Kapitola 2: Lineární zobrazení

Rozměr: px
Začít zobrazení ze stránky:

Download "Kapitola 2: Lineární zobrazení"

Transkript

1 Sbírka příkladů Matematika II pro strukturované studium Kapitola 2: Lineární zobrazení Chcete-li ukončit prohlížení stiskněte klávesuesc. Chcete-li pokračovat stiskněte klávesuenter.. p.1/11

2 Lineární zobrazení Lineární zobrazení zên doêm Inverzní matice. p.2/11

3 LineárnízobrazenízÊn doêm Příklad Napište maticiareprezentující lineární zobrazení L prostoruê3 do Ê4 definované vztahem L((x, y, z) T )=(4x+2y+ z,3x+y,2x+2y+2z, x y 2z) T. Najděte vektor v = L( u), který je obrazem vektoru u =(1, 3,2) T v tomto zobrazení. Zjistěte, zda vektor u je jediným vektorem, který se zobrazí na vektor v. Pokud není jediným, nalezněte alespoň jeden další. Příklad Najděte vektor v, který je obrazem vektoru u =(1,1,1) T v lineárním zobrazení L prostoruê3 doê3 reprezentovaném maticí A= Zjistěte, zda vektor u je jediným vektorem z prostoruê3, který se na vektor v zobrazí. Pokud není jediný, najděte všechny další. Příklad Dokažte, že zobrazení L1 :Ê3 Ê4 a zobrazení L 2 :Ê4 Ê3 jsou lineární, a najděte maticia, která reprezentuje složené zobrazení L 1 L 2. L 1 ((x 1, x 2, x 3 ) T )=(x 1 2x 2 + x 3,4x 1 +2x 2 x 3, x 1 5x 2 +3x 3,2x 1 3x 2 +8x 3 ) Ț L 2 ((x 1, x 2, x 3, x 4 ) T )=(x 1 2x 2 + x 3 x 4, x 1 7x 4,2x 1 x 3 + x 4 ) T. Příklad Najděte jádroklineárního zobrazení L:Ê3 Ê4 reprezentovaného maticí A= Určete dimenzik p.3/11

4 Příklad Napište maticiareprezentující lineární zobrazení L prostoruê3 doê4 definované vztahem L((x, y, z) T )=(4x+2y+ z,3x+y,2x+2y+2z, x y 2z) T. Najděte vektor v = L( u), který je obrazem vektoru u =(1, 3,2) T v tomto zobrazení. Zjistěte, zda vektor u je jediným vektorem, který se zobrazí na vektor v. Pokud není jediným, nalezněte alespoň jeden další.?. p.4/11

5 Příklad Napište maticiareprezentující lineární zobrazení L prostoruê3 doê4 definované vztahem L((x, y, z) T )=(4x+2y+ z,3x+y,2x+2y+2z, x y 2z) T. Najděte vektor v = L( u), který je obrazem vektoru u =(1, 3,2) T v tomto zobrazení. Zjistěte, zda vektor u je jediným vektorem, který se zobrazí na vektor v. Pokud není jediným, nalezněte alespoň jeden další. Výsledek: A= , v = , L((0,0,0)T )= p.4/11

6 Příklad Napište maticiareprezentující lineární zobrazení L prostoruê3 doê4 definované vztahem L((x, y, z) T )=(4x+2y+ z,3x+y,2x+2y+2z, x y 2z) T. Najděte vektor v = L( u), který je obrazem vektoru u =(1, 3,2) T v tomto zobrazení. Zjistěte, zda vektor u je jediným vektorem, který se zobrazí na vektor v. Pokud není jediným, nalezněte alespoň jeden další. Návod: MaticeAbude typu4 3 a musí splňovat L((x, y, z) T )=A(x, y, z) T. Z této rovnosti zjistíme prvky maticea. Protože L( u)=a u, je v =A u. Vektor bude jediný právě když je hodnost maticearovna dimenzi vektorového prostoru vzorů, v našem případě 3. Pokudh(A) <3, musíme další vektory určit jako řešení soustavy lineárních rovnic A(x, y, z) T = v.. p.4/11

7 Příklad Napište maticiareprezentující lineární zobrazení L prostoruê3 doê4 definované vztahem L((x, y, z) T )=(4x+2y+ z,3x+y,2x+2y+2z, x y 2z) T. Najděte vektor v = L( u), který je obrazem vektoru u =(1, 3,2) T v tomto zobrazení. Zjistěte, zda vektor u je jediným vektorem, který se zobrazí na vektor v. Pokud není jediným, nalezněte alespoň jeden další. Řešení: L((x, y, z) T )=A = x y z = a 11 x+a 12 y+ a 13 z a 21 x+a 22 y+ a 23 z a 31 x+a 32 y+ a 33 z a 41 x+a 42 y+ a 43 z Porovnáme poslední dva vektory a dostaneme a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 a 41 a 42 a 43 = 4x+2y+ z 3x+ y 2x+2y+2z x y 2z x y z. = a 11 = 4 a 12 = 2 a 13 = 1 a 21 = 3 a 22 = 1 a 23 = 0 a 31 = 2 a 32 = 2 a 33 = 2 a 41 = 1 a 42 = 1 a 43 = 2 Další. p.4/11

8 Příklad Napište maticiareprezentující lineární zobrazení L prostoruê3 doê4 definované vztahem L((x, y, z) T )=(4x+2y+ z,3x+y,2x+2y+2z, x y 2z) T. Najděte vektor v = L( u), který je obrazem vektoru u =(1, 3,2) T v tomto zobrazení. Zjistěte, zda vektor u je jediným vektorem, který se zobrazí na vektor v. Pokud není jediným, nalezněte alespoň jeden další. Řešení: Tedy A= MaticeAreprezentuje lineární zobrazení L, neboli L( u)=a u = v, A u = 3 = = v Protože L je lineární zobrazení prostoruê3 doê4, víme, že se nulový vektor (0,0,0) T Ê3 zobrazí na nulový vektor(0,0,0,0) T Ê4. Určitě tedy není vektor u jediný vektor, který se zobrazí na v. Máme-li tedy najít alespoň jeden další vektor, který se zobrazí na vektor v =(0,0,0,0) T Ê4 nemusíme už nic počítat a správná odpověd je, že na vektor v se zobrazí také vektor(0,0,0) T Ê3... p.4/11

9 Příklad Napište maticiareprezentující lineární zobrazení L prostoruê3 doê4 definované vztahem L((x, y, z) T )=(4x+2y+ z,3x+y,2x+2y+2z, x y 2z) T. Najděte vektor v = L( u), který je obrazem vektoru u =(1, 3,2) T v tomto zobrazení. Zjistěte, zda vektor u je jediným vektorem, který se zobrazí na vektor v. Pokud není jediným, nalezněte alespoň jeden další. Maple: > with(linalg): > eqns:= {4*x+2*y+z=a1,3*x+y=a2,2*x+2*y+2*z=a3,x-y-2*z=a4}; eqns:= { 4 x+2 y+ z=a1,3 x+y=a2,2 x+2 y+2 z=a3, x y 2 z=a4 } > A := genmatrix(eqns, [x,y,z]); A:= > u:=vector([1,-3,2]); Další > v:=evalm(a&*u); u:=[1, 3,2] v:=[0,0,0,0]. p.4/11

