Úvod - jistota (nuda) x nejistota (riziko) 1 Malá exkurze do 17. století 2 Základní pojmy 2.1 Jev a pokus 2.2 Skládání a rozklad jevů 2.

Rozměr: px
Začít zobrazení ze stránky:

Download "Úvod - jistota (nuda) x nejistota (riziko) 1 Malá exkurze do 17. století 2 Základní pojmy 2.1 Jev a pokus 2.2 Skládání a rozklad jevů 2."

Transkript

1 Úvod - jistota (nuda) x nejistota (riziko) 1 Malá exkurze do 17. století 2 Základní pojmy 2.1 Jev a pokus 2.2 Skládání a rozklad jevů 2.3 Jevy a čísla 2.4 Úloha o rozdělení sázky 2.5 Úlohy Chevaliera de Méré 3 Pravděpodobnost 3.1 Klasická pravděpodobnost Cardano: součet čísel při hodu dvěma kostkami Studentské dilema Problém nešťastné šatnářky 3.2 Geometrická pravděpodobnost Problém prvního rande Problém golfistky Alžběty a atomového fyzika Dalibora Problém nedoručené zprávy Problém Ludolfova čísla 3.3 Statistická pravděpodobnost Problém muže s vosami aneb brouk leze po krychli Problém námořníka Jima v Port Rack poprvé Problém námořníka Jima v Port Rack podruhé 3.4 Axiomatická definice pravděpodobnosti Problém dělení jablek Problém starého výtahu Problém jednosměrek Problém výstavby schodiště Problém krotitele dravé zvěře Problém sekretářky Evy 4 Podmíněná pravděpodobnost, nezávislé jevy 4.1 Podmíněnost, nezávislost a realita Problém návštěv krajských nemocnic Problém jakosti Problém lidské paměti Problém zaměstnavatele Problém roztržitého profesora a cestující Aničky Zvědavé 4.2 Úplná pravděpodobnost Problém kontrolora Františka Problém spotřebitele Problém vězně 4.3 Apriorní a aposteriorní pravděpodobnost, Bayesův vztah Princip automatické diagnostiky v medicíně Problém diagnostického testu (na rakovinu) Problém komisaře Nováka 5 Opakované pokusy 5.1 Bernoulliovo schema Problém hráčů v kostky Problém nákazy skotu 5.2 Geometrické schema

2 5.2.1 Problém nákupčího Problém potomků pana Procházky 6 Náhodná veličina, pravděpodobnostní rozdělení 6.1 Hledá se reprezentant Problém klíčů Problém střídavých tahů Problém hazardních her 6.2 Normální rozdělení Problém normální (Gaussovy) křivky Problém testů IQ - Mensa 6.3 Když normální rozdělení selhává 6.4 Poissonovo rozdělení Problém obchodníka s látkami Problém náhlého úmrtí Problém hodnocení podřízených Problémy sedmi trpaslíků 7 Co o sobě lidé (ne)vědí 7.1 Dotazníky a ankety 7.2 Grafické znázornění 7.3 Testování hypotéz 7.4 Kontingenční tabulky Problém vysokoškoláků Problém dědičnosti obezity Problém lidové předpovědi počasí Problém brusičů z povolání Problém ze střední školy Problém sběratelství 8 Jak se optimálně rozhodnout v konfliktní situaci 8.1 Katka a Matouš objevují Lapkův ráj 8.2 Hry se dvěma strategiemi Problém nudného odpoledne Problém setkání u divadla Problém narozenin Problém péče o nemocného Problém známý jako Dáma a tygr 9 Dodatek: kombinatorika 9.1 Co je to vlastně kombinatorika? 9.2 Kombinatorika intuitivní Problém dlouhého stolu Problém dvou oddělených stolů Problém čepiček 9.3 Nové symboly pro čísla Faktoriál Kombinační čísla Pascalův trojúhelník 9.4 Kombinatorika a výběry Typické příklady Kombinatorika čtená po druhé 10 Použitá literatura

