Systém programů pro projektování prutových mostních konstrukcí NEXIS 32 TM18. Součást dodávky programového vybavení.

Rozměr: px
Začít zobrazení ze stránky:

Download "Systém programů pro projektování prutových mostních konstrukcí NEXIS 32 TM18. Součást dodávky programového vybavení."

Transkript

1 Systé prograů pro projektování prutových ostních konstrukcí NEXIS 32 TM18 Součást dodávky prograového vybavení.

2 TM18 NEXIS 32 Datu poslední revize: Copyright 2002 SCIA Group. Všechna práva vyhrazena. Copyright T M Software Ing Ivan Sitař, CSc Všechna práva vyhrazena. 2

3 NEXIS 32 TM18 Obsah: 1. POJMY, METODIKA VÝPOČTU, KONVENCE VNITŘNÍCH SIL Základní pojy: Odlišnosti ČSN a ČSN od obdobných nore pro betonové konstrukce Globální a lokální souřadný systé (konstrukce, pruty, kabely) Použité systéy jednotek Konvence vnějších a vnitřních sil Uístění průřezů na prvku (prvky proěnného průřezu) Obecně k řešení staticky neurčitých konstrukcí silovou etodou Uvolnění staticky neurčité konstrukce Metodika výpočtu účinků srštění a dotvarování (etoda prof. V. Křístka) Postup při řešení okažitého zatěžovacího stavu Postup při řešení dotvarování betonu v časové intervalu Postup při řešení srštění betonu v časové intervalu Zvláštnosti konstrukce se spřaženýi pruty Výpočty průhybu Výpočet okažitého průhybu Výpočet dlouhodobých průhybů od dotvarování Výpočty vlivu předpětí Volné kabely Přede předpjatá výztuž Výpočty ztrát předpětí tření a pokluze Výpočty ztrát předpětí postupný napínání Výpočty ztrát předpětí relaxací výztuže Výpočty ztrát předpětí srštění a dotvarování betonu Suarizování účinků a předpětí VÝPOČTY ÚČINKŮ NAHODILÉHO ZATÍŽENÍ Princip výpočtu účinků nahodilého zatížení POSOUZENÍ PRŮŘEZŮ PODLE ČSN Principy reorganizace účinků trvalého zatížení v prograu TM1800V

4 TM18 NEXIS Principy posouzení jednotlivých průřezů v prograu TM1800P Možnost kobinace použití systéů Nexis a POSUDKY na jedné akci Databáze ateriálů v systéu NEXIS a v systéu POSUDKY Zásady pro výběr ateriálů Pravidla pro překódování ateriálů Převodní tabulka kódů OVLÁDÁNÍ PROGRAMU TM Oezení platná pro progra TM18 oproti obecnéu rovinnéu ráu Spuštění prograu TM18 základní výpočet Spuštění prograu TM18 grafické výstupy Spuštění prograu TM18 posouzení průřezů podle ČSN Okno "Přehled" Okno "Section properties" Doporučené postupy při zadávání dat pro progra TM Poznáky k založení nové akce Poznáky k zadávání a opravá geoetrie konstrukce Zěny v zadání geoetrie Poznáky k zadávání a opravá zadání podpor Excentricity prutů Poznáky k zadávání průřezů z databanky ostních průřezů Poznáky k zadávání průřezů etodou "obecný průřez" Poznáky k zadávání ateriálů částí průřezu Definice proěnných náběhů Poznáky k zadávání fází výstavby Poznáky ke zěná statického systéu Poznáky k zadávání časů betonáže DodatečnÉ zěny v zadávání fází výstavby Poznáky k zadávání a opravá zatížení Poznáky k zadávání vlastní tíhy konstrukce Poznáky k zadávání dráhy pohyblivého nahodilého zatížení Poznáky k zadávání zatěžovacích soustav Poznáky k zadávání obalových čar nahodilého zatížení Obalové čáry na veli rozsáhlých konstrukcích Poznáky k zadávání soudržných kabelů Poznáky k zadávání EXTERNíCH (VOLNÝCH) kabelů Odstranění kabelů Praktické poznáky k zobrazení konstrukce: ZPRACOVÁNÍ VÝSLEDKŮ

5 NEXIS 32 TM Tabulkové výstupy Grafické výstupy Ovládání prograu PRAGOPLOT

6 TM18 NEXIS POJMY, METODIKA VÝPOČTU, KONVENCE VNITŘNÍCH SIL 1.1. ZÁKLADNÍ POJMY: Progra TM18, zapojený do systéu NEXIS32, řeší postupné budování betonových konstrukce ostního typu, kterou lze odelovat jako rovinný rá v rovině x z. Ve výpočtu je zohledněn postupný vývoj konstrukce po etapách (fázích) výstavby od betonáže první části až po konečný systé. Do výpočtu je zahrnut vliv předpětí a jeho ztrát vliv sršťování betonu a vliv dotvarování betonu, které způsobuje přesuny napětí v různě starých částech konstrukce. Všechny výpočty vycházejí ze zásad nore pro navrhování ostů ČSN (předpjatý beton) a ČSN (železobeton). Definice konstrukce, jejích stavebních fází, zadání zatížení v průběhu výstavby u zadání předpínací výztuže a předpětí se provádí v grafické prostředí NEXIS32, se všei ožnosti a oezeníi, které platí pro rovinný rá v rovině x z. Kopletní výpočet ostů lze rozdělit do 5 kroků: 1. Zadání geoetrie, průřezů, fázování, zatížení běhe výstavby, předpětí. 2. Zadání nahodilých zatížení a jejich kobinací pro dienzování 3. Výpočet účinků nahodilých zatížení na konečné konstrukci. Tato část se provádí systée NEXIS32 etodou konečných prvků. 4. Výpočet účinků stálých zatížení a předpětí v průběhu výstavby. Tato část se provádí odule TM18 silovou etodou. Vytváří j. souhrnný dokuent o účincích v průběhu výstavby (síly, napětí tabulky a grafy) 5. Posouzení jednotlivých průřezů konstrukce podle ČSN , popř. ČSN Tato část používá výsledky z kroků 3 a 4 vytváří dokuent o posouzení vybraných průřezů. V současné verzi Nexis32 se dodává provizorní napojení na systé posudků firy TM-SOFTWARE. V libovolné fázi výpočtu lze zěnit nebo opravit potřebné údaje, opakování následných kroků lze aktualizovat výsledky. Systé uožňuje archivovat zadané požadavky na výsledky v 5. kroku a autoaticky nahrazovat původní dokuenty o výsledcích. Progra TM18 pracuje se základní entitou v rovině x z: uzel, prut a akro 1D (viz anuál NEXIS32, kapitola 5.1) Uzel je bod v prostoru definovaný 2 souřadnicei. K uzlu usí být připojen alespoň jeden prut. Nepřipojené uzly se autoaticky ruší. Prut je spojnice dvou uzlů, je to nejnižší stavební jednotka, se kterou ůže uživatel pracovat. Pruty v akru na sebe usí navazovat, ohou ít ale různé průřezy. V systéu TM18 je třeba rozlišovat prut zadaný dvěa sousedníi uzly, a prut s náběhe, který se pro účely výpočtů obvykle dělí na několik dílků konstantního, navzáje však odlišného průřezu. V systéu Nexis se používá naprosto stejný postup, avšak dílky nejsou viditelné (neají čísla a vložené uzly nejsou uživateli přístupné). Ve výsledcích TM18 se tyto dílky a uzly zobrazí, proto se v popisech výsledků nahrazuje poje prut poje prvek a poje dílek poje prut. Přehledně tedy platí terinologie (pouze pro prvek s náběhe, jinak pojy prut a prvek splývají): systé Nexis32 akro prut dílek systé TM18 akro prvek prut Při vlastní výpočtu a ve výsledcích se uístění průřezů vztahuje k prvků a uzlů. Makro 1D slouží jako poocný prostředek k jednoduchéu zadávání částí konstrukce. Ke každéu prutu usí být přiřazen průřez, buď konstantní, nebo proěnný, definovaný dvěa koncovýi průřezy obdobného tvaru. Konečné podrobné posouzení v 5. kroku lze požadovat pouze v koncových průřezech prutu a uprostřed prutu, proto usí být síť prutů a uzlů dostatečně hustá. Přehledné výsledky a grafy ve 4. kroku počítají a zobrazují také účinky v rozhodujících ezilehlých průřezech: v polovinách prutů a v dalších zahušťovacích bodech. V systéu TM18 se za osu prutu považuje spojnice dvou sousedních uzlů. Osa prutu nebývá totožná s těžiště prutu. 6

7 NEXIS 32 TM ODLIŠNOSTI ČSN A ČSN OD OBDOBNÝCH NOREM PRO BETONOVÉ KONSTRUKCE Nory, platné v ČR pro výpočty a posouzení ostních konstrukcí z předpjatého a železového betonu vycházejí z principu dovolených naáhání, která nesí být překročena a která jsou první kriterie posouzení. Posuzují se napětí norálová a hlavní (od syku a od kroucení) v betonu, v betonářské výztuži a v předpínacích vložkách. Hodnoty dovolených naáhání jsou stanoveny norou pro všechny ateriály a charakteristická ísta v konstrukci pro 4 kategorie kobinací zatížení: hlavní, celkové, neobvyklé bez vedlejšího a neobvyklé včetně vedlejšího. Dovolená naáhání nesějí být překročena nikde a nikdy v celé konstrukci. Jako další kriteriu se posuzuje únosnost rozhodujících průřezů (posuzuje se stupeň bezpečnosti proti dosažení eze únosnosti, který usí být větší než je předepsaný). Mezní únosnost betonu ve syku se posuzuje nepříou etodou (prokazuje se, že účinky zatížení, vynásobeného požadovaný stupně bezpečnosti, nepřesáhnou předepsané ezní hodnoty hlavních napětí) Jako třetí kriteriu betonových prvků se posuzují trhliny: požadovaná bezpečnost proti vzniku trhlin a ta, kde je vznik trhlin povolen, posuzuje se jejich šířka. Vnější zatížení (stálá a nahodilá) se do těchto výpočtů dosazují ve své základní (norové) hodnotě. Pohyblivá zatížení na ostech se zvětšují o dynaické účinky poocí dynaického součinitele, nebo přesnější dynaický výpočte. Pro dotvarování a sršťování betonu předepisuje nora Moerschův vzorec. Progra TM18 vychází z těchto zásad. Při jeho spuštění usí být v systéu NEXIS nastavena nora ČSN Vlastní progra (4. krok řešení) počítá vývoj napjatosti v celé konstrukci v průběhu času, přito uvažuje všechna zatížení i předpětí skutečnou (nebo předepsanou) hodnotou. Neuvažují se žádné další koeficienty, které by zohledňovaly vliv přesnosti nebo nahodilosti různých zatížení. Konstrukce se počítá pro okažité zatížení jako pružná, působení času se ovše deforace průřezů a v důsledku toho i účinky na staticky neurčitých konstrukcích ění vlive sršťování a dotvarování betonu GLOBÁLNÍ A LOKÁLNÍ SOUŘADNÝ SYSTÉM (KONSTRUKCE, PRUTY, KABELY) GLOBÁLNÍ SOUŘADNÝ SYSTÉM x - z V toto pravoúhlé kartézské systéu jsou uístěny všechny uzly a pruty konstrukce. Osa x se předpokládá vodorovná, vlastní tíha se předpokládá ve sěru záporné osy z. Ohybové oenty působí kole osy y, která je kolá na rovinu x z LOKÁLNÍ SOUŘADNÝ SYSTÉM PRUTŮ a PRVKŮ Každý prvek je definován dvěa uzly počáteční a koncový. Na každé prvku je definován jeho lokální souřadný systé, jehož počátek leží v počáteční uzlu a osa x sěřuje do koncového uzlu. Všechny pruty jednoho prvku s náběhe ají společnou osu. LOKÁLNÍ SOUŘADNÝ SYSTÉM KABELŮ O každé kabelu se předpokládá, že leží v rovině x z. Ve skutečnosti ovše bývají u rovinné konstrukce uístěny dvojice kabelů syetricky k rovině x z, avšak io ni. Pro výpočet se však nahrazují ideální kabele ležící v této rovině. Menší excentricity se zanedbávají, větší by se neěly navrhovat. Lokální systé kabelu je vztažen k lokálníu systéu zvoleného prvku (vztažný prvek) a je s ní rovnoběžný. Počátky obou systéů neusí být totožné, posun počátků se zadává při definici kabelů. Kabel obvykle prochází přes několik prvků, které na sebe navazují, v systéu NEXIS32 neusí být osy těchto prvků přísně rovnoběžné. Jejich odchylka od osy vztažného prvku by však neěla být veliká. Progra signalizuje odchylku větší než 10 (kdy již vznikají větší nepřesnosti ve výsledcích) a nepřipustí odchylku větší než 30. Soudržné kabely usí být uístěny uvnitř obrysu všech prvků, kterýi procházejí. LOKÁLNÍ SOUŘADNÝ SYSTÉM ŘEZU Tvar příčného řezu prvke se zadává v rovině y z, která á počátek souřadnic v průsečíku s osou prvku a je kolá k ose prvku. Při pohledu proti sěru lokální osy x (od konce prvku k jeho počátku) sěřuje osa y vpravo. V systéu TM18 obvykle těžiště průřezu není totožné s osou prvků. Doporučuje se však, aby excentricita těžiště nebyla veliká, protože účinky zatížení na prvky se počítají vztažené k ose prutů a při větší excentricitě se ztrácí konvenční význa u ohybových oentů (oent, který způsobuje tah v dolních vláknech, ůže ít při současné působení větších osových sil i záporné znaénko) 1.4. POUŽITÉ SYSTÉMY JEDNOTEK V prograu TM18 jsou interně používány tyto jednotky pro délky, síly a napětí: 7

