Předpokládané znalosti: v rozsahu KMA/DMA Diskrétní matematika. Skripta DMA: - R J. Holenda, Z. Ryjáček: Lineární algebra II - Skripta

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Předpokládané znalosti: v rozsahu KMA/DMA Diskrétní matematika. Skripta DMA: - R. 2004. - J. Holenda, Z. Ryjáček: Lineární algebra II - Skripta"

Transkript

1 KMA/TGD1 Teorie grafů a diskrétní optimalizace 1 Zdeněk Ryjáček, KMA UK , s přestávkou 15 minut Předpokládané znalosti: v rozsahu KMA/DMA Diskrétní matematika Skripta DMA: - R Literatura 2004 Čada, T Kaiser, Z Ryjáček: Diskrétní matematika Skripta ZČU Plzeň, - J Holenda, Z Ryjáček: Lineární algebra II - Skripta ZČU Plzeň, Základní: Nejsou to skripta, jen pomocný text k přednášce - Další literatura: Úvod do diskrétní matematiky - L Kučera: Kombinatorické algoritmy SNTL, Praha J Demel: Grafy a jejich aplikace Academia, J Plesník: Grafové algoritmy Veda, Bratislava, Další jen v angličtině 1

2 Forma výuky - Folie z přednášek budou průběžně na www stránce předmětu - Cvičení - RNDr Jakub Teska, PhD, - RNDr Jan Ekstein, - K samostatnému procvičování a hraní jsou k disposici výukové programy (aplety), odkaz ze stránky předmětu Zkouška - Písemná - 3 příklady - Ústní - 2 otázky Dotazy? 2

3 Definice Graf je uspořádaná dvojice G = (U, H), kde U je konečná množina a H ( ) U 2 U 2 Graf G = (U, H) se nazývá neorientovaný graf, jestliže H ( U 2 orientovaný graf, jestliže H U 2 ), Definice Bud te G a G grafy Zobrazení f : U(G) U(G ) se nazývá homomorfismus grafu G do grafu G, jestliže (x, y) H(G) (f(x), f(y)) H(G ), a {x, y} H(G) {f(x), f(y)} H(G ) Značíme f : G G Definice Bud te G a G grafy a f : U(G) U(G ) zobrazení Pak zobrazení f : H(G) H(G ), definované vztahy f ({u, v}) = {f(u), f(v)}, a f ((u, v)) = (f(u), f(v)), se nazývá zobrazení indukované zobrazením f Tedy: f : U(G) U(G ) je homomorfismus právě když h H(G) f (h) H(G ) 3

4 Definice Bud te G, G grafy, f : G G homomorfismus Pak řekneme, že f je uzlový monomorfismus, je-li f prosté, uzlový epimorfismus, je-li f na, hranový monomorfismus, je-li f prosté, hranový epimorfismus, je-li f na, monomorfismus, je-li f i f prosté, epimorfismus, je-li f i f na, isomorfismus, je-li f i f prosté a na Poznámky 1 Ekvivalentně, f : U(G) U(G ) je isomorfismus, jestliže f je prosté a na (bijekce), a platí (x, y) H(G) (f(x), f(y)) H(G ), a {x, y} H(G) {f(x), f(y)} H(G ) 2 Značíme G G 3 Relace je ekvivalence 4

5 1 Které z těchto grafů jsou isomorfní? 2 Které z těchto grafů jsou isomorfní? (d cv) 5

6 Neorientované grafy Úplný graf: K n = 1, n, 1, n 2 Cesta délky n 0: P n = ( 0, n, {{i, i + 1} i 1, n 1 }}) Kružnice délky n 3: C n = ( 1, n, {{i, i + 1} i 1, n 1 } {{1, n}}) Úplný sudý (bipartitní) graf : K U,U = (U U, {{x, y}} x U, y U }) (U U = ) Speciálně, K p,q = K 1,p, p+1,p+q Definice Stupeň uzlu u v grafu G je počet hran grafu G, které obsahují uzel u Stupeň uzlu u v grafu G značíme d G (u) Věta Pro každý graf G platí u U(G) d G (u) = 2 H(G) 6

7 Definice Necht U(G) = n Očíslujeme uzly grafu G tak, že d G (x 1 ) d G (x 2 ) d G (x n ) Pak konečná nerostoucí posloupnost d G (x 1 ), d G (x 2 ),, d G (x n ) se nazývá soubor stupňů grafu G Věta Necht s 1 s 2 s n, n 2 Pak je posloupnost s 1, s 2,, s n grafová právě když je grafová posloupnost s 2 1, s 3 1,, s s1 +1 1, s s1 +2,, s n 7

8 Definice Bud te G 1, G grafy Řekneme, že G 1 je podgrafem grafu G, jestliže U(G 1 ) U(G) a H(G 1 ) H(G), G 1 je faktorem grafu G, jestliže U(G 1 ) = U(G) a H(G 1 ) H(G) Bud X U(G) Pak graf G 1 = ( X, H(G) ( )) X 2 se nazývá podgraf grafu G indukovaný na množině X Je-li G 1 podgrafem grafu G, značíme G 1 G Definice Necht f : G 1 G je homomorfismus Pak podgraf f(g 1 ) G, definovaný předpisem f(g 1 ) = (f(u(g 1 )), f (H(G 1 ))) se nazývá obraz grafu G 1 při homomorfismu f ( homomorfní obraz ) Definice 1 Bud G graf, u, v U(G), a necht f : P k G je homomorfismus takový, že f(0) = u a f(k) = v Pak se graf f(p k ) nazývá sled délky k z uzlu u do uzlu v v grafu G 2 Je-li navíc f hranový monomorfismus, pak se f(p k ) nazývá tah (délky k z u do v v G) 3 Je-li navíc f uzlový monomorfismus, pak se f(p k ) nazývá cesta (délky k z u do v v G) 8

9 Definice Řekneme, že graf G je souvislý, jestliže pro každé u, v U(G) existuje v G sled z u do v Větička Graf G je souvislý právě když pro každé u, v U(G) existuje v G cesta z u do v Definice Bud G G Řekneme, že graf G je komponenta grafu G, jestliže 1 G je souvislý graf, 2 je-li G G G a G je souvislý, pak G = G (Tedy: komponenty grafu G jsou jeho maximální souvislé podgrafy) Označení Minimální stupeň grafu: δ(g) = min{d G (U) u U(G)} Maximální stupeň grafu: (G) = max{d G (U) u U(G)} Neřekneme-li jinak, pak vždy značíme U(G) = n a H(G) = m Větička Je-li δ(g) n 2, pak je G souvislý Tvrzení (Vlastnosti souvislých grafů) Necht G je souvislý graf Pak 1 existuje uzel u U(G) tak, že graf G u je souvislý, 2 m n 1 9