3 1 Malá exkurze do 17. století Život člověka je plný nečekaných událostí, které nemůže ovlivnit. Některé jsou jen zpestřením běžného dne, jako třeba jestli najdeme v lese hříbek nebo jak dlouho budeme muset čekat na autobus. Jiné nám tvrdě zasahují do života a mnohdy jej zcela převrátí. S nečekanými událostmi se setkáváme denně. A denně určitou oblast našich životů režíruje nejistota, kterou podle jejích účinků nazýváme Náhoda či Osud. Osud, to jsou ty fatální převraty. Nedá se proti nim obvykle nic dělat, jen se s nimi smířit. V takových chvílích se obracíme k nějaké vyšší autoritě, na kterou se snažíme hodit zodpovědnost, a které v zájmu svého psychického klidu a míru věříme, že to s námi myslí dobře. To Náhodu bereme spíše jako kamarádku, která nám jde mnohokrát na nervy (když udělá něco pro nás nemilého), ale zase je s ní legrace a pomáhá nám plašit nudu. S Osudem si zahrávat nelze, ale s Náhodou ano. Často se ji snažíme využít a na její úkor si přilepšit, třeba v penězích. Voláme obvykle na pomoc Štěstěnu a doufáme, že ona Náhodu přemluví v náš prospěch. O existenci řady věcí mezi nebem a zemí má lidstvo povědomost od nepaměti. Podle starověké mytologie na počátku světa házeli tři bratři Zeus, Poseidon a Hádes kostky; první vyhrál nebesa, druhý moře a Hádes se musel usídlit v pekle. Hrací kostky skutečně archeologové v mnohých částech starověkého světa našli. Kostky nazývané astralagi byly vyřezávané z kloubů zvířat. Od nepaměti také platí snaha lidí si náhodu osedlat. Nejspíše každá dívka si někdy utrhla kopretinu a spoléhala na to, že jí odhalí pravdu o jejím vyvoleném. Jedna studentka vzpomínala, že měla vyzkoušeno, že pokud začne u prvního okvětního lístku slovíčky,,nemá mě rád, je odpověď u posledního lístku,,má mě rád, mnohem vyšší. Výjevy her s kostkami se objevují i na stěnách egyptských hrobek a na řeckých vázách. Ve starověké matematice však o náhodě nenajdeme žádnou zmínku. Příčinou byl zřejmě fakt, že jednoduše nevěřili, že se v těchto jevech dá najít nějaká zákonitost, výsledky podle nich byly nepředvídatelné. V jistém smyslu měli pravdu: v izolované náhodné události žádnou strukturu nenajdeme, musíme pozorovat a zkoumat událost opakovaně. Aspoň částečný pohled na podstatu pravděpodobnosti (náhoda a náhodný jev) ukázal Girolamo Cardano ( ) a svá pozorování shrnul v knize Liber de ludo aleae (Kniha o náhodných hrách). Ukázal, že při házení kostkou je možné jednotlivým výsledkům přiřadit číselné hodnoty a jakým zákonitostem při tom podléhají, jak s nimi pracovat. Nezávisle na Cardanovi dospěl ke stejným závěrům též Galileo Galilei ( ), který zkoumal chyby vznikající při fyzikálních měřeních a považoval je za výsledky náhodných pokusů. Avšak ani on nezkoumal, jak by se získané poznatky z pravděpodobnosti mohly více využít. Ve středověku se objevila úloha o rozdělení sázky. Některé práce uvádějí její původ v rukopise z roku 1380 a připouští se, že by mohla být arabského původu. Stručné zadání je toto: Dva stejně dobří hráči A (modrý) a B (červený) hrají spolu sérii partií (třeba šachu); nepřipouští se nerozhodně. Hráči hrají o milion, který získá ten, kdo první vyhraje celkem 6 partií. Hra musela být přerušena v okamžiku, kdy hráč A dosáhl 5 vítězství a hráč B 3 vítězství. Ve hře se již nemůže a nebude pokračovat. Určete, v jakém poměru si mají hráči celkovou částku spravedlivě rozdělit. Řešení z roku 1494 uvádí poměr dělení obnosu 2:1 ve prospěch hráče A. Autor vyšel z úvahy: Hráči A stačí jedna výhra a poměr vítězství bude 6:3.

