Předpokládané znalosti: v rozsahu KMA/DMA Diskrétní matematika. Skripta DMA: - R J. Holenda, Z. Ryjáček: Lineární algebra II - Skripta

Rozměr: px
Začít zobrazení ze stránky:

Download "Předpokládané znalosti: v rozsahu KMA/DMA Diskrétní matematika. Skripta DMA: - R. 2004. - J. Holenda, Z. Ryjáček: Lineární algebra II - Skripta"

Transkript

1 KMA/TGD1 Teorie grafů a diskrétní optimalizace 1 Zdeněk Ryjáček, KMA UK 620 ryjacek@kmazcucz , s přestávkou 15 minut Předpokládané znalosti: v rozsahu KMA/DMA Diskrétní matematika Skripta DMA: - R Literatura 2004 Čada, T Kaiser, Z Ryjáček: Diskrétní matematika Skripta ZČU Plzeň, - J Holenda, Z Ryjáček: Lineární algebra II - Skripta ZČU Plzeň, Základní: Nejsou to skripta, jen pomocný text k přednášce - Další literatura: Úvod do diskrétní matematiky - L Kučera: Kombinatorické algoritmy SNTL, Praha J Demel: Grafy a jejich aplikace Academia, J Plesník: Grafové algoritmy Veda, Bratislava, Další jen v angličtině 1

2 Forma výuky - Folie z přednášek budou průběžně na www stránce předmětu - Cvičení - RNDr Jakub Teska, PhD, teska@kmazcucz - RNDr Jan Ekstein, ekstein@kmazcucz - K samostatnému procvičování a hraní jsou k disposici výukové programy (aplety), odkaz ze stránky předmětu Zkouška - Písemná - 3 příklady - Ústní - 2 otázky Dotazy? 2

3 Definice Graf je uspořádaná dvojice G = (U, H), kde U je konečná množina a H ( ) U 2 U 2 Graf G = (U, H) se nazývá neorientovaný graf, jestliže H ( U 2 orientovaný graf, jestliže H U 2 ), Definice Bud te G a G grafy Zobrazení f : U(G) U(G ) se nazývá homomorfismus grafu G do grafu G, jestliže (x, y) H(G) (f(x), f(y)) H(G ), a {x, y} H(G) {f(x), f(y)} H(G ) Značíme f : G G Definice Bud te G a G grafy a f : U(G) U(G ) zobrazení Pak zobrazení f : H(G) H(G ), definované vztahy f ({u, v}) = {f(u), f(v)}, a f ((u, v)) = (f(u), f(v)), se nazývá zobrazení indukované zobrazením f Tedy: f : U(G) U(G ) je homomorfismus právě když h H(G) f (h) H(G ) 3

4 Definice Bud te G, G grafy, f : G G homomorfismus Pak řekneme, že f je uzlový monomorfismus, je-li f prosté, uzlový epimorfismus, je-li f na, hranový monomorfismus, je-li f prosté, hranový epimorfismus, je-li f na, monomorfismus, je-li f i f prosté, epimorfismus, je-li f i f na, isomorfismus, je-li f i f prosté a na Poznámky 1 Ekvivalentně, f : U(G) U(G ) je isomorfismus, jestliže f je prosté a na (bijekce), a platí (x, y) H(G) (f(x), f(y)) H(G ), a {x, y} H(G) {f(x), f(y)} H(G ) 2 Značíme G G 3 Relace je ekvivalence 4

5 1 Které z těchto grafů jsou isomorfní? 2 Které z těchto grafů jsou isomorfní? (d cv) 5

6 Neorientované grafy Úplný graf: K n = 1, n, 1, n 2 Cesta délky n 0: P n = ( 0, n, {{i, i + 1} i 1, n 1 }}) Kružnice délky n 3: C n = ( 1, n, {{i, i + 1} i 1, n 1 } {{1, n}}) Úplný sudý (bipartitní) graf : K U,U = (U U, {{x, y}} x U, y U }) (U U = ) Speciálně, K p,q = K 1,p, p+1,p+q Definice Stupeň uzlu u v grafu G je počet hran grafu G, které obsahují uzel u Stupeň uzlu u v grafu G značíme d G (u) Věta Pro každý graf G platí u U(G) d G (u) = 2 H(G) 6

7 Definice Necht U(G) = n Očíslujeme uzly grafu G tak, že d G (x 1 ) d G (x 2 ) d G (x n ) Pak konečná nerostoucí posloupnost d G (x 1 ), d G (x 2 ),, d G (x n ) se nazývá soubor stupňů grafu G Věta Necht s 1 s 2 s n, n 2 Pak je posloupnost s 1, s 2,, s n grafová právě když je grafová posloupnost s 2 1, s 3 1,, s s1 +1 1, s s1 +2,, s n 7