10 Příklad Napište maticiareprezentující lineární zobrazení L prostoruê3 doê4 definované vztahem L((x, y, z) T )=(4x+2y+ z,3x+y,2x+2y+2z, x y 2z) T. Najděte vektor v = L( u), který je obrazem vektoru u =(1, 3,2) T v tomto zobrazení. Zjistěte, zda vektor u je jediným vektorem, který se zobrazí na vektor v. Pokud není jediným, nalezněte alespoň jeden další. Maple: > linsolve (A,v); [t 1, 3 t 1,2 t 1 ] > uall:=t1->vector([t1,-3*t1,2*t1]); > uall(1); > uall(0); uall:=t1 [t1, 3t1,2t1] [1, 3,2] [0,0,0] > uall(5); [5, 15,10]. p.4/11

11 Příklad Napište maticiareprezentující lineární zobrazení L prostoruê3 doê4 definované vztahem L((x, y, z) T )=(4x+2y+ z,3x+y,2x+2y+2z, x y 2z) T. Najděte vektor v = L( u), který je obrazem vektoru u =(1, 3,2) T v tomto zobrazení. Zjistěte, zda vektor u je jediným vektorem, který se zobrazí na vektor v. Pokud není jediným, nalezněte alespoň jeden další. Mathematica: A={Coefficient[4x+2y+ z, {x, y, z}], Coefficient[3x+y, {x, y, z}], Coefficient[x y 2z, {x, y, z}]}; MatrixForm[A] u={1, 3,2}; v=a.u {0,0,0} LinearSolve[A, v] {0,0,0}. p.4/11

12 Příklad Najděte vektor v, který je obrazem vektoru u =(1,1,1) T v lineárním zobrazení L prostoruê3 doê3 reprezentovaném maticí A= Zjistěte, zda vektor u je jediným vektorem z prostoruê3, který se na vektor v zobrazí. Pokud není jediný, najděte všechny další.?. p.5/11

13 Příklad Najděte vektor v, který je obrazem vektoru u =(1,1,1) T v lineárním zobrazení L prostoruê3 doê3 reprezentovaném maticí A= Zjistěte, zda vektor u je jediným vektorem z prostoruê3, který se na vektor v zobrazí. Pokud není jediný, najděte všechny další. Výsledek: v =(1,1,1) T, u je jediným vektorem zê3, který se na v zobrazí.. p.5/11

14 Příklad Najděte vektor v, který je obrazem vektoru u =(1,1,1) T v lineárním zobrazení L prostoruê3 doê3 reprezentovaném maticí A= Zjistěte, zda vektor u je jediným vektorem z prostoruê3, který se na vektor v zobrazí. Pokud není jediný, najděte všechny další. Návod: Protože L je reprezentováno maticía, je L( u)=a u. Je-li zobrazení L prosté, je vektor u jediný. Protože zobrazení je prosté právě když hodnost maticeaje rovna dimenzi vektorového prostoru vzorů, tj. počtu sloupců maticea, stačí zjistith(a). Zjistíme-li, že zobrazení není prosté, najdeme všechny vektory x Ê3, které se zobrazí na vektor v jako řešení x soustavy lineárních rovnica x = v.. p.5/11

15 Příklad Najděte vektor v, který je obrazem vektoru u =(1,1,1) T v lineárním zobrazení L prostoruê3 doê3 reprezentovaném maticí A= Zjistěte, zda vektor u je jediným vektorem z prostoruê3, který se na vektor v zobrazí. Pokud není jediný, najděte všechny další. Řešení: Lineární zobrazení L je reprezentováno maticía, tj. L( u)=a u = v. A u = = = v MaticeAje v horním trojúhelníkovém tvaru, její hodnost je tedy rovna počtu řádků, tj. h(a)=3= počtu sloupců maticeaazobrazení L je prosté. Vektor u je tedy jediným vektorem zê3, který se na vektor v zobrazí.. p.5/11

16 Příklad Najděte vektor v, který je obrazem vektoru u =(1,1,1) T v lineárním zobrazení L prostoruê3 doê3 reprezentovaném maticí A= Zjistěte, zda vektor u je jediným vektorem z prostoruê3, který se na vektor v zobrazí. Pokud není jediný, najděte všechny další. Maple: > with(linalg): > A:=matrix(3,3,[2,-1,0,0,4,-3,0,0,1]); A:= > u:=vector(3,[1,1,1]); > v:=evalm(a&*u); > allu:=linsolve(a,v); u:=[1,1,1] v:=[1,1,1] allu:=[1,1,1]. p.5/11

17 Příklad Najděte vektor v, který je obrazem vektoru u =(1,1,1) T v lineárním zobrazení L prostoruê3 doê3 reprezentovaném maticí A= Zjistěte, zda vektor u je jediným vektorem z prostoruê3, který se na vektor v zobrazí. Pokud není jediný, najděte všechny další. Mathematica: A={{2, 1,0}, {0,4, 3}, {0,0,1}}; MatrixForm[A] u={1,1,1}; v=a.u {1,1,1} u1 = LinearSolve[A, v] {1,1,1}. p.5/11

18 Příklad Dokažte, že zobrazení L 1 :Ê3 Ê4 a zobrazení L 2 :Ê4 Ê3 jsou lineární, a najděte maticia, která reprezentuje složené zobrazení L 1 L 2. L 1 ((x 1, x 2, x 3 ) T )=(x 1 2x 2 + x 3,4x 1 +2x 2 x 3, x 1 5x 2 +3x 3,2x 1 3x 2 +8x 3 ) T, L 2 ((x 1, x 2, x 3, x 4 ) T )=(x 1 2x 2 + x 3 x 4, x 1 7x 4,2x 1 x 3 + x 4 ) T.?. p.6/11

19 Příklad Dokažte, že zobrazení L 1 :Ê3 Ê4 a zobrazení L 2 :Ê4 Ê3 jsou lineární, a najděte maticia, která reprezentuje složené zobrazení L 1 L 2. L 1 ((x 1, x 2, x 3 ) T )=(x 1 2x 2 + x 3,4x 1 +2x 2 x 3, x 1 5x 2 +3x 3,2x 1 3x 2 +8x 3 ) T, L 2 ((x 1, x 2, x 3, x 4 ) T )=(x 1 2x 2 + x 3 x 4, x 1 7x 4,2x 1 x 3 + x 4 ) T. Výsledek: A= p.6/11