10 Definice 1 Bud f : C k G homomorfismus Pak se graf f(c k ) nazývá uzavřený sled v grafu G 2 Je-li navíc f hranový monomorfismus, pak se f(c k ) nazývá uzavřený tah v G 3 Je-li navíc f uzlový monomorfismus, pak se f(p k ) nazývá kružnice v G Číslo k se nazývá délka (uzavřeného sledu, uzavřeného tahu, kružnice) Definice Souvislý graf, který neobsahuje jako podgraf žádnou kružnici, se nazývá strom Věta Následující tvrzení jsou ekvivalentní 1 G je strom 2 Pro každé u, v U(G) existuje v G právě jedna cesta z u do v 3 G je souvislý a m = n 1 4 G je souvislý a nemá žádný souvislý vlastní faktor Definice Bud G souvislý graf Graf T G se nazývá kostra grafu G, jestliže 1 T je strom, 2 T je faktor grafu G Větička V každém souvislém grafu existuje alespoň jedna jeho kostra 10

11 Ohodnocené grafy Definice Bud G graf Funkce w : H(G) (0, ) se nazývá (hranové) ohodnocení grafu G; graf se zadaným ohodnocením se nazývá ohodnocený graf Necht G je ohodnocený graf Uzly grafu G očíslujeme 1,, n, a pro 1 i, j n položíme w i,j = w({i, j}) jestliže {i, j} H(G), 0 jinak Matice W(G) = [w i,j ] n i,j=1 se nazývá vážená matice sousednosti grafu G Speciálně, neohodnocený graf považujeme za ohodnocený w i,j = 1 Matice sousednosti: A(G) = [a i,j ] n i,j=1, kde a i,j = 1 jestliže {i, j} H(G), 0 jinak Matice incidence (uzlo-hranová): očíslujeme uzly u 1,, u n a hrany h 1,, h m a položíme I(G) = [b i,j ] n,m i,j=1, kde b i,j = 1 jestliže u i h j, 0 jinak Věta I(G)(I(G)) T = A(G) + S(G), kde S(G) = diag(d G (u 1 ),, d G (u n )) 11

12 Minimální kostra grafu Věta Bud G souvislý ohodnocený graf a K jeho souvislý faktor, pro který číslo nabývá minimální hodnotu Pak K je kostra grafu G {i,j} H(K) w Algoritmus 1 1 Polož G 0 = G, i := 0 2 Existuje v G i kružnice C i? - Ano: v C i najdi hranu h i s maximálním ohodnocením, polož G i+1 = (U(G i ), H(G i ) \ {h i }), i := i + 1 a opakuj 2 - Ne: G i je hledaná minimální kostra Algoritmus 2 1 Zvol u U(G) a polož G 0 = ({u}, ), i := 0 2 Je G i faktor grafu G? - Ne: mezi všemi hranami {x, y}, pro něž x U(G i ) a y / U(G i ) najdi tu, která má nejmenší ohodnocení, polož G i+1 = (U(G i ) {y}, H(G i ) {{x, y}}), i := i + 1 a opakuj 2 - Ano: G i je hledaná minimální kostra 12

13 Definice Nechť G je graf, u, v U(G) Vzdáleností uzlů u, v v grafu G (značíme d G (u, v)) rozumíme nejmenší délku cesty z uzlu u do uzlu v v grafu G Neexistuje-li v G cesta z u do v, klademe d G (u, v) = Věta Nechť G je graf, x, y, z U(G) Pak platí: (i) d G (x, y) je celé číslo, (ii) d G (x, y) 0 a d G (x, y) = 0 x = y, (iii) d G (x, y) = d G (y, x), (iv) d G (x, y) + d G (y, z) d G (x, z), (v) je-li d G (x, z) > 1, pak existuje uzel y U(G) tak, že x y z a d G (x, y) + d G (y, z) = d G (x, z) Definice Nechť G je graf s ohodnocením w Pro každou cestu P G definujeme w-délku w(p ) cesty P předpisem w(p ) = h H(P ) w(h) Nechť u, v U(G) Pak w-vzdáleností uzlů u, v v grafu G (značíme d w G(u, v)) rozumíme nejmenší w-délku cesty z uzlu u do uzlu v v grafu G Neexistujeli v G cesta z u do v, klademe d G (u, v) = Pro u, v U(G): cesta z u do v v G nejmenší délky: nejkratší cesta cesta z u do v v G nejmenší w-délky: minimální cesta 1

14 Funkce d w G má také vlastnosti metriky: Věta Nechť G je graf s ohodnocením w a nechť x, y, z U(G) Pak platí: (i) d w G(x, y) 0 a d w G(x, y) = 0 x = y, (ii) d w G(x, y) = d w G(y, x), (iii) d w G(x, y) + d w G(y, z) d w G(x, z), (iv) je-li d G (x, z) > 1, pak existuje uzel y U(G) tak, že x y z a d w G(x, y) + d w G(y, z) = d w G(x, z) Příklad Graf G železniční síť ČD ρ(x, y) cena jízdenky z x do y (obyčejné jízdné 2 třída) CENÍK OBYČEJNÉHO JÍZDNÉHO ČD Vzdálenost (km) Obyčejné jízdné 2 třída (Kč) , , , ,- Plzeň hl n Nezvěstice 16 km 28,- Kč Plzeň hl n Starý Plzenec 10 km 16,- Kč Starý Plzenec Nezvěstice 6 km 10,- Kč Funkce ρ(x, y) není metrika 2

15 Příklad: převozník, koza, vlk, zelí Převozník sám 1 hod Převozník se zelím 2 hod Převozník s kozou 3 hod Převozník s vlkem 4 hod Otázky: (i) Lze převoz uskutečnit? (ii) Jestliže ano, v jakém minimálním čase? (iii) Kolik má úloha minimálních řešení? PZ KV KZ PV, 1, 1 KV PZ Z PKV K,3 PKZ V u Z,2 PKVZ K,3 VZ PK, 1 V,4 PVZ K Z,2 K PVZ, 1 PK VZ K,3 PKVZ v V,4 Z,2 V,4 KZ PV V PKZ K,3 PKV Z, 1, 1 Odpovědi: PV KZ KV PZ (i) ANO (ii) 17 hodin (iii) 2 řešení 3

16 Nechť G je ohodnocený graf Uzly grafu G očíslujeme 1,, n, a pro 1 i, j n položíme d w i,j = d w G(i, j) Matice D w (G) = [d w i,j] n i,j=1 se nazývá matice w-vzdáleností (w-distanční matice) grafu G Speciálně, neohodnocený graf považujeme za ohodnocený w i,j = 1 Distanční matice: D(G) = [d i,j ] n i,j=1, kde d i,j = d G (i, j) Definice Buď G graf, m = H(G) Řekneme, že G je eulerovský, jestliže v G existuje uzavřený tah délky m Věta Graf G je eulerovský právě když G je souvislý a všechny jeho uzly jsou sudého stupně EUL Vstup: graf G Úkol: je graf G eulerovský? Výstup: ANO / NE Důsledek Úloha EUL je řešitelná v polynomiálním čase 4

17 Definice Buď G graf, n = U(G) Řekneme, že G je hamiltonovský, jestliže v G existuje kružnice délky n Věta (Dirac) Nechť G je graf s n = U(G) 3 a Pak je G hamiltonovský δ(g) n 2 TSP (Problém obchodního cestujícího) Vstup: ohodnocený graf G Úkol: najít v G hamiltonovskou kružnici C s minimální hodnotou Výstup: kružnice C h H(C) w(h) A F 14 E G 7 H B 9 C D 5