8 TM18 NEXIS 32 1 (etr) pro délky 1 MN (Meganewton) pro síly 1 Mpa (Megapascal) pro napětí 1 den pro čas (uzly časové osy). V těchto jednotkách se tisknou a zobrazují výsledky a doporučuje se používat je i jako základní nastavení pro zadávání vstupních dat. Pokud byly při zadávání použity jiné jednotky, převede je dialogový systé a následný vstupní odul prograu TM18 na výše uvedené jednotky. Zcela vyjíečně usí být v zadání použity i jiné jednotky (např. doba podržení napětí při předpínání ůže být nastavena pouze na sec, inuty nebo hodiny) KONVENCE VNĚJŠÍCH A VNITŘNÍCH SIL Vnější síly působící přío na uzly se zadávají v globální souřadné systéu. Kladné síly působí ve sěru příslušné kladné osy, kladný oent My v kladné sěru (proti ručičká hodinek) Síly působící na pruty (ať již v koncích, nebo ezi uzly) je ožno zadat v globální systéu, nebo v lokální systéu. V prvé případě progra rozloží síly ve sěru globálních os x a z do příslušných složek, působících ve sěru lokálních os. Síly ve sěru lokální usy z působí kolo na prut, síly 1ve sěru lokální osy x působí v ose prutu. Vnitřní síly a oenty v prutech se vyhodnocují v tzv. dienzační konvenci. Schéa je na obrázku: Z Y Z K X Fx Mx Mx Fx Fy My My Fy Fz Mz Mz Fz V rovině x z se uplatní síly Fx, Fz a oent My. Označíe-li při postupu od začátku prutu k jeho konci pravou stranu prutu jako dolní vlákna, poto kladný oent +My způsobuje tah v dolních vláknech, kladná osová síla +N způsobuje tak v celé průřezu a kladná posouvající síla +V je derivací dmy/dx UMÍSTĚNÍ PRŮŘEZŮ NA PRVKU (PRVKY PROMĚNNÉHO PRŮŘEZU) Dva základní průřezy se uisťují na začátek a na konec prvku. Tyto průřezy se zadávají v systéu Nexis32, pokud je prvek konstantního průřezu, platí průřez pro celý prvek. Jde-li o prvek s náběhe, vybere se jeden koncový průřez z databáze průřezů jako základní průřez a průřez na opačné konci se zadá jako jeho odifikace (zěnou některých rozěrů). V současné verzi (Nexis 350) lze odifikovat pouze nespřažené průřezy ostního typu. Progra rozdělí prvek na zadaný počet stejně dlouhých dílků, pro každý dílek použije průřezové konstanty odpovídající středu dílku, a pro podrobné posouzení systée POSUDKY použije tvar, který vznikne interpolací základního a odifikovaného průřezu. Podrobně lze posuzovat pouze oba zadané koncové průřezy

9 NEXIS 32 TM18 prvku a průřezy uprostřed jednotlivých dílků. V těchto průřezech jsou totiž výsledná napětí jednoznačná a odpovídají skutečnosti. Na hranách dílků vznikají vzhlede k použitéu zjednodušení skoky v napětí (ty se zobrazí pouze v přehledných grafech napětí) Další poocné průřezy uístí progra do íst, kde v rozsahu prutu začíná nebo končí kabel (zde se uístí zdvojený průřez, protože tu dochází k nespojitoste v průběhu sil a napětí). Další poocné průřezy uístí progra autoaticky do úseků, kde vzdálenost průřezů přesahuje 80% výšky průřezů. To připadá v úvahu pouze u prutů konstantního průlezu. Toto zahuštění je potřebné jednak kvůli názornosti grafického zobrazení výsledků, jednak kvůli přesnosti vyhodnocení účinků předpětí, ztrát předpětí a dotvarování u spřažených konstrukcí. Průřezy se uístí tak, že počátek souřadného systéu prutu leží na ose prutu. Těžiště tudíž neusí být totožné s osou prutu. Pokud jsou v systéu Nexis zadány excentricity těžiště, přepočtou se v prograu TM18 všechny souřadnice k ose prutu OBECNĚ K ŘEŠENÍ STATICKY NEURČITÝCH KONSTRUKCÍ SILOVOU METODOU Při použití silové etody řešení staticky neurčité konstrukce se použije tento obecný postup: a) Spočítá se stupeň statické neurčitosti (počet nadbytečných vazeb) a jejich uvolnění se konstrukce převede na staticky určitou b) Na staticky určitou konstrukci se nechají působit jednotkové síly (oenty) ve sěru uvolněných vazeb a spočítá se atice jednotkových deforací (účinků těchto jednotkových sil) c) Na staticky určitou konstrukci se nechá působit vnější zatížení (silové i deforační) a spočítá se vektor deforací od tohoto zatížení d) Řešení systéu rovnic, který vyjadřuje podínku zachování spojitosti v ístě všech uvolněných vazeb se vypočtou staticky neurčité veličiny hodnoty sil a oentů ve sěru uvolněných vazeb e) Výsledné řešení účinků na staticky neurčité konstrukce je suarizací účinků na uvolněné staticky určité konstrukce a účinků spočítaných staticky neurčitých vazeb. Počet neznáých v systéu rovnic je roven stupni statické neurčitosti. Tento počet je relativně veli alý (např. vzhlede k počtu neznáých u deforační etody nebo i MKP) a dá se snadno vyřešit. V TM18 je použita Gausova eliinace a postačí její řešení v jednoduché přesnosti. Řešení účinků zatížení na staticky určitou (uvolněnou) konstrukci se provádí za poocí rozkladu konstrukce na pruty. Pro každý prut se vypočtou deforační konstanty pro působení jednotkových vazeb (v rovinné systéu se jedná o 3 vazby) a pro vliv vnějšího zatížení, které působí přío na prut. Tyto konstanty se vypočtou jedenkrát pro celou konstrukci, v případě spřažených prutů dvakrát (pro základní průřez, platné v době před spřažení, a pro spřažený průřez, platné v době po spřažení). Deforační konstanty od zatížení se počítají pro ten stav, který platí v době zatížení. Ve výpočtech těchto konstant se uvažuje pouze základní betonový průřez bez betonářské výztuže, bez oslabení kabelovýi kanálky a bez soudržné předpínací výztuže. Protože se takto vypočtené deforační konstanty použijí na obou stranách rovnic systéu, byl by vliv výztuže na výsledné staticky neurčité výsledky zanedbatelný. Při výpočtech napětí v průřezech se ovše počítá s průřezovýi konstantai ideálních průřezů, které v sobě zahrnuje všechny výše uvedení vlivy ( kroě betonářské výztuže). Při podrobné posouzení průřezu v páté kroku se počítá i s vlive betonářské výztuže UVOLNĚNÍ STATICKY NEURČITÉ KONSTRUKCE Největší problée silové etody je uvolnění staticky neurčité konstrukce, tj. nalezení vhodných vazeb, jejichž uvolnění se konstrukce zění na staticky určitou. Tento problé zůstával ve starších verzích prograů, využívajících silovou etodu, většinou na zadavateli. Progra á k dispozici souřadnice všech uzlů, topologii prutů a soupis vnějších vazeb (podpory) a vnitřních uvolnění (vložené klouby, popř. i jiná uvolnění). V prvé kroku otestuje všechny pruty a spojí je do akroprvků (tzv. "desek"), které neobsahují žádná uvolnění a v nichž pruty na sebe řetězově navazují. Tyto akroprvky bývají obvykle větší, než zadaná 1D akra systéu Nexis32. Každá konstrukce se považuje za rovinný rá, pro který platí kritériu statické určitosti: 3. N d = 3. N jd + N rs + N rb + Sn 9