4 Řešení z roku 1556 uvádí poměr dělení obnosu 3:1 ve prospěch hráče A. K výsledku se došlo nejspíš rozborem možných zakončení, kdyby se pokračovalo v turnaji dále. Jsou tyto možnosti: vyhraje hráč A a turnaj končí; (A) vyhraje hráč B a následující vyhraje A; (BA) 2x vyhraje B a nakonec opět A; (BBA) 3x vyhraje B a jen v tomto případě by získal milion on. (BBB) Obě řešení jsou mylná. Přelomový rok 1654 Za opravdový počátek teorie pravděpodobnosti je považována korespondence, kterou v roce 1654 vedli Blaise Pascal ( ) a Pierre de Fermat ( ) mimo jiné též o problémech, se kterými se na Pascala obrátil Chevalier de Méré ( ). Jedním z problémů byla již zmíněná úloha o rozdělení sázky (správné řešení uvedeme později). Antoine Gombaud, přezdívaný Chevalier de Méré, byl francouzský spisovatel, který vášnivě hrál v kostky a doufal, že tak zbohatne, že tak získá velký majetek. Domníval se, že stačí čtyřikrát opakovat hod kostkou a alespoň jednou šestka padne. Pokud v těchto čtyřech pokusech šestka nepadla, vyhrál soupeř. Ovšem místo výhry utrpěl značné finanční ztráty. V zoufalé snaze odhalit příčiny svého neúspěchu, se obrátil na svého přítele, vynikajícího francouzského matematika a fyzika, Blaise Pascala s touto úlohou: Kolik je třeba hodů jednou (dvěma) kostkami, aby šance, že padne aspoň jedna (dvě) šestka, byla nadpoloviční? I tuto úlohu vyřešíme později. Úspěchy Pascala a Fermata vyvolala otázku, zda je možné přenést vznikající teorii od hracích stolů do našeho neuspořádaného, skutečného světa. O odpověď se pokoušeli i členové Bernoulliho rodiny. Bernoulliovci byli obdobou Bachovců v hudbě. Nejslavnější z nich byli bratři Jakub a Jan a syn Jana Daniel. Slavné Bernoulliho schéma, které popisuje absolutní četnosti náhodné události v sérii nezávislých pokusů, je dílo Jakuba. Byl jedním z prvých analytiků, kteří postavili základy statistické hypotézy tj. z malého vzorku sebraných dat vyvozovat závěry, které by platili pro celou populaci. Objevil zákon o vztahu pravděpodobnosti a relativní četnosti. Ostatní jmenovaní se zasloužili v jiných oblastech matematiky a fyziky. Je pozoruhodné, že věda, která začínala úvahami o hazardních hrách, se nakonec mohla stát nejdůležitějším předmětem lidského poznání. (P. S. Laplace) A to ještě francouzský matematik, fyzik, astronom a politik Pierre Simon de Laplace ( ) nemohl tušit, k jak významným objevům se dojde ve 20. století v teorii pravděpodobnosti a matematické statistiky a jak bude zasahovat do našich životů. Přesto školská výuka o pravděpodobnosti, pokud k ní vůbec dochází, je především založena na poplatnosti hrám a její přednostní aplikace se neuvádějí. Tím se jen šíří účelové nepravdy o její nedůležitosti v běžném životě. Cílem této knížky je ukázat, že teorie pravděpodobnosti je víc než jen hrátky s mincemi nebo kostkou. Přesto si i s nimi na začátku trochu pohrajeme.