18 Rozhodovací strom G H C D B C H E D C H C D B G B F E D H D E C D C G B H B C D A D F E H G F E D H D E C B C D G F F H E D E C G H E D H E F D B B G G B G C C B E G E D H E H C D C C F E E G F F F G G C G H B G D B D E E H C H C D F D G E G F H A A A A 6

19 Čas potřebný ke zpracování vstupních dat velikosti n, jestliže je nutno provést f(n) operací a provedení jedné operace trvá jednu mikrosekundu velikost vstupních dat n počet operací f(n) n 2 n 3 n 4 2 n n! 20 0,4 ms 8 ms 0,2 s 1 s let 40 1,6 ms 64 ms 2,6 s 12 dní 60 3,6 ms 0,2 s 13 s let 80 6,4 ms 0,5 s 41 s 3, let ms 1 s 100 s ms 8 s 27 min 500 0,25 s 125 s 17 hod s 17 min 12 dní 7

20 Předpokládáme, že jsme schopni daným algoritmem s časovou náročností f(n) zpracovat v daném časovém limitu vstupní data velikosti n = 100 a ptáme se, jak se zvětší velikost úloh, které jsme schopni zpracovat ve stejném časovém limitu, jestliže zvýšíme rychlost výpočtu 10, 100, 1000 zrychlení počet operací f(n) výpočtu n 2 n 3 n 4 2 n n!

21 Orientované grafy Orientovaný úplný graf: Kn = ( 1, n, 1, n 1, n ) Orientovaná cesta délky n 0: Pn = ( 0, n, {(i, i + 1) i 1, n 1 }}) Cyklus délky n 1: Cn = ( 1, n, {(i, i + 1) i 1, n 1 } {(n, 1)}) pro n 2; pro n = 1 dodefinujeme C 1 = ({1}, {(1, 1)}) Definice Nechť G je orientovaný graf, u U( G) Výstupní (polo)stupeň uzlu u v grafu G je číslo d G (u) = {(u, x) x U( G)} H( G) Vstupní (polo)stupeň uzlu u v grafu G je číslo d + G (u) = {(x, u) x U( G)} H( G) Věta Pro každý orientovaný graf G platí u U( G) d G (u) = u U( G) d + G (u) = H( G) 9

22 Definice 1 Buď G graf, u, v U( G), a nechť f : Pk G je homomorfismus takový, že f(0) = u a f(k) = v Pak se graf f( P k ) nazývá orientovaný sled délky k z uzlu u do uzlu v v grafu G 2 Je-li navíc f hranový monomorfismus, pak se f( P k ) nazývá orientovaný tah (délky k z u do v v G) 3 Je-li navíc f uzlový monomorfismus, pak se f( P k ) nazývá orientovaná cesta (délky k z u do v v G) Definice 1 Nechť G je graf a f : C k G je homomorfismus Pak se graf f( C k ) nazývá uzavřený orientovaný sled délky k v grafu G 2 Je-li navíc f hranový monomorfismus, pak se f( P k ) nazývá uzavřený orientovaný tah (délky k v G) 3 Je-li navíc f uzlový monomorfismus, pak se f( P k ) nazývá cyklus (délky k v G) Definice Řekneme, že orientovaný graf G je (slabě) souvislý, jestliže jeho symetrizace je souvislý neorientovaný graf Definice Řekneme, že orientovaný graf G je silně souvislý, jestliže pro každou dvojici uzlů u, v U( G) existuje v G orientovaný sled z u do v Větička Graf G je silně souvislý právě když pro každé u, v U( G) existuje v G orientovaná cesta z u do v 10

23 Věta Souvislý orientovaný graf G s alespoň 2 uzly je silně souvislý právě když každá jeho hrana leží v alespoň jednom cyklu Definice Buď G G Řekneme, že graf G je kvazikomponenta (silná komponenta) grafu G, jestliže 1 G je silně souvislý graf, 2 je-li G G G a G je silně souvislý, pak G = G (Tedy: kvazikomponenty grafu G jsou jeho maximální silně souvislé podgrafy) Definice Buď G graf Řekneme, že G je acyklický, jestliže G neobsahuje jako podgraf žádný cyklus Věta Je-li G acyklický a G G, pak G je acyklický Definice Uzel u U( G ) se nazývá (i) vstupní uzel grafu G, jestliže d + G = 0, (ii) výstupní uzel grafu G, jestliže d G = 0 Větička Každý acyklický graf má vstupní a výstupní uzel 11

24 Věta Buď G orientovaný graf a n = U( G) Následující tvrzení jsou ekvivalentní: (i) G je acyklický, (ii) každý neprázdný podgraf grafu G má výstupní uzel, (iii) každý neprázdný podgraf grafu G má vstupní uzel, (iv) existuje takové očíslování uzlů grafu G čísly 1,, n, že (i, j) H( G) i < j ACYC Vstup: graf G Úkol: je graf G acyklický? Výstup: ANO / NE Důsledek Úloha ACYC je řešitelná v polynomiálním čase Definice Buď G orientovaný graf, G1,, G k jeho kvazikomponenty Orientovaný graf G C s U( G C ) = { G 1,, G k } a H( G C ) = {( G i, G j ) i j a existují x U( G i ) a y U( G j ) tak, že (x, y) H( G)} se nazývá kondenzace grafu G Věta Buď G orientovaný graf Platí: (i) G C je acyklický graf, (ii) G je silně souvislý právě když G C je graf s jediným uzlem, (iii) G je acyklický graf právě když G = G C 12

25 Ohodnocené orientované grafy Definice Buď G graf Funkce w : H( G) (0, ) se nazývá (hranové) ohodnocení grafu G; graf se zadaným ohodnocením se nazývá ohodnocený graf Definice Nechť G je orientovaný graf s ohodnocením w Pro každou cestu P G definujeme w-délku w( P ) cesty P předpisem w( P ) = w(h) h H( P ) Nechť u, v U( G) Pak (i) vzdáleností uzlů u, v v grafu G (značíme d G (u, v)) rozumíme nejmenší délku orientované cesty z uzlu u do uzlu v v grafu G, (ii) w-vzdáleností uzlů u, v v grafu G (značíme d w G (u, v)) rozumíme nejmenší w-délku orientované cesty z uzlu u do uzlu v v grafu G Neexistuje-li v G cesta z u do v, klademe d G (u, v) = d w G (u, v) = 1

26 Nechť G je ohodnocený graf Uzly grafu G očíslujeme 1,, n, a pro 1 i, j n položíme w i,j = w((i, j)) jestliže (i, j) H( G), 0 jinak Matice W( G) = [w i,j ] n i,j=1 se nazývá vážená matice sousednosti grafu G Speciálně, neohodnocený graf považujeme za ohodnocený w i,j = 1 Matice sousednosti grafu G: A( G) = [a i,j ] n i,j=1, kde a i,j = 1 jestliže (i, j) H( G), 0 jinak Matice w-vzdáleností (w-distanční matice) grafu G: D w ( G) = [d w i,j] n i,j=1, kde d w i,j = d w G (i, j) Distanční matice grafu G: D( G) = [d i,j ] n i,j=1, kde d i,j = d G (i, j) 2

