Úvod - jistota (nuda) x nejistota (riziko) 1 Malá exkurze do 17. století 2 Základní pojmy 2.1 Jev a pokus 2.2 Skládání a rozklad jevů 2.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Úvod - jistota (nuda) x nejistota (riziko) 1 Malá exkurze do 17. století 2 Základní pojmy 2.1 Jev a pokus 2.2 Skládání a rozklad jevů 2."

Transkript

1 Úvod - jistota (nuda) x nejistota (riziko) 1 Malá exkurze do 17. století 2 Základní pojmy 2.1 Jev a pokus 2.2 Skládání a rozklad jevů 2.3 Jevy a čísla 2.4 Úloha o rozdělení sázky 2.5 Úlohy Chevaliera de Méré 3 Pravděpodobnost 3.1 Klasická pravděpodobnost Cardano: součet čísel při hodu dvěma kostkami Studentské dilema Problém nešťastné šatnářky 3.2 Geometrická pravděpodobnost Problém prvního rande Problém golfistky Alžběty a atomového fyzika Dalibora Problém nedoručené zprávy Problém Ludolfova čísla 3.3 Statistická pravděpodobnost Problém muže s vosami aneb brouk leze po krychli Problém námořníka Jima v Port Rack poprvé Problém námořníka Jima v Port Rack podruhé 3.4 Axiomatická definice pravděpodobnosti Problém dělení jablek Problém starého výtahu Problém jednosměrek Problém výstavby schodiště Problém krotitele dravé zvěře Problém sekretářky Evy 4 Podmíněná pravděpodobnost, nezávislé jevy 4.1 Podmíněnost, nezávislost a realita Problém návštěv krajských nemocnic Problém jakosti Problém lidské paměti Problém zaměstnavatele Problém roztržitého profesora a cestující Aničky Zvědavé 4.2 Úplná pravděpodobnost Problém kontrolora Františka Problém spotřebitele Problém vězně 4.3 Apriorní a aposteriorní pravděpodobnost, Bayesův vztah Princip automatické diagnostiky v medicíně Problém diagnostického testu (na rakovinu) Problém komisaře Nováka 5 Opakované pokusy 5.1 Bernoulliovo schema Problém hráčů v kostky Problém nákazy skotu 5.2 Geometrické schema

2 5.2.1 Problém nákupčího Problém potomků pana Procházky 6 Náhodná veličina, pravděpodobnostní rozdělení 6.1 Hledá se reprezentant Problém klíčů Problém střídavých tahů Problém hazardních her 6.2 Normální rozdělení Problém normální (Gaussovy) křivky Problém testů IQ - Mensa 6.3 Když normální rozdělení selhává 6.4 Poissonovo rozdělení Problém obchodníka s látkami Problém náhlého úmrtí Problém hodnocení podřízených Problémy sedmi trpaslíků 7 Co o sobě lidé (ne)vědí 7.1 Dotazníky a ankety 7.2 Grafické znázornění 7.3 Testování hypotéz 7.4 Kontingenční tabulky Problém vysokoškoláků Problém dědičnosti obezity Problém lidové předpovědi počasí Problém brusičů z povolání Problém ze střední školy Problém sběratelství 8 Jak se optimálně rozhodnout v konfliktní situaci 8.1 Katka a Matouš objevují Lapkův ráj 8.2 Hry se dvěma strategiemi Problém nudného odpoledne Problém setkání u divadla Problém narozenin Problém péče o nemocného Problém známý jako Dáma a tygr 9 Dodatek: kombinatorika 9.1 Co je to vlastně kombinatorika? 9.2 Kombinatorika intuitivní Problém dlouhého stolu Problém dvou oddělených stolů Problém čepiček 9.3 Nové symboly pro čísla Faktoriál Kombinační čísla Pascalův trojúhelník 9.4 Kombinatorika a výběry Typické příklady Kombinatorika čtená po druhé 10 Použitá literatura