20 Příklad Dokažte, že zobrazení L 1 :Ê3 Ê4 a zobrazení L 2 :Ê4 Ê3 jsou lineární, a najděte maticia, která reprezentuje složené zobrazení L 1 L 2. L 1 ((x 1, x 2, x 3 ) T )=(x 1 2x 2 + x 3,4x 1 +2x 2 x 3, x 1 5x 2 +3x 3,2x 1 3x 2 +8x 3 ) T, L 2 ((x 1, x 2, x 3, x 4 ) T )=(x 1 2x 2 + x 3 x 4, x 1 7x 4,2x 1 x 3 + x 4 ) T. Návod: Úlohu řešte tak, že a) najdete tvar složeného zobrazení a pak sestavíte jeho matici b) sestavíte nejprve matice jednotlivých zobrazení. L 1 ((x 1, x 2, x 3 ) T )=(x 1 2x 2 + x 3,4x 1 +2x 2 x 3, x 1 5x 2 +3x 3,2x 1 3x 2 +8x 3 ) T, L 2 ((x 1, x 2, x 3, x 4 ) T )=(x 1 2x 2 + x 3 x 4, x 1 7x 4,2x 1 x 3 + x 4 ) T. Zobrazení zên doêm je lineární právě když je reprezentováno maticí. Stačí tedy ukázat, že existují maticea 1 aa 2, které reprezentují zobrazení L 1 a L 2. a) Na vektor x =(x 1, x 2, x 3, x 4 ) T Ê4 aplikujeme zobrazení L 2 a na výsledný vektor z Ê3 aplikujeme zobrazení L 1. Výsledek složení je vektor zê4. Protože zobrazení L 1 a L 2 jsou lineární, je lineární i složené zobrazení L 1 (L 2 ( x)). Je reprezentováno maticía, kterou získáme z rovnicea x = L 1 (L 2 ( x)). b) Zobrazení L 1 je reprezentováno maticía 1, jejíž prvky získáme porovnáním vektorů A 1 y a L1 ( y), y Ê3. Obdobně získáme maticia 2. Výsledná maticea=a 1 A 2.. p.6/11

21 Příklad Dokažte, že zobrazení L 1 :Ê3 Ê4 a zobrazení L 2 :Ê4 Ê3 jsou lineární, a najděte maticia, která reprezentuje složené zobrazení L 1 L 2. L 1 ((x 1, x 2, x 3 ) T )=(x 1 2x 2 + x 3,4x 1 +2x 2 x 3, x 1 5x 2 +3x 3,2x 1 3x 2 +8x 3 ) T, L 2 ((x 1, x 2, x 3, x 4 ) T )=(x 1 2x 2 + x 3 x 4, x 1 7x 4,2x 1 x 3 + x 4 ) T. Řešení: Zobrazení z konečnědimenzionálního prostoru do konečnědimenzionálního prostoru je lineární právě když je reprezentováno maticí. Najdeme-li tedy matice, které reprezentují zobrazení L 1 a L 2, dokážeme tím současně, že zobrazení jsou lineární. Necht y =(y1, y 2, y 3 ) T Ê3. Pak = L 1 ( y)=a 1 y = a 11 y 1 + a 12 y 2 + a 13 y 3 a 21 y 1 + a 22 y 2 + a 23 y 3 a 31 y 1 + a 32 y 2 + a 33 y 3 a 41 y 1 + a 42 y 2 + a 43 y 3 Porovnáme poslední dva vektory a dostaneme a 11 = 1 a 12 = 2 a 13 = 1 a 21 = 4 a 22 = 2 a 23 = 1 a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 a 41 a 42 a 43 = a 31 = 1 a 32 = 5 a 33 = 3 y 1 y 2 y 3 = y 1 2y 2 + y 3 4y 1 +2y 2 y 3 y 1 5y 2 +3y 3 2y 1 3y 2 +8y 3 Tedy zobrazení L 1 je reprezentováno maticía 1, a je tedy lineární, Další. a 41 = 2 a 42 = 3 a 43 = 8. p.6/11

22 Příklad Dokažte, že zobrazení L 1 :Ê3 Ê4 a zobrazení L 2 :Ê4 Ê3 jsou lineární, a najděte maticia, která reprezentuje složené zobrazení L 1 L 2. L 1 ((x 1, x 2, x 3 ) T )=(x 1 2x 2 + x 3,4x 1 +2x 2 x 3, x 1 5x 2 +3x 3,2x 1 3x 2 +8x 3 ) T, L 2 ((x 1, x 2, x 3, x 4 ) T )=(x 1 2x 2 + x 3 x 4, x 1 7x 4,2x 1 x 3 + x 4 ) T. Řešení: A 1 = Obdobně pro L 2. Necht y =(y 1, y 2, y 3, y 4 ) T Ê4. = L 2 ( y)=a 2 y = a 11 y 1 + a 12 y 2 + a 13 y 3 + a 14 y 4 a 21 y 1 + a 22 y 2 + a 23 y 3 + a 24 y 4 a 31 y 1 + a 32 y 2 + a 33 y 3 + a 34 y 4 Porovnáme poslední dva vektory a dostaneme. a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 = y 1 y 2 y 3 y 4 = y 1 2y 2 + y 3 y 4 y 1 7y 4 2y 1 y 3 + y 4. a 11 = 1 a 12 = 2 a 13 = 1 a 14 = 1 a 21 = 1 a 22 = 0 a 23 = 0 a 24 = 7 a 31 = 2 a 32 = 0 a 33 = 1 a 34 = 1 Další. p.6/11

23 Příklad Dokažte, že zobrazení L 1 :Ê3 Ê4 a zobrazení L 2 :Ê4 Ê3 jsou lineární, a najděte maticia, která reprezentuje složené zobrazení L 1 L 2. L 1 ((x 1, x 2, x 3 ) T )=(x 1 2x 2 + x 3,4x 1 +2x 2 x 3, x 1 5x 2 +3x 3,2x 1 3x 2 +8x 3 ) T, L 2 ((x 1, x 2, x 3, x 4 ) T )=(x 1 2x 2 + x 3 x 4, x 1 7x 4,2x 1 x 3 + x 4 ) T. Řešení: Tedy zobrazení L 2 je reprezentováno maticía 2, a je také lineární, A 2 = a) Složíme zobrazení L 1 L 2. Necht x =(x 1, x 2, x 3, x 4 ) T Ê4. L 1 (L 2 ( x))=l 1 ((x 1 2x 2 + x 3 x 4, x 1 7x 4,2x 1 x 3 + x 4 ) T )= =(x 1 2x 2 + x 3 x 4 2x 1 +14x 4 +2x 1 x 3 + x 4, 4x 1 8x 2 +4x 3 4x 4 +2x 1 14x 4 2x 1 + x 3 x 4, x 1 +2x 2 x 3 + x 4 5x 1 +35x 4 +6x 1 3x 3 +3x 4, 2x 1 4x 2 +2x 3 2x 4 3x 1 +21x 4 +16x 1 8x 3 +8x 4 ) T = (x 1 2x 2 +14x 4,4x 1 8x 2 +5x 3 19x 4,2x 2 4x 3 +39x 4,15x 1 4x 2 6x 3 +27x 4 ) T. Toto složené zobrazení je reprezentováno maticíatypu4 4 tak, žea x = L 1 (L 2 ( x)), tj. Další. p.6/11

