Alena Šolcová 1 Binární operace Binary operation Binární operací na neprázdné množině A rozumíme každé zobrazení kartézského součinu A x A do A. Multiplikativní

Více

Teorie. Kombinatorika

Teorie. Kombinatorika Teorie Kombinatorika Kombinatorika Jak obecně vybrat k prvkové množiny z n prvkové množiny? Dvě možnosti: prvky se v množině neopakují bez opakování. prvky se v množině opakují s opakováním. prvky jsou

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Seminář pro učitele středních a vysokých škol, Plzeň, 30. března 2012 jsou všude Některé oblasti využití: CD přehrávače mobilní

Více

Teorie kódování se zabývá tím, jak rychle a spolehlivě přenášet informace z jednoho místa na druhé. Mezi její aplikace patří například minimalizace

Teorie kódování se zabývá tím, jak rychle a spolehlivě přenášet informace z jednoho místa na druhé. Mezi její aplikace patří například minimalizace Kapitola 8 Samoopravné kódy Teorie kódování se zabývá tím, jak rychle a spolehlivě přenášet informace z jednoho místa na druhé. Mezi její aplikace patří například minimalizace šumu při přehrávání kompaktních

Více

Lineární algebra I. látka z. I. semestru informatiky MFF UK. Obsah. Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina

Lineární algebra I. látka z. I. semestru informatiky MFF UK. Obsah. Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina 1 Lineární algebra I látka z I semestru informatiky MFF UK Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina Obsah Matice2 Grupy4 Grupa permutací4 Znaménko, inverze a transpozice grup5 Podgrupy5 Tělesa6

Více

Vzorce počítačové grafiky

Vzorce počítačové grafiky Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u

Více

Co byste měl/a zvládnout po 4. týdnu

Co byste měl/a zvládnout po 4. týdnu Co byste měl/a zvládnout po 4. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B0LAG Zvládnutá látka po 4. týdnu /9 Slovník základních pojmů Množina generátorů

Více

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

Kódování cyklické kódy Coding cyclic code. Jakub Kettner

Kódování cyklické kódy Coding cyclic code. Jakub Kettner Kódování cyklické kódy Coding cyclic code Jakub Kettner Bakalářská práce 8 UTB ve Zlíně, Fakulta aplikované informatiky, 8 UTB ve Zlíně, Fakulta aplikované informatiky, 8 UTB ve Zlíně, Fakulta aplikované

Více

Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Matice študenti MFF 15. augusta 2008 1 12 Matice Požadavky Matice a jejich hodnost Operace s maticemi a jejich vlastnosti Inversní matice Regulární matice,

Více

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu.

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu. 6 Kapitola 2 Příklady z predikátové logiky 2.1 Formule predikátové logiky 2.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolu uvedených

Více

Aritmetické vektory. Martina Šimůnková. Katedra aplikované matematiky. 16. března 2008

Aritmetické vektory. Martina Šimůnková. Katedra aplikované matematiky. 16. března 2008 Aritmetické vektory Martina Šimůnková Katedra aplikované matematiky 16. března 2008 Martina Šimůnková (KAP) Aritmetické vektory 16. března 2008 1/ 34 Úvod 1Úvod Definice aritmetických vektorů a operací

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) LINEÁRNÍ ALGEBRA Úvod vektor Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) Kartézský souřadnicový systém -je taková soustava

Více

Komutativní a nekomutativní polookruhy ve školské matematice. Commutative and non-commutative semi-rings in educational mathematics

Komutativní a nekomutativní polookruhy ve školské matematice. Commutative and non-commutative semi-rings in educational mathematics Komutativní a nekomutativní polookruhy ve školské matematice Drahomíra Holubová Resume Polookruhy, které nejsou okruhy, mají významné zastoupení ve školské matematice. Tento příspěvek uvádí příklady komutativních

Více

KÓDOVÁNÍ A KOMPRESE DAT

KÓDOVÁNÍ A KOMPRESE DAT KÓDOVÁNÍ A KOMPRESE DAT URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH RADIM FARANA ČÍSLO OPERAČNÍHO PROGRAMU: CZ..7 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST OPATŘENÍ:

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

Aritmetické operace a obvody pro jejich realizaci

Aritmetické operace a obvody pro jejich realizaci Kapitola 4 Aritmetické operace a obvody pro jejich realizaci 4.1 Polyadické číselné soustavy a jejich vlastnosti Polyadické soustavy jsou určeny přirozeným číslem z, kterému se říká základ nebo báze dané

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC

2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC 22 SČÍTÁNÍ A NÁSOBENÍ MATIC V této kapitole se dozvíte: jak je definováno sčítání matic a jaké má základní vlastnosti jak je definováno násobení matic číslem a jaké má základní vlastnosti zda a proč se

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Matematické základy šifrování a kódování

Matematické základy šifrování a kódování Matematické základy šifrování a kódování Permutace Pojem permutace patří mezi základní pojmy a nachází uplatnění v mnoha oblastech, např. kombinatorice, algebře apod. Definice Nechť je n-prvková množina.