10 TM18 NEXIS 32 kde N d N jd N rs N rb je počet desek (akroprvků), tj. části konstrukce, které jsou ve všech uzlech tuze spojeny je počet uzlu, ve kterých se desky stýkají (započítávají se také konce konzol, nezapočítávají se podpory) je počet zadaných uvolnění podpor je počet zadaných uvolnění vnitřních vazeb na prutech Sn je stupeň statické neurčitosti Další kroke je nalezení Sn vazeb, jejichž uvolnění se konstrukce převede na staticky určitou. Progra používá několik algoritů, které byly otestovány na řadě běžných statických systéů. Při nevhodné volbě vazeb se totiž ůže konstrukce zěnit na echanizus, ve které zůstaly některé vnitřně neurčité části. V takové případě bude výsledná atice systéu singulární. Nakonec progra sestaví ze zadaných a spočítaných údajů 3. N d rovnic rovnováhy a vyřeší tento systé jak pro zatížení veličinai X i = 1, tak i pro zatížení jednotkovýi reakcei prutů (vliv prutových zatížení) a pro jednotková uzlové zatížení METODIKA VÝPOČTU ÚČINKŮ SMRŠTĚNÍ A DOTVAROVÁNÍ (METODA PROF. V. KŘÍSTKA) Základní etodou použitou v prograu TM18 je klasická silová etoda, s uvážení vlivu ohybu a osových sil a sykových sil. Pro řešení vlivu dotvarování byla použita etoda postupného řešení konečnýi kroky, vypracovaná prof. Vladiíre Křístke DrSc. Průběh dotvarování betonu se uvažuje funkcí ϕ () t = ϕ 1 e t/365 (Mőrschova funkce) t značí čas zadávaný ve dnech (t/365. je tedy čas zadávaný v rocích). Všechny ztráty předpětí jsou ve výpočtu uvažovány přesnýi vzorci jednak dle ČSN , jednak dle publikace prof. Zůdy "Předpjatý beton" (SNTL Praha, 1958). Pro výpočet deforačních veličin prutů (základ pro řešení staticky neurčitých systéů) jsou ve všech stadiích použity zadané průřezové funkce plného betonového průřezu, popř. ideální funkce plného spřaženého průřezu. Napětí v betonu jsou vyhodnocována z ideálních průřezových funkcí, se započtení vlivu oslabení kanálky a s uvážení Ea/Eb - násobné plochy předpínací výztuže. Pozn. V následující textu se používá označení: Velká písena A a hranaté závorky [ ] pro atice Složené závorky { } pro vektory (nerozlišují se sloupcové a řádkové vektory) Teoretická práce prof. ing. Vlad. Křístka, DrSc. byla publikována v ráci státního výzkuného úkolu v r a také ve starších verzích dokuentace k prograu TM18. V. Křístek odvodil, že vliv dotvarování lze vystihnout suarizování výsledků řešení na pružné systéu, na který působí v každé dílčí etapě náhradní zatížení, které je d 2 - násobke účinku všech předchozích zatížení na každé prutu. Pro součinitel d 2 odvodil vzorec: d 2 = e - ( ϕ (x, τ) - ϕ ( x, τ 0 ) ) Dokázal rovněž, ze řešení konverguje k přesnéu řešení pro rostoucí počet časových etap. Teorie je platná za předpokladu, že dotvarování se řídí funkcí ϕ, závislou pouze na stáří betonu (teorie stárnutí). V této verzi dokuentace jsou na práci prof. Křístka použity pouze odkazy. Progra je vypracován pro řešení rovinných prutových konstrukcí. Řeší jednak okažité zatěžovací stavy konstrukce v libovolné čase t, jednak účinky dotvarování v jednotlivých po sobě následujících časových intervalech t. Výpočet je organizován po etapách chronologicky tak, jak zatěžování a dotvarování ve skutečnosti probíhá. Mezi jednotlivýi výpočtovýi etapai ůže docházet ke zěně statického systéu. Pro výpočet je celá konstrukce rozdělena na pruty, které jsou vždy stejného stáří a ze stejného ateriálu, tzn., že funkce dotvarování ϕ ( τ ) je v rozezí prutů stejná.

11 NEXIS 32 TM18 Pokud jsou v konstrukci pruty se spřaženou částí, usí být v ráci prutu stejné stáří základního betonu i spřažené části. Statické veličiny (oenty, norálové síly) na prutu lze rozložit na dvě části. Prvá část vystihuje spojení se zbytke konstrukce a dá se vyjádřit u rovinné prutové konstrukce poocí 3 vazeb: dvou koncových oentů a osové síly. Osová síla je v celé prutu konstantní, oenty ají lineární průběh. Druhá část odpovídá zatěžovacíu obrazci na prutu uložené jako staticky určitý prostý nosník. Tato druhá část je ezi jednotlivýi zatěžovacíi etapai konstantní, dotvarování se projeví pouze zěnou vazeb. V obecné případě prutu, jehož těžištní osa není totožná se spojnicí koncových uzlů, je atice deforací od jednotkových vazeb syetrická čtvercová atice řádu 3 se všei nenulovýi členy. Vazby jsou očíslovány podle následujícího schéatu: Použité označení některých veličin: n stupeň statické neurčitosti p počet prutů k počet vazeb na prutů (K=3) Pozn.: při k = 0 není prut aktivní při k = 1 působí pouze osová síla (vazba V3) při k = 2 působí pouze oenty (vazby V1 a V2) při k = 3 působí všechny vazby t čas ve dnech (společný pro celou konstrukci) τ stáří prutu ve dnech (ěřené od doby betonáže) { V r } vektor vazeb = { M l, M p, N } řádu k [ α rs ] atice jednotkových deforací na prutu, řádu k k { 0 α r } vektor deforací prutů od vnějšího zatížení, řádu k { V si } součet pro všechny pruty = 1 až = p tabulka vazeb na staticky určité (uvolněné) konstrukci od Xi = 1 { V jr } dtto, od Xj = 1 { V s } 0 tabulka vazeb na staticky určité (uvolněné) konstrukci od vnějšího zatížení (v každé prutu vektor řádu k ) { X i } vektor staticky neurčitých veličin, řádu n { Z r } zatěžovací člen na prutu (vektor řádu k ) 11

12 TM18 NEXIS 32 [ ] M ( x) M ( x) EI( x) N ( x) N ( x) dx EF( x) i j i j δ ji = Α = dx + [ β ij ] = Α 1 { G ir } Ω Ω (atice jednotkových deforací staticky neurčitého systéu, řádu n n inversní atice, řádu n n příčinková funkce veličiny Xi (v každé prutu vektor řádu k ) { V s } 0 výsledné vazby na staticky neurčité konstrukci od vnějšího zatížení, výsledek řešení s { V } s okažitého zatížení (v každé prutu vektor řádu k ) suarizované vazby v čase t o (v každé prutu vektor řádu k ) s { r} α suarizované deforace od vnějšího zatížení v čase t o (v každé prutu vektor řádu k ) * { X i } doplňky staticky neurčitých veličin od dotvarování v časové intervalu t 0 => t Poznáka ke vzorci pro atici A: Poslední člen vzorce (integrál Q. Q ) vyjadřuje vliv sykových sil na deforace. Tento člen lze poocí výpočtových klíčů potlačit. Vzorce 2.2, 2.3, 2.12, 2.21 a 2.25 uvažují pouze vliv oentů a osových sil, pokud se vliv syku nepotlačí, jsou všechny doplněny o člen vyjadřující vliv syku. Q i, Q j jsou sykové síla v průřezech, G je odul pružnosti ve syku, F s je syková plochy A z. Velikost sykové plochy je enší než skutečná plocha A x průřezu. Sykovou plochu obvykle spočítá odul "obecný průřez". U koůrkových průřezů a u I průřezů s tenkou stojinou je ožno uvažovat sykovou plochu jen jako plochu stojin. Vliv zahrnutí účinků sykových sil do výpočtu se příliš neprojeví ve velikosti staticky neurčitých oentů a osových sil, á však značný vliv na velikosti průhybů (řádově až o desítky %). Podle posledních výzkuů prof. Vl. Křístka lze poocí redukce sykové plochy vystihnout i vliv sykového ochabnutí koůrkových průřezů, které se projeví další zvětšení průhybů koůrkových nosníků. Podrobněji viz zpráva ze 3. sypozia MOSTY 1998, Brno a článek.(příloha k anuálu TM18) POSTUP PŘI ŘEŠENÍ OKAMŽITÉHO ZATĚŽOVACÍHO STAVU (řešení silovou etodou, nezávislé na čase) Základní rovnice systéu á tvar: 0 [ δ ji ] { X i} { δ j} kde + = 0. (2.1) δ ji M ( x). M ( x) N ( x). N ( x) = + dx = V V j i j i dx Ex Ix ( ). ( ) Ex ( ). Fx ( ) Ω Ω { rj} [ α rs ] { si} (2.2) 0 0 M j( x). M ( x) N j( x). N ( x) δ j = dx + dx = V α V + α Ex Ix ( ). ( ) Ex ( ). Fx ( ) 0 Ω Ω 0 0 { rj} ( [ rs ] { s} { r} ) (2.3) Ze znáých hodnot { X i } se vypočtou hledané vazby na prutech ze vzorce: 12

13 NEXIS { Vs} = ( { Vs} + [ Vsi] { Xi} ) Další požadované veličiny (eziuzlové oenty a norálové síly S i ) lze vyčíslit ze vzorce: 0 { S 0 } { S } [ S 0 ] { V i i is s } (2.4) = + (2.5) TM18 (poslední člen představuje prakticky příkovou interpolaci oentů do požadovaného staničení a přepis norálové síly z levého uzlu). Zavedee označení { Z r } pro výraz v rovnici (2.3): 0 0 { Zr} = [ αrs] { Vs} + { αr} Řešení rovnice (2.1) á tvar: { X i } = [ β i j ] { δ j } 0 (2.7) kde [ β i j ] = [ δ i j ] -1 je inversní atice systéu. Dosadíe-li (2.6) a (2.3) do (2.7) dostanee: { } { Xi} = [ ij] { Vjr} { Zr} (2.6) β (2.8) popřípadě pro každou jednotlivou hodnotu { } { ij} { jr} { r} X V Z i = β (2.8a) To se dá vytknutí vektoru { Z r } upravit na tvar: { ij} [ jr] { r} Xi = β V Z (2.9) Zavedee dále označení { G ir } pro výraz { Gir} = { i j} [ Vjr] β (2.10) a pro neznáé staticky neurčité veličiny X i obdržíe konečný vzorec { ir} { r} X = G Z i (2.11) Výhodou tohoto postupu je, že členy { G i r } jsou zcela nezávislé na zatížení a závisí pouze na statické systéu (jsou to příčinkové funkce veličiny X i ), zatíco zatěžovací členy { Z r } jsou naopak závislé pouze na zatížení a nezávisí na systéu. Výpočet obou části se provádí v různých kapitolách prograu, přičež přenos dat ezi těito kapitolai je iniální POSTUP PŘI ŘEŠENÍ DOTVAROVÁNÍ BETONU V ČASOVÉM INTERVALU Řešení navazuje na práci prof. V. Křístka Drsc., rovnici (1.11) a další. V toto odstavci se popisuje řešení pro pruty, které nejsou spřažené. Počáteční stav napjatosti v čase t o je uložen v počítači jako suarizované vazby { V s } (na disku) a jako suarizované deforace na prutech { s α r} (v coon-oblasti SUMALF). Pro tento počáteční stav bylo zvoleno označení oentů MM(x,t o ) a norál. sil NN(x,t o ). Funkce dotvarování e -[ϕ(x,τ) - ϕ(x,τ 0 )] = d 1 a 1 - e -[ϕ(x,τ) - ϕ(x,τ 0 )] = d2 jsou konstantní v rozezí každého prutu, neboť pruty obsahují ateriál stejného druhu a stáří. Postup odvození pro oenty podle práce prof. V. Křístka je zcela analogicky rozšířen i na norálové síly. Moenty MM 1 ( x ) = d 1. MM ( x, to ) a norálové síly NN1(x) = d 1.NN(x,to) se započítávají beze zěny do konečného stavu (1.krok výpočtu). 13