27 Výpočet distanční matice D( G): Věta Nechť G je orientovaný graf a k 0 Prvek a (k) i,j matice (A( G)) k je roven počtu sledů délky (přesně) k z uzlu i do uzlu j v G Důsledek Prvek d i,j matice D( G) je roven nejmenší mocnině k, pro kterou je prvek a (k) i,j matice (A( G)) k nenulový Výpočet w-distanční matice D w ( G): Nechť G je ohodnocený orientovaný graf Definujeme matici C( G) = [c i,j ] n i,j=1 předpisem: c i,j = 0 jestliže i = j, jestliže i j a (i, j) / H( G), w i,j jestliže i j a (i, j) H( G) (Matice C( G) se někdy nazývá cenová matice grafu G0 Definujeme nové operace: a b = min{a, b}, a b = a + b, a k-tou mocninu matice C( G) při těchto operacích označíme D (k) ( G) Věta Buď G je ohodnocený orientovaný graf a r nejmenší číslo pro něž D (r) ( G) = D (r+1) ( G) Pak D (r) ( G) = D w ( G) 3

28 Algoritmus 31 (Floydův algoritmus) 1 Položíme D 0 = C( G) 2 Pro k = 1,, n postupně vypočítáváme matice D k = [d k i,j] n i,j=1, kde d k ij = min{d k 1 ij, d k 1 ik + d k 1 kj } 3 D n = D w ( G) Poznámka: d k ij je minimální w-délka cesty z uzlu i do uzlu j množinou uzlů {1,, k} Věta 31 Algoritmus 31 nalezne w-distanční matici D w ( G) grafu G v čase O(n 3 ) 4

29 Dijkstrův algoritmus (minimální cesta z uzlu u do uzlu v) 1 Uzlu u přiřaď trvalou hodnotu th(u) = 0, ostatním uzlům dočasnou hodnotu dh(u) = 2 Je-li x poslední uzel, jemuž byla přiřazena trvalá hodnota th(x), pak všem uzlům y, pro něž (x, y) H( G) a které ještě nemají trvalou hodnotu, přiřaď novou dočasnou hodnotu dh(y) := min{dh(y), th(x) + w(x, y)} 3 Pro uzel z s nejmenší dočasnou hodnotou polož th(z) := dh(z) 4 Má uzel v trvalou hodnotu? NE: vrať se na 2, ANO: th(v) je w-délka minimální cesty z u do v Poznámka: hrany (x, y), na nichž w(x, y) = th(y) th(x), určují minimální cestu z u do v 5

30 Definice Buď G acyklický ohodnocený orientovaný graf a u, v U( G) Orientovaná cesta z u do v maximální w-délky se nazývá kritická cesta (z u do v v G) Příklad Činnost Doba Bezprostředně trvání podmiňující činnosti A 4 B 2 C 1 D 7 A E 6 A F 1 A,B,C G 2 A,B,C H 4 C I 2 E,F,G,H J 8 G,H Uzly stavy hrany činnosti A,4 0 E,6 D,7 B,2 F,1 I,2 C,1 0 G,2 0 J,8 H,4 6

31 Uzly: i t(i) T (i) i: očíslování uzlů podle věty o acyklických grafech (zároveň ověření acykličnosti) t(i): minimální časové ohodnocení minimální doba, za kterou lze dosáhnout stavu i T (i): maximální časové ohodnocení čas, kdy je nutno stav i opustit, aby nedošlo ke zpoždění projektu A,4 0 E,6 D, B,2 4 6 F,1 I, C,1 0 G,2 0 J, H, Kritická cesta: 1, 2, 4, 5, 7 Kritické činnosti: A, G, J 7

32 Algoritmus (kritická cesta z u do v v G) 1 Očísluj uzly grafu G podle věty o acyklických grafech 2 Konstrukce minimálního časového ohodnocení t(i): a) uzlu 1 (tj u) přiřaď t(1) = 0, b) pro i = 2,, n uzlu i přiřaď t(i) = max{t(j) + w((j, i)) (j, i) H( G)}, c) t(n) je w-délka kritické cesty 3 Konstrukce maximálního časového ohodnocení T (i): a) uzlu n (tj v) přiřaď T (n) = t(n), b) pro i = n 1,, 1 uzlu i přiřaď T (i) = min{t (j) w((i, j)) (i, j) H( G)} 4 Kritická cesta prochází těmi uzly i, pro něž T (i) = t(i), a hranami (i, j) pro něž w((i, j)) = t(j) t(i) 8

33 2 Toky v sítích Definice 21 Síť je orientovaný graf G s ohodnocením hran r : H( G) (0, ) a ohodnocením uzlů a : U( G) R Značení: uzly G očíslujeme 1,, n, pro i U( G) budeme a(i) krátce značit a i, pro (i, j) E( G) budeme r((i, j)) krátce značit r ij, i, j = 1,, n Definice 22 Buď G síť s ohodnocením uzlů a i a s ohodnocením hran r ij Tok v síti G je nezáporné hranové ohodnocení x : H( G) 0, ), splňující následující podmínky: 1 pro každý uzel i U( G) platí x ij j;(i,j) H( G) j;(j,i) H( G) x ji = a i, 2 pro každou hranu (i, j) H( G) platí 0 x ij r ij a i : intenzita uzlu i U( G) r ij : propustnost hrany (i, j) H( G) Uzel i U( G) se nazývá zdroj, je-li a i > 0, stok, je-li a i < 0, neutrální uzel, je-li a i = 0 9

34 Definice 24 Nechť G je síť, A U( G) je množina uzlů, a položme Ā = U( G) \ A Množina hran (A, Ā) = {(x, y) x A, y Ā} se nazývá řez sítě G Označení Je-li f : U( G) R funkce na U( G), označíme f(a) = f i, je-li g : H( G) R funkce na H( G), označíme g(a, Ā) = i A (i,j) (A,Ā) g ij Tvrzení 21 Nechť G je síť, x je tok v G a nechť A U( G) je množina uzlů G Pak platí a(a) = x(a, Ā) x(ā, A) Věta 21 V síti G existuje tok právě když a(u( G)) = 0 a pro každou množinu uzlů A U( G) je a(a) r(a, Ā) 10

35 Síť s jedním zdrojem a jedním stokem Síť G s jedním zdrojem z a jedním stokem s, nechť x je tok v G Zdroj z má intenzitu a 0 stok má intenzitu a Číslo a se nazývá velikost toku x a značí se x Definice 25 Tok x je maximální tok v G, jestliže pro každý tok x v G platí x x Definice 26 Nechť G je síť s jedním zdrojem z a jedním stokem s, a nechť (A, Ā) je řez sítě G Číslo r(a, Ā) se nazývá propustnost řezu (A, Ā) Řekneme, že řez (A, Ā) je minimální řez sítě G, jestliže pro každý řez (A, Ā ) sítě G platí r(a, Ā) r(a, Ā ) Jsou-li u, v U( G) dva uzly G, pak řekneme, že řez (A, Ā) odděluje uzly u, v, jestliže u A a v Ā Tvrzení 22 Nechť G je síť s jedním zdrojem z a jedním stokem s, nechť (A, Ā) je řez sítě G, oddělující z a s, a nechť x je tok v G Pak platí: (i) x = x(a, Ā) x(ā, A), (ii) x r(a, Ā) 1

