Taky si zkuste promyslet, která zobrazení jsou afinní: to které zobrazí přímku jako rovinu? Nebo snad to které zobrazí rovinu jako přímku?

Rozměr: px
Začít zobrazení ze stránky:

Download "Taky si zkuste promyslet, která zobrazení jsou afinní: to které zobrazí přímku jako rovinu? Nebo snad to které zobrazí rovinu jako přímku?"

Transkript

1 Afinní zobrazenní Úmluva Symbolem V (popř V ) budu vždy značit nějaký vektorový prostor, symbolem A (popř A ) pak vždy afinní bodový prostor, zdvojená písmena (např A, B, C, ) značí vždy matice Definice 1 Zobrazení f afinního bodového prostoru A do afinního bodového prostoru A se nazývá afinní pokud každé tři různé kolineární body B, C, D zobrazuje bud do jediného bodu, nebo do tří různých kolineárních bodů f(b), f(c), f(d) tak, že (A, B, C) = (f(a), f(b), f(c)) 1 Věta 1 V afinním zobrazení je obrazem přímky přímka nebo bod Věta 2 Ke každému afinímu zobrazení f afinního bodového prostoru A do afinního bodového prostoru A je jednoznačně přiřazeno zobrazení ϕ, které zobrazuje zaměření V prostoru A do zaměření V prostoru A předpisem: u = D C ϕ( u) = f(d) f(c) Zobrazení ϕ se nazývá asociované zobrazení k zobrazení f Věta 3 Zobrazení ϕ asociované k afinnímu zobrazení f je lineární zobrazení vektorového prostoru V do V Poznámka 1 Je-li zadáno afinní zobrazení f, pak je určeno ϕ Obrácená implikace neplatí Věta 4 Necht je dáno zobrazení ϕ vektorového prostoru V do V Je-li bod B libovolný bod z A a bod B libovolný bod z A, pak existuje právě jedno afinní zobrazení f : A A, jehož asociovaným zobrazením je ϕ a B f(b) Platí: kde X je libovolný bod z A f(x) = f(b) + ϕ(x B), Poznámka 2 Afinní zobrazení je tedy dáno zobrazením zaměření a párem odpovídajících si bodů Mám-li tedy např nějaké afinní zobrazení, které zobrazuje přímku na jinou přímku, stačí mi, pokud budu mít zadaný bod a jeho obraz, a předpis jak zobrazit směrový vektor do jiného vektotu (směrového vektoru té druhé přímky) Mohlo by vám to být jasnější, pokud si uvědomíte, že pokud chci zobrazit přímku do jiné, nestačí mi znát pouze výsledný směr, ale i nějaký bod, kterým má procházet Taky si zkuste promyslet, která zobrazení jsou afinní: to které zobrazí přímku jako rovinu? Nebo snad to které zobrazí rovinu jako přímku? Věta 5 Při afinním zobrazení se dvě rovnoběžné přímky zobrazí do dvou rovnoběžných přímek nebo každá z nich do bodu 1 Tím (A, B, C) je samozřejmě myšlen dělící poměr, připomínám, že jsme si ho definovali jako nějaké číslo λ takto: λ = (A, B, C) = AC BC 1

2 Důkaz Mějme tedy dvě rovnoběžné přímky (musí mít tedy stený směrový vektor) a nějaké afinní zobrazení f: X = B + t(c B) Y = D + t(c B) Najděme jejich obrazy: ( ) f(x) = f(b) + ϕ t(c B) = f(b) + t ϕ(c B) = f(b) + t (f(c) f(b)) f(y ) = = f(d) + t (f(c) f(b)) Obrazy tedy mají stejné zaměření t(f(c) f(b)), pokud by f(c) f(b) = 0, obě by se zobrazili do bodu Věta 6 (o určenosti afinního zobrazení) Mějme dva afinní bodové prostory A n a A n Necht M 0, M 1,, M n je n + 1 bodů z A n a M 0, M 1,, M n je n + 1 bodů z A n Pak existuje právě jedno afinní zobrazení f : A A takové, že: M i = f(m i ) Analytické vyjádření afinního zobrazení Necht i 1,, n A n = {P, e 1, e 2,, e n } A m = {Q, d 1, d 2,, d m } Necht f : A n A m a ϕ je asociované zobrazení k f tak, že ϕ( e j ) = a ijdi j = 1,, n kde a ij jsou souřadnice vektoru ϕ( e j ) v bázi zaměření A n f(p ) = Q + b idi kde b i jsou souřadnice f(p ); X A n, X A m Víme tedy, že pro x a f(x) platí: X = P + x j e j f(x) = Q + x id i (1) zobrazíme tedy bod X: f(x) = f(p ) + x j ϕ( e j ) = Q + b idi + Maticový zápis je samozřejmě mnohem elegantnější: x 1 x 2 x m x j m X = AX + B a 11 a 12 a 1n = a 21 a 22 a 2n a m1 a m2 a mn a ij di = Q + x 1 x 2 x n + ( a ij x j + b i b 1 b 2 b m } {{ } x i z rovnice (1) ) d i 2

3 Věta 7 Složením dvou afinních zobrazení f 1 a f 2 vznikne zobrazení f, které je také afinní Navíc platí, že zobrazení ϕ asociované k f vznikne složením ϕ 1, ϕ 2, které jsou asociované k f 1, f 2 Věta 8 Necht f je prosté afinní zobrazení A n A n, které mají stejnou dimenzi Pak k němu existuje inverzní zobrazení f 1, které je rovněž afinní Je-li ϕ asociované k f, pak ϕ 1 je asociované k f 1 Definice 2 Vzájemně jednoznačné afinní zobrazení afinního bodového prostoru A n na sebe nazveme afinní transformací (afinitou) prostoru A n Věta 9 Všechny afinity prostoru A n tvoří afinní grupu 2 Věta 10 Necht M 0, M 1,, M n a M 0, M 1,, M n z A n, pak existuje jediná afinita f, taková, že: jsou dvě skupiny lineárně nezávislých bodů f : f(m i ) = M i i 0, 1,, n Rovnice afinity prostoru A n Jde tedy o speciální případ afinního zobrazení z A n do A n a X = AX + B Zobrazení f je vzájemně jednoznačné matice A je regulární Definice 3 Modulem afinity nazveme det A Příklad 1 Mějme tedy afinitu v A 2 definovanou vztahy: X = X, Y = κy Pak matice A a její determinant jsou: A = A = κ ( κ ) Věta 11 Modul afinity prostoru A n nezávisí na volbě báze zaměření V n Věta 12 Složením dvou afinit vznikne afinita, jejíž modul je roven součinu modulů skládaných afinit Definice 4 Afinity, jejichž modul je kladný (resp záporný) se nazývají přímé (resp nepřímé) afinity Afinity jejichž modul je roven ±1 se nazývají ekviafinity Věta 13 Objem (resp obsah) měřitelného útvaru a jeho ekviafinního obrazu jsou si rovny 3 2 Roli neutrálního prvku zde hraje identita 3 Pokud by to nebyla zrovna ekviafinita, pak platí: V = δ V, kde δ je modul té dané afinity Pro obsah platí anologický vztah 3