8 Definice Bud te G 1, G grafy Řekneme, že G 1 je podgrafem grafu G, jestliže U(G 1 ) U(G) a H(G 1 ) H(G), G 1 je faktorem grafu G, jestliže U(G 1 ) = U(G) a H(G 1 ) H(G) Bud X U(G) Pak graf G 1 = ( X, H(G) ( )) X 2 se nazývá podgraf grafu G indukovaný na množině X Je-li G 1 podgrafem grafu G, značíme G 1 G Definice Necht f : G 1 G je homomorfismus Pak podgraf f(g 1 ) G, definovaný předpisem f(g 1 ) = (f(u(g 1 )), f (H(G 1 ))) se nazývá obraz grafu G 1 při homomorfismu f ( homomorfní obraz ) Definice 1 Bud G graf, u, v U(G), a necht f : P k G je homomorfismus takový, že f(0) = u a f(k) = v Pak se graf f(p k ) nazývá sled délky k z uzlu u do uzlu v v grafu G 2 Je-li navíc f hranový monomorfismus, pak se f(p k ) nazývá tah (délky k z u do v v G) 3 Je-li navíc f uzlový monomorfismus, pak se f(p k ) nazývá cesta (délky k z u do v v G) 8

9 Definice Řekneme, že graf G je souvislý, jestliže pro každé u, v U(G) existuje v G sled z u do v Větička Graf G je souvislý právě když pro každé u, v U(G) existuje v G cesta z u do v Definice Bud G G Řekneme, že graf G je komponenta grafu G, jestliže 1 G je souvislý graf, 2 je-li G G G a G je souvislý, pak G = G (Tedy: komponenty grafu G jsou jeho maximální souvislé podgrafy) Označení Minimální stupeň grafu: δ(g) = min{d G (U) u U(G)} Maximální stupeň grafu: (G) = max{d G (U) u U(G)} Neřekneme-li jinak, pak vždy značíme U(G) = n a H(G) = m Větička Je-li δ(g) n 2, pak je G souvislý Tvrzení (Vlastnosti souvislých grafů) Necht G je souvislý graf Pak 1 existuje uzel u U(G) tak, že graf G u je souvislý, 2 m n 1 9

10 Definice 1 Bud f : C k G homomorfismus Pak se graf f(c k ) nazývá uzavřený sled v grafu G 2 Je-li navíc f hranový monomorfismus, pak se f(c k ) nazývá uzavřený tah v G 3 Je-li navíc f uzlový monomorfismus, pak se f(p k ) nazývá kružnice v G Číslo k se nazývá délka (uzavřeného sledu, uzavřeného tahu, kružnice) Definice Souvislý graf, který neobsahuje jako podgraf žádnou kružnici, se nazývá strom Věta Následující tvrzení jsou ekvivalentní 1 G je strom 2 Pro každé u, v U(G) existuje v G právě jedna cesta z u do v 3 G je souvislý a m = n 1 4 G je souvislý a nemá žádný souvislý vlastní faktor Definice Bud G souvislý graf Graf T G se nazývá kostra grafu G, jestliže 1 T je strom, 2 T je faktor grafu G Větička V každém souvislém grafu existuje alespoň jedna jeho kostra 10

11 Ohodnocené grafy Definice Bud G graf Funkce w : H(G) (0, ) se nazývá (hranové) ohodnocení grafu G; graf se zadaným ohodnocením se nazývá ohodnocený graf Necht G je ohodnocený graf Uzly grafu G očíslujeme 1,, n, a pro 1 i, j n položíme w i,j = w({i, j}) jestliže {i, j} H(G), 0 jinak Matice W(G) = [w i,j ] n i,j=1 se nazývá vážená matice sousednosti grafu G Speciálně, neohodnocený graf považujeme za ohodnocený w i,j = 1 Matice sousednosti: A(G) = [a i,j ] n i,j=1, kde a i,j = 1 jestliže {i, j} H(G), 0 jinak Matice incidence (uzlo-hranová): očíslujeme uzly u 1,, u n a hrany h 1,, h m a položíme I(G) = [b i,j ] n,m i,j=1, kde b i,j = 1 jestliže u i h j, 0 jinak Věta I(G)(I(G)) T = A(G) + S(G), kde S(G) = diag(d G (u 1 ),, d G (u n )) 11