14 TM18 NEXIS 32 Moenty MM 2 ( x ) = d 2. MM (x, to ) a nor. síly NN 2 ( x ) = d 2. NN ( x, to ) se nechají působit jako zatěžovací schéata na staticky neurčitý pružný systé (2.krok výpočtu). Výsledke 2. kroku jsou staticky neurčité doplňky { X i }, které se vypočtou z rovnice: M ( x). MM ( x, t ) * j 2 0 j 2 0 { X i} = [ β ij] {( dx + dx }) Ω Ex ( ). Ix ( ) Ω N ( x). NN ( x, t ) Ex ( ). Fx ( ) (2.12) (srovnej rovnici (1.24) V. Křístka), což se dá podobně jako v předchozí části upravit na tvar { } { X * } [ ] { V } d s ([ ] { V s i = βij jr αrs s} + { αr} ) Označíe-li výrazy r s s { Zr} = d ( [ r s] { Vs} + { r} ) 2 (2.13) 2 α α (2.14) jako redukované zatěžovací členy, dostanee řešení ve 2. kroku ve tvaru { } * r { X i} = [ ij] { Vjr} { Zr} β (2.15) a zcela analogicky s dřívější postupe dostanee výrazy r { ir} { r} X * = G Z i (2.16) Řešení 2. kroku jsou oenty a norálové síly M 2 (x, t) = MM 2 ( x, t 0 ) + M * ( x ) N 2 (x, t) = NN 2 ( x, t 0 ) + N * ( x ) (2.17) (hodnoty M*( x ) a N*( x ) jsou rozvedení staticky neurčitých veličin X* i do celé konstrukce) M ( x) = M ( x) X * * i i n (2.18) N ( x) = N ( x) X * * i i n Podle rovnice (1.16) a (1.17) je konečné řešení po obou krocích v čase t dáno přío součte M (x, t) = MM ( x, t 0 ) + M * ( x ) N (x, t) = NN ( x, t 0 ) + N * ( x ) (2.19) Pro vazby v čase t platí vzorec s * { Vs} = ( { Vs} + [ Vsi] { Xi } ) (2.20) POSTUP PŘI ŘEŠENÍ SMRŠTĚNÍ BETONU V ČASOVÉM INTERVALU Progra zavádí do výpočtu v každé etapě zcela autoaticky vliv sršťování betonu, a to u všech prvků - spřažených i nespřažených. Některé konstrukce, jako např. spojité nosníky, nejsou ovše na sršťování vůbec citlivé a ve výsledcích se to neprojeví. U ráů, zejéna ají-li šiké stojky (vzpěradlové ráy) je vliv sršťování nezanedbatelný a usí se ve výpočtech uvažovat. Progra uvažuje vliv srštění počínaje první zadaný statický systée, nezávisle na to, od kdy působí zatížení. U spřažené části průřezu se začne vliv srštění uvažovat od zadané doby počátku spolupůsobení. Vliv srštění byl podrobně testován na hoogenní konstrukci (z betonu stejného stáří). Vlive dotvarování se výsledné účinky, které by vznikly na pružné konstrukci při jednorázové zavedení konečného srštění, redukují součinitele 1 e ϕ ϕ, (viz např. Zůda, Výpočet konstrukcí z předpj. betonu, vzorec 217). U hoogenní konstrukce vyjdou přesné a stejné výsledky nezávisle na to, do kolika kroků je výpočet rozdělen. U

15 NEXIS 32 TM18 nehoogenních konstrukcí závisí přesnost výsledků na počtu kroků a velikosti funkce ϕ v každé kroku (u nejladšího betonu). Při hodnotě ϕ = 0.2 byla zjištěna axiální chyba v nehoogenní konstrukci 0.7% v nekonečnu. V průběhu výstavby jsou chyby poněkud větší, v nekonečnu se vyrovnávají. Při konečné součiniteli dotvarování 4.00 (běžný beton na volné prostranství) a počátku intervalu, ve které se srštění a dotvarování uvažuje 0.80 dne (odpovídající ϕ = ) je třeba dbát na to, aby byl výpočet rozdělen alespoň do 14 etap s přibližnýi intervaly (uvádíe přesnou hodnotu pro ϕ = 0.2 a náhradní hodnotu použitelnou pro praktický výpočet, Moerschova funkce): relativní stáří betonu τ: ϕ přesně (dny) přibližně (dny) Nekonečno Dalšíi testy byly ověřovány výsledky výpočtu účinků napětí, vnesených do konstrukce při rektifikaci (rozepření lisy nebo zkrácení závěsných lan, popuštění základů apod.). V těchto případech se suarizují účinky dotvarování, kterýi se původní napětí silně redukují, s účinky srštění, které způsobuje další redukci tlakového napětí, někdy i pod nulovou hodnotu. Výsledky testů na hoogenní konstrukci prokázaly opět nezávislost na velikosti a počtu kroků, u nehoogenních konstrukcí jsou závěry shodné s předchozíi ZVLÁŠTNOSTI KONSTRUKCE SE SPŘAŽENÝMI PRUTY Výpočet redistribuce napětí vlive dotvarování a srštění betonu. Výpočet odpovídajících deforačních konstant. V každé výpočtové etapě se v každé průřezu, který je již spřažený, provede výpočet redistribuce napětí ezi základní a spřaženou částí. Pro tento výpočet byly odvozeny vzorce, které vycházejí z předpokladu rovnoěrné zěny napětí z počáteční do konečné hodnoty v každé dílčí etapě. Protože podstatou výpočtu prograe TM18 je rozdělení do relativně krátkých etap, je přesnost tohoto postupu naprosto dostačující. Výsledke výpočtu jsou přesuny napětí ezi základní a spřaženou částí a deforace ε a ρ (prodloužení a pootočení). Z deforací se dále odvozuje ztráta předpětí sršťování a dotvarování betonu a deforační konstanty pro vyrovnání účinků dotvarování a sršťování betonu na staticky neurčitých konstrukcích. V této části výpočtu U spřažených průřezů způsobí rozdílné sršťování dvou různých a různě starých betonů v průřezu silné přetvoření ohybové. To se započte na straně zatěžovacích členů do zatěžovacího stavu "zěny dotvarování" Zahuštění bodu výsledků ve spřažených prutech. 15

16 TM18 NEXIS 32 Pruty, které jsou celé nebo zčásti spřažené, používají pro výpočet deforačních konstant při výpočtu dotvarování vzorce odvozené z napětí v obou částech betonu. Používá se nuerická integrace. Aby byl výpočet dostatečně přesný, je třeba uístit posuzované průřezy dostatečně blízko, podobně jako v předpjaté části konstrukce při výpočtu průběhu ztrát předpětí. Progra použije autoaticky hodnotu, která se rovná 0.8 násobku výšky průřezu. Pro výpočet deforačních konstant integrací dílčích přetvoření v průřezu jsou použity vzorce: α1 = ρ. ξ.dx ξ' = (L - x) / L α 2 = ρ. ξ.dx ξ = x / L α3 = ε dx Výpočet se provede nuerickou integrací z hodnot v zadaných profilech VÝPOČTY PRŮHYBU VÝPOČET OKAMŽITÉHO PRŮHYBU Pro okažitý pružný průhyb určitého bodu konstrukce v dané sěru platí obecný vzorec: y a a M( x). M( x) = dx + Ex ( ). Ix ( ) Ω 0 0 kde Ω a N( x). N( x) dx Ex ( ). Fx ( ) (2.21) 0 M ( x ), 0 N ( x ) jsou vypočtené výsledné hodnoty, získané řešení konstrukce pro vnější zatížení a M ( x ), a N ( x ) jsou výsledné hodnoty, které odpovídají jednotkovéu zatížení konstrukce silou A = 1 (síla působí ve sěru požadovaného průhybu), tj. ve sěru x, y, nebo jako oent (ve sěru pootočení). Progra provádí výpočet průhybu pouze v uzlech, ve všech sěrech (x, z, pootočení). Je-li požadován průhyb v dalších bodech, je nutno do těchto bodů uístit uzly. Obecný vzorec (2.21) á v aticové zápisu tvar: a a a { r}.[ rs]{. s} { r}.{ r} { a}.{ s} a y = V α V + V α + α V + α a kde { a V r } jsou vazby na prutech odpovídající zatížení A = 1 { 0 V s } vazby na prutech odpovídající vnějšíu zatížení, spočítané podle vzorce (2.4) { 0 α a } jsou deforace prutů od vnějšího zatížení { a α a } deforace prutu zatíženého silou A od této síly (2.22) 0a α deforace prutu zatíženého silou A od vnějšího zatížení ve syslu síly A. Pokud síla A = 1 působí v uzlech (případ uvažovaný v prograu), odpadnou poslední dva členy vzorce, který se tak zredukuje na tvar: a 0 0 { r} ( [ α rs] { s} { α r} ) ya = V.. V + (2.23) Vzorec lze dále upravit dosazení za { V s } ze vzorce (2.4) a zavedení členů Z r dle vzorce (2.6) na tvar: a { r}( { r} [ rs] [ si] { i} ) ya = V. Z +. V. X α (2.24) 16

17 NEXIS 32 TM18 Součin posledních dvou členů [ Vsi ] { Xi} 0 0 výrazu: { Vs} { Vs}. je staticky neurčitá část vazeb, která je podle vzorce (2.4) rovna VÝPOČET DLOUHODOBÝCH PRŮHYBŮ OD DOTVAROVÁNÍ Pro výpočet dlouhodobých průhybů je v prograu TM18 použita etoda, která navazuje přío na postup použitý při výpočtu redistribuce vlive dotvarování a sršťování. V každé etapě se vyřeší přerozdělení oentů a sil vlive dotvarování - veličiny { X * i }, tj. oenty M * (x) a sily N * (x) syk - podle rovnice (2.18). Dodatečný průhyb od dotvarování je v každé časové etapě počítán z obecného vzorce, který je obdobou vzorce (2.21): y a = Ω * a * [ MM 2( x) + M ( x) ]. M( x) [ 2 + ] dx + Ex ( ). Ix ( ) Ω a NN ( x) N ( x). N( x) dx Ex ( ). Fx ( ) (2.25) Hodnoty M * (x), N * (x) syk - získáe rozvedení právě vypočtených staticky neurčitých veličin X * i viz rovnice (2.18)). Výrazy v hranatých závorkách jsou zatěžovací veličiny MM 2 (x) a NN 2 (x), které se pro nespřažené pruty vypočtou z výrazů MM 2 (x) = MM(x). ϕ a NN 2 (x) = NN(x). ϕ (ísto d2 - násobku se použije ϕ - násobek) a vliv staticky neurčitých veličin M * (x) a N * (x) se vynásobí koeficiente 1 + ϕ. V hodnotách MM(x) a NN(x) jsou suarizovány veškeré doposud působící dlouhodobé zatěžovací stavy včetně předpětí a ztrát. V aticové zápisu bude ít vzorec (2.25) tvar (po vynechání nulových členů jako v předchozí části): a s * s { r} ( [ α rs]( { s} { si} { i} { α r} ) ya = V.. RF. V + RF. V. X + RF + kde (2.26a) { s α r} je atice suarizovaných dlouhodobých zatěžovacích členů { s V s ) je atice suarizovaných dlouhodobých vazeb Násobné faktory RF 1 = ϕ a RF 2 = 1 + ϕ platí pro nespřažený průřez. U spřažených průřezů se ísto výrazů MM(x). ϕ a NN(x). ϕ použijí přío deforační členy spřažených prutů, získané integrací přetvoření ε a ρ, bez dalších úprav. Pro součinitel RF 2 se použije vážený průěr konstant ϕ z a ϕ s, jako váhy jsou použity tuhosti základní a spřažené části prutu. Úpravou vzorce (2.26a) obdržíe výraz a s s * { r} ( 1 ( [ rs]{ s} { r} ) 2 [ rs] { s} y V RF V RF V a =.. α. + α +. α. (2.27a) kde { V * s } = [ V si ]. { X * i } je atice rozvedených staticky neurčitých hodnot X i Obdobně jako v rovnici (2.14) dosadíe redukované zatěžovací členy: r s s { Zr} = RF. ( [ α rs]{. 1 Vs} + { α r} ) a obdržíe vzorec (2.28a), který je již vhodný k příéu použití: a r * { r} ( { r} [ rs] { s} ) ya = V. Z + RF.. V 2 α (2.28a) Vzorce byly testovány na hoogenních konstrukcích (prostý a vetknutý nosník), v těchto ezních případech dávají 100% přesné výsledky. Dále byl testován případ 2 konzol různého stáří spojených kloube, pro který je znáé přesné analytické řešení. 17