3 1 Malá exkurze do 17. století Život člověka je plný nečekaných událostí, které nemůže ovlivnit. Některé jsou jen zpestřením běžného dne, jako třeba jestli najdeme v lese hříbek nebo jak dlouho budeme muset čekat na autobus. Jiné nám tvrdě zasahují do života a mnohdy jej zcela převrátí. S nečekanými událostmi se setkáváme denně. A denně určitou oblast našich životů režíruje nejistota, kterou podle jejích účinků nazýváme Náhoda či Osud. Osud, to jsou ty fatální převraty. Nedá se proti nim obvykle nic dělat, jen se s nimi smířit. V takových chvílích se obracíme k nějaké vyšší autoritě, na kterou se snažíme hodit zodpovědnost, a které v zájmu svého psychického klidu a míru věříme, že to s námi myslí dobře. To Náhodu bereme spíše jako kamarádku, která nám jde mnohokrát na nervy (když udělá něco pro nás nemilého), ale zase je s ní legrace a pomáhá nám plašit nudu. S Osudem si zahrávat nelze, ale s Náhodou ano. Často se ji snažíme využít a na její úkor si přilepšit, třeba v penězích. Voláme obvykle na pomoc Štěstěnu a doufáme, že ona Náhodu přemluví v náš prospěch. O existenci řady věcí mezi nebem a zemí má lidstvo povědomost od nepaměti. Podle starověké mytologie na počátku světa házeli tři bratři Zeus, Poseidon a Hádes kostky; první vyhrál nebesa, druhý moře a Hádes se musel usídlit v pekle. Hrací kostky skutečně archeologové v mnohých částech starověkého světa našli. Kostky nazývané astralagi byly vyřezávané z kloubů zvířat. Od nepaměti také platí snaha lidí si náhodu osedlat. Nejspíše každá dívka si někdy utrhla kopretinu a spoléhala na to, že jí odhalí pravdu o jejím vyvoleném. Jedna studentka vzpomínala, že měla vyzkoušeno, že pokud začne u prvního okvětního lístku slovíčky,,nemá mě rád, je odpověď u posledního lístku,,má mě rád, mnohem vyšší. Výjevy her s kostkami se objevují i na stěnách egyptských hrobek a na řeckých vázách. Ve starověké matematice však o náhodě nenajdeme žádnou zmínku. Příčinou byl zřejmě fakt, že jednoduše nevěřili, že se v těchto jevech dá najít nějaká zákonitost, výsledky podle nich byly nepředvídatelné. V jistém smyslu měli pravdu: v izolované náhodné události žádnou strukturu nenajdeme, musíme pozorovat a zkoumat událost opakovaně. Aspoň částečný pohled na podstatu pravděpodobnosti (náhoda a náhodný jev) ukázal Girolamo Cardano ( ) a svá pozorování shrnul v knize Liber de ludo aleae (Kniha o náhodných hrách). Ukázal, že při házení kostkou je možné jednotlivým výsledkům přiřadit číselné hodnoty a jakým zákonitostem při tom podléhají, jak s nimi pracovat. Nezávisle na Cardanovi dospěl ke stejným závěrům též Galileo Galilei ( ), který zkoumal chyby vznikající při fyzikálních měřeních a považoval je za výsledky náhodných pokusů. Avšak ani on nezkoumal, jak by se získané poznatky z pravděpodobnosti mohly více využít. Ve středověku se objevila úloha o rozdělení sázky. Některé práce uvádějí její původ v rukopise z roku 1380 a připouští se, že by mohla být arabského původu. Stručné zadání je toto: Dva stejně dobří hráči A (modrý) a B (červený) hrají spolu sérii partií (třeba šachu); nepřipouští se nerozhodně. Hráči hrají o milion, který získá ten, kdo první vyhraje celkem 6 partií. Hra musela být přerušena v okamžiku, kdy hráč A dosáhl 5 vítězství a hráč B 3 vítězství. Ve hře se již nemůže a nebude pokračovat. Určete, v jakém poměru si mají hráči celkovou částku spravedlivě rozdělit. Řešení z roku 1494 uvádí poměr dělení obnosu 2:1 ve prospěch hráče A. Autor vyšel z úvahy: Hráči A stačí jedna výhra a poměr vítězství bude 6:3.