24 Příklad Dokažte, že zobrazení L 1 :Ê3 Ê4 a zobrazení L 2 :Ê4 Ê3 jsou lineární, a najděte maticia, která reprezentuje složené zobrazení L 1 L 2. L 1 ((x 1, x 2, x 3 ) T )=(x 1 2x 2 + x 3,4x 1 +2x 2 x 3, x 1 5x 2 +3x 3,2x 1 3x 2 +8x 3 ) T, L 2 ((x 1, x 2, x 3, x 4 ) T )=(x 1 2x 2 + x 3 x 4, x 1 7x 4,2x 1 x 3 + x 4 ) T. Řešení: a 11 x 1 + a 12 x 2 + a 13 x 3 + a 14 x 4 a 21 x 1 + a 22 x 2 + a 23 x 3 + a 24 x 4 a 31 x 1 + a 32 x 2 + a 33 x 3 + a 34 x 4 = x 1 2x 2 +14x 4 4x 1 8x 2 +5x 3 19x 4 2x 2 4x 3 +39x 4. a 41 x 1 + a 42 x 2 + a 43 x 3 + a 44 x 4 Porovnáme poslední dva vektory a dostaneme 15x 1 4x 2 6x 3 +27x 4 a 11 = 1 a 12 = 2 a 13 = 0 a 14 = 14 a 21 = 4 a 22 = 8 a 23 = 5 a 24 = 19 a 31 = 0 a 32 = 2 a 33 = 4 a 34 = 39 a 41 = 15 a 42 = 4 a 43 = 5 a 44 = 27 Tedy lineární zobrazení L 1 L 2 je reprezentováno maticía, A= b) Matice jednotlivých zobrazení jsme už sestavili. Pro maticia, která reprezentuje složené zobrazení L 1 L 2, platía=a 1 A 2. Ověřte sami, že skutečně dostanete stejnou maticiajako v a).. p.6/11

25 Příklad Dokažte, že zobrazení L 1 :Ê3 Ê4 a zobrazení L 2 :Ê4 Ê3 jsou lineární, a najděte maticia, která reprezentuje složené zobrazení L 1 L 2. L 1 ((x 1, x 2, x 3 ) T )=(x 1 2x 2 + x 3,4x 1 +2x 2 x 3, x 1 5x 2 +3x 3,2x 1 3x 2 +8x 3 ) T, L 2 ((x 1, x 2, x 3, x 4 ) T )=(x 1 2x 2 + x 3 x 4, x 1 7x 4,2x 1 x 3 + x 4 ) T. Maple: > with(linalg): > L1:=(x1,x2,x3)->(x1-2*x2+x3,4*x1+2*x2-x3,-x1-5*x2+3*x3, 2*x1-3*x2+8*x3 ); L1:=(x1,x2,x3) (x1 2x2+x3,4x1+2x2 x3, x1 5x2+3x3, 2x1 3x2+8x3) > L2:=(x1,x2,x3,x4)->(x1-2*x2+x3-x4,x1-7*x4,2*x1-x3+x4); L2:=(x1,x2,x3,x4) (x1 2x2+x3 x4,x1 7x4,2x1 x3+x4) > L1(L2(x1,x2,x3,x4)); x1 2x2+14x4,4x1 8x2+5x3 19x4,2x2 4x3+39x4, 15x1 4x2 6x3+27x4 > A1:=matrix(4,3,[1,-2,1,4,2,-1,-1,-5,3,2,-3,8]); A1:= Další. p.6/11

26 Příklad Dokažte, že zobrazení L 1 :Ê3 Ê4 a zobrazení L 2 :Ê4 Ê3 jsou lineární, a najděte maticia, která reprezentuje složené zobrazení L 1 L 2. L 1 ((x 1, x 2, x 3 ) T )=(x 1 2x 2 + x 3,4x 1 +2x 2 x 3, x 1 5x 2 +3x 3,2x 1 3x 2 +8x 3 ) T, L 2 ((x 1, x 2, x 3, x 4 ) T )=(x 1 2x 2 + x 3 x 4, x 1 7x 4,2x 1 x 3 + x 4 ) T. Maple: > A2:=matrix(3,4,[1,-2,1,-1,1,0,0,-7,2,0,-1,1]); A2:= > A:=evalm(A1&*A2); A:= p.6/11

27 Příklad Dokažte, že zobrazení L 1 :Ê3 Ê4 a zobrazení L 2 :Ê4 Ê3 jsou lineární, a najděte maticia, která reprezentuje složené zobrazení L 1 L 2. L 1 ((x 1, x 2, x 3 ) T )=(x 1 2x 2 + x 3,4x 1 +2x 2 x 3, x 1 5x 2 +3x 3,2x 1 3x 2 +8x 3 ) T, L 2 ((x 1, x 2, x 3, x 4 ) T )=(x 1 2x 2 + x 3 x 4, x 1 7x 4,2x 1 x 3 + x 4 ) T. Mathematica: L1[x1, x2,x3]=, {x1 2x2+x3,4x1+2x2 x3, x1 5x2+3x3,2x1 2x1 3x2+8x3}; A1={{1, 2,1}, {4,2, 1}, { 1, 5,3}, {2, 3,8}}; L2[x1, x2,x3,,x4]= {x1 2x2+x3 x4,x1 7x4,2x1 x3+x4}; A2={{1, 2,1, 1}, {1,0,0, 7}, {2,0, 1,1}}; sloz=apply[l1,l2[x1,x2,x3, L2[x1,x2,x3, x2,x3, x4]] {3x1 2x2 2(x1 7x4), 2x1+x3+2(x1 7x4)+4(x1 2x2+x3 x4) x4, x1+2x2 x3 5(x1 7x4)+x4+3(2x1 x3+x4), 3(x1 7x4)+2(x1 2x2+x3 x4)+8(2x1 x3+x4)} L[x1,x2,x3]=Expand[sloz] {x1 2x2+14x4,4x1 8x2+5x3 19x4,2x2 4x3+39x4,15x1 4x2 6x3+27x4} A={{1, 2,0,14}, {4, 8,5, 19}, {0,2, 4,39},{15, 4, 6,27}}; MatrixForm[A] Další. p.6/11

28 Příklad Dokažte, že zobrazení L 1 :Ê3 Ê4 a zobrazení L 2 :Ê4 Ê3 jsou lineární, a najděte maticia, která reprezentuje složené zobrazení L 1 L 2. L 1 ((x 1, x 2, x 3 ) T )=(x 1 2x 2 + x 3,4x 1 +2x 2 x 3, x 1 5x 2 +3x 3,2x 1 3x 2 +8x 3 ) T, L 2 ((x 1, x 2, x 3, x 4 ) T )=(x 1 2x 2 + x 3 x 4, x 1 7x 4,2x 1 x 3 + x 4 ) T. Mathematica: MatrixForm[A1.A2] p.6/11

29 Příklad Najděte jádroklineárního zobrazení L:Ê3 Ê4 reprezentovaného maticí A= Určete dimenzik.?. p.7/11

30 Příklad Najděte jádroklineárního zobrazení L:Ê3 Ê4 reprezentovaného maticí A= Určete dimenzik. Výsledek: dim K=1, K= { x Ê3, x = α(1,1,5) T, α Ê}.. p.7/11

31 Příklad Najděte jádroklineárního zobrazení L:Ê3 Ê4 reprezentovaného maticí A= Určete dimenzik. Návod: Protože jádro lineárního zobrazení L:Ê3 Ê4 je množina K= { x Ê3, L( x)= 0 }={ x Ê3, A x = 0 }, vyřešíme homogenní soustavu lineárních rovnica x =0. Jádro je rovno vektorovému prostoru všech řešení této homogenní soustavy.. p.7/11