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Matematické symboly a značky

Matematické symboly a značky Matematické symboly a značky Z Wikipedie, otevřené encyklopedie Matematický symbol je libovolný znak, používaný v. Může to být znaménko pro označení operace s množinami, jejich prvky, čísly či jinými objekty,

Více

Způsoby realizace této funkce:

Způsoby realizace této funkce: KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je výstup určen jen výhradně kombinací vstupních veličin. Hodnoty výstupních veličin nezávisejí na předcházejícím stavu logického obvodu, což znamená, že kombinační

Více

Informace, kódování a redundance

Informace, kódování a redundance Informace, kódování a redundance Data (jednotné číslo údaj) obvykle chápeme jako údaje, tj. číselné hodnoty, znaky, texty a další fakta zaznamenaná (a uložená v databázi) ve formě uspořádané posloupnosti

Více

Operace s maticemi Sčítání matic: u matic stejného typu sečteme prvky na stejných pozicích: A+B=(a ij ) m n +(b ij ) m n =(a ij +b ij ) m n.

Operace s maticemi Sčítání matic: u matic stejného typu sečteme prvky na stejných pozicích: A+B=(a ij ) m n +(b ij ) m n =(a ij +b ij ) m n. 1 Sylvestrova věta Platí: Nechť A je symetrická matice řádu n, označme a 11 a 12... a 1i a D i = 21 a 22... a 2i.... a i1 a i2... a ii Pak A(a příslušná KF) je pozitivně definitní, právěkdyž D i >0provšechna

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Výrazy Operátory Výrazy Verze pro akademický rok 2012/2013 1 Operace, operátory Unární jeden operand, operátor se zapisuje ve většině případů před operand, v některých případech

Více

Lineární algebra. Praha, druhé vydání 2010

Lineární algebra. Praha, druhé vydání 2010 Petr Olšák Lineární algebra Praha, druhé vydání 2010 E Text je šířen volně podle licence ftp://math.feld.cvut.cz/pub/olsak/linal/licence.txt. Text ve formátech TEX (csplain), PostScript, dvi, PDF najdete

Více

METODY KÓDOVÁNÍ, ŠIFROVÁNÍ A BEZPEČNOSTI DAT

METODY KÓDOVÁNÍ, ŠIFROVÁNÍ A BEZPEČNOSTI DAT METODY KÓDOVÁNÍ, ŠIFROVÁNÍ A BEZPEČNOSTI DAT URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH RADIM FARANA ČÍSLO OPERAČNÍHO PROGRAMU: CZ..7 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

LINEÁRNÍ ALGEBRA. RNDr. Marie Hojdarová, CSc. Určeno pro studenty PS a AI

LINEÁRNÍ ALGEBRA. RNDr. Marie Hojdarová, CSc. Určeno pro studenty PS a AI LINEÁRNÍ ALGEBRA RNDr. Marie Hojdarová, CSc. Určeno pro studenty PS a AI Jihlava, říjen 2012 ISBN 978 80 87035 65-8 Úvod do studia předmětu Základy lineární algebry Milí studenti! Lineární algebra, kterou

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2013/2014 Radim Farana. Obsah. Detekce chyb

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2013/2014 Radim Farana. Obsah. Detekce chyb Podlady předmětu pro aademicý ro /4 Radim Farana Obsa Detece cyb, Hamminoa dálenost Kontrolní a samooprané ódy Lineární ódy Hamminoy ódy Opaoací ódy Cylicé ódy Detece cyb Množinu šec slo rodělíme na sloa

Více

Teorie informace a kódování (KMI/TIK)

Teorie informace a kódování (KMI/TIK) Teorie informace a kódování (KMI/TIK) Bezpečnostní kódy Lukáš Havrlant Univerzita Palackého 13. listopadu 2012 Konzultace V pracovně 5.076. Každý čtvrtek 9.00 11.00. Emaily: lukas@havrlant.cz lukas.havrlant@upol.cz

Více

3. Polynomy Verze 338.

3. Polynomy Verze 338. 3. Polynomy Verze 338. V této kapitole se věnujeme vlastnostem polynomů. Definujeme základní pojmy, které se k nim váží, definujeme algebraické operace s polynomy. Diskutujeme dělitelnost polynomů, existenci

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Číslo materiálu. Datum tvorby Srpen 2012

Číslo materiálu. Datum tvorby Srpen 2012 Číslo projektu Číslo materiálu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_CTE_2.MA_03_Převod čísel mezi jednotlivými číselnými soustavami Střední odborná škola a Střední

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic 7 Matice. Determinant Soustavy lineárních rovnic 7.1 Matice Definice 1. Matice typu (m, n) jesoustavam n reálných čísel uspořádaných do m řádků a n sloupců a 11, a 12, a 13,..., a 1n a 21, a 22, a 23,...,