4 Řešení z roku 1556 uvádí poměr dělení obnosu 3:1 ve prospěch hráče A. K výsledku se došlo nejspíš rozborem možných zakončení, kdyby se pokračovalo v turnaji dále. Jsou tyto možnosti: vyhraje hráč A a turnaj končí; (A) vyhraje hráč B a následující vyhraje A; (BA) 2x vyhraje B a nakonec opět A; (BBA) 3x vyhraje B a jen v tomto případě by získal milion on. (BBB) Obě řešení jsou mylná. Přelomový rok 1654 Za opravdový počátek teorie pravděpodobnosti je považována korespondence, kterou v roce 1654 vedli Blaise Pascal ( ) a Pierre de Fermat ( ) mimo jiné též o problémech, se kterými se na Pascala obrátil Chevalier de Méré ( ). Jedním z problémů byla již zmíněná úloha o rozdělení sázky (správné řešení uvedeme později). Antoine Gombaud, přezdívaný Chevalier de Méré, byl francouzský spisovatel, který vášnivě hrál v kostky a doufal, že tak zbohatne, že tak získá velký majetek. Domníval se, že stačí čtyřikrát opakovat hod kostkou a alespoň jednou šestka padne. Pokud v těchto čtyřech pokusech šestka nepadla, vyhrál soupeř. Ovšem místo výhry utrpěl značné finanční ztráty. V zoufalé snaze odhalit příčiny svého neúspěchu, se obrátil na svého přítele, vynikajícího francouzského matematika a fyzika, Blaise Pascala s touto úlohou: Kolik je třeba hodů jednou (dvěma) kostkami, aby šance, že padne aspoň jedna (dvě) šestka, byla nadpoloviční? I tuto úlohu vyřešíme později. Úspěchy Pascala a Fermata vyvolala otázku, zda je možné přenést vznikající teorii od hracích stolů do našeho neuspořádaného, skutečného světa. O odpověď se pokoušeli i členové Bernoulliho rodiny. Bernoulliovci byli obdobou Bachovců v hudbě. Nejslavnější z nich byli bratři Jakub a Jan a syn Jana Daniel. Slavné Bernoulliho schéma, které popisuje absolutní četnosti náhodné události v sérii nezávislých pokusů, je dílo Jakuba. Byl jedním z prvých analytiků, kteří postavili základy statistické hypotézy tj. z malého vzorku sebraných dat vyvozovat závěry, které by platili pro celou populaci. Objevil zákon o vztahu pravděpodobnosti a relativní četnosti. Ostatní jmenovaní se zasloužili v jiných oblastech matematiky a fyziky. Je pozoruhodné, že věda, která začínala úvahami o hazardních hrách, se nakonec mohla stát nejdůležitějším předmětem lidského poznání. (P. S. Laplace) A to ještě francouzský matematik, fyzik, astronom a politik Pierre Simon de Laplace ( ) nemohl tušit, k jak významným objevům se dojde ve 20. století v teorii pravděpodobnosti a matematické statistiky a jak bude zasahovat do našich životů. Přesto školská výuka o pravděpodobnosti, pokud k ní vůbec dochází, je především založena na poplatnosti hrám a její přednostní aplikace se neuvádějí. Tím se jen šíří účelové nepravdy o její nedůležitosti v běžném životě. Cílem této knížky je ukázat, že teorie pravděpodobnosti je víc než jen hrátky s mincemi nebo kostkou. Přesto si i s nimi na začátku trochu pohrajeme.