4 Samodružné body afinního zobrazení Mějme tedy nějakou afinitu v prostoru A n, která je definována: X = AX + B (2) a hledejme její samodružné body Má-li být bod X samodružný, musí pro něj platit: X = X Z vlastnosti X = EX (kde E je jednotková matice) a z rovnice (2) postupně dostáváme: X = AX + B X = AX + B EX = AX + B 0 = AX EX + B 0 = (A E)X + B (3) Z toho je vidět, že pokud nějaké samodružné body existují dim A = dim(a E) Poznámka 3 Vztah (3) není nic jiného než soustava n rovnic pro n souřadnic x 1,, x n Věta 14 Existuje-li v afinitě f prostoru A n k + 1 LNZ samodružných bodů, pak prostor A k generovaný těmito body, obsahuje pouze samodružné body Poznámka 4 Všechny samodružné body afinity jsou bud : žádný, jeden, přímka, rovina, prostor Samodružné směry afinit Definice 5 Směrem v afinním bodovém prostoru rozumíme jednorozměrný podprostor jeho zaměření V n Definice 6 Směr je při afinním zobrazení samodružný asociované zobrazení ϕ ho zobrazí tak, že obraz je totožný se vzorem 4 : ϕ( u) = λ u λ R (4) Hledejme tedy samodružné směry Z definice pro ně musí platit (4), označíme-li u = ϕ( u), a pokud si uvědomíme, že u = A u, a že platí identita 5 u = E u, pak musí platit: ϕ( u) = λ u ϕ( u) = A u λ u = A u Soustava rovnic (5) má netriviální řešení det(a λe) = 0 λe = A u 0 = A u λe u 0 = (A λe) u (5) Příklad 2 Je dána afinita v E 2 : X X, X = [x, y], X = [x, y ], vztahy: x = 2x 2 y = x + 3y + 2 Máme najít její samodružné body a samodružné směry 4 vektory (1, 2, 3), (2, 4, 6) udávají stejný směr 5 matice E je jednotková matice 4

5 1 Pro samodružné body musí platit: x = x a y = y, tedy: x = 2x 2 y = x + 3y = x 2 0 = x + 2y + 2 Řešením je bod [2; 2] Afinita má tedy jeden samodružný bod 2 Pro samodružné směry u = (u 1 ; u 2 ) platí: λu 1 = 2u 1 λu 2 = u 1 + 3u 2 0 = (2 λ)u 1 0 = u 1 + (3 λ)u 2 2 λ 0 { 1 3 λ = 0 (2 λ)(3 λ) = 0 λ1 = 2 λ 2 = 3 Každému vlastnímu číslu odpovídá jeden vlastní vektor Dopočítáme-li, pak pro λ 1 = 2 platí: 0 = u 1 + u 2 Tomu odpovídá například u (1) = (1; 1) je určen až na násobek jednoznačně Pro druhý vektor, tedy když λ 2 = 3, platí: 0 = u 1 Jsou to tedy takové vektory, které mají první složku nulovou, např u (2) = (0; 1) Definice 7 Afinitu prostoru A n nazveme základní afinitou, pokud není identitou a má nadrovinu samodružných bodů Věta 15 Základní afinita A n je určena nadrovinou samodružných bodů a vzorem a obrazem libovolného bodu, který v nadrovině neleží Věta 16 (o skládání základních afinit) Každá afinita prostoru A n se dá složit nejvýše z n + 1 základních afinit Analytické vyjádření základní afinity Je tedy dána rovnicí nadroviny v A n : ρ : c 1 x 1 + c 2 x c n x n + c = 0 i 1,, n : c i 0 a jeden bod spolu se svým obrazem: M[p 1,, p n ] M [q 1,, q n ] 5

6 Věta 17 Necht je dána nadrovina ρ a body M, M, M / ρ, afinita f : x i = a ij x j + b i i = 1,, n má nadrovinu samodružných bodů ρ každá z rovnic afinity je násobkem rovnice nadroviny ρ Rovnice nadroviny afinity pak mají tvar: ( ) x i = x i + λ i c j x j + c, kde λ i = q i p i c j x j + c za předpokladu, že M M Afinita je identitou, pokud i : λ i = 0 Osová afinita v rovině Základní afinitou v rovině je osová afinita Spojnice bodu a jeho obrazu se nazývá směr afinity Podle polohy směru afinity k ose afinity rozeznáváme tři typy osových afinit A s a a A o A s a a A o a A A a o s a) b) c) Obrázek 1: Tři typy osové afinity: a) pravoúhlá, b) kosoúhlá, c) nevlastní elace Věta 18 V osové afinitě odpovídají rovnoběžným přímkám zase rovnoběžné přímky Příklad 3 V osové afinitě, která je daná osou o a dvojicí odpovídajících si bodů A a A Máme najít obraz bodu B (viz Obrázek 2) Věta 19 Jsou-li A A odpovídající si body v osové afinitě, která není nevlastní elací, a bod X je průsečík přímky AA s osou afinity, pak dělící poměr k = (A, A, X) je konstantní a nezávisí na volbě odpovídajících si bodů Číslo k se nazývá charakteristika afinity Je-li k > 0, pak sobě odpovídající body leží v téže polorovině určené osou afinity Je-li k < 0 6, pak leží v opačných polorovinách Pravoúhlá afinita s charakteristikou k = 1 se nazývá osová souměrnost Věta 20 V každé osové afinitě kružnicci nebo elipse odpovídá opět kružnice nebo elipsa Věta 21 Ke každé elipse je možno najít kružnici, která ji odpovídá v jisté afinitě 6 To je tehdy, mají-li vektory AX a A X opačný směr 6