5 3.2.1 Problém prvního rande Adam a Eva se potkali na diskotéce. Dobře si spolu zařádili, a tak se dohodli, že se druhý den znovu setkají u kašny na Centrálním náměstí. V kraválu tanečního sálu bylo však obtížné se domluvit a tak oba vědí jen to, že rande mají mezi 13 a 14 hodinou, ale nevědí přesně kdy. Vymezme nejprve základní prostor, ve kterém se celá událost odehrává. Označme x čas příchodu Adama a y čas příchodu Evy. Mezi 13 a 14 hodinou je celkem 60 minut. Náhodný příchod Adama a Evy, zde představují souřadnice [x;y] bodu ve čtverci 60 x 60. Body čtverce představují všechny možnosti jejich příchodu. Snadno určíme, že S( ) = 60 2 = A) Nejprve nás bude zajímat, jestli se setkání vůbec uskuteční. Tedy otázka zní: Jaká je pravděpodobnost, že se rande neuskuteční, protože ani jeden není ochoten na druhého čekat déle než 10 minut, a pak odchází? Aby ksetkání mohlo dojít, musí se časy příchodu lišit nejvýše o 10 minut. Matematicky to zapíšeme nerovností x y < 10 tj. x y < 10 a zároveň y x < 10 Tuto oblast představuje na obrázku tmavý pás. Rande se neuskuteční v případech, kdy bod příchodu [x;y] padne do některého ze dvou světlých trojúhelníků. Tyto trojúhelníky (přiraženy ksobě) tvoří čtverec o straně 50 a jeho obsah je S(A) = 50 2 = Pravděpodobnost, že se Adam s Evou nesejdou je P(A) = 50 2 /60 2 = 0,694, neboli sejdou se (opačný jev) s pravděpodobností P(A ) = 1 0,694 = 0,306. B) Řekněme, že Adam má daleko větší zájem na tom, aby k setkání došlo, což se projeví tím, že je ochotný čekat až půl hodiny? Jak se změní pravděpodobnost společně stráveného odpoledne, když Eva zůstane na čekací době deseti minut. Oblast uskutečněného setkání se nyní rozšiřuje v Adamově směru. Obsah tmavého pásu (příznivá oblast jevu B) vypočítáme jako obsah celého čtverce minus velký světlý trojúhelník minus malý světlý trojúhelník: S(B) = / /2 = Pravděpodobnost setkání se zvyšuje na P(B) = 1900/3600 = 0,528. C) Do třetice spočítejme pravděpodobnost setkání pro případ, že se Adam i Eva rozhodnou dodržet tradiční čtvrthodinku. Situace je znázorněna obrázkem k jevu ad A) stím rozdílem, že místo 10 minut je teď 15 minut. Hledaná pravděpodobnost proto je P(C) = /60 2 = 0,4375.

6 Jak je vidět, ani akademická čtvrthodinka nezaručuje úspěch. Ani čekat půl hodiny se v podstatě nevyplatí. Nejlepší je se domluvit na přesném čase a ten taky dodržet. 6.3 Když normální rozdělení selhává I když je normální rozdělení na pohled tak pěkné, a pro použití tak účelné, a může být proto často plným (nebo alespoň značným) právem použito, přes to nemůže zachytit všechny skutečnosti. Je mnoho věcí mezi nebem a zemí, o nichž se normální křivce ani nesní. Velmi jednoduchý a názorný příklad tohoto tvrzení je případ počtu dětí v rodinách. Rodiny bezdětné a s 1 a s 2 dětmi jsou téměř stejně četné; pak však křivka (polygon četnosti) padá na pravou stranu způsobem, který by mohl přibližně odpovídat normálnímu rozdělení: 3 děti jsou méně časté, 4 ještě méně atd., až v úseku 11 a více dětí se dosahuje extrémních hodnot. Co je naproti tomu na levé straně křivky? Nic, žádná žena nemůže mít méně než žádné dítě. Graf švýcarského statistického úřadu to ukazuje velmi názorně. Výrazně strmé rozdělení ukazuje mimo jiné počet dětí na vdanou ženu (nebo také na rodinu): značné četnosti při 0, 1 a 2 dětech jsou zhruba stejně vysoké a potom se silně snižují. Normální rozdělení se v tomto případě nehodí, protože naráží na nulové hranici na bariéru, která je obrazně řečeno - zešikmuje. Šikmost rozdělení je ostatně statistický vědecký termín, kterým se měří horizontální odchylka rozdělení od normálního rozdělení. Doplněk k tomu tvoří exces, jenž křiví zvonovitý tvar normální křivky ve svislém směru, to znamená, že zvon je příliš strmý nebo příliš plochý. Je-li šikmost tak výrazná, že křivka vykazuje při nejnižších hodnotách nejvyšší četnosti (bylo by tomu tak v případě, že bezdětná manželství by byla nejčastější), vzniká takzvaná křivka L. O rozdělení L, které se doprava zplošťuje, koluje melancholické rčení, že prý je charakteristickým rozdělením všech krásných věcí. Téměř každé rozdělení příjmů ukazuje - udává-li se výše příjmů na osu x a počet jejich příjemců na osu y - řídkost velkých příjmů a četnost příjmů malých. Chce-li někdo např. považovat vysoký věk za žádoucí příjemnost, udává grafické znázornění úmrtnosti rovněž klesající křivku. Cokoli je zvlášť cenné, vyskytuje se jen u mála osob. Kdyby se měl graficky znázornit počet barokních soch, případně počet knih připadajících na jednu domácnost, zase by vzniklo rozdělení L, rozdělení krásných věcí.