5 3.2.1 Problém prvního rande Adam a Eva se potkali na diskotéce. Dobře si spolu zařádili, a tak se dohodli, že se druhý den znovu setkají u kašny na Centrálním náměstí. V kraválu tanečního sálu bylo však obtížné se domluvit a tak oba vědí jen to, že rande mají mezi 13 a 14 hodinou, ale nevědí přesně kdy. Vymezme nejprve základní prostor, ve kterém se celá událost odehrává. Označme x čas příchodu Adama a y čas příchodu Evy. Mezi 13 a 14 hodinou je celkem 60 minut. Náhodný příchod Adama a Evy, zde představují souřadnice [x;y] bodu ve čtverci 60 x 60. Body čtverce představují všechny možnosti jejich příchodu. Snadno určíme, že S( ) = 60 2 = A) Nejprve nás bude zajímat, jestli se setkání vůbec uskuteční. Tedy otázka zní: Jaká je pravděpodobnost, že se rande neuskuteční, protože ani jeden není ochoten na druhého čekat déle než 10 minut, a pak odchází? Aby ksetkání mohlo dojít, musí se časy příchodu lišit nejvýše o 10 minut. Matematicky to zapíšeme nerovností x y < 10 tj. x y < 10 a zároveň y x < 10 Tuto oblast představuje na obrázku tmavý pás. Rande se neuskuteční v případech, kdy bod příchodu [x;y] padne do některého ze dvou světlých trojúhelníků. Tyto trojúhelníky (přiraženy ksobě) tvoří čtverec o straně 50 a jeho obsah je S(A) = 50 2 = Pravděpodobnost, že se Adam s Evou nesejdou je P(A) = 50 2 /60 2 = 0,694, neboli sejdou se (opačný jev) s pravděpodobností P(A ) = 1 0,694 = 0,306. B) Řekněme, že Adam má daleko větší zájem na tom, aby k setkání došlo, což se projeví tím, že je ochotný čekat až půl hodiny? Jak se změní pravděpodobnost společně stráveného odpoledne, když Eva zůstane na čekací době deseti minut. Oblast uskutečněného setkání se nyní rozšiřuje v Adamově směru. Obsah tmavého pásu (příznivá oblast jevu B) vypočítáme jako obsah celého čtverce minus velký světlý trojúhelník minus malý světlý trojúhelník: S(B) = / /2 = Pravděpodobnost setkání se zvyšuje na P(B) = 1900/3600 = 0,528. C) Do třetice spočítejme pravděpodobnost setkání pro případ, že se Adam i Eva rozhodnou dodržet tradiční čtvrthodinku. Situace je znázorněna obrázkem k jevu ad A) stím rozdílem, že místo 10 minut je teď 15 minut. Hledaná pravděpodobnost proto je P(C) = /60 2 = 0,4375.

6 Jak je vidět, ani akademická čtvrthodinka nezaručuje úspěch. Ani čekat půl hodiny se v podstatě nevyplatí. Nejlepší je se domluvit na přesném čase a ten taky dodržet. 6.3 Když normální rozdělení selhává I když je normální rozdělení na pohled tak pěkné, a pro použití tak účelné, a může být proto často plným (nebo alespoň značným) právem použito, přes to nemůže zachytit všechny skutečnosti. Je mnoho věcí mezi nebem a zemí, o nichž se normální křivce ani nesní. Velmi jednoduchý a názorný příklad tohoto tvrzení je případ počtu dětí v rodinách. Rodiny bezdětné a s 1 a s 2 dětmi jsou téměř stejně četné; pak však křivka (polygon četnosti) padá na pravou stranu způsobem, který by mohl přibližně odpovídat normálnímu rozdělení: 3 děti jsou méně časté, 4 ještě méně atd., až v úseku 11 a více dětí se dosahuje extrémních hodnot. Co je naproti tomu na levé straně křivky? Nic, žádná žena nemůže mít méně než žádné dítě. Graf švýcarského statistického úřadu to ukazuje velmi názorně. Výrazně strmé rozdělení ukazuje mimo jiné počet dětí na vdanou ženu (nebo také na rodinu): značné četnosti při 0, 1 a 2 dětech jsou zhruba stejně vysoké a potom se silně snižují. Normální rozdělení se v tomto případě nehodí, protože naráží na nulové hranici na bariéru, která je obrazně řečeno - zešikmuje. Šikmost rozdělení je ostatně statistický vědecký termín, kterým se měří horizontální odchylka rozdělení od normálního rozdělení. Doplněk k tomu tvoří exces, jenž křiví zvonovitý tvar normální křivky ve svislém směru, to znamená, že zvon je příliš strmý nebo příliš plochý. Je-li šikmost tak výrazná, že křivka vykazuje při nejnižších hodnotách nejvyšší četnosti (bylo by tomu tak v případě, že bezdětná manželství by byla nejčastější), vzniká takzvaná křivka L. O rozdělení L, které se doprava zplošťuje, koluje melancholické rčení, že prý je charakteristickým rozdělením všech krásných věcí. Téměř každé rozdělení příjmů ukazuje - udává-li se výše příjmů na osu x a počet jejich příjemců na osu y - řídkost velkých příjmů a četnost příjmů malých. Chce-li někdo např. považovat vysoký věk za žádoucí příjemnost, udává grafické znázornění úmrtnosti rovněž klesající křivku. Cokoli je zvlášť cenné, vyskytuje se jen u mála osob. Kdyby se měl graficky znázornit počet barokních soch, případně počet knih připadajících na jednu domácnost, zase by vzniklo rozdělení L, rozdělení krásných věcí.