7 A B s m B m A o Obrázek 2: Hledání obrazu obrazu bodu B: užijeme příkmy rovnoběžné s s, která prochází B, a dále přímky m a jejího obrazu m Sdružené průměry elipsy V osové afinitě vzájemně kolmým průměrům p = AB a q = CD kružnice k z obrázku 3, odpovídají průměry p = A B a q = C D elipsy k Průměry p, q kružnice a průměry p, q elipsy mají jedno společné: tečny v krajních bodech jednoho průměru jsou rovnoběžné s druhým průměrem Obrázek 3: Sdružené průměry kružnice a elipsy K danému průměru kružnice najdeme tedy sdružený tak, že v jeho krajním bodě sestrojíme tečnu, a pak už jen vedeme rovnoběžku s touto tečnou, která prochází středem prvního průměru Věta 22 Dva průměry kružnice nebo elipsy tvoří dvojici sdružených průměrů právě tehdy, když tětivy rovnoběžné s jedním průměrem jsou druhým půleny Trojúhelníková konstrukce elipsy Trojúhelníková konstrukce elipsy, je konstrukce ze dvou soustředných kružnic, které mají poloměry stejné s hlavní (resp vedlejší) poloosou elipsy Věta 23 Je tedy dána elipsa svými osami AB = 2a, CD = 2b, pak její bod M můžeme sestrojit pomocí kružnic k a k tak, že bodem M (M ) vedeme rovnoběžku s vedlejší (hlavní) osou Jejich průsečíkem je bod elipsy M 7

8 Obrázek 4: Trojúhelníková konstrukce elipsy Důkaz V pravoúhlé afinitě s osou o = AB a párem odpovídajících si bodů C, C si odpovídají elipsa k a kružnice k charakteristika této afinity je b Je-li M a 0 průsečík přímky M M a osou o, pak platí: MM 0 M M 0 = M S M S = CS AS = b a Bod M tedy odpovídá v dané afinitě bodu M, leží proto na elipse k 8

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková .. Funkce a jejich graf.. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné je taková binární relace z množin R do množin R, že pro každé R eistuje nejvýše jedno R, pro které [, ] f.

Více

Lineární algebra. Vektorové prostory

Lineární algebra. Vektorové prostory Lineární algebra Vektorové prostory Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu:

Více

Rostislav Horčík. 13. října 2006

Rostislav Horčík. 13. října 2006 3. přednáška Rostislav Horčík 13. října 2006 1 Lineární prostory Definice 1 Lineárním prostorem nazýváme každou neprázdnou množinu L, na které je definováno sčítání + : L L L a násobení reálným číslem

Více

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz.

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz. 7. Shodná zobrazení 6. ročník 7. Shodná zobrazení 7.1. Shodnost geometrických obrazců Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor,

Více

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly.

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly. 9. Úvod do středoškolského studia - rozšiřující učivo 9.. Další znalosti o trojúhelníku 9... Sinova věta a = sin b = sin c sin Příklad : V trojúhelníku BC platí : c = 0 cm, α = 45 0, β = 05 0. Vypočtěte

Více

2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic

2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic .3.19 Grafické řešení soustav lineárních rovnic a nerovnic Předpoklad: 307, 311 Př. 1: Vřeš soustavu rovnic + =. Pokud se také o grafické řešení. = 5 Tak jednoduchou soustavu už jsme dlouho neměli: + =

Více

Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2.

Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2. Výklad Dalším typem extrémů, kterým se budeme zabývat jsou tzv. vázané extrémy. Hledáme extrémy nějaké funkce vzhledem k předem zadaným podmínkám. Definice 6.2.1. Řekneme, že funkce f : R n D f R má v

Více

10.1.13 Asymptoty grafu funkce

10.1.13 Asymptoty grafu funkce .. Asmptot grafu funkce Předpoklad:, Asmptot grafu už známe kreslili jsme si je jako přímk, ke kterým se graf funkce přibližuje. Nakreslení asmptot, pak umožňuje přesnější kreslení grafu. Například u hperbol

Více

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem.

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem. 1 Matice Definice 1 Matice A typu (m, n) je zobrazení z kartézského součinu {1, 2,,m} {1, 2,,n} do množiny R Matici A obvykle zapisujeme takto: a 1n a 21 a 22 a 2n A =, a m1 a m2 a mn kde a ij R jsou její

Více

(k 1)x k + 1. pro k 1 a x = 0 pro k = 1.

(k 1)x k + 1. pro k 1 a x = 0 pro k = 1. . Funkce dvou a více proměnných. Úvod. Určete definiční obor funkce a proveďte klasifikaci bodů z R vzhledem k a rozhodněte zda je množina uzavřená či otevřená. Určete a načrtněte vrstevnice grafu funkce

Více

Funkce Vypracovala: Mgr. Zuzana Kopečková

Funkce Vypracovala: Mgr. Zuzana Kopečková Funkce Vypracovala: Mgr. Zuzana Kopečková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických předmětů OP

Více

Úlohy domácího kola kategorie C

Úlohy domácího kola kategorie C 50. ročník Matematické olympiády Úlohy domácího kola kategorie 1. Najděte všechna trojmístná čísla n taková, že poslední trojčíslí čísla n 2 je shodné s číslem n. Student může při řešení úlohy postupovat

Více

Průniky rotačních ploch

Průniky rotačních ploch Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Průniky rotačních ploch Vypracoval: Vojtěch Trnka Třída: 8. M Školní rok: 2012/2013 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

Matematika pro chemické inženýry. Drahoslava Janovská

Matematika pro chemické inženýry. Drahoslava Janovská Matematika pro chemické inženýry Drahoslava Janovská Přednášky ZS 2011-2012 Fázové portréty soustav nelineárních diferenciálních rovnic Obsah 1 Fázové portréty nelineárních soustav v rovině Klasifikace