7 7.4.4 Problém lidové předpovědi počasí V rámci biometerologického výzkumu bylo zkoumáno 100 osob na citlivost na počasí. Skupinu A tvořili lidé s loupáním, revmatici, migrénisté, apod., kontrolní skupinu B osoby bez těchto příznaků. Sledovala se úspěšnost předpovědi počasí na lokální úrovni do 24 hodin. Nulová hypotéza: Úspěšnost předpovědi počasí nezávisí na tom, zda-li ji vysloví člověk s bolestmi kloubů a podobně nebo člověk bez těchto příznaků. Tyto vlastnosti, kdyby se prokázaly, by byly pro nás důležité a proto testování provedeme na 1 % úrovni. skupina předpověď vyšla nevyšla celkem A ( ) 2 B = celkem = 8,12 Protože 2 = 8,12 > citlivější na počasí. 6,63 = 2 (0,01), zamítáme nulovou hypotézu: osoby skupiny A jsou

PRAVDĚPODOBNOST Náhodné pokusy. Náhodný jev

PRAVDĚPODOBNOST Náhodné pokusy. Náhodný jev RAVDĚODOBNOST Náhodné pokusy okusy ve fyzice, chemii při splnění stanov. podmínek vždy stejný výsledek ř. Změna skupenství vody při 00 C a tlaku 00 ka okusy v praxi, vědě, výzkumu při dodržení stejných

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti PRAVDĚPODOBNOST anotace Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti VM vytvořil: Mgr. Marie Zapadlová Období vytvoření VM: září 2013 Klíčová

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Pravděpodobnost a statistika (BI-PST) Cvičení č. 1

Pravděpodobnost a statistika (BI-PST) Cvičení č. 1 Pravděpodobnost a statistika (BI-PST) Cvičení č. 1 Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015 (FIT ČVUT) BI-PST, Cvičení č. 1 ZS 2014/2015

Více

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Induktivní statistika. z-skóry pravděpodobnost

Induktivní statistika. z-skóry pravděpodobnost Induktivní statistika z-skóry pravděpodobnost normální rozdělení Z-skóry umožňují najít a popsat pozici každé hodnoty v rámci rozdělení hodnot a také srovnávání hodnot pocházejících z měření na rozdílných

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Pravděpodobnost je Martina Litschmannová MODAM 2014

Pravděpodobnost je Martina Litschmannová MODAM 2014 ravděpodobnost je Martina Litschmannová MODAM 2014 Jak osedlat náhodu? Řecká mytologie: Bratři Zeus, oseidon, Hádes hráli v kostky astragalis. Zeus vyhrál nebesa, oseidon moře a Hádes peklo. Jak osedlat

Více

STATISTIKA jako vědní obor

STATISTIKA jako vědní obor STATISTIKA jako vědní obor Cílem statistického zpracování dat je podání informace o vlastnostech a zákonitostech hromadných jevů. Statistika se zabývá popisem hromadných jevů - deskriptivní, popisná statistika

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor012 Vypracoval(a),

Více

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol PRAVDĚPODOBNOST

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

náhodný jev je podmnožinou

náhodný jev je podmnožinou Pravděpodobnost Dovednosti a cíle - Chápat jev A jako podmnožinu množiny, která značí množinu všech výsledků náhodného děje. - Umět zapsat jevy pomocí množinových operací a obráceně umět z množinového

Více

V tomto prostředí jsou postupně zaváděny různé typy úloh.