7 7.4.4 Problém lidové předpovědi počasí V rámci biometerologického výzkumu bylo zkoumáno 100 osob na citlivost na počasí. Skupinu A tvořili lidé s loupáním, revmatici, migrénisté, apod., kontrolní skupinu B osoby bez těchto příznaků. Sledovala se úspěšnost předpovědi počasí na lokální úrovni do 24 hodin. Nulová hypotéza: Úspěšnost předpovědi počasí nezávisí na tom, zda-li ji vysloví člověk s bolestmi kloubů a podobně nebo člověk bez těchto příznaků. Tyto vlastnosti, kdyby se prokázaly, by byly pro nás důležité a proto testování provedeme na 1 % úrovni. skupina předpověď vyšla nevyšla celkem A ( ) 2 B = celkem = 8,12 Protože 2 = 8,12 > citlivější na počasí. 6,63 = 2 (0,01), zamítáme nulovou hypotézu: osoby skupiny A jsou

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti PRAVDĚPODOBNOST anotace Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti VM vytvořil: Mgr. Marie Zapadlová Období vytvoření VM: září 2013 Klíčová

Více

5.2 POČÁTKY MATEMATICKÉ TEORIE PRAVDĚPODOBNOSTI

5.2 POČÁTKY MATEMATICKÉ TEORIE PRAVDĚPODOBNOSTI 5.2 POČÁTKY MATEMATICKÉ TEORIE PRAVDĚPODOBNOSTI Hry v kostky Podle archeologických nálezů se hrací kostky používaly již v době před 40 tisíci lety. Nejprve se jednalo o přírodní nepravidelné předměty,

Více

Pravděpodobnost a statistika pro SŠ

Pravděpodobnost a statistika pro SŠ Pravděpodobnost a statistika pro SŠ RNDr. Blanka Šedivá, Ph.D., katedra matematiky, Fakulta aplikovaných věd Západočeské univerzity v Plzni sediva@kma.zcu.cz 28. března 2012 Počátky teorie pravděpodobnosti

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého 8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor012 Vypracoval(a),

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

Základní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D.

Základní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D. Základní pojmy a úvod do teorie pravděpodobnosti Ing. Michael Rost, Ph.D. Co je to Statistika? Statistiku lze definovat jako vědní obor, zabývající se hromadnými jevy a procesy. Statistika zahrnuje jak

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

6. Pravděpodobnost a statistika. 6.1. Pravděpodobnost

6. Pravděpodobnost a statistika. 6.1. Pravděpodobnost 6. Pravděpodobnost a statistika 6.1. Pravděpodobnost Pravděpodobnost (hovorově šance; značka je P z anglického probability) je hodnota vyčíslující jistotu resp. nejistotu výskytu určité události. K pojmu

Více

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k,

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k, Řešení 1. série Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy h = 1 2 v d, h = 1 2 s k, kde h je počet hran, v je počet vrcholů, d je stupeň vrcholu, s je počet stěn a k je počet úhlů