36 Definice 27 Nechť u, w U( G) Polocesta z u do w je posloupnost u = v 0, h 1, v 1, h 2,, h k, v k = w, kde v i jsou navzájem různé uzly, h i jsou hrany a pro každé i = 1,, k platí buď h i = v i 1 v i (pak jde o souhlasnou hranu dané polocesty) nebo h i = v i v i 1 nesouhlasná hrana) Nechť x je tok v síti G Rezerva polocesty P je nezáporné číslo Θ(P ) = min{θ s (P ), Θ n (P )}, kde Θ s (P ) = min{r ij x ij (i, j) je souhlasná hrana P } a Θ n (P ) = min{x ij (i, j) je nesouhlasná hrana P} Polocesta P je rezervní, jestliže Θ(P ) > 0 Tvrzení 23 Nechť G je síť s jedním zdrojem z a jedním stokem s, a nechť x je tok v G Existuje-li v G rezervní polocesta ze z do s vzhledem k x, pak tok x není maximální Věta 22 (Ford, Fulkerson) Buď G síť s jedním zdrojem z a jedním stokem s Velikost maximálního toku v G je rovna propustnosti minimálního řezu, oddělujícího z a s 2

37 Algoritmus 21 (Ford Fulkersonův algoritmus) 1 Jako výchozí tok x zvolme nulový tok: x ij := 0 pro každou hranu (i, j) H( G) 2 Jestliže v grafu G existuje nějaká rezervní polocesta P ze z do s, upravme podél ní tok x: x ij := x ij + Θ pokud (i, j) je souhlasná hrana polocesty P, x ij Θ pokud (i, j) je nesouhlasná hrana polocesty P, x ij pokud (i, j) neleží na P, a pokračujme bodem (2) 3 V případě, že rezervní polocesta ze z do s neexistuje, je tok x maximální Tvrzení 24 Jsou-li v síti G propustnosti všech hran celá čísla, pak Ford Fulkersonův algoritmus skončí po konečném počtu kroků 3

38 Edmonds Karpův algoritmus Myšlenka: zvolíme vždy nejkratší rezervní polocestu ze z do s Jedna z iterací kroku (2): máme nějaký tok x a hledáme nejkratší rezervní polocestu ze z do s (a) T je strom na jediném uzlu z, Seznam uzlů L obsahuje jedinou položku z, Zdroj je označený, Všechny ostatní uzly sítě G jsou neoznačené (b) Je-li L, pak nechť v je první uzel seznamu L Je-li v = s, algoritmus končí Jednoznačně určená polocesta spojující z a s ve stromu T je hledaná nejkratší polocesta Upravíme podél této polocesty tok x jako ve Ford Fulkersonově algoritmu Jinak označíme všechny neoznačené sousedy w uzlu v, pro něž (v, w) je nenasycená hrana nebo (w, v) je nenulová hrana, ve stromu T je připojíme hranami k v, a přidáme je na konec seznamu L Vyřadíme uzel v ze seznamu L a pokračujeme bodem (b) (c) je-li L =, pak rezervní polocesta ze z do s neexistuje a tok x je maximální 4

39 3 Grafy a matice Definice 32 Čtvercová matice A se nazývá rozložitelná, lze-li ji napsat ve tvaru A = A 11 A 12 0 A 22 kde A 11 a A 22 jsou čtvercové matice řádu alespoň 1 a 0 je nulová matice, anebo lze-li ji do tohoto tvaru převést permutací řádků a stejnou permutací sloupců, Ekvivalentně: A je rozložitelná, jestliže existuje permutační matice P tak, že PAP T = A 11 A 12 0 A 22 1

40 Věta 32 Buď G ohodnocený orientovaný graf Platí: a) Je-li G silně souvislý, pak je matice W( G) nerozložitelná b) Jsou-li G 1,, G k kvazikomponenty grafu G, očíslované tak, že v kondenzaci G C jsou pouze hrany ( G k, G l ) pro k < l a očíslujeme-li uzly grafu G souhlasně s očíslováním kvazikomponent, tj tak, že je-li i G k a j G l pro k < l, pak i < j, pak matice W( G) má tvar W( G) = W 11 W 12 W 13 W 1k 0 W 22 W 23 W 2k 0 0 W 33 W 3k W kk, kde W ii = W( G) i, i = 1,, k, a tyto matice jsou již nerozložitelné Důsledek 31 Čtvercová matice A je nerozložitelná právě když její diagram G(A) je silně souvislý 2

41 Definice 33 Řekneme, že čtvercová matice A je slabě rozložitelná, jestliže existují permutační matice P a Q tak, že PAQ = A 11 A 12 0 A 22 kde A 11 a A 22 jsou čtvercové matice řádu alespoň 1 a 0 je nulová matice Čtvercová matice, která není slabě rozložitelná, se nazývá úplně nerozložitelná, Definice 34 Bigraf je orientovaný graf G, jehož množinu uzlů lze rozložit na disjunktní neprázdné podmnožiny U 1, U 2 tak, že pro každou hranu (u, v) H( G) je u U 1 a v U 2 Definice 35 Buď A = [a ij ] čtvercová matice řádu n; označme U 1 množinu řádkových indexů a U 2 množinu sloupcových indexů matice A Bigraf matice A je orientovaný graf B(A) s množinou uzlů a množinou hran U = U 1 U 2 H = {(i, j) i U 1, j U 2, a ij 0} 3

42 Definice 36 Buď G bigraf s množinou uzlů U( G) = U 1 U 2 Množina V U 1, V U 1, se nazývá stabilní množina v G, jestliže pro množinu uzlů W = {j U 2 i V tak, že (i, j) H( G)} platí W V Věta 33 Čtvercová matice A je slabě rozložitelná právě když v jejím bigrafu B(A) existuje stabilní množina 4

43 Definice 37 Řekneme, že bigraf G je lineární, jestliže pro každý uzel u U 1 je d (u) = 1 a pro každý uzel v U 2 je d + (v) = 1 Definice 38 Je-li G bigraf a G1 G jeho lineární podbigraf, pak říkáme, že G 1 je párování v G Je-li G 1 G párování v G takové, že U( G 1 ) = U( G) (tj G 1 je faktorem bigrafu G), pak říkáme, že G 1 je perfektní párování v G Věta 34 1 Je-li A regulární matice, pak její bigraf B(A) má perfektní párování 2 Jestliže bigraf G má perfektní párování, pak existuje regulární matice A taková, že B(A) = G 5