32 Příklad Najděte jádroklineárního zobrazení L:Ê3 Ê4 reprezentovaného maticí A= Určete dimenzik. Řešení: Jádro lineárního zobrazení L z prostoruê3 doê4 je množina K= { x Ê3, L( x)= 0 }. Je-li toto zobrazení reprezentováno maticía, můžeme rovnost L( x)= 0 nahradit rovnostía x = 0. Abychom tedy našli jádro, musíme vyřešit homogenní soustavu lineárních rovnica x = 0. Jádro je množina všech řešení této homogenní soustavy. Matici soustavyapřevedeme pomocí ekvivalentních úprav na horní trojúhelníkový tvar: ( K sedminásobku 2. řádku jsme přičetli( 3)násobek prvního, k sedminásobku 3. řádku jsme přičetli šestinásobek prvního a k sedminásobku 4. řádku jsme přičetli první řádek. Vznikla matice, ve které třetí a čtvrtý řádek jsou násobky druhého, proto je vynecháme. Hodnost matice jeh(a)=2, počet neznámých je n=3. Vektorový prostor všech řešení této homogenní soustavy (= hledané jádro K) má dimenzi Další dim K= n h(a)=3 2=1. ).. p.7/11

33 Příklad Najděte jádroklineárního zobrazení L:Ê3 Ê4 reprezentovaného maticí A= Určete dimenzik. Řešení: Pomocí zpětného chodu Gaussovy eliminace najdeme K. Hledáme všechny vektory x =(x, y, z) T Ê3, které řeší homogenní soustavu. Jednu neznámou volíme jako parametr. Dostaneme z=t, 5y z=0 y= 1 5 t, 7x+3y 2z=0 x=1 5 t, t Ê. Tedy K= { x Ê3, x = t ( ) 1 T 5,1 5,1, t Ê}={ x Ê3, x = α(1,1,5) T, α Ê}. Poznamenejme, že oba zápisy jsou správně. Použitím α jsme se jen zbavili zlomků. To lze, nebot je-li x = t ( 1 5, 1 5,1)T řešení naší homogenní soustavy, je jistě i x = α(1,1,5)t řešení této soustavy. Přesvědčte se o tom.. p.7/11

34 Příklad Najděte jádroklineárního zobrazení L:Ê3 Ê4 reprezentovaného maticí A= Určete dimenzik. Maple: > with(linalg): > A:=matrix(4,3,[7,3,-2,3,2,-1,-6,-4,2,-1,-4,1]); A:= > kernel(a, nulldim ); > nulldim; {[1,1,5]} 1. p.7/11

35 Příklad Najděte jádroklineárního zobrazení L:Ê3 Ê4 reprezentovaného maticí A= Určete dimenzik. Mathematica: A={{7,3, 2}, {3,2, 1},{ 6, 4,2}, { 1, 4,1}}; MatrixForm[A] K= NullSpace[A] {{1,1,5}} dim = MatrixRank[K] 1. p.7/11

36 Inverzní matice Příklad Zjistěte, zda k maticiaexistuje matice inverzní. Pokud ano, vypočtěte ji A= Příklad Určete matici reprezentující lineární zobrazení L prostoruê3 doê3 definované vztahem L((x 1, x 2, x 3 ) T )=(2x 1 + x 3, x 1 x 2 x 3, x 1 +3x 2 +2x 3 ) T a nalezněte k ní matici inverzní. Příklad Řešte maticovou rovniciax+x=a 2, kde A= p.8/11

37 Příklad Zjistěte, zda k maticiaexistuje matice inverzní. Pokud ano, vypočtěte ji A= ?. p.9/11

38 Příklad Zjistěte, zda k maticiaexistuje matice inverzní. Pokud ano, vypočtěte ji A= Výsledek: A 1 = p.9/11

39 Příklad Zjistěte, zda k maticiaexistuje matice inverzní. Pokud ano, vypočtěte ji A= Návod: Vypočteme determinant maticea. Je-lidetA 0, inverzní matice existuje. Najdeme ji Gaussovou-Jordanovou metodou, t.j. matici(a E) převedeme pomocí ekvivalentních úprav na matici(e A 1 ), kdeeje jednotková matice.. p.9/11

40 Příklad Zjistěte, zda k maticiaexistuje matice inverzní. Pokud ano, vypočtěte ji A= Řešení: Inverzní maticea 1 k maticiaexistuje právě když maticeaje regulární, tj.deta 0. Vypočteme tedy determinant maticea. Počítáme rozvojem podle druhého sloupce: deta=1 ( 1) ( 1) = =1+2 ( 1) =1+2(1 2)= 1. Využili jsme toho, že determinant horní trojúhelníkové matice je roven součinu diagonálních prvků, druhý determinant matice3 3 jsme počítali rozvojem podle 1. řádku. Determinant maticeaje nenulový, tedy maticeaje regulární a inverzní matice existuje. Necht E je jednotková matice. Výpočet provedeme Gaussovou-Jordanovou metodou, tj. matici(a E) převedeme pomocí ekvivalentních úprav na matici(e A 1 ): Další. p.9/11

41 Příklad Zjistěte, zda k maticiaexistuje matice inverzní. Pokud ano, vypočtěte ji A= Řešení: (A E) = K( 2)násobku druhého řádku jsme přičetli první řádek Od prvního a čtvrtého řádku jsme odečetli druhý. V dalším kroku jsme k prvnímu řádku přičetli dvojnásobek třetího řádku a ke čtvrtému řádku jsme přičetli( 2)násobek třetího. Zbývá upravit čtvrtý sloupec. Další. p.9/11

42 Příklad Zjistěte, zda k maticiaexistuje matice inverzní. Pokud ano, vypočtěte ji A= Řešení: =(E A 1 ). K prvnímu řádku jsme přičetli dvojnásobek čtvrtého, k druhému řádku jsme přičetli ( 2)násobek čtvrtého, od třetího řádku jsme odečetli čtvrtý. Při poslední úpravě vydělíme každý řádek diagonálním prvkem. Dostaneme vlevo jednotkovou maticiea vpravo hledanou inverzní maticia 1.. p.9/11

43 Příklad Zjistěte, zda k maticiaexistuje matice inverzní. Pokud ano, vypočtěte ji A= Maple: > with(linalg): > A:= matrix(4,4,[2,1,0,0,1,0,-1,2,0,0,1,-1,0,1,0,-1]); A:= > det(a); > inverse(a); p.9/11

44 Příklad Zjistěte, zda k maticiaexistuje matice inverzní. Pokud ano, vypočtěte ji A= Mathematica: A={{2,1,0,0}, {1,0, 1,2}, {0,0,1, 1}, {0,1,0, 1}}; Det[A] 1 B= Inverse[A]; MatrixForm[B] p.9/11

45 Příklad Určete matici reprezentující lineární zobrazení L prostoruê3 doê3 definované vztahem L((x 1, x 2, x 3 ) T )=(2x 1 + x 3, x 1 x 2 x 3, x 1 +3x 2 +2x 3 ) T a nalezněte k ní matici inverzní.?. p.10/11

46 Příklad Určete matici reprezentující lineární zobrazení L prostoruê3 doê3 definované vztahem L((x 1, x 2, x 3 ) T )=(2x 1 + x 3, x 1 x 2 x 3, x 1 +3x 2 +2x 3 ) T a nalezněte k ní matici inverzní. Výsledek: A= , A 1 = p.10/11

47 Příklad Určete matici reprezentující lineární zobrazení L prostoruê3 doê3 definované vztahem L((x 1, x 2, x 3 ) T )=(2x 1 + x 3, x 1 x 2 x 3, x 1 +3x 2 +2x 3 ) T a nalezněte k ní matici inverzní. Návod: Porovnáním vektorů A x a L( x) získáme prvky maticea. Inverzní matici vypočteme Gaussovou-Jordanovou metodou nebo pomocí algebraických doplňků.. p.10/11