Více

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin

Více

MS Word 2007 REVIZE DOKUMENTU A KOMENTÁŘE

MS Word 2007 REVIZE DOKUMENTU A KOMENTÁŘE MS Word 2007 REVIZE DOKUMENTU A KOMENTÁŘE 1 ZAPNUTÍ SLEDOVÁNÍ ZMĚN Pokud zapnete funkci Sledování změn, aplikace Word vloží značky tam, kde provedete mazání, vkládání a změny formátu. Na kartě Revize klepněte

Více

Vysoká škola báňská Technická univerzita Ostrava KUŽELOSEČKY, KOLINEACE

Vysoká škola báňská Technická univerzita Ostrava KUŽELOSEČKY, KOLINEACE Vysoká škola báňská Technická univerzita Ostrava KUŽELOEČKY KOLINECE Deskriptivní geometrie Krista Dudková Radka Hamříková O T R V 0 0 5 OH 1. Kuželosečky 5 1.1. Řezy na kuželové ploše 5 1.. Elipsa 7 odová

Více

Kótování na strojnických výkresech 1.část

Kótování na strojnických výkresech 1.část Kótování na strojnických výkresech 1.část Pro čtení výkresů, tj. určení rozměrů nebo polohy předmětu, jsou rozhodující kóty. Z tohoto důvodu je kótování jedna z nejzodpovědnějších prací na technických

Více

Kružnice. Kruh. Kruh K(S; r) je množina všech bodů roviny, které mají. od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice.

Kružnice. Kruh. Kruh K(S; r) je množina všech bodů roviny, které mají. od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice. Kružnice Kružnice k(s; r) je množina všech bodů roviny, které mají d od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice. S r Délka spojnice dvou bodů kružnice, která prochází středem

Více

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla Moderní technologie ve studiu aplikované fyziky CZ..07/..00/07.008 3. Reálná čísla RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny. K nejvýznamnějším patří množina reálných čísel,

Více

6. Matice. Algebraické vlastnosti

6. Matice. Algebraické vlastnosti Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 6 Matice Algebraické vlastnosti 1 Algebraické operace s maticemi Definice Bud te A,

Více

Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY

Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY INDIVIDUÁLNÍ VÝUKA Matematika METODIKA Soustavy rovnic Mgr. Marie Souchová květen 2011 Tato část učiva následuje po kapitole Rovnice. Je rozdělena do částí

Více

Poznámka 1: Každý příklad začneme pro přehlednost do nového souboru tímto krokem:

Poznámka 1: Každý příklad začneme pro přehlednost do nového souboru tímto krokem: Mongeovo promítání základní úlohy metrické (skutečná velikost úsečky - sklápění, kolmice k rovině, vzdálenost bodu od roviny, vzdálenost bodu od přímky, rovina kolmá k přímce, otáčení roviny, trojúhelník

Více

Matematický model kamery v afinním prostoru

Matematický model kamery v afinním prostoru CENTER FOR MACHINE PERCEPTION CZECH TECHNICAL UNIVERSITY Matematický model kamery v afinním prostoru (Verze 1.0.1) Jan Šochman, Tomáš Pajdla sochmj1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz CTU CMP 2002

Více

11 Soustavy rovnic a nerovnic, Determinanty a Matice

11 Soustavy rovnic a nerovnic, Determinanty a Matice 11 Soustavy rovnic a nerovnic, Determinanty a Matice (r zné typy soustav rovnic a nerovnic, matice druhy matic, operace s maticemi, hodnost matice, inverzní matice, Gaussova elimina ní metoda, determinanty

Více

3.1.4 Trojúhelník. Předpoklady: 3103. Každé tři různé body neležící v přímce určují trojúhelník. C. Co to je, víme. Jak ho definovat?

3.1.4 Trojúhelník. Předpoklady: 3103. Každé tři různé body neležící v přímce určují trojúhelník. C. Co to je, víme. Jak ho definovat? 3..4 Trojúhelní Předpolady: 303 Každé tři různé body neležící v přímce určují trojúhelní. o to je, víme. Ja ho definovat? Př. : Definuj trojúhelní jao průni polorovin. Trojúhelní je průni polorovin, a.

Více

Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel.

Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel. Výrazy. Rovnice a nerovnice. Výraz je matematický pojem používaný ve školské matematice. Prvním druhem matematických ů jsou konstanty. Konstanty označují právě jedno číslo z množiny reálných čísel. Například

Více

3.5.8 Otočení. Předpoklady: 3506

3.5.8 Otočení. Předpoklady: 3506 3.5.8 Otočení Předpoklady: 3506 efinice úhlu ze základní školy: Úhel je část roviny ohraničená dvojicí polopřímek se společným počátečním bodem (konvexní a nekonvexní úhel). Nevýhody této definice: Nevíme,

Více

Pravoúhlá axonometrie - řezy hranatých těles

Pravoúhlá axonometrie - řezy hranatých těles Pravoúhlá axonometrie - řezy hranatých těles KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS 2008 1 / 41 Příklad (Řez šikmého hranolu) Sestrojte řez šikmého

Více

Analytická geometrie (3. - 4. lekce)

Analytická geometrie (3. - 4. lekce) Analytická geometrie (3. - 4. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 16. června 2011 Příklad 1 Příklad 1. Algebraicky

Více

(3) Zvolíme pevné z a sledujme dráhu, kterou opisuje s postupujícím časem koncový bod vektoru E v rovině z = konst. Upravíme vztahy (2) a (3)

(3) Zvolíme pevné z a sledujme dráhu, kterou opisuje s postupujícím časem koncový bod vektoru E v rovině z = konst. Upravíme vztahy (2) a (3) Učební tet k přednášce UFY1 Předpokládejme šíření rovinné harmonické vln v kladném směru os z. = i + j kde i, j jsou jednotkové vektor ve směru os respektive a cos ( ) ω ϕ t kz = + () = cos( ωt kz+ ϕ )

Více

Definice tolerování. Technická dokumentace Ing. Lukáš Procházka

Definice tolerování. Technická dokumentace Ing. Lukáš Procházka Technická dokumentace Ing. Lukáš Procházka Téma: geometrické tolerance 1) Definice geometrických tolerancí 2) Všeobecné geometrické tolerance 3) Základny geometrických tolerancí 4) Druhy geometrických

Více

Průměty rovinných obrazců a těles

Průměty rovinných obrazců a těles Průměty rovinných obrazců a těles Tato část je podmíněna znalostí základních úloh, principů Mongeova promítání a pravoúhlé axonometrie. Slouží jako pracovní sešit na procvičování. Pracovní list č. 1 Zadání:

Více

3.cvičení. k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR. 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ),

3.cvičení. k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR. 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ), 3.cvičení 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ), k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR Bodem A rovnoběžku: Ještě jednu kolmici. Tři úhly, které je možno rozdělit

Více

1.9.5 Středově souměrné útvary

1.9.5 Středově souměrné útvary 1.9.5 Středově souměrné útvary Předpoklady: 010904 Př. 1: V obdélníkových rámech jsou nakresleny tři obrázky. Každý je sestaven z jedné přímky a jednoho obdélníku. Jeden z obrázků je středově souměrný.