V tomto prostředí jsou postupně zaváděny různé typy úloh. Matematické prostředí Děda Lesoň umožňuje dětem pracovat s veličinou zapsanou ikonicky (nikoliv číslem). Uvedeno je příběhem o dědovi Lesoňovi, ochránci zvířátek. Nejprve jsou u Lesoně pouze tři druhy

Více

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého 8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění

Více

5.2 POČÁTKY MATEMATICKÉ TEORIE PRAVDĚPODOBNOSTI

5.2 POČÁTKY MATEMATICKÉ TEORIE PRAVDĚPODOBNOSTI 5.2 POČÁTKY MATEMATICKÉ TEORIE PRAVDĚPODOBNOSTI Hry v kostky Podle archeologických nálezů se hrací kostky používaly již v době před 40 tisíci lety. Nejprve se jednalo o přírodní nepravidelné předměty,

Více

Diskrétní pravděpodobnost

Diskrétní pravděpodobnost Diskrétní pravděpodobnost Jiří Koula Definice. Konečným pravděpodobnostním prostorem nazveme dvojici(ω, P), kde Ω jekonečnámnožina {ω 1,..., ω n}apfunkcepřiřazujícíkaždépodmnožiněωčíslo zintervalu 0,1,splňujícíP(

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

Náhodný jev a definice pravděpodobnosti

Náhodný jev a definice pravděpodobnosti Náhodný jev a definice pravděpodobnosti Obsah kapitoly Náhodný jev. Vztahy mezi náhodnými jevy. Pravidla pro počítání s pravděpodobnostmi. Formule úplné pravděpodobnosti a Bayesův vzorec. Studijní cíle

Více

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS

Více

TGH13 - Teorie her I.

TGH13 - Teorie her I. TGH13 - Teorie her I. Jan Březina Technical University of Liberec 19. května 2015 Hra s bankéřem Máte právo sehrát s bankéřem hru: 1. hází se korunou dokud nepadne hlava 2. pokud hlava padne v hodu N,

Více

Pravděpodobnost a statistika pro SŠ

Pravděpodobnost a statistika pro SŠ Pravděpodobnost a statistika pro SŠ RNDr. Blanka Šedivá, Ph.D., katedra matematiky, Fakulta aplikovaných věd Západočeské univerzity v Plzni sediva@kma.zcu.cz 28. března 2012 Počátky teorie pravděpodobnosti

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k,

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k, Řešení 1. série Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy h = 1 2 v d, h = 1 2 s k, kde h je počet hran, v je počet vrcholů, d je stupeň vrcholu, s je počet stěn a k je počet úhlů

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

Populace vs. data. popisná (deskriptivní) popis konkrétních dat. letní semestr 2012 1

Populace vs. data. popisná (deskriptivní) popis konkrétních dat. letní semestr 2012 1 ? Šárka Hudecová Katedra i a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 1? Statistika = věda o získávání, zpracování a interpretaci informace obsažené v

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

1. Házíme hrací kostkou. Určete pravděpodobností těchto jevů: a) A při jednom hodu padne šestka;

1. Házíme hrací kostkou. Určete pravděpodobností těchto jevů: a) A při jednom hodu padne šestka; I Elementární pravděpodonost 1 Házíme hrací kostkou Určete pravděpodoností těchto jevů: a) A při jednom hodu padne šestka; Řešení: P A) = 1 = 01; Je celkem šest možností {1,,, 4,, } a jedna {} je příznivá

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

Statistické vyhodnocování experimentálních dat. Mgr. Martin Čada, Ph.D.

Statistické vyhodnocování experimentálních dat. Mgr. Martin Čada, Ph.D. Statistické vyhodnocování experimentálních dat Mgr. Martin Čada, Ph.D. - Ústav fyziky a biofyziky, PřF JU - E-mail: mcada@prf.jcu.cz - Tel.: 266052418 - Organizace výuky, zkouška, zápočet - Přednášky a

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036

Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036 Příklad : Statistika A, doc. Kropáč, str. 6, příklad 2 K benzínovému čerpadlu přijíždí průměrně 4 aut za hodinu. Určete pravděpodobnost, že během pěti minut přijede nejvýše jedno auto. Pokus: Zjištění,

Více

"Zajisté, odvětí strážce." (Str. 110)

Zajisté, odvětí strážce. (Str. 110) "Zajisté, odvětí strážce." (Str. 110) Kapitola 17 Normální rozdělení Nejdůležitější pravděpodobnostní rozdělení se nazývá normální či Gaussovo. Má zajímavou historii. To druhé jméno dostalo na počest slavného

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Přehled vzdělávacích materiálů

Přehled vzdělávacích materiálů Přehled vzdělávacích materiálů Název školy Název a číslo OP Název šablony klíčové aktivity Název sady vzdělávacích materiálů Jméno tvůrce vzdělávací sady Číslo sady Anotace Základní škola Ţeliv Novými

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.