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Ekonomické modelování pro podnikatelskou praxi

Ekonomické modelování pro podnikatelskou praxi pro podnikatelskou praxi Ing. Jan Vlachý, Ph.D. vlachy@atlas.cz Dlouhý, M. a kol. Simulace podnikových procesů Vlachý, J. Řízení finančních rizik Scholleová, H. Hodnota flexibility: Reálné opce Sylabus

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí Cíle lokalizace Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí 2 Jiný pohled Je to problém transformace souřadnic Mapa je globální souřadnicový systém nezávislý

Více

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve Příklady k procvičení k průběžnému testu: 1) Při zpracování studie o průměrné výši měsíčních příjmů v České republice jsme získali data celkem od 8 tazatelů. Každý z těchto pěti souborů dat obsahoval odlišný

Více

V tomto prostředí jsou postupně zaváděny různé typy úloh.

V tomto prostředí jsou postupně zaváděny různé typy úloh. Matematické prostředí Děda Lesoň umožňuje dětem pracovat s veličinou zapsanou ikonicky (nikoliv číslem). Uvedeno je příběhem o dědovi Lesoňovi, ochránci zvířátek. Nejprve jsou u Lesoně pouze tři druhy

Více

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují.

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. .. Funkce, definiční obor funkce Předpoklady: 03 Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. Uděláme si na tabuli jenom krátký seznam: S = a, y = x, s = vt, výška lidí v

Více

Obsah. I. Objektivní pravděpodobnosti. 1. Pravděpodobnost a relativní četnosti... 23

Obsah. I. Objektivní pravděpodobnosti. 1. Pravděpodobnost a relativní četnosti... 23 Obsah Předmluva... 15 I. Objektivní pravděpodobnosti 1. Pravděpodobnost a relativní četnosti... 23 1.1 Úvod... 23 1.2 Základy frekvenční interpretace... 24 1.2.1 Pravděpodobnost a hromadné jevy... 24 1.2.2

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Matematika a její aplikace Matematika 2. období 5. ročník Učební texty : J. Justová: Alter-Matematika, Matematika 5.r.I.díl, 5.r.

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

StatSoft Jaký je mezi nimi rozdíl?

StatSoft Jaký je mezi nimi rozdíl? StatSoft Jaký je mezi nimi rozdíl? GAINS ROC X P okud se zabýváte klasifikačními úlohami, pak většinou potřebujete nějakým způsobem mezi sebou porovnat kvalitu vyprodukovaných modelů. Mezi základní pomůcky

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

Úvod. Postavili jsme na tisíc chrámů Fortuně, ale žádný Rozumu. Marcus Cornelius Fronto, učitel Marka Aurelia

Úvod. Postavili jsme na tisíc chrámů Fortuně, ale žádný Rozumu. Marcus Cornelius Fronto, učitel Marka Aurelia Úvod Postavili jsme na tisíc chrámů Fortuně, ale žádný Rozumu. Marcus Cornelius Fronto, učitel Marka Aurelia Otázka, jakým principem se řídí šťastná a nešťastná náhoda, trápí lidstvo jako málokterá jiná.

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209 9..1 Binomické rozdělení Předpoklady: 99 Př. 1: Basketbalista hází trestný hod (šestku) s pravděpodobností úspěchu,9. Urči pravděpodobnosti, že z pěti hodů: a) dá košů; b) dá alespoň jeden koš; c) dá nejdříve

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Učební texty : Matematika a její aplikace Matematika 1. období 2. ročník Mgr. M. Novotný, F. Novák: Matýskova matematika 4.,5.,6.díl

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Věc: Rozšířené stanovisko Ministerstva financí k tzv. Kvízomatům

Věc: Rozšířené stanovisko Ministerstva financí k tzv. Kvízomatům MINISTERSTVO FINANCÍ Státní dozor nad sázkovými hrami a loteriemi Věc: Rozšířené stanovisko Ministerstva financí k tzv. Kvízomatům Podle ust. 1 odst. 1 zákona č. 202/1990 Sb., o loteriích a jiných podobných