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. Přednáška MATEMATIKA č. 2 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 13. 10. 2010 Uspořádané schéma vytvořené z m n reálných čísel, kde m, n N a 11 a 12 a

Více

Ověřená technologie montáže motokáry INDOOR 08

Ověřená technologie montáže motokáry INDOOR 08 VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ Ústav progresivních technologií pro automobilový průmysl Ověřená technologie montáže motokáry INDOOR 08 Petr

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

B. Sčítání,odčítání adoplňkovýkód

B. Sčítání,odčítání adoplňkovýkód B. Sčítání,odčítání adoplňkovýkód číselné soustavy a řádová mřížka sčítání a odčítání racionálních a celých čísel úplná a poloviční sčítačka sčítačka s postupným šířením přenosu a s predikcí přenosů sčítání

Více

Lineární algebra II. Adam Liška. 9. února 2015. Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak. rok 2007/2008

Lineární algebra II. Adam Liška. 9. února 2015. Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak. rok 2007/2008 Lineární algebra II Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak rok 2007/2008 Adam Liška 9 února 2015 http://kammffcunicz/~fiala http://wwwadliskacom 1 Obsah 10 Permutace 3 11 Determinant

Více

Cyklické redundantní součty a generátory

Cyklické redundantní součty a generátory Cyklické redundantní součty a generátory pseudonáhodných čísel Rostislav Horčík: Y01DMA 20. dubna 2010: CRC a pseudonáhodná čísla 1/17 Definice Řekneme, že polynomy a(x), b(x) jsou kongruentní modulo m(x),

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116.

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. Cykly a pole Tato část sbírky je tvořena dalšími úlohami na práci s cykly. Na rozdíl od předchozího oddílu se zde již v řešeních úloh objevuje více cyklů, ať už prováděných po sobě nebo vnořených do sebe.

Více

Kapitola 1. Tenzorový součin matic

Kapitola 1. Tenzorový součin matic Kapitola 1 Tenzorový součin matic Definice 1.1. Buď F komutativní těleso. Pro matice A F m n a B F r s definujeme tenzorový součin A B jako matici o rozměru mr ns zapsanou blokově: A 11 B A 12 B A 1n B

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

Mřížkové kódování. Ivan Pravda

Mřížkové kódování. Ivan Pravda Mřížkové kódování Ivan Pravda Autor: Ivan Pravda Název díla: Mřížkové kódování Zpracoval(a): České vysoké učení technické v Praze Fakulta elektrotechnická Kontaktní adresa: Technická 2, Praha 6 Inovace

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

Teorie informace II: obtížnější řešené příklady 2014 Tomáš Kroupa

Teorie informace II: obtížnější řešené příklady 2014 Tomáš Kroupa Teorie informace II: obtížnější řešené příklady 204 Tomáš Kroupa. Máme n mincí, z nichž nejvýše jedna je falešná. Pozná se podle toho, že má jinou hmotnost než ostatní mince (ty váží všechny stejně). Mince

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Vektory a matice. Matice a operace s nimi. Hodnost matice. Determinanty. . p.1/12

Vektory a matice. Matice a operace s nimi. Hodnost matice. Determinanty. . p.1/12 Vektory a matice Lineární (ne-)závislost vektorů n zê Matice a operace s nimi Hodnost matice Determinanty. p.1/12 Lineární (ne-)závislost vektorů zê n Příklad 9.1.1 Rozhodněte, zda jsou uvedené vektory

Více

Pokroky matematiky, fyziky a astronomie

Pokroky matematiky, fyziky a astronomie Pokroky matematiky, fyziky a astronomie Lucie Kárná; Štěpán Klapka Bezpečnostní kódy v železničních zabezpečovacích zařízeních Pokroky matematiky, fyziky a astronomie, Vol. 58 (2013), No. 2, 100 106 Persistent

Více

š ú ě Ú ě ě ú Ú Ý Í Ě Í Ú Í Á Ý Ů Ý Ů Í ě Á Í ě Č ú ř ě ň ř ů ň ř ů Č ň ř ů ů ň ř ů Í ň ř šť š ů ř ř ě ř ř ů ň ů ř ě ř š ř ř ř ů ř ů ř ů ř ř ř ů ě ě ě ř ř ů ř ů ě š ě ř ů Ú ř ě ř ř ě Č ř ů ř ř ě ř ů ř

Více

Jan Kotůlek. verze 3 ze dne 25. února 2011

Jan Kotůlek. verze 3 ze dne 25. února 2011 Integrace racionálních lomených funkcí Jan Kotůlek (kombinované studium, první soustředění) verze 3 ze dne 5. února 0 Abstrakt Tento článek je koncipován jako rozšířený zápis průběhu prvního soustředění

Více

Algebra v informatice

Algebra v informatice Algebra v informatice Pro učitele matematiky Antonín Jančařík Obsah Obsah... 1 Algebra a informatika... 2 Kontrolní součty... 5 Rodné číslo... 5 Využití dělitelnosti... 7 Čárový kód (Universal Product

Více