44 Definice Strukturální matice řádu n 1 je čtvercová matice řádu n, u níž je dána pouze struktura nulových a nenulových prvků, ale nejsou určeny jejich konkrétní hodnoty (Poněkud přesněji: na strukturální matici lze pohlížet jako na funkci hodnot jejích nenulových prvků) Pro každou strukturální matici A nastává právě jedna z následujících možností: (i) polynom det(a) je nenulový, a při náhodné volbě nenulových prvků matice A je matice A regulární s pravděpodobností 1, (ii) polynom det(a) je nulový a matice A je singulární při každé volbě jejích nenulových prvků V prvním případě říkáme, že strukturální matice A je genericky regulární, ve druhém případě je A genericky singulární Věta 35 Nechť A je čtvercová strukturální matice Pak platí: A je genericky regulární B(A) má perfektní párování 6

45 Definice Nechť A je strukturální matice Největší přirozené číslo k, pro které v matici A existuje genericky regulární podmatice řádu k, se nazývá generická hodnost matice A a značí se gh(a) Definice Počet hran největšího párování v bigrafu B se nazývá párovací číslo bigrafu B a značí se ν( B) Věta 36 Nechť A je strukturální matice Pak gh(a) = ν( B(A)) 7

46 Největší párování v bigrafu je možno najít v polynomiálním čase převodem na úlohu maximálního toku: bigrafu B s U( B) = U 1 U 2 přiřadíme síť G tak, že k B přidáme nový uzel z (zdroj), nový uzel s (stok), hrany (z, u) pro všechny uzly u U 1, hrany (v, s) pro všechny uzly v U 2 Propustnosti všech hran jsou rovny jedné U 1 nové hrany nové hrany z bigraf B s U 2 Najdeme-li v G (celočíselný) maximální tok, pak hrany bigrafu B s nenulovým tokem určují největší párování v B 8

47 4 Míry souvislosti grafu Definice 41 Hrana {x, y} H(G) se nazývá most grafu G, jestliže v grafu G neexistuje žádná kružnice, která ji obsahuje Tvrzení 41 Je-li graf G souvislý a hrana {x, y} jeho most, pak graf G {x, y}, vzniklý odstraněním hrany {x, y} z G, je nesouvislý Věta 41 Má-li souvislý graf G most, pak má alespoň dva uzly lichého stupně Definice 42 Uzel x U(G) je artikulace grafu G, jestliže existují hrany {x, y 1 } a {x, y 2 }, které nepatří současně téže kružnici grafu G Definice 43 Buď G graf, G G jeho souvislý podgraf Řekneme, že G je blok grafu G, jestliže: a) G nemá artikulaci, b) jestliže G je souvislý graf bez artikulace takový, že G G G, pak G = G 1

48 Tvrzení 42 Buď G souvislý graf Pak G nemá artikulaci právě když pro každé dvě jeho hrany existuje kružnice, na níž obě leží Důsledek 41 Pro každé dvě hrany bloku, který není mostem, existuje kružnice, na níž obě leží Věta 42 Buďte G 1, G 2 dva bloky grafu G Pak buďto G 1 = G 2, nebo G 1 a G 2 nemají žádnou společnou hranu Definice 44 Buď G souvislý graf, B 1,, B r všechny jeho bloky a x 1,, x s všechny jeho artikulace Graf B(G), definovaný předpisem U(B(G)) = {x 1,, x s, B 1,, B r }, H(B(G)) = {{a, b} i, j tak, že a = x i, b = B j a x i U(B j )}, se nazývá blokový graf grafu G Věta 43 Pro každý souvislý graf G je blokový graf B(G) stromem 2

49 Definice 45 Buď G souvislý graf a x, y U(G) Množina B H(G) taková, že 1) každá cesta z uzlu x do uzlu y obsahuje alespoň jednu hranu množiny B, 2) žádná vlastní podmnožina množiny B nemá vlastnost 1), se nazývá hranový řez grafu G mezi uzly x a y Definice 46 Nejmenší počet prvků hranového řezu mezi uzly x a y se nazývá hranový stupeň souvislosti grafu G mezi uzly x a y a značí se h G (x, y) Definice 47 Buď G souvislý graf, x, y jeho uzly Množina A U(G) taková, že 1) každá cesta z x do y obsahuje alespoň jeden uzel z množiny A, 2) žádná vlastní podmnožina množiny A nemá vlastnost 1), se nazývá uzlový řez grafu G mezi uzly x a y Definice 48 Nejmenší počet prvků uzlového řezu, oddělujícího uzly x a y, se nazývá uzlový stupeň souvislosti grafu G mezi uzly x a y a značí se u G (x, y) Neexistuje-li uzlový řez mezi x a y, tj jsou-li uzly x a y sousední, klademe u G (x, y) = U(G) 1 3

50 Definice 49 (i) Nejmenší z čísel u G (x, y) nazveme uzlový stupeň souvislosti grafu G a budeme je značit u(g) (ii) Nejmenší z čísel h G (x, y) nazveme hranový stupeň souvislosti grafu G a budeme je značit h(g) Řekneme, že graf G je uzlově (resp hranově) k-souvislý, jestliže je u(g) k (resp h(g) k) Věta 44 Pro každý graf G platí u(g) h(g) δ(g) u(g) = 2, h(g) = 3, δ(g) = 4 u(g) = h(g) = δ(g) = 3 Věta 45 V každém grafu G platí h(g) 2 H(G) U(G) 4

51 Věta 46 (Ford, Fulkerson) Graf G je hranově k-souvislý mezi uzly a a b, a b, právě když v něm existuje k hranově disjunktních cest, vedoucích z a do b Věta 47 (Menger) Graf G je uzlově k-souvislý mezi nesousedními uzly a a b, právě když v něm existuje k uzlově disjunktních cest, vedoucích z a do b Konstrukce sítě G: U( G) = {(x, i) x U(G), i = 1, 2}, H( G) = {((x, 1), (x, 2)) x U(G)} {((x, 2), (y, 1)) {x, y} H(G)} Propustnosti hran: u hran typu ((x, 1) (x, 2)) položíme propustnost rovnu jedné, u hran druhého typu (tj ((x, 2), (y, 1)) ) bude propustnost nekonečná Zdrojem je uzel (a, 2), stokem je uzel (b, 1) G x G (x, 1) 1 (x, 2) a b (a, 1) 1 (a, 2) (b, 1) 1 (b, 2) y (y, 1) 1 (y, 2) 5

Ohodnocené orientované grafy

Ohodnocené orientované grafy Ohodnocené orientované grafy Definice Buď G graf Funkce w : H( G) (, ) se nazývá (hranové) ohodnocení grafu G; graf se zadaným ohodnocením se nazývá ohodnocený graf Definice Nechť G je orientovaný graf

Více

Teorie grafů, diskrétní optimalizace a

Teorie grafů, diskrétní optimalizace a KMA/TGD1 Teorie grafů, diskrétní optimalizace a výpočetní složitost 1 Pracovní texty přednášek http://wwwkmazcucz/tgd1 Obsahem předmětu KMA/TGD1 jsou základy algoritmické teorie grafů a výpočetní složitosti

Více

Základní pojmy teorie grafů [Graph theory]

Základní pojmy teorie grafů [Graph theory] Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme

Více

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška Disjunktivní a konjunktivní normáln lní tvar formule 2.přednáška Disjunktivní normáln lní forma Definice Řekneme, že formule ( A ) je v disjunktivním normálním tvaru (formě), zkráceně v DNF, jestliže je

Více

Definice barevnosti grafu, základní vlastnosti. Varinaty problému barvení.