48 Příklad Určete matici reprezentující lineární zobrazení L prostoruê3 doê3 definované vztahem L((x 1, x 2, x 3 ) T )=(2x 1 + x 3, x 1 x 2 x 3, x 1 +3x 2 +2x 3 ) T a nalezněte k ní matici inverzní. Řešení: Protože L( x)=a x, dostaneme prvky a ij matice A typu3 3 porovnáním vektorů A x a L( x): a 11 x 1 + a 12 x 2 + a 13 x 3 2x 1 + x 3 a 21 x 1 + a 22 x 2 + a 23 x 3 = x 1 x 2 x 3. a 31 x 1 + a 32 x 2 + a 33 x 3 x 1 +3x 2 +2x 3 Tedy maticeareprezentující lineární zobrazení L:Ê3 Ê3 je A= Nyní vypočteme Gaussovou-Jordanovou metodou inverzní matici, tj. pomocí ekvivalentních úprav převedeme matici(a E) na matici(e A 1 ): (A E) = Další. p.10/11

49 Příklad Určete matici reprezentující lineární zobrazení L prostoruê3 doê3 definované vztahem L((x 1, x 2, x 3 ) T )=(2x 1 + x 3, x 1 x 2 x 3, x 1 +3x 2 +2x 3 ) T a nalezněte k ní matici inverzní. Řešení: K( 2)násobku druhého řádku jsme přičetli první, ke dvojnásobku třetího řádku jsme přičetli první. Při další úpravě jsme k třetímu řádku přičetli( 3)násobek druhého Ke čtyřnásobku prvního řádku jsme přičetli třetí řádek, ke čtyřnásobku druhého řádku jsme přičetli trojnásobek třetího. Zbývá vydělit každý řádek diagonálním prvkem =(E A 1 ) = A 1 = p.10/11

50 Příklad Určete matici reprezentující lineární zobrazení L prostoruê3 doê3 definované vztahem L((x 1, x 2, x 3 ) T )=(2x 1 + x 3, x 1 x 2 x 3, x 1 +3x 2 +2x 3 ) T a nalezněte k ní matici inverzní. Maple: > with(linalg): > eqns := {2*x1+x3=y1,x1-x2-x3=y2,-x1+3*x2+2*x3=y3}; eqns:= {2x1+x3=y1,x1 x2 x3=y2, x1+3x2+2x3=y3 } > A := genmatrix(eqns, [x1,x2,x3]); > B:=inverse(A); A:= B:= p.10/11

51 Příklad Určete matici reprezentující lineární zobrazení L prostoruê3 doê3 definované vztahem L((x 1, x 2, x 3 ) T )=(2x 1 + x 3, x 1 x 2 x 3, x 1 +3x 2 +2x 3 ) T a nalezněte k ní matici inverzní. Mathematica: A={{2,0,1}, {1, 1, 1}, { 1,3,2}}; MatrixForm[A] B= Inverse[A]; MatrixForm[B] p.10/11

52 Příklad Řešte maticovou rovniciax+x=a 2, kde A= ?. p.11/11

53 Příklad Řešte maticovou rovniciax+x=a 2, kde Výsledek: A= X:= p.11/11

54 Příklad Řešte maticovou rovniciax+x=a 2, kde Návod: A= Nejprve vyjádříme maticixobecně z maticové rovnice, teprve potom dosadíme konkrétní maticia,a 2,A+E a inverzní matici ka+e.eje jednotková matice, matici A+E dostaneme vytknutím maticexamatici(a+e) 1 musíme spočítat (pozor, včas ověřte, že inverzní matice existuje), abychom mohli vypočítat výslednou maticix... p.11/11

55 Příklad Řešte maticovou rovniciax+x=a 2, kde Řešení: A= Nejprve vyjádříme maticixobecně z maticové rovnice. Vytkneme v levé části rovnice maticixvpravo: AX+X=A 2 = (A+E)X=A 2, E je jednotková matice, E=diag(1,1,1) Ê3. Nyní bychom potřebovali celou rovnici vynásobit zleva maticí(a+e) 1. To ale musíme vědět, že inverzní matice existuje. Tedy musíme vypočítat maticia+e a ověřit, že je regulární, tj.det(a+e) 0. Determinant budeme počítat rozvojem podle třetího řádku.. A+E= = , det(a+e)= = 2+(4 1)=1. Celou rovnici tedy vynásobíme inverzní maticí(a+e) 1 zleva a použijeme definici inverzní matice, tj.(a+e) 1 (A+E)=E, a dále rovnostex=x. Další. p.11/11

56 Příklad Řešte maticovou rovniciax+x=a 2, kde Řešení: A= (A+E) 1 (A+E)X=(A+E) 1 A 2 = X=(A+E) 1 A 2. Dostali jsme obecný předpis pro maticix. Vypočteme konkrétní matice: A 2 = , (A+E E)= Další =(E (A+E) 1 ).. p.11/11

57 Příklad Řešte maticovou rovniciax+x=a 2, kde A= Řešení: Zbývá vypočítatx: X=(A+E) 1 A 2 = = p.11/11

58 Příklad Řešte maticovou rovniciax+x=a 2, kde Maple: Další > with(linalg): A= > A:= matrix(3,3,[1,1,1,1,1,0,1,0,0]); A:= > AA:=evalm(A&*A); > E:=diag(1,1,1); AA:= E:= p.11/11

59 Příklad Řešte maticovou rovniciax+x=a 2, kde Maple: > evalm(a+e); > det(%); > B:=inverse(A+E); > X:=evalm(B&*AA); A= B:= X:= p.11/11

60 Příklad Řešte maticovou rovniciax+x=a 2, kde Mathematica: A= A={{2,0,1}, {1, 1, 1}, { 1,3,2}}; MatrixForm[A] B= Inverse[A]; MatrixForm[B] A={{1,1,1}, {1,1,0}, {1,0,0}}; MatrixForm[A] Další p.11/11

Kapitola 1: Lineární prostor

Kapitola 1: Lineární prostor Lineární prostor Kapitola 1: Lineární prostor Chcete-li ukončit prohlížení stiskněte klávesu Esc. Chcete-li pokračovat stiskněte klávesu Enter.. p.1/15 Lineární prostor Lineární prostoralineární podprostor

Více

Vektory a matice. Matice a operace s nimi. Hodnost matice. Determinanty. . p.1/12

Vektory a matice. Matice a operace s nimi. Hodnost matice. Determinanty. . p.1/12 Vektory a matice Lineární (ne-)závislost vektorů n zê Matice a operace s nimi Hodnost matice Determinanty. p.1/12 Lineární (ne-)závislost vektorů zê n Příklad 9.1.1 Rozhodněte, zda jsou uvedené vektory

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

Numerické metody a programování

Numerické metody a programování Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic 7 Matice. Determinant Soustavy lineárních rovnic 7.1 Matice Definice 1. Matice typu (m, n) jesoustavam n reálných čísel uspořádaných do m řádků a n sloupců a 11, a 12, a 13,..., a 1n a 21, a 22, a 23,...,

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální

Více

MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET MPV, LADP TUL, ZS 2009/10

MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET MPV, LADP TUL, ZS 2009/10 1 MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET 2 koncepce/slides: Jan Picek přednášející: Jiří Veselý KAP, tel. 485352290, budova H konzul. hodiny: dle úmluvy e-mail: jvesely@karlin.mff.cuni.cz

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s

Více

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) LINEÁRNÍ ALGEBRA Úvod vektor Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) Kartézský souřadnicový systém -je taková soustava

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621 ŘEŠENÉ PŘÍKLADY Z MA+ULA ČÁST Příklad Bod má vůči souřadné soustavě souřadnice uvedené níže. Vypočtěte jeho souřadnice vzhledem k soustavě, která je vůči otočená dle zadání uvedeného níže. Výsledky zaokrouhlete

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j. Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar Kvadratická rovnice Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar ax 2 + bx + c = 0. x neznámá; v kvadratické rovnici se vyskytuje umocněná na

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

Vybrané problémy lineární algebry v programu Maple

Vybrané problémy lineární algebry v programu Maple UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA Katedra matematické analýzy a aplikací matematiky BAKALÁŘSKÁ PRÁCE Vybrané problémy lineární algebry v programu Maple Vedoucí bakalářské práce: RNDr.

Více

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly Matice Matice typu (m, n) je uspořádaná m-tice prvků z řádky matice.. Jednotlivé složky této m-tice nazýváme Matice se zapisují Speciální typy matic Nulová matice všechny prvky matice jsou nulové Jednotková

Více

5. Maticová algebra, typy matic, inverzní matice, determinant.

5. Maticová algebra, typy matic, inverzní matice, determinant. 5. Maticová algebra, typy matic, inverzní matice, determinant. Matice Matice typu m,n je matice složená z n*m (m >= 1, n >= 1) reálných (komplexních) čísel uspořádaných do m řádků a n sloupců: R m,n (resp.

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

Matematika I Lineární závislost a nezávislost

Matematika I Lineární závislost a nezávislost Matematika I Lineární závislost a nezávislost RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Co u¾ známe? vektory - základní operace

Více

Řešení slovních úloh pomocí lineárních rovnic

Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh představuje spojení tří, dnes bohužel nelehkých, úloh porozumění čtenému textu (pochopení zadání), jeho matematizaci (převedení na rovnici)

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26 Obsah 1 Matice 3 11 Operace s maticemi 4 12 Soustavy lineárních rovnic 11 13 Maticové rovnice a výpočet inverzní matice 15 14 Elementární matice 19 15 Cvičení 21 16 Řešení 22 2 Vektory a vektorové prostory

Více

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Více

KIV/ZI Základy informatiky MS EXCEL MATICOVÉ FUNKCE A SOUHRNY

KIV/ZI Základy informatiky MS EXCEL MATICOVÉ FUNKCE A SOUHRNY KIV/ZI Základy informatiky MS EXCEL MATICOVÉ FUNKCE A SOUHRNY cvičící: Tomáš Ptáček zimní semestr 2012 MS EXCEL MATICE (ÚVOD) Vektor: (1D) v = [1, 2, 3, 5, 8, 13] Např.: matice sousednosti Matice: (2D)

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. Přednáška MATEMATIKA č. 2 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 13. 10. 2010 Uspořádané schéma vytvořené z m n reálných čísel, kde m, n N a 11 a 12 a

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

Příklad 1. Řešení 1a Máme řešit rovnici ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 1. Řešte v R rovnice: 8 3 5 5 2 8 =20+4 1 = + c) = f) +6 +8=4 g) h)

Příklad 1. Řešení 1a Máme řešit rovnici ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 1. Řešte v R rovnice: 8 3 5 5 2 8 =20+4 1 = + c) = f) +6 +8=4 g) h) Příklad Řešte v R rovnice: a) 8 3 5 5 2 8 =20+4 b) = + c) = d) = e) + =2 f) +6 +8=4 g) + =0 h) = Řešení a Máme řešit rovnici 8 3 5 5 2 8 =20+4 Zjevně jde o lineární rovnici o jedné neznámé. Nejprve roznásobíme

Více

Lineární algebra a analytická geometrie sbírka úloh a ř ešených př íkladů

Lineární algebra a analytická geometrie sbírka úloh a ř ešených př íkladů Lineární algebra a analytická geometrie sbírka úloh a ř ešených př íkladů Linear algebra and analytic geometry problems and solved examples Klára Javornická Bakalářská práce 2010 UTB ve Zlíně, Fakulta

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

MATEMATIKA 1. Sbírka úloh ÚSTAV MATEMATIKY

MATEMATIKA 1. Sbírka úloh ÚSTAV MATEMATIKY MATEMATIKA Sbírka úloh Edita Kolářová ÚSTAV MATEMATIKY MATEMATIKA Sbírka úloh Úvod Dostali jste do rukou sbírku příkladů k přednášce Matematika. Tato sbírka je doplněním tetu Fuchs, Krupkova: Matematika.

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

8 Kořeny cyklických kódů, BCH-kódy

8 Kořeny cyklických kódů, BCH-kódy 24 8 Kořeny cyklických kódů, BCH-kódy Generující kořeny cyklických kódů Nechť K je cyklický kód délky n nad Z p s generujícím polynomem g(z). Chceme najít rozšíření T tělesa Z p, tedy nějaké těleso GF

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice.

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice. [] Definice determinantu BI-LIN, determinant, 9, P Olšák [2] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A 0 pro singulární matici, det A 0 pro regulární matici používá

Více

Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11

Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11 Gymnázium, Brno Matice Závěrečná maturitní práce Jakub Juránek 4.A Školní rok 2010/11 Konzultant: Mgr. Aleš Kobza Ph.D. Brno, 2011 Prohlášení Prohlašuji, že jsem předloženou práci zpracoval samostatně

Více

Operace s maticemi Sčítání matic: u matic stejného typu sečteme prvky na stejných pozicích: A+B=(a ij ) m n +(b ij ) m n =(a ij +b ij ) m n.

Operace s maticemi Sčítání matic: u matic stejného typu sečteme prvky na stejných pozicích: A+B=(a ij ) m n +(b ij ) m n =(a ij +b ij ) m n. 1 Sylvestrova věta Platí: Nechť A je symetrická matice řádu n, označme a 11 a 12... a 1i a D i = 21 a 22... a 2i.... a i1 a i2... a ii Pak A(a příslušná KF) je pozitivně definitní, právěkdyž D i >0provšechna

Více

2. Řešení algebraické

2. Řešení algebraické @016 2. Řešení algebraické Definice: Nechť a, c jsou reálná čísla. Rovnice v R (s neznámou x) daná formulí se nazývá lineární rovnice a ax + c = 0 se nazývají lineární nerovnice. ax + c 0 ax + c < 0 ax

Více

Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích. MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista

Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích. MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista Matematický software MAPLE slouží ke zpracování matematických problémů pomocí jednoduchého

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Nejprve si uděláme malé opakování z kurzu Množiny obecně.

Nejprve si uděláme malé opakování z kurzu Množiny obecně. @021 3. Řešení grafické přímka v kartézské soustavě souřadnic Nejprve si uděláme malé opakování z kurzu Množiny obecně. Rovnice ax + by + c = 0, kde aspoň jedno z čísel a,b je různé od nuly je v kartézské

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L.