Více

4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek

4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek cvičící 4. cvičení 4ST201 Obsah: Pravděpodobnost Náhodná veličina Vysoká škola ekonomická 1 Pravděpodobnost Co je třeba znát z přednášek 1. Náhodný jev, náhodný pokus 2. Jev nemožný, jev jistý 3. Klasická

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Práce s

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

Obsah. I. Objektivní pravděpodobnosti. 1. Pravděpodobnost a relativní četnosti... 23

Obsah. I. Objektivní pravděpodobnosti. 1. Pravděpodobnost a relativní četnosti... 23 Obsah Předmluva... 15 I. Objektivní pravděpodobnosti 1. Pravděpodobnost a relativní četnosti... 23 1.1 Úvod... 23 1.2 Základy frekvenční interpretace... 24 1.2.1 Pravděpodobnost a hromadné jevy... 24 1.2.2

Více

CZ.1.07/1.5.00/34.0619 CZ.1.07/1.5.00/34.0619 Zvyšování vzdělanosti pomocí e-prostoru OP Vzdělávání pro konkurenceschopnost

CZ.1.07/1.5.00/34.0619 CZ.1.07/1.5.00/34.0619 Zvyšování vzdělanosti pomocí e-prostoru OP Vzdělávání pro konkurenceschopnost CZ.1.07/1.5.00/34.0619 CZ.1.07/1.5.00/34.0619 Zvyšování vzdělanosti pomocí e-prostoru OP Vzdělávání pro konkurenceschopnost Soukromá střední škola a jazyková škola s právem státní jazykové zkoušky Č. Budějovice,

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

12 HRY S NEÚPLNOU INFORMACÍ

12 HRY S NEÚPLNOU INFORMACÍ 12 HRY S NEÚPLNOU INFORMACÍ 543 Ne v každé hře mají všichni hráči úplné informace o výplatních funkcích ostatních. Ve skutečnosti je většina situací s informací neúplnou. Například: V aukcích zpravidla

Více

Teoretická rozdělení

Teoretická rozdělení Teoretická rozdělení Diskrétní rozdělení Obsah kapitoly Studijní cíle Doba potřebná ke studiu Pojmy k zapamatování Úvod Některá teoretická rozdělení diskrétních veličin: Alternativní rozdělení Binomické

Více

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

Výzkumná pilotní studie: Efektivita vysílání v rámci projektu ŠIK (shrnutí)

Výzkumná pilotní studie: Efektivita vysílání v rámci projektu ŠIK (shrnutí) Výzkumná pilotní studie: Efektivita vysílání v rámci projektu ŠIK (shrnutí) Autor výzkumu: ŠIK CZ, s.r.o. Realizace výzkumu: únor květen 2010 Výzkum proběhl pod dohledem pedagogů zapojených škol. Cíl výzkumného

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

Matematické modelování dopravního proudu

Matematické modelování dopravního proudu Matematické modelování dopravního proudu Ondřej Lanč, Alena Girglová, Kateřina Papežová, Lucie Obšilová Gymnázium Otokara Březiny a SOŠ Telč lancondrej@centrum.cz Abstrakt: Cílem projektu bylo seznámení

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě.

Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě. Základy teorie pravděpodobnosti Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě. Náhodný jev jakékoli tvrzení

Více

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209 9..1 Binomické rozdělení Předpoklady: 99 Př. 1: Basketbalista hází trestný hod (šestku) s pravděpodobností úspěchu,9. Urči pravděpodobnosti, že z pěti hodů: a) dá košů; b) dá alespoň jeden koš; c) dá nejdříve

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

2. Friesl, M.: Posbírané příklady z pravděpodobnosti a statistiky. Internetový zdroj (viz odkaz).

2. Friesl, M.: Posbírané příklady z pravděpodobnosti a statistiky. Internetový zdroj (viz odkaz). 1 Cvičení z předmětu KMA/PST1 Pro získání zápočtu je nutno mimo docházky (max. 3 absence) uspět minimálně ve dvou ze tří písemek, které budou v průběhu semestru napsány. Součástí třetí písemky bude též

Více

Motivace. Náhodný pokus, náhodný n jev. pravděpodobnost. podobnostní charakteristiky diagnostických testů, Bayesův vzorec. Prof.RND. RND.

Motivace. Náhodný pokus, náhodný n jev. pravděpodobnost. podobnostní charakteristiky diagnostických testů, Bayesův vzorec. Prof.RND. RND. Pravděpodobnostn podobnostní charateristiy diagnosticých testů, Bayesův vzorec Prof.RND RND.Jana Zvárov rová,, DrSc. Náhodný pous, náhodný n jev Náhodný pous: výslede není jednoznačně určen podmínami,

Více

OBECNÉ METODY VYROVNÁNÍ

OBECNÉ METODY VYROVNÁNÍ OBECNÉ METODY VYROVNÁNÍ HYNČICOVÁ TEREZA, H2IGE1 2014 ÚVOD Z DŮVODU VYLOUČENÍ HRUBÝCH CHYB A ZVÝŠENÍ PŘESNOSTI NIKDY NEMĚŘÍME DANOU VELIČINU POUZE JEDNOU VÝSLEDKEM OPAKOVANÉHO MĚŘENÍ NĚKTERÉ VELIČINY JE

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

Role experimentu ve vědecké metodě

Role experimentu ve vědecké metodě Role experimentu ve vědecké metodě Erika Mechlová Ostravská univerzita v Ostravě Obsah Úvod 1. Pozorování 2. Uvedení a formulace problému. Sbírání informací 3. Stanovení hypotéz řešení problému 4. Provedení

Více

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují.

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. .. Funkce, definiční obor funkce Předpoklady: 03 Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. Uděláme si na tabuli jenom krátký seznam: S = a, y = x, s = vt, výška lidí v

Více

Předpokládané znalosti žáka 1. stupeň:

Předpokládané znalosti žáka 1. stupeň: Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Nejprve si uděláme malé opakování z kurzu Množiny obecně.

Nejprve si uděláme malé opakování z kurzu Množiny obecně. @021 3. Řešení grafické přímka v kartézské soustavě souřadnic Nejprve si uděláme malé opakování z kurzu Množiny obecně. Rovnice ax + by + c = 0, kde aspoň jedno z čísel a,b je různé od nuly je v kartézské

Více

VY_32_INOVACE_G 19 01

VY_32_INOVACE_G 19 01 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204 9.2.7 Nezávislé jevy I Předpoklady: 9204 Př. : Předpokládej, že pravděpodobnost narození chlapce je stejná jako pravděpodobnost narození dívky (a tedy v obou případech rovna 0,5) a není ovlivněna genetickými

Více

Průměr je ve statistice často používaná hodnota, která se počítá jako aritmetický průměr hodnot.

Průměr je ve statistice často používaná hodnota, která se počítá jako aritmetický průměr hodnot. Průměr Průměr je ve statistice často používaná hodnota, která se počítá jako aritmetický průměr hodnot. Co je to průměr # Průměrem se rozumí klasický aritmetický průměr sledovaných hodnot. Můžeme si pro

Více

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X

Více

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar Kvadratická rovnice Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar ax 2 + bx + c = 0. x neznámá; v kvadratické rovnici se vyskytuje umocněná na

Více

Medvídek Teddy barvy a tvary

Medvídek Teddy barvy a tvary CZ Habermaaß-hra 5878 Moje první hra Medvídek Teddy barvy a tvary Moje první hra Medvídek Teddy barvy a tvary První umísťovací hra pro 1 až 4 malé medvídky od 2 let. Autor: Christiane Hüpper Ilustrace:

Více

PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11

PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11 PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11 PRO PŘEDMĚTY: ČESKÝ JAZYK A LITERATURA MATEMATIKA ANGLICKÝ JAZYK Jak bych dopadl, kdybych

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více