Více

PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11

PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11 PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11 PRO PŘEDMĚTY: ČESKÝ JAZYK A LITERATURA MATEMATIKA ANGLICKÝ JAZYK Jak bych dopadl, kdybych

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

O náhodě a pravděpodobnosti

O náhodě a pravděpodobnosti O náhodě a pravděpodobnosti 10. kapitola. Ještě jednou honička na šachovnici a kvočny na vejcích neboli Bernoulliovo schéma In: Adam Płocki (author); Eva Macháčková (translator); Vlastimil Macháček (illustrator):

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

PRAVDĚPODOBNOST A JEJÍ UŽITÍ

PRAVDĚPODOBNOST A JEJÍ UŽITÍ PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Základy pravděpodobnosti poznámky. Jana Klicnarová

Základy pravděpodobnosti poznámky. Jana Klicnarová Základy pravděpodobnosti poznámky Jana Klicnarová 1 V této části připomeneme základní pojmy a vztahy pro práci s náhodou. 0.1 Náhodné jevy Uvažujme situace, které mohou a nemusí nastat a o kterých v nějakém

Více

Binomické rozdělení zobrazené pomocí modelu římské kašny nádržky se naplní podle Pascalova trojúhelníku: 1:4:6:4:1

Binomické rozdělení zobrazené pomocí modelu římské kašny nádržky se naplní podle Pascalova trojúhelníku: 1:4:6:4:1 Binomické rozdělení Někdy se říká, že statistika je užitý počet pravděpodobnosti, a na tomto tvrzení je nepochybně něco pravdy, pokud se nevezme doslovně. Připomeňme si, že statistiku lze rozdělit na statistiku

Více

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose 3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,

Více

Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests), : veličiny X, Y jsou nezávislé nij eij

Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests),   : veličiny X, Y jsou nezávislé nij eij Testy dobré shody Máme dvě veličiny a předpokládáme, že jsou nezávislé (platí nulová hypotéza nezávislosti). Často chceme naopak prokázat jejich závislost. K tomu slouží: TESTY DOBRÉ SHODY (angl. goodness-of-fit

Více

2.1 Empirická teplota

2.1 Empirická teplota Přednáška 2 Teplota a její měření Termika zkoumá tepelné vlastnosti látek a soustav těles, jevy spojené s tepelnou výměnou, chování soustav při tepelné výměně, změny skupenství látek, atd. 2.1 Empirická

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

OPERACE S KOMBINAČNÍMI ČÍSLY A S FAKTORIÁLY, KOMBINACE

OPERACE S KOMBINAČNÍMI ČÍSLY A S FAKTORIÁLY, KOMBINACE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol OPERACE

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z pevných látek (F6390)

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z pevných látek (F6390) Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Praktikum z pevných látek (F6390) Zpracoval: Michal Truhlář Naměřeno: 13. března 2007 Obor: Fyzika Ročník: III Semestr:

Více

Medvídek Teddy barvy a tvary

Medvídek Teddy barvy a tvary CZ Habermaaß-hra 5878 Moje první hra Medvídek Teddy barvy a tvary Moje první hra Medvídek Teddy barvy a tvary První umísťovací hra pro 1 až 4 malé medvídky od 2 let. Autor: Christiane Hüpper Ilustrace:

Více

V čem dělat prezentaci?

V čem dělat prezentaci? Jak na prezentace? Osnova: - v čem dělat prezentaci - velikosti písma - barva písma a pozadí - typ písma a zvýraznění - EFEKTY - vkládání obrázků - externí soubory - závěrečný export - příklady ze života

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

Statistika Mládež a drogy 2012

Statistika Mládež a drogy 2012 Statistika Mládež a drogy 2012 Jihomoravský kraj Vypracovaly A Kluby ČR o.p.s. JMK 2012 dotazníkový průzkum mezi žáky a studenty jihomoravských škol Cílem průzkumu bylo zjistit stav zneužívání návykových

Více

TEST VŠEOBECNÝCH ZNALOSTÍ

TEST VŠEOBECNÝCH ZNALOSTÍ 1. V jakém vztahu je ke mně syn sestry mého otce? a) tchán b) bratr c) bratranec d) strýc 2. Od kolika let má občan ČR volební právo?. 3. Svátek Tří králů se slaví: a) 6.1. b) 6.2. c) 1.1. d) 25.12. 4.