Více

Shodná zobrazení Zobrazení Z v rovin shodné zobrazení nep ímou shodnost shodnost p ímou

Shodná zobrazení Zobrazení Z v rovin shodné zobrazení nep ímou shodnost shodnost p ímou Shodná zobrazení Zobrazení Z v rovině je předpis, který každému bodu X roviny přiřazuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X jeho obraz; zapisujeme Z: X X. Zobrazení v rovině je shodné

Více

Plochy stavebně-inženýrské praxe

Plochy stavebně-inženýrské praxe Plochy stavebně-inženýrské praxe 9. Plochy rourové In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 95 98. Persistent

Více

MATEMATIKA I VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ ZÁKLADY LINEÁRNÍ ALGEBRY

MATEMATIKA I VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ ZÁKLADY LINEÁRNÍ ALGEBRY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ MATEMATIKA I ZÁKLADY LINEÁRNÍ ALGEBRY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX 2ε, Podpořeno projektem

Více

Jan Březina. Technical University of Liberec. 17. března 2015

Jan Březina. Technical University of Liberec. 17. března 2015 TGH03 - stromy, ukládání grafů Jan Březina Technical University of Liberec 17. března 2015 Kružnice - C n V = {1, 2,..., n} E = {{1, 2}, {2, 3},..., {i, i + 1},..., {n 1, n}, {n, 1}} Cesta - P n V = {1,

Více

Goniometrie trigonometrie

Goniometrie trigonometrie Goniometrie trigonometrie Goniometrie se zabývá funkcemi sinus, kosinus, tangens, kotangens (goniometrické funkce). V tomto článku se budeme zabývat trigonometrií (součást goniometrie) používáním goniometrických

Více

( ) ( ) 7.2.2 Sčítání vektorů. Předpoklady: 7201

( ) ( ) 7.2.2 Sčítání vektorů. Předpoklady: 7201 7.. Sčítání ektorů Předpoklady: 70 Pedagogická poznámka: Stdenti ětšino necítí potřeb postpoat při definici sčítání ektorů (obecně při zaádění jakékoli operace) tak striktně, jak yžadje matematika. Upozorňji

Více

Hra a hry. Václav Vopravil. Teorie kombinatorických her se zabývá abstraktními hrami dvou hráčů. Hra je definována R },

Hra a hry. Václav Vopravil. Teorie kombinatorických her se zabývá abstraktními hrami dvou hráčů. Hra je definována R }, Hra a hry Václav Vopravil Úvod 1 Kombinatorické hry Teorie kombinatorických her se zabývá abstraktními hrami dvou hráčů. Hra je definována pomocí jednodušších her, tj. jako uspořádaná dvojice množin her.

Více

2.6.4 Lineární lomené funkce s absolutní hodnotou

2.6.4 Lineární lomené funkce s absolutní hodnotou .6. Lineární lomené funkce s absolutní hodnotou Předpoklady: 60, 603 Pedagogická poznámka: Hlavním cílem hodiny je nácvik volby odpovídajícího postupu. Proto je dobré nechat studentům chvíli, aby si metody

Více

Definice a vlastnosti funkcí

Definice a vlastnosti funkcí Definice a vlastnosti funkcí Učební text pro druhý ročník (sextu) gymnázia V tomto textu jsou definovány základní, obecné pojmy týkající se funkcí. Součástí textu nejsou (velmi důležité!) obrázky; ty si

Více

Numerická integrace. 6. listopadu 2012

Numerická integrace. 6. listopadu 2012 Numerická integrace Michal Čihák 6. listopadu 2012 Výpočty integrálů v praxi V přednáškách z matematické analýzy jste se seznámili s mnoha metodami výpočtu integrálů. V praxi se ale poměrně často můžeme

Více

Mechanismy. Vazby členů v mechanismech (v rovině):

Mechanismy. Vazby členů v mechanismech (v rovině): Mechanismy Mechanismus klikový, čtyřkloubový, kulisový, západkový a vačkový jsou nejčastějšími mechanismy ve strojích (kromě převodů). Mechanismy obsahují členy (kliky, ojnice, těhlice, křižáky a další).

Více

Matematika pro 9. ročník základní školy

Matematika pro 9. ročník základní školy Matematika pro 9. ročník základní školy Řešení Ćíselné výrazy 1. Prvočíslo je přirozené číslo, které je beze zbytku dělitelné právě dvěma různými přirozenými čísly, a to číslem jedna a sebou samým (tedy

Více

Výstupy Učivo Téma. Čas. Základní škola a mateřská škola Hať. Školní vzdělávací program. Průřezová témata, kontexty a přesahy,další poznámky

Výstupy Učivo Téma. Čas. Základní škola a mateřská škola Hať. Školní vzdělávací program. Průřezová témata, kontexty a přesahy,další poznámky provádí pamětné a písemné početní Čísla přirozená Opakování září, říjen operace v oboru přirozených čísel porovnává a uspořádává čísla celá a Čísla celá, racionální racionální, provádí početní operace

Více

1.7. Mechanické kmitání

1.7. Mechanické kmitání 1.7. Mechanické kmitání. 1. Umět vysvětlit princip netlumeného kmitavého pohybu.. Umět srovnat periodický kmitavý pohyb s periodickým pohybem po kružnici. 3. Znát charakteristické veličiny periodického

Více

ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ

ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ Pozemkem se podle 2 písm. a) katastrálního zákona rozumí část zemského povrchu, a to část taková, která je od sousedních částí zemského povrchu (sousedních pozemků)

Více

4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů

4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů 4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů Příklad 1: Pracujte v pohledu Shora. Sestrojte kružnici se středem [0,0,0], poloměrem 10 a kružnici

Více

5.2.3 Kolmost přímek a rovin I

5.2.3 Kolmost přímek a rovin I 5.2.3 Kolmost římek rovin I ředokldy: 5202 vě římky jsou k soě kolmé rávě tehdy, když jejich odchylk je 90. Nvzájem kolmé mohou ýt i mimoěžky. vě úsečky jsou kolmé, rávě když leží n kolmých římkách. íšeme:

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Planimetrie. Trojúhelníky. Teorie a příklady.