18 TM18 NEXIS VÝPOČTY VLIVU PŘEDPĚTÍ Předpětí je v systéu TM18 považováno za zvláštní druh zatížení. Každý z prutů, na který působí přío předpínací výztuž, je zatížen rovnovážnou soustavou sil, kterýi výztuž působí na tento prut. Jsou to osaělé síly v čelech průřezu (nebo v kotvě, pokud se nachází v rozsahu prutu) a spojitá zatížení osová a kolá k ose, nahrazující radiální složky sil a zěny předpínací síly tření. Protože se jedná o rovnovážný systé, nevznikají v prutu žádné vnější reakce a vznikají pouze deforace ve sěru 3 vazeb v koncových průřezech prutu. S těito deforacei se pracuje stejně jako s deforacei od jiného zatížení. Vyřešení staticky neurčitého systéu pro tyto deforace dostanee doplňkové vazby (staticky neurčité veličiny), které se označují jako druhotné účinky předpětí. Stejný způsobe se také řeší vliv ztrát předpětí. Ztráty tření a pokluze byly však již započteny při výpočtu prvotního předpětí. Další dlouhodobé ztráty (relaxace oceli a srštění a dotvarování betonu) se spočítají jako úbytky napětí v kabelu (zjišťuje se průběh tohoto úbytku) a silai, které takto vzniknou, se zatěžuje každý prvek. V ístech, kde dochází k zaloení osy dvou na sebe navazujících sousedních prutů, vznikají krátké úseky kabelu, které buď nejsou součástí žádného prutu, nebo jsou naopak započteny do obou sousedních prutů (pouze tehdy, když kabel leží v čele prutu přesně v ose systéu, tyto úseky odpadnou). Síly z těchto krátkých úseků kabelu tvoří opět rovnovážný systé a jejich účinky na deforace prutů se zanedbávají. U soudržných kabelů (předpětí přede a dodatečně předpjaté a zainjektované kabely) se v době, kdy dojde ke vnesení předpětí do betonu, zahrnou Ea/Eb násobné plochy kabelů do ideálního průřezu. Průřezové konstanty ideálního průřezu se používají pro výpočty napětí v betonu počítá se v obou krajních vláknech a ezi nii se po výšce průřezu interpoluje. Okažik, kdy dojde ke zěně ideálních funkcí, se uvažuje u dodatečně předepnutých kabelů těsně po vnesení předpětí do betonu, u přede předpínané výztuže těsně před vnesení předpětí do betonu.napětí od vlastního předpětí a od trvalého i nahodilého zatížení působícího ve stejné etapě s předpětí, se počítá u dodatečně předpjatého betonu ještě s použití starých ideálních funkcí, u přede předpjatého betonu již s použití nových ideálních funkcí. Napětí od ztrát relaxací výztuže, od srštění a od dotvarování betonu se vždy počítá s po užití nových ideálních funkcí. Aby toto ohl progra organizačně zvládnout, nesí se do jedné časové etapy zadávat současně několik odlišných druhů předpětí. Progra TM18 (na rozdíl od jiných odelů systéu NEXIS) nezavádí do výpočtu další poocná akra, odelující předpínací výztuž. V prograu TM18 se také nezavádí další poocný časový uzel, který systé NEXIS uisťuje autoaticky do času o 0.01 dne větší, než je doba vnesení předpětí do betonu VOLNÉ KABELY Volné kabely, které ají charakter táhla nebo závěsu u zavěšených ostů je ožno zapojit do systéu jako saostatné pruty z oceli příslušných vlastností, počáteční předpětí těchto táhel lze vyvolat jako délkové deforace (zkrácení táhel). Do těchto deforací se usí zapracovat i ztráty relaxací oceli, při přesné řešení odděleně v několika časových etapách. Volné kabely, které sledují deforace konstrukce (např. probíhají nezainjektovanýi trubkai vyplněnýi kluznou hotou nebo probíhají přes kluzné podpory - deviátory) je ožno jako saostatný druh předpínací výztuže. Relaxační vlastnosti oceli, tření o trubky a podpory, plochy výztuže i napětí při napínáni se zadají podle skutečnosti. Počáteční napětí volných kabelů i jejich ztráty usí být stále konstantní v úsecích ezi deviárory. Při použití běžných postupů pro výpočet ztrát tření a pokluze v kotvách se toho dosáhne autoaticky, bude-li dodržena zásada, že součinitel tření v příých úsecích (hodnota "k" podle čl ČSN ) bude nulový. V důsledku toho budou konstantní i ztráty relaxací předpínací výztuže. Ztráty postupný předpínání a srštění a dotvarování betonu se spočítají ve dvou krocích: v první kroku se předpokládá, že výztuž spolupůsobí s betone a vypočtou se ztráty odpovídající přetvoření betonu v každé průřezu. Ve druhé kroku se uvolní syšlené vazby ezi výztuží a betone a napětí se vyrovná v úseku ezi sousedníi deviátory. Rozdíl napětí po obou stranách deviátoru těsně po napnutí odpovídá přesně součiniteli tření v deviátoru. Na testovaných praktických příkladech bylo ověřeno, že v důsledku ztrát se tento rozdíl čase zenšuje, naproti tou lze předpokládat, že se po zakotvení kabelů prvotní součinitel tření v deviátorech čase poněkud zvětší (deviárory se jakoby "zaseknou"). Proto zatí nebylo uvažováno další vyrovnávání napětí ve volných kabelech (dodatečné pokluzy v deviátorech). Progra nezapočte Ea/Eb násobnou plochu kabelů di ideálního průřezu. Forálně jsou účinky volných kabelů a jejich ztrát počítány a dokuentovány (jako u všech druhů předpětí) ve 2 položkách (priární účinky, tj. velikost síly na příslušné raeni a druhotné účinky na staticky neurčité konstrukci), při posouzení ezní únosnosti se však obě tyto složky zařadí do stejné kategorie "vnější síly vyvozené předpětí" (viz čl ČSN ). 18

19 NEXIS 32 TM18 Progra TM18 eviduje a tiskne průběhy napětí ve volných kabelech v úsecích ezi deviátory ve všech etapách (u soudržných kabelů, které jsou součástí ideálního průřezu, se toto neeviduje). Naproti tou ve výsledcích posudků jednotlivých průřezů (5. krok výpočtu) se údaje o volných kabelech již neobjeví, protože se tyto kabely nepovažují za součást průřezu PŘEDEM PŘEDPJATÁ VÝZTUŽ Použití přede předpjaté výztuže se od dodatečně předpínané výztuže liší pouze tí, že se výztuž napne před betonáží a uvolní se až po delší době (v řádu až několika dní), běhe této doby se značně zění napětí vlive relaxace, jeho hodnotu progra vypočítá z počátečního napětí a z doby ezi napnutí a spojení s betone. Dále se na rozdíl od dodatečně napínaných a zainjektovaných kabelů počítá se spolupůsobení výztuže a betonu již pro účinky předpětí a nahodilého zatížení v okažiku vnesení předpětí do betonu (použijí se ideální průřezové funkce). Do časové osy se zadává okažik vnesení předpětí do betonu, doba držení na kotevní zařízení probíhá jakoby "io konstrukci" VÝPOČTY ZTRÁT PŘEDPĚTÍ TŘENÍM A POKLUZEM Krátkodobé ztráty vlive tření a pokluzu v kotvách. Tyto ztráty se vypočtou pro každý kabel, takže již při první výpočtu se na konstrukci uvažuje zatížení předpínací silou zenšenou o tyto ztráty. Velikost ztrát se uvažuje podle ČSN vzorce: Nx = Np. e -(f. α k + k. a k ) α k je součet úhlů od počátku kabelů a k je součet délek příých úseku od počátku kabelů Konstanty f a k se zadávají ve vstupních datech. Výpočet ztrát pokluze závisí na pracovní postupu. Je ožno zadat jeden ze čtyř postupů: napínáni zleva (kód = 1) napínáni zprava (kód = 2) napínáni souěrných kabelů (kód = 3 nebo 4) napínání zleva a pak zprava (kód = 3) napínáni zprava a pak zleva (kód = 4) Na průběh napětí v části ovlivněné pokluze se aplikuje ztráta tření v opačné syslu než při napínáni VÝPOČTY ZTRÁT PŘEDPĚTÍ POSTUPNÝM NAPÍNÁNÍM 1 n( 1) Tyto ztráty se počítají ze vzorce: σ = σ 2 2 popř. ze vzorce: S = σ. F v (síla) (napětí) n σ 2 F v Ea / Eb je pracovní součinitel výztuže, je počet kroků napínáni je napětí v betonu v ístě těžiště kabelů, způsobené předpětí. Vypočte se interpolací z hodnot napětí v krajních vláknech průřezu. je plocha kabelů. Počet kroků napínání spočítá pro každou předpínací etapu progra autoaticky, vychází při to z počtu kabelů v jednotlivých prutech a zprůěruje tuto hodnotu pro všechny pruty předepnuté v příslušné etapě. Nepředpokládá se současné použití několika předpínacích souprav. 19

20 TM18 NEXIS VÝPOČTY ZTRÁT PŘEDPĚTÍ RELAXACÍ VÝZTUŽE V etodice zadání systéu NEXIS (panel vlastnosti kabelu, způsoby napínání )je toto schéa označeno jako typ 5, v případě, že se nedopíná jako typ 4. Progra T18 zatí nepoužívá přesnější výpočet podle typů 1, 2 a 3, kdy se po určitou dobu uěle udržuje na kotvě konstantní napětí. Počítají se z počáteční hodnoty napětí po zakotveni a z hodnoty napětí na počátku doby podržení. Časový průběh napětí předpínací výztuže v každé průřezu se předpokládá ve tvaru, zobrazený na grafu: Progra spočítá konečnou hodnotu ztráty v nekonečnu a do jednotlivých výpočtových etap přidělí odpovídající část ztráty. Je použito označení: σ k σ p σ nek K3 je napětí v uvažované průřezu při zakotvení je ez průtažnosti oceli, je napětí v nekonečnu (po odeznění všech ztrát) je součinitel stanovený z tabulky v ČSN , nebo zadaný v datech pro atypickou výztuž K2 je součinitel závislosti na čase podle tabulky v ČSN Dzl Td T 1, T 2 T nek doba podržení napětí na pistoli doba zakotvení začátek a konec vyšetřovaného časového intervalu doba, kdy se předpokládá ukončení relaxace V prograu TM18 jsou použity vzorce pro výpočet ztrát relaxací oceli, shodné se vzorci použitýi v systéu POSUDKY, verze Vzorce jsou uvedeny a zdůvodněny v dokuentaci tohoto systéu. Nejdříve se spočítá výsledná hodnota ztráty, která proběhne od doby zakotvení (Td) do doby Td + T nek. Časový průběh ezi těito dobai se počítá podle ČSN , do vzorce se však zahrnuje vliv doby Dzl, po kterou bylo napětí podrženo, nebo po které došlo k dopnutí na hodnotu kotevního napětí. Vzorec použitý pro výpočet ztráty ezi dobai T1 a T2 á tvar: σ ( T, T ) = 1 2 K2( T2 Td + Dzl) K2( T1 Td + Dzl) 1 K2( Dzl) σ kde σ nek = σ nek - σ k jsou vypočtené ztráty od doby zakotvení do doby T nek, kdy se předpokládá ukončení průběhu relaxace. V součtu časů od T d do T d + T nek dá tento vzorec úplnou hodnotu Ztr, která se pro kontrolu ůže vytisknout ve výstupních sestavách prograu TM18 nek VÝPOČTY ZTRÁT PŘEDPĚTÍ SMRŠTĚNÍM A DOTVAROVÁNÍM BETONU Ve starších verzích TM18 byl pro výpočet ztrát použit přío vzorec podle Zůdy ( "Předpjatý beton", SNTL Praha, 1958, vzorec 138) ε s 1 e σ = σ 2 F2 + Eb F2 ϕ F κϕ v 20

Systém programů pro projektování prutových mostních konstrukcí NEXIS 32 TM18. Součást dodávky programového vybavení.