Více

Statistika. Semestrální projekt

Statistika. Semestrální projekt Statistika Semestrální projekt 18.5.2013 Tomáš Jędrzejek, JED0008 Obsah Úvod 3 Analyzovaná data 4 Analýza dat 6 Statistická indukce 12 Závěr 15 1. Úvod Cílem této semestrální práce je aplikovat získané

Více

U každé úlohy je uveden maximální počet bodů.

U každé úlohy je uveden maximální počet bodů. MATEMATIKA MPZD1C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 1 Maximální bodové hodnocení: 0 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 0 minut.

Více

Kombinatorika, základní kombinatorická pravidla, pravidlo součtu, pravidlo součinu

Kombinatorika, základní kombinatorická pravidla, pravidlo součtu, pravidlo součinu Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: Název projektu: Číslo projektu: Autor: Tematická oblast: Název DUMu: Kód: III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN

Více

Semestrální práce z předmětu Matematika 6F

Semestrální práce z předmětu Matematika 6F vypracoval: Jaroslav Nušl dne: 17.6.24 email: nusl@cvut.org Semestrální práce z předmětu Matematika 6F Zádání: Cílem semestrální práce z matematiky 6F bylo zkoumání hudebního signálu. Pluginem ve Winampu

Více

Výzkumná pilotní studie: Efektivita vysílání v rámci projektu ŠIK (shrnutí)

Výzkumná pilotní studie: Efektivita vysílání v rámci projektu ŠIK (shrnutí) Výzkumná pilotní studie: Efektivita vysílání v rámci projektu ŠIK (shrnutí) Autor výzkumu: ŠIK CZ, s.r.o. Realizace výzkumu: únor květen 2010 Výzkum proběhl pod dohledem pedagogů zapojených škol. Cíl výzkumného

Více

Název: Mentální testy

Název: Mentální testy Název: Mentální testy Výukové materiály Autor: Mgr. Blanka Machová Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: Biologie Ročník: 4. a 5. (2. a 3. vyššího gymnázia)

Více

Statistická prezentace je umění vytvořit dobrou tabulku nebo graf, které přitáhnou oko k tomu, co je zajímavé. Mgr. Ing.

Statistická prezentace je umění vytvořit dobrou tabulku nebo graf, které přitáhnou oko k tomu, co je zajímavé. Mgr. Ing. 1.2 Prezentace statistických dat Statistická prezentace je umění vytvořit dobrou tabulku nebo graf, které přitáhnou oko k tomu, co je zajímavé. Mgr. Ing. Jan Spousta Co se dozvíte Statistické ukazatele.

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Základy statistiky, kombinační úsudek v úlohách Klíčová slova: tabulky, grafy, diagramy Autor: Mlynářová 1 Základy statistiky Statistika je vědní obor, který se zabývá

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 3. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace čte, zapisuje a porovnává přirozená čísla do 1000, užívá a zapisuje vztah rovnosti a

Více

OBECNÉ METODY VYROVNÁNÍ

OBECNÉ METODY VYROVNÁNÍ OBECNÉ METODY VYROVNÁNÍ HYNČICOVÁ TEREZA, H2IGE1 2014 ÚVOD Z DŮVODU VYLOUČENÍ HRUBÝCH CHYB A ZVÝŠENÍ PŘESNOSTI NIKDY NEMĚŘÍME DANOU VELIČINU POUZE JEDNOU VÝSLEDKEM OPAKOVANÉHO MĚŘENÍ NĚKTERÉ VELIČINY JE

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 5. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace Využívá při pamětném i písemném počítání komutativnost a asociativnost sčítání a násobení

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více