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Planimetrie. Trojúhelníky. Teorie a příklady. Číslo projektu Z.1.07/1.5.00/34.0743 Název školy Moravské gymnázium rno s.r.o. utor Tematická oblast Mgr. Marie hadimová Mgr. Věra Jeřábková Matematika. Planimetrie. Trojúhelníky. Teorie a příklady. Ročník

Více

4 DVOJMATICOVÉ HRY. Strategie Stiskni páku Sed u koryta. Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0)

4 DVOJMATICOVÉ HRY. Strategie Stiskni páku Sed u koryta. Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0) 4 DVOJMATICOVÉ HRY Strategie Stiskni páku Sed u koryta Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0) 125 DVOJMATICOVÁ HRA Je-li speciálně množina hráčů Q = {1, 2} a prostory strategií S 1, S 2

Více

TECHNICKÉ KRESLENÍ A CAD

TECHNICKÉ KRESLENÍ A CAD Přednáška č. 7 V ELEKTROTECHNICE Kótování Zjednodušené kótování základních geometrických prvků Někdy stačí k zobrazení pouze jeden pohled Tenké součásti kvádr Kótování Kvádr (základna čtverec) jehlan Kvalitativní

Více

Vyvažování tuhého rotoru v jedné rovině přístrojem Adash 4900 - Vibrio

Vyvažování tuhého rotoru v jedné rovině přístrojem Adash 4900 - Vibrio Aplikační list Vyvažování tuhého rotoru v jedné rovině přístrojem Adash 4900 - Vibrio Ref: 15032007 KM Obsah Vyvažování v jedné rovině bez měření fáze signálu...3 Nevýhody vyvažování jednoduchými přístroji...3

Více

4 Soustavy lineárních rovnic

4 Soustavy lineárních rovnic 4 Soustavy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic, to znamená několika lineárními rovnicemi, které musí být současně splněny. 4.1 Základní pojmy Definice Soustavu

Více

( x ) 2 ( ) 2.5.4 Další úlohy s kvadratickými funkcemi. Předpoklady: 2501, 2502

( x ) 2 ( ) 2.5.4 Další úlohy s kvadratickými funkcemi. Předpoklady: 2501, 2502 .5. Další úlohy s kvadratickými funkcemi Předpoklady: 50, 50 Pedagogická poznámka: Tato hodina patří mezi ty méně organizované. Společně řešíme příklad, při dalším počítání se třída rozpadá. Já řeším příklady

Více

Věty o pravoúhlém trojúhelníku. Vztahy pro výpočet obvodu a obsahu. Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu

Věty o pravoúhlém trojúhelníku. Vztahy pro výpočet obvodu a obsahu. Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu Věty o pravoúhlém trojúhelníku Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu b v a obou úseků přepony: v 2 = c a c b c b c a Eukleidova věta o odvěsně A c B Druhá mocnina délky

Více

1.2.5 Reálná čísla I. Předpoklady: 010204

1.2.5 Reálná čísla I. Předpoklady: 010204 .2.5 Reálná čísla I Předpoklady: 00204 Značíme R. Reálná čísla jsou čísla, kterými se vyjadřují délky úseček, čísla jim opačná a 0. Každé reálné číslo je na číselné ose znázorněno právě jedním bodem. Každý

Více

ZÁPISKY Z ANALYTICKÉ GEOMETRIE 1 SOUŘADNICE, BODY

ZÁPISKY Z ANALYTICKÉ GEOMETRIE 1 SOUŘADNICE, BODY 1 Souřadnice, body 1.1 Prostor prostor můžeme chápat jako nějaké prostředí, ve kterém můžeme mít různé věci na různých místech místo, poloha - tohle potřebujeme nějak popsat abychom mohli změřit nebo říci,

Více

Zásady postupu při pronájmu obecních bytů. v Městské části Praha 17

Zásady postupu při pronájmu obecních bytů. v Městské části Praha 17 Městská část Praha 17, Žalanského 291 Zásady postupu při pronájmu obecních bytů v Městské části Praha 17 Tyto zásady slouží k jednání majetkové a bytové komise, rady městské části a Zastupitelstva městské

Více

Autodesk Inventor 8 vysunutí

Autodesk Inventor 8 vysunutí Nyní je náčrt posazen rohem do počátku souřadného systému. Autodesk Inventor 8 vysunutí Následující text popisuje vznik 3D modelu pomocí příkazu Vysunout. Vyjdeme z náčrtu na obrázku 1. Obrázek 1: Náčrt

Více

GEOMETRICKÁ TĚLESA. Mnohostěny

GEOMETRICKÁ TĚLESA. Mnohostěny GEOMETRICKÁ TĚLESA Geometrické těleso je prostorový geometrický útvar, který je omezený (ohraničený), tato hranice mu náleží. Jeho povrch tvoří rovinné útvary a také různé složitější plochy. Geometrická

Více

SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G

SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G říjen 2014 1 1O POLOHOVÉ VYTYČOVÁNÍ Pod pojem polohového vytyčování se

Více

souřadné systémy geometrické určení polohy pevně spojené se vztažným tělesem

souřadné systémy geometrické určení polohy pevně spojené se vztažným tělesem souřadné systémy geometrické určení polohy pevně spojené se vztažným tělesem kartézský souřadný systém Z Y X kartézský souřadný systém Z Y X kartézský souřadný systém Z x y Y X kartézský souřadný systém