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Soustavy o jedné rovnici neboli rovnice. Algebraické rovnice: Polynom= 0. POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Rovnice 1. stupně: lineární, ax + b = 0, a 0. Řešení: x = b a. Rovnice 2. stupně:

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

2 Spojité modely rozhodování

2 Spojité modely rozhodování 2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A

Více

LINEÁRNÍ ALGEBRA. RNDr. Marie Hojdarová, CSc. Určeno pro studenty PS a AI

LINEÁRNÍ ALGEBRA. RNDr. Marie Hojdarová, CSc. Určeno pro studenty PS a AI LINEÁRNÍ ALGEBRA RNDr. Marie Hojdarová, CSc. Určeno pro studenty PS a AI Jihlava, říjen 2012 ISBN 978 80 87035 65-8 Úvod do studia předmětu Základy lineární algebry Milí studenti! Lineární algebra, kterou

Více

Numerické metody lineární algebry

Numerické metody lineární algebry Numerické metody lineární algebry 1 Úvod 11 Úlohy lineární algebry 1 Řešení soustav lineárních rovnic A x = b Řešení soustavy s regulární čtvercovou maticí A řádu n n pro jednu nebo více pravých stran

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

Co byste měl/a zvládnout po 6. týdnu

Co byste měl/a zvládnout po 6. týdnu Co byste měl/a zvládnout po 6. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B01LAG Zvládnutá látka po 6. týdnu 1/8 Slovník základních pojmů Monomorfismus,

Více

2. Matice, soustavy lineárních rovnic

2. Matice, soustavy lineárních rovnic Matice, soustavy lineárních rovnic Tento učební text byl podpořen z Operačního programu Praha- Adaptabilita Irena Sýkorová Některé vlastnosti matic Uvažujmečtvercovoumatici A=(a ij ) n n Matice Asenazývásymetrická,jestližeplatí

Více

Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Matice študenti MFF 15. augusta 2008 1 12 Matice Požadavky Matice a jejich hodnost Operace s maticemi a jejich vlastnosti Inversní matice Regulární matice,

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

3. Matice a determinanty

3. Matice a determinanty . Matice a determinanty Teorie matic a determinantů představuje úvod do lineární algebry. Nejrozsáhlejší aplikace mají matice a determinanty při řešení systémů lineárních rovnic. Pojem determinantu zavedl

Více

Maticový a tenzorový počet

Maticový a tenzorový počet Maticový a tenzorový počet Doc. RNDr. Martin Kovár, Ph.D. Ústav matematiky Fakulta elektrotechniky a komunikačních technologií VUT v Brně Obsah. Test vstupních znalostí............................. 5 Matice

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

Řešení úloh z TSP MU SADY S 1

Řešení úloh z TSP MU SADY S 1 Řešení úloh z TSP MU SADY S 1 projekt RESENI-TSP.CZ úlohy jsou vybírány z dříve použitých TSP MU autoři řešení jsou zkušení lektoři vzdělávací agentury Kurzy-Fido.cz Masarykova univerzita nabízí uchazečům

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Jiří Kolafa Vektory. Vektorový prostor Vektor je často zaveden jako n-tice čísel, (v,..., v n ), v i R (pro reálný vektorový prostor);

Více

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty

Více

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1. Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Integrální počet VY_32_INOVACE_M0308. Matematika

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Integrální počet VY_32_INOVACE_M0308. Matematika Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 0 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ..07/.5.00/3.0 Zlepšení podmínek pro

Více

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy)

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy) Euklidovský prostor Euklidovy Základy (pohled do historie) dnešní definice kartézský souřadnicový systém vlastnosti rovin v E n speciální vlastnosti v E 3 (vektorový součin) a) eprostor, 16, b) P. Olšák,

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

Předmluva. Publikace obsahuje množství řešených i neřešených příkladů s výsledky k samostatnému studiu.

Předmluva. Publikace obsahuje množství řešených i neřešených příkladů s výsledky k samostatnému studiu. MATICE, DETERMINANTY A JEJICH VYUŽITÍ V PRAXI Mgr Eva Valentová autorka prof RNDr Jan Pelikán, CSc recenzenti Mgr Eva Pelikánová 04 Obsah Vektory 5 Aritmetické vektory 5 Maticová algebra I 8 Matice a

Více

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2.

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2. 76 Další metriké úlohy II Předpoklady: 7 Př : Najdi přímku rovnoěžnou s osou I a III kvadrantu vzdálenou od odu A[ ; ] Osou I a III kvadrantu je přímka y = x přímky s ní rovnoěžné mají rovnii x y + = 0

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT2

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT2 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT2 1. Lineární kombinace vektorů v 1 = (3,5,-2,0), v 2 = (-1,7,13,-3), v 3 = (1,0,-2,3) s koeficienty

Více

4 Rovnice a nerovnice

4 Rovnice a nerovnice 36 Rovnice a nerovnice 4 Rovnice a nerovnice 4.1 Lineární rovnice a jejich soustavy Požadované dovednosti řešit lineární rovnice o jedné neznámé vyjádřit neznámou ze vzorce užít lineární rovnice při řešení

Více

Lineární algebra II. Adam Liška. 9. února 2015. Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak. rok 2007/2008

Lineární algebra II. Adam Liška. 9. února 2015. Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak. rok 2007/2008 Lineární algebra II Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak rok 2007/2008 Adam Liška 9 února 2015 http://kammffcunicz/~fiala http://wwwadliskacom 1 Obsah 10 Permutace 3 11 Determinant

Více

Matematika I. dvouletý volitelný předmět

Matematika I. dvouletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Matematika I O7A, C3A, O8A, C4A dvouletý volitelný předmět Cíle předmětu Tento předmět je koncipován s cílem usnadnit absolventům gymnázia přechod na vysoké školy

Více

9. Soustavy rovnic DEFINICE SOUSTAVY LINEÁRNÍCH ROVNIC O DVOU NEZNÁMÝCH. Soustava lineárních rovnic o dvou neznámých je:

9. Soustavy rovnic DEFINICE SOUSTAVY LINEÁRNÍCH ROVNIC O DVOU NEZNÁMÝCH. Soustava lineárních rovnic o dvou neznámých je: 9. Soustavy rovnic Správný nadpis této kapitoly by měl znít soustavy lineárních rovnic o dvou neznámých, z důvodu přehlednosti jsem jej zkrátil. Hned v úvodu čtenáře potěším teorie bude tentokrát krátká.

Více

předmětu MATEMATIKA B 1

předmětu MATEMATIKA B 1 Metodický list pro první soustředění kombinovaného studia předmětu MATEMATIKA B 1 Název tématického celku: Vektorový prostor Cíl: Základním cílem tohoto tematického celku je pochopit, co jsou to vektory

Více

Singulární rozklad aplikace v image deblurring

Singulární rozklad aplikace v image deblurring Singulární rozklad aplikace v image deblurring M. Plešinger, Z. Strakoš TUL, Fakulta mechatroniky, Liberec AV ČR, Ústav informatiky, Praha 1 Úvod Uvažujme obecnou reálnou matici Pak existuje rozklad A

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT1

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT1 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT1 1. Porovnejte mezi sebou normy zadaných vektorů p =(1,-3), q =(2,-2,2), r =(0,1,2,2). (A) p

Více