Definice barevnosti grafu, základní vlastnosti. Varinaty problému barvení. 7 Barevnost a další těžké problémy Pro motivaci této lekce se podíváme hlouběji do historie počátků grafů v matematice. Kromě slavného problému sedmi mostů v Královci (dnešním Kaliningradě) je za další

Více

NP-úplnost problému SAT

NP-úplnost problému SAT Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit Teorie grafů zadání úloh letní semestr 2008/2009 Poslední aktualizace: 19. května 2009 Obsah Úloha číslo 1 5 Úloha číslo 2 6 Úloha číslo 3 7 Úloha číslo 4 8 Úloha číslo 5 9 Úloha číslo 6 10 Úloha číslo

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly. Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Kapitola 1. Grafy a podgrafy

Kapitola 1. Grafy a podgrafy Petr Kovář, 1. Grafy a podgrafy 25. února 2011 Kapitola 1. Grafy a podgrafy 1.1. Grafy a jednoduché grafy 1.1.1. Ukažte, že platí G = G, tj. doplněk doplňku grafu G je právě graf G. 1.1.2. Může být graf

Více

Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy.

Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Poznámka:Slovem okružní myslíme,žecestakončívestejném městě,

Více

ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094

ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094 10 ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094 Matematicko-fyzikální fakulta Univerzita Karlova v Praze 1 ROZHODOVÁNÍ TEORIÍ POMOCÍ SAT ŘEŠIČE (SMT)

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

MATEMATIKA A 3 Metodický list č. 1

MATEMATIKA A 3 Metodický list č. 1 Metodický list č. 1 Název tématického celku: Úvod do problematiky diskrétní matematiky Cíl: Cílem tohoto tématického celku je vymezení oblasti diskrétní matematiky a příprava na další výklad kurzu. Jedná

Více

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

5 Minimální kostry, Hladový algoritmus

5 Minimální kostry, Hladový algoritmus 5 Minimální kostry, Hladový algoritmus Kromě teoretických hrátek mají kostry grafů (Oddíl 4.4) následující důležité praktické použití: Dříve jsme uvažovali spojení v grafech cestami jdoucími z jednoho

Více

1. Pøevody problémù a NP-úplnost

1. Pøevody problémù a NP-úplnost 1. Pøevody problémù a NP-úplnost Všechny úlohy, které jsme zatím potkali, jsme uměli vyřešit algoritmem s polynomiální časovou složitostí. V prvním přiblížení můžeme říci, že polynomialita docela dobře

Více

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika.

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Lineární kódy, část 2 Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 22.12.2014: Lineární kódy, část 2 1/12 Dnešní přednáška 1 Analýza Hammingova (7, 4)-kódu.

Více

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Matematika pro studenty ekonomie Vydala Grada Publishing, a.s. U Průhonu 22, 70 00 Praha 7 tel.: +420 234 264 40, fax: +420 234 264 400 www.grada.cz jako svou

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou, Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více

Teorie síťových modelů a síťové plánování

Teorie síťových modelů a síťové plánování KSI PEF ČZU Teorie síťových modelů a síťové plánování Část přednášky doc. Jaroslava Švasty z předmětu systémové analýzy a modelování. Zápis obsahuje základní vymezení projektu, časového plánování a popis

Více

Grafy (G) ρ(h) = [u,v]

Grafy (G) ρ(h) = [u,v] Grafy (G) Neorientované: (NG) H hrany, U-uzly, ρ-incidence (jestli k němu něco vede) ρ: H UΞU Ξ neuspořádaná dvojice ρ(h) = [u,v] Teoretická informatika Str.1 Izolovaný uzel neinciduje s ním žádná hrana

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky.

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky. Teoretická informatika průběh výuky v semestru 1 Týden 11 Přednáška Nejprve jsme dokončili témata zapsaná u minulé přednášky. PSPACE, NPSPACE, PSPACE-úplnost Uvědomilijsmesi,ženapř.prozjištěnítoho,zdaBílýmánějakoustrategiivehřeŠACHY,

Více

PETRIHO SÍTĚ STOCHASTICKÉ PETRIHO SÍTĚ. Modelování Petriho sítěmi

PETRIHO SÍTĚ STOCHASTICKÉ PETRIHO SÍTĚ. Modelování Petriho sítěmi HPSim PETRIHO SÍTĚ STOCHASTICKÉ PETRIHO SÍTĚ 1962 - Carl Adam Petri formalismus pro popis souběžných synchronních distribučních systémů Modelování Petriho sítěmi Grafický popis a analýza systémů, ve kterých

Více

5.6.3 Rekursivní indexace složitostních tříd 5.6.4 Uniformní diagonalizace 5.6.5 Konstrukce rekursivních indexací a aplikace uniformní diagonalizace

5.6.3 Rekursivní indexace složitostních tříd 5.6.4 Uniformní diagonalizace 5.6.5 Konstrukce rekursivních indexací a aplikace uniformní diagonalizace Obsah prvního svazku 1 Úvod 1.1 Přehled pojmů a struktur 1.1.1 Množiny, čísla a relace 1.1.2 Funkce 1.1.3 Pravděpodobnost 1.1.4 Grafy 1.2 Algebra 1.2.1 Dělitelnost, prvočíselnost a základní kombinatorické

Více

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost. Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Rezoluce ve výrokové logice

Rezoluce ve výrokové logice Rezoluce ve výrokové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce ve VL 1/13 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. 2 X nesplnitelná iff X = ff. 3 Hledání kritických důsledků X syntakticky.

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Funkce. Definiční obor a obor hodnot

Funkce. Definiční obor a obor hodnot Funkce Definiční obor a obor hodnot Opakování definice funkce Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné

Více

Délka (dny) 150 - - 2 terénní úpravy (prvotní) 15-20 - příprava staveniště (výstavba přístřešku pro materiál)

Délka (dny) 150 - - 2 terénní úpravy (prvotní) 15-20 - příprava staveniště (výstavba přístřešku pro materiál) Skupinová práce. Zadání skupinové práce Síťová analýza metoda CPM Dáno: Výstavba skladu zásob obilí představuje následující činnosti: Tabulka Název činnosti Délka (dny) Optimální projekt. Optimální dělníků

Více

Co byste měl/a zvládnout po 6. týdnu

Co byste měl/a zvládnout po 6. týdnu Co byste měl/a zvládnout po 6. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B01LAG Zvládnutá látka po 6. týdnu 1/8 Slovník základních pojmů Monomorfismus,

Více

Volné stromy. Úvod do programování. Kořenové stromy a seřazené stromy. Volné stromy

Volné stromy. Úvod do programování. Kořenové stromy a seřazené stromy. Volné stromy Volné stromy Úvod do programování Souvislý, acyklický, neorientovaný graf nazýváme volným stromem (free tree). Často vynecháváme adjektivum volný, a říkáme jen, že daný graf je strom. Michal Krátký 1,Jiří