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jana Kalinová [ÚLOHA 01 ÚVOD DO PROSTŘEDÍ OBJEMOVÁ SOUČÁST; PŘÍKAZ SKICA A JEJÍ VAZBENÍ]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jana Kalinová [ÚLOHA 01 ÚVOD DO PROSTŘEDÍ OBJEMOVÁ SOUČÁST; PŘÍKAZ SKICA A JEJÍ VAZBENÍ] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jana Kalinová [ÚLOHA 01 ÚVOD DO PROSTŘEDÍ OBJEMOVÁ SOUČÁST; PŘÍKAZ SKICA A JEJÍ VAZBENÍ] 1 CÍL KAPITOLY. Cílem této kapitoly je sžití se s win prostředím

Více

6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi

6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi 6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky od Ing. Magdaleny Čepičkové

Více

Diamantová suma - řešení příkladů 1.kola

Diamantová suma - řešení příkladů 1.kola Diamantová suma - řešení příladů.ola. Doažte, že pro aždé přirozené číslo n platí.n + 2.n + + n.n < 2. Postupujeme matematicou inducí. Levou stranu nerovnosti označme s n. Nejmenší n, pro než má smysl

Více

Dů kazové úlohy. Jiří Vaníček

Dů kazové úlohy. Jiří Vaníček Dů kazové úlohy Jiří Vaníček Následující série ú loh je koncipována tak, ž e student nejprve podle předem daného konstrukčního postupu sestrojí konstrukci a v ní podle návodu objeví některý nový poznatek.

Více

TEORETICKÝ VÝKRES LODNÍHO TĚLESA

TEORETICKÝ VÝKRES LODNÍHO TĚLESA TEORETICKÝ VÝKRES LODNÍHO TĚLESA BOKORYS (neboli NÁRYS) je jeden ze základních pohledů, ze kterého poznáváme tvar kýlu, zádě, zakřivení paluby, atd. Zobrazuje v osové rovině obrys plavidla. Uvnitř obrysu

Více

SBÍRKA PŘÍKLADŮ PRO OPAKOVÁNÍ NA PŘIJÍMACÍ ZKOUŠKY 2

SBÍRKA PŘÍKLADŮ PRO OPAKOVÁNÍ NA PŘIJÍMACÍ ZKOUŠKY 2 STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNÍ A STAVEBNÍ TÁBOR, KOMENSKÉHO 1670 SBÍRKA PŘÍKLADŮ PRO OPAKOVÁNÍ NA PŘIJÍMACÍ ZKOUŠKY 2 ŠKOLNÍ ROK 2014/2015 Obsah 1 Dělitelnost přirozených čísel... 3 2 Obvody a obsahy

Více

Strojní součásti, konstrukční prvky a spoje

Strojní součásti, konstrukční prvky a spoje Strojní součásti, konstrukční prvky a spoje Šroubové spoje Šrouby jsou nejčastěji používané strojní součástí a neexistuje snad stroj, kde by se nevyskytovaly. Mimo šroubů jsou u některých šroubových spojů

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

SMĚŠOVACÍ KALORIMETR -tepelně izolovaná nádoba s míchačkou a teploměrem, která je naplněná kapalinou

SMĚŠOVACÍ KALORIMETR -tepelně izolovaná nádoba s míchačkou a teploměrem, která je naplněná kapalinou KALORIMETRIE Kalorimetr slouží k měření tepla, tepelné kapacity, případně měrné tepelné kapacity Kalorimetrická rovnice vyjadřuje energetickou bilanci při tepelné výměně mezi kalorimetrem a tělesy v kalorimetru.

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Rovnice a jejich soustavy Petra Směšná žák měří dané veličiny, analyzuje a zpracovává naměřená data, rozumí pojmu řešení soustavy dvou lineárních rovnic,

Více

( ) Úloha č. 9. Měření rychlosti zvuku a Poissonovy konstanty

( ) Úloha č. 9. Měření rychlosti zvuku a Poissonovy konstanty Fyzikální praktikum IV. Měření ryhlosti zvuku a Poissonovy konstanty - verze Úloha č. 9 Měření ryhlosti zvuku a Poissonovy konstanty 1) Pomůky: Kundtova trubie, mikrofon se sondou, milivoltmetr, měřítko,

Více

7.8 Kosmická loď o délce 100 m letí kolem Země a jeví se pozorovateli na Zemi zkrácena na 50 m. Jak velkou rychlostí loď letí?

7.8 Kosmická loď o délce 100 m letí kolem Země a jeví se pozorovateli na Zemi zkrácena na 50 m. Jak velkou rychlostí loď letí? 7. Speciální teorie relativity 7.1 Kosmonaut v kosmické lodi, přibližující se stálou rychlostí 0,5c k Zemi, vyšle směrem k Zemi světelný signál. Jak velká je rychlost signálu a) vzhledem k Zemi, b) vzhledem

Více

MODEL MOSTU. Ing.Jiřina Strnadová. Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti. Předmět:Fyzika

MODEL MOSTU. Ing.Jiřina Strnadová. Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti. Předmět:Fyzika MODEL MOSTU Ing.Jiřina Strnadová Předmět:Fyzika Praha a EU Investujeme do vaší budoucnosti Model mostu Teoretický úvod: Příhradové nosníky (prutové soustavy) jsou složené z prutů, které jsou vzájemně spojené

Více

Vyučovací předmět / ročník: Matematika / 5. Učivo

Vyučovací předmět / ročník: Matematika / 5. Učivo Vzdělávací oblast: Matematika a její aplikace Výstupy žáka Vyučovací předmět / ročník: Matematika / 5. ČÍSLO A POČETNÍ OPERACE Zpracoval: Mgr. Dana Štěpánová orientuje se v posloupnosti přirozených čísel

Více

Line rn oper tory v euklidovsk ch prostorech V t to sti pou ijeme obecn v sledky o line rn ch oper torech ve vektorov ch prostorech nad komplexn mi sl

Line rn oper tory v euklidovsk ch prostorech V t to sti pou ijeme obecn v sledky o line rn ch oper torech ve vektorov ch prostorech nad komplexn mi sl Line rn oper tory v euklidovsk ch prostorech V t to sti pou ijeme obecn v sledky o line rn ch oper torech ve vektorov ch prostorech nad komplexn mi sly z p edchoz ch kapitol k podrobn j mu zkoum n line