Systém programů pro projektování prutových mostních konstrukcí NEXIS 32 TM18. Součást dodávky programového vybavení. Systé prograů pro projektování prutových ostních konstrukcí NEXIS 32 TM18 Součást dodávky prograového vybavení. TM18 NEXIS 32 Datu poslední revize: 7. 7. 2002 Copyright 2002 SCIA Group. Všechna práva vyhrazena.

Více

Vestavba archivu v podkroví

Vestavba archivu v podkroví Návrh statické části stavby Statický výpočet Vestavba archivu v podkroví Praha 10 - Práčská 1885 Místo stavby: Investor: Zpracovatel PD: Praha 10 - Práčská 1885 Lesy hl. ěsta Prahy, Práčská 1885, Praha

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),

Více

Zadejte ručně název první kapitoly. Manuál. Rozhraní pro program ETABS

Zadejte ručně název první kapitoly. Manuál. Rozhraní pro program ETABS Zadejte ručně název první kapitoly Manuál Rozhraní pro program ETABS Všechny informace uvedené v tomto dokumentu mohou být změněny bez předchozího upozornění. Žádnou část tohoto dokumentu není dovoleno

Více

Projevy dotvarování na konstrukcích (na úrovni průřezových modelů)

Projevy dotvarování na konstrukcích (na úrovni průřezových modelů) PŘEDNÁŠKY Projevy dotvarování na konstrukcích (na úrovni průřezových modelů) Volné dotvarování Vázané dotvarování Dotvarování a geometrická nelinearita Volné dotvarování Vývoj deformací není omezován staticky

Více

POŽADAVKY NA STATICKÝ VÝPOČET

POŽADAVKY NA STATICKÝ VÝPOČET POŽADAVKY NA STATICKÝ VÝPOČET Statický výpočet je podkladem pro vypracování technické specifikace konstrukční části a výkresové dokumentace Obsahuje dimenzování veškerých prvků konstrukcí, které jsou obsahem

Více

NEXIS 32 rel. 3.50. Generátor fází výstavby TDA mikro

NEXIS 32 rel. 3.50. Generátor fází výstavby TDA mikro SCIA CZ, s. r. o. Slavíčkova 1a 638 00 Brno tel. 545 193 526 545 193 535 fax 545 193 533 E-mail info.brno@scia.cz www.scia.cz Systém programů pro projektování prutových a stěnodeskových konstrukcí NEXIS

Více

Typ výpočtu. soudržná. soudržná

Typ výpočtu. soudržná. soudržná Posouzení plošného základu Vstupní data Projekt Datu : 2.11.2005 Základní paraetry zein Číslo Název Vzorek ϕ ef [ ] c ef [] γ [/ 3 ] γ su [/ 3 ] δ [ ] 1 Třída S4 3 17.50 7.50 2 Třída R4, přetváření křehké

Více

IDEA StatiCa novinky. verze 5.4

IDEA StatiCa novinky. verze 5.4 IDEA StatiCa novinky verze 5.4 IDEA StatiCa Prestressing Spřažený spojitý nosník Postupná výstavba spojité konstrukce Hlavním vylepšením ve verzi 5 v části beton a předpjatý beton je modul pro analýzu

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření NPS a TZB

CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření NPS a TZB CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření NPS a TZB Cvičení Program cvičení 1. Výklad: Zadání tématu č. 1, část 1 (dále projektu) Střešní vazník: Návrh účinky a kombinace zatížení,

Více

Ing. Jakub Kršík Ing. Tomáš Pail. Navrhování betonových konstrukcí 1D

Ing. Jakub Kršík Ing. Tomáš Pail. Navrhování betonových konstrukcí 1D Ing. Jakub Kršík Ing. Tomáš Pail Navrhování betonových konstrukcí 1D Úvod Nové moduly dostupné v Hlavním stromě Beton 15 Původní moduly dostupné po aktivaci ve Funkcionalitě projektu Staré posudky betonu

Více

Omezení nadměrných průhybů komorových mostů optimalizací vedení předpínacích kabelů

Omezení nadměrných průhybů komorových mostů optimalizací vedení předpínacích kabelů Omezení nadměrných průhybů komorových mostů optimalizací vedení předpínacích kabelů Lukáš Vráblík, Vladimír Křístek 1. Úvod Jedním z nejzávažnějších faktorů ovlivňujících hlediska udržitelné výstavby mostů

Více

Předpjatý beton Přednáška 7

Předpjatý beton Přednáška 7 Předpjatý beton Přednáška 7 Obsah Omezení normálových napětí od provozních účinků zatížení Odolnost proti vzniku trhlin Návrh předpětí Realizovatelná plocha předpětí Přípustná zóna poloha kabelu a tlakové

Více

Předpjatý beton Přednáška 4

Předpjatý beton Přednáška 4 Předpjatý beton Přednáška 4 Obsah Účinky předpětí na betonové prvky a konstrukce Staticky neurčité účinky předpětí Konkordantní kabel Lineární transformace kabelu Návrh předpětí metodou vyrovnání zatížení

Více

Předpjatý beton Přednáška 13

Předpjatý beton Přednáška 13 Předpjatý beton Přednáška 13 Obsah Statická analýza postupně budovaných předpjatých konstrukcí: Nehomogenita konstrukcí Řešení reologických účinků v uzavřené formě Vlastnosti moderních postupně budovaných

Více

Předpjatý beton Přednáška 9. Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování.

Předpjatý beton Přednáška 9. Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování. Předpjatý beton Přednáška 9 Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování. Analýza napjatosti namáhání předpjatých prvků Analýza napjatosti namáhání předpjatých prvků Ohybový

Více

VZOROVÝ PŘÍKLAD NÁVRHU MOSTU Z PREFABRIKOVANÝCH NOSNÍKŮ

VZOROVÝ PŘÍKLAD NÁVRHU MOSTU Z PREFABRIKOVANÝCH NOSNÍKŮ VZOROVÝ PŘÍKLAD NÁVRHU MOSTU Z PREFABRIKOVANÝCH NOSNÍKŮ ZADÁNÍ Navrhněte most z prefabrikovaných předepnutých nosníků IST. Délka nosné konstrukce mostu je 30m, kategorie komunikace na mostě je S 11,5/90.

Více

Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti.

Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti. Stěnové nosníky Stěnový nosník je plošný rovinný prvek uložený na podporách tak, že prvek je namáhán v jeho rovině. Porovnáme-li chování nosníků o výškách h = 0,25 l a h = l, při uvažování lineárně pružného

Více

Truss 4.7. Předvolby nastavení tisku

Truss 4.7. Předvolby nastavení tisku Truss 4.7 Firma Fine s.r.o. připravila verzi 4.7 programu Truss. Tato verze přináší následující změny a vylepšení: Změna práce s násobnými vazníky Z důvodu omezení chyb v průběhu návrhu byl upraven způsob

Více

BEZSTYKOVÁ KOLEJ NA MOSTECH

BEZSTYKOVÁ KOLEJ NA MOSTECH 7. 9. března 01 01 BEZSTYKOVÁ KOLEJ NA MOSTECH Doc. Ing. Otto Plášek, Ph.D Vysoké učení technické v Brně, Fakulta stavební 1. ÚVOD V současné době probíhá rozsáhlá odborná diskuze ke spolupůsobení ostní

Více

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ 7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní

Více

MEZNÍ STAVY POUŽITELNOSTI PŘEDPJATÝCH PRŮŘEZŮ DLE EUROKÓDŮ

MEZNÍ STAVY POUŽITELNOSTI PŘEDPJATÝCH PRŮŘEZŮ DLE EUROKÓDŮ 20. Betonářské dny (2013) Sborník Sekce ČT1B: Modelování a navrhování 2 ISBN 978-80-87158-34-0 / 978-80-87158-35-7 (CD) MEZNÍ STAVY POUŽITELNOSTI PŘEDPJATÝCH PRŮŘEZŮ DLE EUROKÓDŮ Jaroslav Navrátil 1,2

Více

MPa MPa MPa. MPa MPa MPa

MPa MPa MPa. MPa MPa MPa Výpočet úhlové zdi Vstupní data Projekt Datu :..005 Materiál konstrukce Objeová tíha g.00 kn/ Výpočet betonových konstrukcí proveden podle nory ČSN 7 0 R. Beton : Beton B 0 Pevnost v tlaku Pevnost v tahu

Více

Výpočet svislé únosnosti a sedání skupiny pilot

Výpočet svislé únosnosti a sedání skupiny pilot Inženýrský manuál č. 17 Aktualizace: 04/2016 Výpočet svislé únosnosti a sedání skupiny pilot Proram: Soubor: Skupina pilot Demo_manual_17.sp Úvod Cílem tohoto inženýrského manuálu je vysvětlit použití

Více

Prvky betonových konstrukcí BL01 11 přednáška

Prvky betonových konstrukcí BL01 11 přednáška Prvky betonových konstrukcí BL01 11 přednáška Mezní stavy použitelnosti (MSP) Použitelnost a trvanlivost Obecně Kombinace zatížení pro MSP Stádia působení ŽB prvků Mezní stav omezení napětí Mezní stav

Více

Advance Design 2014 / SP1

Advance Design 2014 / SP1 Advance Design 2014 / SP1 První Service Pack pro ADVANCE Design 2014 přináší několik zásadních funkcí a více než 240 oprav a vylepšení. OBECNÉ [Réf.15251] Nová funkce: Možnost zahrnout zatížení do generování

Více

ZATÍŽENÍ STAVEBNÍCH KONSTRUKCÍ

ZATÍŽENÍ STAVEBNÍCH KONSTRUKCÍ ZATÍŽENÍ STAVEBNÍCH KONSTRUKCÍ Doporučená literatura: ČSN EN 99 Eurokód: zásady navrhování konstrukcí. ČNI, Březen 24. ČSN EN 99-- Eurokód : Zatížení konstrukcí - Část -: Obecná zatížení - Objemové tíhy,

Více

při postupném zatěžování opět rozlišujeme tři stádia (viz ohyb): stádium I prvek není porušen ohybovými ani smykovými trhlinami řešení jako homogenní

při postupném zatěžování opět rozlišujeme tři stádia (viz ohyb): stádium I prvek není porušen ohybovými ani smykovými trhlinami řešení jako homogenní při postupném zatěžování opět rozlišujeme tři stádia (viz ohyb): stádium I prvek není porušen ohybovými ani smykovými trhlinami řešení jako homogenní prvek, stádium II dříve vznikají trhliny ohybové a

Více

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici)

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici) Kapitola 8 Vnitřní síly rovinně zakřiveného prutu V této kapitole bude na příkladech vysvětleno řešení vnitřních sil rovinně zakřivených nosníků, jejichž střednici tvoří oblouk ve tvaru kvadratické paraboly[1].