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

Matematika pro informatiku 4

Matematika pro informatiku 4 Matematika pro informatiku 4 Doc. RNDr. Alena Šolcová, Ph. D., KTI FIT ČVUT v Praze 7.března 2011 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Lámejte si hlavu - L1 Určete všechny

Více

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno 12 Délka výpočtu algoritmu Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno neméně důležité hledisko k posouzení vhodnosti algoritmu k řešení zadané úlohy. Jedná se o čas,

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

SÍŤOVÁ ANALÝZA. Kristýna Slabá, kslaba@students.zcu.cz. 1. července 2010

SÍŤOVÁ ANALÝZA. Kristýna Slabá, kslaba@students.zcu.cz. 1. července 2010 SÍŤOVÁ ANALÝZA Kristýna Slabá, kslaba@students.zcu.cz 1. července 2010 Obsah 1 Úvod do síťové analýzy Hlavní metody síťové analýzy a jejich charakteristika Metoda CPM Metoda PERT Nákladová analýza Metoda

Více

Diskrétní matematika Roman Čada Tomáš Kaiser Zdeněk Ryjáček Katedra matematiky FAV Západočeská univerzita v Plzni 2004

Diskrétní matematika Roman Čada Tomáš Kaiser Zdeněk Ryjáček Katedra matematiky FAV Západočeská univerzita v Plzni 2004 Diskrétní matematika Roman Čada Tomáš Kaiser Zdeněk Ryjáček Katedra matematiky FAV Západočeská univerzita v Plzni 2004 ii Úvodem Máte před sebou text k přednášce Diskrétní matematika pro první ročník na

Více

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu.

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu. 6 Kapitola 2 Příklady z predikátové logiky 2.1 Formule predikátové logiky 2.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolu uvedených

Více

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika O FUNKCÍCH Obsah Nezbytně nutná kapitola, kterou musíte znát pro studium limit, derivací a integrálů. Základ, bez kterého se neobejdete. Nejprve se seznámíte se všemi typy funkcí, které budete potřebovat,

Více

Řízení projektů. Ing. Michal Dorda, Ph.D.

Řízení projektů. Ing. Michal Dorda, Ph.D. Řízení projektů Ing. Michal Dorda, Ph.D. Ing. Michal Dorda, Ph.D. 1 Použitá literatura Tato prezentace byla vytvořena především s využitím následujících zdrojů: ŠIROKÝ, J. Aplikace počítačů v provozu vozidel.

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Výroková a predikátová logika Výpisky z cvičení Martina Piláta

Výroková a predikátová logika Výpisky z cvičení Martina Piláta Výroková a predikátová logika Výpisky z cvičení Martina Piláta Jan Štětina 1. prosince 2009 Cviˇcení 29.9.2009 Pojem: Sekvence je konečná posloupnost, značíme ji predikátem seq(x). lh(x) je délka sekvence

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

7 Kardinální informace o kritériích (část 1)

7 Kardinální informace o kritériích (část 1) 7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru

Více

1. Množiny, zobrazení, relace

1. Množiny, zobrazení, relace Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 1. Množiny, zobrazení, relace První kapitola je věnována základním pojmům teorie množin. Pojednává o množinách

Více

Matematická analýza 1b. 9. Primitivní funkce

Matematická analýza 1b. 9. Primitivní funkce Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Týden 14. Přednáška. Teoretická informatika průběh výuky v semestru 1. PSPACE, NPSPACE, PSPACE-úplnost

Týden 14. Přednáška. Teoretická informatika průběh výuky v semestru 1. PSPACE, NPSPACE, PSPACE-úplnost Teoretická informatika průběh výuky v semestru 1 Týden 14 Přednáška PSPACE, NPSPACE, PSPACE-úplnost Uvědomili jsme si nejprve, že např. pro zjištění toho, zda Bílý má nějakou strategii ve hře ŠACHY, která

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 11. Lineární zobrazení V celé přednášce pojednáváme o vektorových prostorech nad

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Definice 10.1 Postův systém nad abecedou Σ je dán neprázdným seznamem S dvojic neprázdných řetězců nadσ, S = (α

Více

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují.

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. .. Funkce, definiční obor funkce Předpoklady: 03 Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. Uděláme si na tabuli jenom krátký seznam: S = a, y = x, s = vt, výška lidí v

Více

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26 Obsah 1 Matice 3 11 Operace s maticemi 4 12 Soustavy lineárních rovnic 11 13 Maticové rovnice a výpočet inverzní matice 15 14 Elementární matice 19 15 Cvičení 21 16 Řešení 22 2 Vektory a vektorové prostory

Více

Obecné metody systémové analýzy

Obecné metody systémové analýzy Obecné metody systémové analýzy Graf jako pojem matematické teorie grafů (nikoliv např. grafické znázornění průběhu funkce): určitý útvar (rovinný, prostorový), znázorňující vztahy (vazby, relace) mezi

Více

5 Informace o aspiračních úrovních kritérií

5 Informace o aspiračních úrovních kritérií 5 Informace o aspiračních úrovních kritérií Aspirační úroveň kritérií je minimální (maximální) hodnota, které musí varianta pro dané maximalizační (minimalizační) kritérium dosáhnout, aby byla akceptovatelná.

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

Algoritmy I, složitost

Algoritmy I, složitost A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

UDBS Cvičení 10 Funkční závislosti

UDBS Cvičení 10 Funkční závislosti UDBS Cvičení 10 Funkční závislosti Ing. Miroslav Valečko Zimní semestr 2014/2015 25. 11. 2014 Návrh schématu databáze Existuje mnoho způsobů, jak navrhnout schéma databáze Některá jsou lepší, jiná zase

Více

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace Význam triangulace trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy příklad triangulace Definice Triangulace nad množinou bodů v rovině představuje takové planární

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

MASARYKOVA UNIVERZITA

MASARYKOVA UNIVERZITA MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY Bakalářská práce BRNO 2012 VLASTISLAV FORCH MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY Pravděpodobný

Více

Toky v sítích. Ruský petrobaron vlastní ropná naleziště na Sibiři a trubky vedoucí do Evropy. Trubky vedou mezi nalezišti, uzlovými

Toky v sítích. Ruský petrobaron vlastní ropná naleziště na Sibiři a trubky vedoucí do Evropy. Trubky vedou mezi nalezišti, uzlovými Toky v sítích Ruský petrobaron vlastní ropná naleziště na Sibiři a trubky vedoucí do Evropy. Trubky vedou mezi nalezišti, uzlovými body a koncovými body, kde ropu přebírají odběratelé. Každá trubka může

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

NUMERICKÉ METODY. Josef Dalík

NUMERICKÉ METODY. Josef Dalík NUMERICKÉ METODY Josef Dalík Zdroje chyb Při řešení daného technického problému numerickými metodami jde zpravidla o zjištění některých kvantitativních charakteristik daného procesu probíhajícího v přírodě

Více

Algoritmy a datové struktury

Algoritmy a datové struktury Algoritmy a datové struktury 1 / 34 Obsah přednášky Základní řídící struktury posloupnost příkazů podmínka cyklus s podmínkou na začátku cyklus s podmínkou na konci cyklus s pevným počtem opakování Jednoduchá

Více