Více

Měření základních vlastností OZ

Měření základních vlastností OZ Měření základních vlastností OZ. Zadání: A. Na operačním zesilovači typu MAA 74 a MAC 55 změřte: a) Vstupní zbytkové napětí U D0 b) Amplitudovou frekvenční charakteristiku napěťového přenosu OZ v invertujícím

Více

Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu

Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 1 Tutoriál č. 3 Exponenciála matice a její užití řešení Cauchyovy úlohy pro lineární systémy užitím fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 0.1 Exponenciála matice a její užití

Více

TSMPr, s.r.o. - systém odděleného sběru využitelných složek komunálního

TSMPr, s.r.o. - systém odděleného sběru využitelných složek komunálního Zakázka malého rozsahu - Oznámení o zahájení výběrového řízení - Výzva k podání nabídek k realizaci projektu TSMPr, s.r.o.- systém odděleného sběru využitelných složek komunálního odpadu Technické služby

Více

Státní maturita 2011 Maturitní testy a zadání jaro 2011 Matematika: didaktický test - základní úrove obtíºnosti MAMZD11C0T02 e²ené p íklady

Státní maturita 2011 Maturitní testy a zadání jaro 2011 Matematika: didaktický test - základní úrove obtíºnosti MAMZD11C0T02 e²ené p íklady Státní maturita 0 Maturitní testy a zadání jaro 0 Matematika: didaktický test - základní úrove obtíºnosti MAMZDC0T0 e²ené p íklady Autor e²ení: Jitka Vachtová 0. srpna 0 http://www.vachtova.cz/ Obsah Úloha

Více

Seznámení s možnostmi Autodesk Inventoru 2012

Seznámení s možnostmi Autodesk Inventoru 2012 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

3. Polynomy Verze 338.

3. Polynomy Verze 338. 3. Polynomy Verze 338. V této kapitole se věnujeme vlastnostem polynomů. Definujeme základní pojmy, které se k nim váží, definujeme algebraické operace s polynomy. Diskutujeme dělitelnost polynomů, existenci

Více

Mezní kalibry. Druhy kalibrů podle přesnosti: - dílenské kalibry - používají ve výrobě, - porovnávací kalibry - pro kontrolu dílenských kalibrů.

Mezní kalibry. Druhy kalibrů podle přesnosti: - dílenské kalibry - používají ve výrobě, - porovnávací kalibry - pro kontrolu dílenských kalibrů. Mezní kalibry Mezními kalibry zjistíme, zda je rozměr součástky v povolených mezích, tj. v toleranci. Mají dobrou a zmetkovou stranu. Zmetková strana je označená červenou barvou. Délka zmetkové části je

Více

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 4. Komplexní čísla

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 4. Komplexní čísla Moderní technologie ve studiu aplikované fyiky CZ.1.07/..00/07.0018 4. Komplexní čísla Matematickým důvodem pro avedení komplexních čísel ( latinského complexus složený), byla potřeba rošířit množinu (obor)

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ mechanismy. Přednáška 8

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ mechanismy. Přednáška 8 Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ mechanismy Přednáška 8 Převody s korigovanými ozubenými koly Obsah Převody s korigovanými ozubenými koly Výroba ozubení odvalováním

Více

7. Odraz a lom. 7.1 Rovinná rozhraní dielektrik - základní pojmy

7. Odraz a lom. 7.1 Rovinná rozhraní dielektrik - základní pojmy Trivium z optiky 45 7 draz a lom V této kapitole se budeme zabývat průchodem (lomem) a odrazem světla od rozhraní dvou homogenních izotropních prostředí Pro jednoduchost se omezíme na rozhraní rovinná

Více

Vyhláška č. 294/2015 Sb., kterou se provádějí pravidla provozu na pozemních komunikacích

Vyhláška č. 294/2015 Sb., kterou se provádějí pravidla provozu na pozemních komunikacích Změny 1 vyhláška č. 294/2015 Sb. Vyhláška č. 294/2015 Sb., kterou se provádějí pravidla provozu na pozemních komunikacích a která s účinností od 1. ledna 2016 nahradí vyhlášku č. 30/2001 Sb. Umístění svislých

Více

Zaměstnání a podnikání, hrubá a čistá mzda.

Zaměstnání a podnikání, hrubá a čistá mzda. Zaměstnání a podnikání, hrubá a čistá mzda. Téměř každý člověk touží být v práci úspěšný touží pracovně se uplatnit. V průběhu studia si mladý člověk osvojuje znalosti a dovednosti potřebné pro povolání,

Více

CVIČENÍ č. 8 BERNOULLIHO ROVNICE

CVIČENÍ č. 8 BERNOULLIHO ROVNICE CVIČENÍ č. 8 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Z injekční stříkačky je skrze jehlu vytlačovaná voda. Průměr stříkačky je D, průměr jehly d. Určete výtokovou rychlost,

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic Buď (T, +, ) těleso. Pak soustava rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1, a 21 x 1 + a 22 x 2 + + a 2n x n = b 2,................................... a m1 x 1 + a m2 x

Více

Příklad 1.3: Mocnina matice

Příklad 1.3: Mocnina matice Řešení stavových modelů, módy, stabilita. Toto cvičení bude věnováno hledání analytického řešení lineárního stavového modelu. V matematickém jazyce je takový model ničím jiným, než sadou lineárních diferenciálních

Více

Druhá mocnina. Druhá odmocnina. 2.8.5 Druhá odmocnina. Předpoklady: 020804. V této hodině jsou kalkulačky zakázány.

Druhá mocnina. Druhá odmocnina. 2.8.5 Druhá odmocnina. Předpoklady: 020804. V této hodině jsou kalkulačky zakázány. .8.5 Druhá odmocnina Předpoklady: 0080 V této hodině jsou kalkulačky zakázány. Druhá mocnina nám umožňuje určit z délky strany plochu čtverce. Druhá mocnina 1 1 9 11 81 11 délky stran čtverců obsahy čtverců

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor013 Vypracoval(a),

Více

Jak prochází světlo soustavou částečně propustných zrcadel?

Jak prochází světlo soustavou částečně propustných zrcadel? Jak rochází světlo soustavou částečně roustných zrcadel? Když světlo rochází oloroustným zrcadlem, olovina světla rojde a olovina se odrazí. Co se však stane, když takových zrcadel máme víc za sebou a

Více