Více

Pilotové základy úvod

Pilotové základy úvod Inženýrský manuál č. 12 Aktualizace: 04/2016 Pilotové základy úvod Program: Pilota, Pilota CPT, Skupina pilot Cílem tohoto inženýrského manuálu je vysvětlit praktické použití programů GEO 5 pro výpočet

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

ČSN EN OPRAVA 1

ČSN EN OPRAVA 1 ČESKÁ TECHNICKÁ NORMA ICS 13.220.50; 91.010.30; 91.080.40 Říjen 2009 Eurokód 2: Navrhování betonových konstrukcí Část 1-2: Obecná pravidla Navrhování konstrukcí na účinky požáru ČSN EN 1992-1-2 OPRAVA

Více

studentská kopie 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice

studentská kopie 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice Vaznice bude přenášet pouze zatížení působící kolmo k rovině střechy. Přenos zatížení působícího rovnoběžně se střešní rovinou bude popsán v poslední

Více

PRŮŘEZOVÉ CHARAKTERISTIKY

PRŮŘEZOVÉ CHARAKTERISTIKY . cvičení PRŮŘEZOVÉ CHRKTERISTIKY Poznámka Pojem průřezu zavádíme u prutových konstrukčních prvků. Průřez je rovinný obrazec, který vznikne myšleným řezem vedeným kolmo k podélné ose nedeformovaného prutu,

Více

1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012

1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012 Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012 Úkol řešte ve skupince 2-3 studentů. Den narození zvolte dle jednoho člena skupiny. Řešení odevzdejte svému cvičícímu. Na symetrické prosté krokevní

Více

Nosné konstrukce II - AF01 ednáška Navrhování betonových. použitelnosti

Nosné konstrukce II - AF01 ednáška Navrhování betonových. použitelnosti Brno University of Technology, Faculty of Civil Engineering Institute of Concrete and Masonry Structures, Veveri 95, 662 37 Brno Nosné konstrukce II - AF01 1. přednp ednáška Navrhování betonových prvků

Více

Prvky betonových konstrukcí BL01 3. přednáška

Prvky betonových konstrukcí BL01 3. přednáška Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování

Více

PROGRAM RP45. Vytyčení podrobných bodů pokrytí. Příručka uživatele. Revize 05. 05. 2014. Pragoprojekt a.s. 1986-2014

PROGRAM RP45. Vytyčení podrobných bodů pokrytí. Příručka uživatele. Revize 05. 05. 2014. Pragoprojekt a.s. 1986-2014 ROADPAC 14 RP45 PROGRAM RP45 Příručka uživatele Revize 05. 05. 2014 Pragoprojekt a.s. 1986-2014 PRAGOPROJEKT a.s., 147 54 Praha 4, K Ryšánce 16 RP45 1. Úvod. Program VÝŠKY A SOUŘADNICE PODROBNÝCH BODŮ

Více

Pružnost a plasticita II CD03

Pružnost a plasticita II CD03 Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah

Více

Ve výrobě ocelových konstrukcí se uplatňují následující druhy svařování:

Ve výrobě ocelových konstrukcí se uplatňují následující druhy svařování: 5. cvičení Svarové spoje Obecně o svařování Svařování je technologický proces spojování kovů podmíněného vznikem meziatomových vazeb, a to za působení tepla nebo tepla a tlaku s případným použitím přídavného

Více

Posouzení stability svahu

Posouzení stability svahu Inženýrský manuál č. 25 Aktualizace 07/2016 Posouzení stability svahu Program: MKP Soubor: Demo_manual_25.gmk Cílem tohoto manuálu je vypočítat stupeň stability svahu pomocí metody konečných prvků. Zadání

Více

Program předmětu YMVB. 1. Modelování konstrukcí ( ) 2. Lokální modelování ( )

Program předmětu YMVB. 1. Modelování konstrukcí ( ) 2. Lokální modelování ( ) Program předmětu YMVB 1. Modelování konstrukcí (17.2.2012) 1.1 Globální a lokální modelování stavebních konstrukcí Globální modely pro konstrukce jako celek, lokální modely pro návrh výztuže detailů a

Více

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M.

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M. Definování 4. přednáška prutech iroslav okáč miroslav.vokac@cvut.cz ČUT v Praze, Fakulta architektury 11. dubna 2016 prutech nitřní síly síly působící uvnitř tělesa (desky, prutu), které vznikají působením

Více

7. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger

7. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger 7. přednáška OCELOVÉ KONSTRUKCE VŠB Technická univerzita Ostrava Fakulta stavební Ludvíka Podéš éště 1875, 708 33 Ostrava - Poruba Miloš Rieger Téma : Spřažené ocelobetonové konstrukce - úvod Spřažené

Více

Prvky betonových konstrukcí BL01 3. přednáška

Prvky betonových konstrukcí BL01 3. přednáška Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování

Více

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c ) 3.3 Řešené příklady Příklad 1: Pro nosník na obrázku vyšetřete a zakreslete reakce, T (x) a M(x). Dále určete M max a proveďte dimenzování pro zadaný průřez. Dáno: a = 0.5 m, b = 0.3 m, c = 0.4 m, d =

Více

Betonové konstrukce (S)

Betonové konstrukce (S) Betonové konstrukce (S) Přednáška 10 Obsah Navrhování betonových konstrukcí na účinky požáru Tabulkové údaje - nosníky Tabulkové údaje - desky Tabulkové údaje - sloupy (metoda A, metoda B, štíhlé sloupy

Více

Obsah: 1. Technická zpráva ke statickému výpočtu 2. Seznam použité literatury 3. Návrh a posouzení monolitického věnce nad okenním otvorem

Obsah: 1. Technická zpráva ke statickému výpočtu 2. Seznam použité literatury 3. Návrh a posouzení monolitického věnce nad okenním otvorem Stavba: Stavební úpravy skladovací haly v areálu firmy Strana: 1 Obsah: PROSTAB 1. Technická zpráva ke statickému výpočtu 2 2. Seznam použité literatury 2 3. Návrh a posouzení monolitického věnce nad okenním

Více

BL 04 - Vodohospodářské betonové konstrukce MEZNÍ STAV POUŽITELNOSTI

BL 04 - Vodohospodářské betonové konstrukce MEZNÍ STAV POUŽITELNOSTI BL 04 - Vodohospodářské betonové konstrukce MEZNÍ STAV POUŽITELNOSTI doc. Ing. Miloš Zich, Ph.D. Ústav betonových a zděných konstrukcí VUT FAST Brno 1 OSNOVA 1. Co je to mezní stav použitelnosti (MSP)?

Více

Použitelnost. Žádné nesnáze s použitelností u historických staveb

Použitelnost. Žádné nesnáze s použitelností u historických staveb Použitelnost - funkční způsobilost za provozních podmínek - pohodlí uživatelů - vzhled konstrukce Obvyklé mezní stavy použitelnosti betonových konstrukcí: mezní stav napětí z hlediska podmínek použitelnosti,

Více

ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady

ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady Teorie plasticity VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ KATEDRA PRUŽNOSTI A PEVNOSTI ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady 1. ŘEŠENÝ PŘÍKLAD NA TAH ŘEŠENÍ DLE DOVOLENÝCH NAMÁHÁNÍ

Více

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr.

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. . cvičení Klopení nosníků Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. Ilustrace klopení Obr. Ohýbaný prut a tvar jeho ztráty

Více

φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ

φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ KONSTRUKČNÍ ZÁSADY, kotvení výztuže Minimální vnitřní průměr zakřivení prutu Průměr prutu Minimální průměr pro ohyby, háky a smyčky (pro pruty a dráty) φ 16 mm 4 φ φ > 16 mm 7 φ Minimální vnitřní průměr

Více

Číslo. Relaxace předpínací výztuže. úbytek napětí v oceli při časově neměnné deformaci (protažení) Soudržnost předpínací výztuže s betonem

Číslo. Relaxace předpínací výztuže. úbytek napětí v oceli při časově neměnné deformaci (protažení) Soudržnost předpínací výztuže s betonem 133 BK5C BETONOVÉ KONSTRUKCE 5C Číslo Datum PROGRAM PŘEDNÁŠEK letní 2015/2016 Téma přednášky 1 23.2. Principy předpjatého betonu, historie, materiály Poznámky 2 1.3. Technologie předem předpjatého betonu

Více

Statický výpočet střešního nosníku (oprava špatného návrhu)

Statický výpočet střešního nosníku (oprava špatného návrhu) Statický výpočet střešního nosníku (oprava špatného návrhu) Obsah 1 Obsah statického výpočtu... 3 2 Popis výpočtu... 3 3 Materiály... 3 4 Podklady... 4 5 Výpočet střešního nosníku... 4 5.1 Schéma nosníku

Více

BEZSTYKOVÁ KOLEJ NA MOSTECH

BEZSTYKOVÁ KOLEJ NA MOSTECH Ústav železničních konstrukcí a staveb 1 BEZSTYKOVÁ KOLEJ NA MOSTECH Otto Plášek Bezstyková kolej na mostech 2 Obsah Vysvětlení rozdílů mezi předpisem SŽDC S3 a ČSN EN 1991-2 Teoretický základ interakce

Více

Beton 3D Výuková příručka Fine s. r. o. 2010

Beton 3D Výuková příručka Fine s. r. o. 2010 Zadání Cílem tohoto příkladu je navrhnout a posoudit výztuž šestiúhelníkového železobetonového sloupu (výška průřezu 20 cm) o výšce 2 m namáhaného normálovou silou 400 kn, momentem My=2,33 knm a momentem

Více

RFEM 5 RSTAB 8. Novinky. Dlubal Software. Strana. Obsah. Version: 5.05.0029 / 8.05.0029. Nové přídavné moduly. Hlavní programy.

RFEM 5 RSTAB 8. Novinky. Dlubal Software. Strana. Obsah. Version: 5.05.0029 / 8.05.0029. Nové přídavné moduly. Hlavní programy. Dlubal Software Obsah Strana 1 Nové přídavné moduly Hlavní programy 3 Přídavné moduly 3 Novinky RFEM 5 & RSTAB 8 Version: 5.05.009 / 8.05.009 (C) www.gbi-statik.de Dlubal Software s.r.o. Statické a dynamické

Více

1 Použité značky a symboly

1 Použité značky a symboly 1 Použité značky a symboly A průřezová plocha stěny nebo pilíře A b úložná plocha soustředěného zatížení (osamělého břemene) A ef účinná průřezová plocha stěny (pilíře) A s průřezová plocha výztuže A s,req

Více

Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka.

Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka. OHYBOVÁ ČÁRA ZA PROSTÉHO OHYBU - rovinné průřez zůstávají po deformaci rovinnými, avšak natáčejí se. - při prostém ohbu hlavní centrální osa setrvačnosti všech průřezů leží v rovině vnějších sil, která

Více

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3)

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován

Více

1 Švédská proužková metoda (Pettersonova / Felleniova metoda; 1927)

1 Švédská proužková metoda (Pettersonova / Felleniova metoda; 1927) Teorie K sesuvu svahu dochází často podél tenké smykové plochy, která odděluje sesouvající se těleso sesuvu nad smykovou plochou od nepohybujícího se podkladu. Obecně lze říct, že v nesoudržných zeminách

Více

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí

Více

Rozlítávací voliéra. Statická část. Technická zpráva + Statický výpočet

Rozlítávací voliéra. Statická část. Technická zpráva + Statický výpočet Stupeň dokumentace: DPS S-KON s.r.o. statika stavebních konstrukcí Ing.Vladimír ČERNOHORSKÝ Podnádražní 12/910 190 00 Praha 9 - Vysočany tel. 236 160 959 akázkové číslo: 12084-01 Datum revize: prosinec

Více

Pohyb soustavy hmotných bodů

Pohyb soustavy hmotných bodů Pohyb soustavy hotných bodů Tato kapitola se zabývá úlohai, kdy není ožné těleso nahradit jední hotný bode, předevší při otáčení tělesa. Těžiště soustavy hotných bodů a tělesa Při hodu nějaký složitější

Více

Statický výpočet komínové výměny a stropního prostupu (vzorový příklad)

Statický výpočet komínové výměny a stropního prostupu (vzorový příklad) KERAMICKÉ STROPY HELUZ MIAKO Tabulky statických únosností stropy HELUZ MIAKO Obsah tabulka č. 1 tabulka č. 2 tabulka č. 3 tabulka č. 4 tabulka č. 5 tabulka č. 6 tabulka č. 7 tabulka č. 8 tabulka č. 9 tabulka

Více

NK 1 Konstrukce. Volba konstrukčního systému

NK 1 Konstrukce. Volba konstrukčního systému NK 1 Konstrukce Přednášky: Doc. Ing. Karel Lorenz, CSc., Prof. Ing. Milan Holický, DrSc., Ing. Jana Marková, Ph.D. FA, Ústav nosných konstrukcí, Kloknerův ústav Cvičení: Ing. Naďa Holická, CSc., Fakulta

Více

Generace zatěžovacích případů

Generace zatěžovacích případů Zatížení na nosník se v programu Betonový výsek zadává stejným způsobem jako v ostatních programech FIN EC zadávají se průběhy vnitřních sil pro jednotlivé zatěžovací případy. Pro usnadnění zadávání je

Více

3.1.3 Rychlost a zrychlení harmonického pohybu

3.1.3 Rychlost a zrychlení harmonického pohybu 3.1.3 Rychlost a zrychlení haronického pohybu Předpoklady: 312 Kroě dráhy (výchylky) popisujee pohyb i poocí dalších dvou veličin: rychlosti a zrychlení. Jak budou vypadat jejich rovnice? Společný graf

Více

IDEA Beam 4. Uživatelská příručka

IDEA Beam 4. Uživatelská příručka Uživatelská příručka IDEA Beam IDEA Beam IDEA Tendon IDEA RCS IDEA Steel IDEA Beam 4 Uživatelská příručka Uživatelská příručka IDEA Beam Obsah 1.1 Požadavky programu... 6 1.2 Pokyny k instalaci programu...

Více

PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013

PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013 PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013 Zkouška sestává ze dvou písemných částí: 1. příklad (na řešení 60 min.), 2. části teoretická (30-45 min.).

Více

Program dalšího vzdělávání

Program dalšího vzdělávání Program dalšího vzdělávání VZDĚLÁVÁNÍ LEŠENÁŘŮ Učební plán kurzu: Vzdělávání odborně způsobilých osob pro DSK MODUL A2 Projekt: Konkurenceschopnost pro lešenáře Reg. č.: CZ.1.07/3.2.01/01.0024 Tento produkt

Více

NOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM)

NOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM) NOSNÍK NA PRUŽNÉ PODLOŽÍ (WINKLEROVSKÉ) Uvažujeme spojitý nosník na pružných podporách. Pružná podpora - odpor je úměrný zatlačení. Pružné podpory velmi blízko sebe - jejich účinek lze nahradit spojitou

Více

Únosnost kompozitních konstrukcí

Únosnost kompozitních konstrukcí ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav letadlové techniky Únosnost kompozitních konstrukcí Optimalizační výpočet kompozitních táhel konstantního průřezu Technická zpráva Pořadové číslo:

Více

h ztr = ς = v = (R-4) π d Po dosazení z rov.(r-3) a (R-4) do rov.(r-2) a úpravě dostaneme pro ztrátový součinitel (R-1) a 2 Δp ς = (R-2)

h ztr = ς = v = (R-4) π d Po dosazení z rov.(r-3) a (R-4) do rov.(r-2) a úpravě dostaneme pro ztrátový součinitel (R-1) a 2 Δp ς = (R-2) Stanovení součinitele odporu a relativní ekvivalentní délky araturního prvku Úvod: Potrubí na dopravu tekutin (kapalin, plynů) jsou vybavena araturníi prvky, kterýi se regulují průtoky (ventily, šoupata),

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.10 TĚŽIŠTĚ Těžiště (hmotný střed) je působiště tíhové síly působící na těleso. Těžiště zavádíme jako působiště

Více

Statika 1. Reakce na rovinných staticky určitých konstrukcích. Miroslav Vokáč ČVUT v Praze, Fakulta architektury.

Statika 1. Reakce na rovinných staticky určitých konstrukcích. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. reálných 3. přednáška Reakce na rovinných staticky určitých konstrukcích Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 21. března 2016 Dřevěný trámový strop - Anežský klášter

Více

Zakládání ve Scia Engineer

Zakládání ve Scia Engineer Apollo Bridge Apollo Bridge Architect: Ing. Architect: Miroslav Ing. Maťaščík Miroslav Maťaščík - Alfa 04 a.s., - Alfa Bratislava 04 a.s., Bratislava Design: DOPRAVOPROJEKT Design: Dopravoprojekt a.s.,

Více

P1.3) Doplňující údaje k výpočtu krytí předpínací výztuže 1)

P1.3) Doplňující údaje k výpočtu krytí předpínací výztuže 1) h 3 0-5 0 h h Pomůcka 1 Pomůcka 1 P1.1) Návrh rozměrů průřezu vazníku Návrh výšky h: Návrh šířky b: 1 h 15 1 až 18 l (hrubší odhad) h M (přesnější odhad) br b 1 1 až h 3 3,5 (v rozmezí 250mm až 450 mm)

Více

NAVRHOVÁNÍ ČSN MOSTNÍCH KONSTRUKCÍ Z PŘEDPJATÉHO BETONU

NAVRHOVÁNÍ ČSN MOSTNÍCH KONSTRUKCÍ Z PŘEDPJATÉHO BETONU ČESKÁ NORMA MDT 624.012.46 Říjen 1993 NAVRHOVÁNÍ MOSTNÍCH KONSTRUKCÍ Z PŘEDPJATÉHO BETONU ČSN 73 6207 Design of prestressed concrete bridge structures Calcul des constructions des ponts en béton précontraint

Více

IDEA Slab 5. Uživatelská příručka

IDEA Slab 5. Uživatelská příručka Uživatelská příručka IDEA Slab IDEA Slab 5 Uživatelská příručka Uživatelská příručka IDEA Slab Obsah 1.1 Požadavky programu... 4 1.2 Pokyny k instalaci programu... 4 2 Základní pojmy... 5 3 Ovládání...

Více

Nový způsob práce s průběžnou klasifikací lze nastavit pouze tehdy, je-li průběžná klasifikace v evidenčním pololetí a školním roce prázdná.

Nový způsob práce s průběžnou klasifikací lze nastavit pouze tehdy, je-li průběžná klasifikace v evidenčním pololetí a školním roce prázdná. Průběžná klasifikace Nová verze modulu Klasifikace žáků přináší novinky především v práci s průběžnou klasifikací. Pro zadání průběžné klasifikace ve třídě doposud existovaly 3 funkce Průběžná klasifikace,

Více

Různé druhy spojů a spojovací součásti (rozebíratelné spoje)

Různé druhy spojů a spojovací součásti (rozebíratelné spoje) Různé druhy spojů a spojovací součásti (rozebíratelné spoje) Kolíky, klíny, pera, pojistné a stavěcí kroužky, drážkování, svěrné spoje, nalisování aj. Nýty, nýtování, příhradové ocelové konstrukce. Ovládací

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STROJNÍ

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STROJNÍ ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STROJNÍ Ústav mechaniky, biomechaniky a mechatroniky Odbor pružnosti a pevnosti Program pro analýzu napjatosti a deformaci hřídelů Studentská práce Jan Pecháček

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

Příklad oboustranně vetknutý nosník

Příklad oboustranně vetknutý nosník Příklad oboustranně vetknutý nosník výpočet podle viskoelasticity: 4 L fˆ L w, t J t, t 384I 0 průhyb uprostřed co se změní v případě, fˆ že se zatížení M mění x t v čase? x Lx L H t t0 1 fl ˆ M fˆ 0,

Více

NEXIS 32 rel. 3.50. Železobetonový nosník

NEXIS 32 rel. 3.50. Železobetonový nosník SCIA CZ, s. r. o. Slavíčkova 1a 638 00 Brno tel. 545 193 526 545 193 535 fax 545 193 533 E-mail info.brno@scia.cz www.scia.cz Systém programů pro projektování prutových a stěnodeskových konstrukcí NEXIS

Více

GlobalFloor. Cofrastra 40 Statické tabulky

GlobalFloor. Cofrastra 40 Statické tabulky GlobalFloor. Cofrastra 4 Statické tabulky Cofrastra 4. Statické tabulky Cofrastra 4 žebrovaný profil pro kompozitní stropy Tloušťka stropní desky až cm Použití Profilovaný plech Cofrastra 4 je určen pro

Více

Přijímací zkoušky na magisterské studium, obor M

Přijímací zkoušky na magisterské studium, obor M Přijímací zkoušky na magisterské studium, obor M 1. S jakou vnitřní strukturou silikátů (křemičitanů), tedy uspořádáním tetraedrů, se setkáváme v přírodě? a) izolovanou b) strukturovanou c) polymorfní

Více

4 Halové objekty a zastřešení na velká rozpětí

4 Halové objekty a zastřešení na velká rozpětí 4 Halové objekty a zastřešení na velká rozpětí 4.1 Statické systémy Tab. 4.1 Statické systémy podle namáhání Namáhání hlavního nosného systému Prostorové uspořádání Statický systém Schéma Charakteristické

Více

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm b) Početní řešení Na rozdíl od grafického řešení určíme při početním řešení bod, kterým nositelka výslednice bude procházet. Mějme soustavu sil, která obsahuje n - sil a i - silových dvojic obr.36. Obr.36.

Více

Náhradní ohybová tuhost nosníku

Náhradní ohybová tuhost nosníku Náhradní ohybová tuhost nosníku Autoři: Doc. Ing. Jiří PODEŠVA, Ph.D., Katedra mechaniky, Fakulta strojní, VŠB - Technická univerzita Ostrava, e-mail: jiri.podesva@vsb.cz Anotace: Výpočty ocelových výztuží

Více

Namáhání ostění kolektoru

Namáhání ostění kolektoru Inženýrský manuál č. 23 Aktualizace 06/2016 Namáhání ostění kolektoru Program: MKP Soubor: Demo_manual_23.gmk Cílem tohoto manuálu je vypočítat namáhání ostění raženého kolektoru pomocí metody konečných

Více

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady. Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových

Více

Přijímací zkouška do navazujícího magisterského oboru FSv ČVUT

Přijímací zkouška do navazujícího magisterského oboru FSv ČVUT - 1 - Pokyny k vyplnění testu: Na každé stránce vyplňte v záhlaví kód své přihlášky Ke každé otázce jsou vždy čtyři odpovědi z nichž právě jedna je správná o Za správnou odpověď jsou 4 body o Za chybnou

Více

IDEA Corbel 5. Uživatelská příručka

IDEA Corbel 5. Uživatelská příručka Uživatelská příručka IDEA Corbel IDEA Corbel 5 Uživatelská příručka Uživatelská příručka IDEA Corbel Obsah 1.1 Požadavky programu... 3 1.2 Pokyny k instalaci programu... 3 2 Základní pojmy... 4 3 Ovládání...

Více

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků.

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Stavební mechanika 12SM Přednášky Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Porovnání ODM a ZDM Příklad 1: (viz předchozí přednáška)

Více