12 Minimální kostra grafu Věta Bud G souvislý ohodnocený graf a K jeho souvislý faktor, pro který číslo nabývá minimální hodnotu Pak K je kostra grafu G {i,j} H(K) w Algoritmus 1 1 Polož G 0 = G, i := 0 2 Existuje v G i kružnice C i? - Ano: v C i najdi hranu h i s maximálním ohodnocením, polož G i+1 = (U(G i ), H(G i ) \ {h i }), i := i + 1 a opakuj 2 - Ne: G i je hledaná minimální kostra Algoritmus 2 1 Zvol u U(G) a polož G 0 = ({u}, ), i := 0 2 Je G i faktor grafu G? - Ne: mezi všemi hranami {x, y}, pro něž x U(G i ) a y / U(G i ) najdi tu, která má nejmenší ohodnocení, polož G i+1 = (U(G i ) {y}, H(G i ) {{x, y}}), i := i + 1 a opakuj 2 - Ano: G i je hledaná minimální kostra 12

13 Definice Nechť G je graf, u, v U(G) Vzdáleností uzlů u, v v grafu G (značíme d G (u, v)) rozumíme nejmenší délku cesty z uzlu u do uzlu v v grafu G Neexistuje-li v G cesta z u do v, klademe d G (u, v) = Věta Nechť G je graf, x, y, z U(G) Pak platí: (i) d G (x, y) je celé číslo, (ii) d G (x, y) 0 a d G (x, y) = 0 x = y, (iii) d G (x, y) = d G (y, x), (iv) d G (x, y) + d G (y, z) d G (x, z), (v) je-li d G (x, z) > 1, pak existuje uzel y U(G) tak, že x y z a d G (x, y) + d G (y, z) = d G (x, z) Definice Nechť G je graf s ohodnocením w Pro každou cestu P G definujeme w-délku w(p ) cesty P předpisem w(p ) = h H(P ) w(h) Nechť u, v U(G) Pak w-vzdáleností uzlů u, v v grafu G (značíme d w G(u, v)) rozumíme nejmenší w-délku cesty z uzlu u do uzlu v v grafu G Neexistujeli v G cesta z u do v, klademe d G (u, v) = Pro u, v U(G): cesta z u do v v G nejmenší délky: nejkratší cesta cesta z u do v v G nejmenší w-délky: minimální cesta 1

14 Funkce d w G má také vlastnosti metriky: Věta Nechť G je graf s ohodnocením w a nechť x, y, z U(G) Pak platí: (i) d w G(x, y) 0 a d w G(x, y) = 0 x = y, (ii) d w G(x, y) = d w G(y, x), (iii) d w G(x, y) + d w G(y, z) d w G(x, z), (iv) je-li d G (x, z) > 1, pak existuje uzel y U(G) tak, že x y z a d w G(x, y) + d w G(y, z) = d w G(x, z) Příklad Graf G železniční síť ČD ρ(x, y) cena jízdenky z x do y (obyčejné jízdné 2 třída) CENÍK OBYČEJNÉHO JÍZDNÉHO ČD Vzdálenost (km) Obyčejné jízdné 2 třída (Kč) , , , ,- Plzeň hl n Nezvěstice 16 km 28,- Kč Plzeň hl n Starý Plzenec 10 km 16,- Kč Starý Plzenec Nezvěstice 6 km 10,- Kč Funkce ρ(x, y) není metrika 2

15 Příklad: převozník, koza, vlk, zelí Převozník sám 1 hod Převozník se zelím 2 hod Převozník s kozou 3 hod Převozník s vlkem 4 hod Otázky: (i) Lze převoz uskutečnit? (ii) Jestliže ano, v jakém minimálním čase? (iii) Kolik má úloha minimálních řešení? PZ KV KZ PV, 1, 1 KV PZ Z PKV K,3 PKZ V u Z,2 PKVZ K,3 VZ PK, 1 V,4 PVZ K Z,2 K PVZ, 1 PK VZ K,3 PKVZ v V,4 Z,2 V,4 KZ PV V PKZ K,3 PKV Z, 1, 1 Odpovědi: PV KZ KV PZ (i) ANO (ii) 17 hodin (iii) 2 řešení 3

16 Nechť G je ohodnocený graf Uzly grafu G očíslujeme 1,, n, a pro 1 i, j n položíme d w i,j = d w G(i, j) Matice D w (G) = [d w i,j] n i,j=1 se nazývá matice w-vzdáleností (w-distanční matice) grafu G Speciálně, neohodnocený graf považujeme za ohodnocený w i,j = 1 Distanční matice: D(G) = [d i,j ] n i,j=1, kde d i,j = d G (i, j) Definice Buď G graf, m = H(G) Řekneme, že G je eulerovský, jestliže v G existuje uzavřený tah délky m Věta Graf G je eulerovský právě když G je souvislý a všechny jeho uzly jsou sudého stupně EUL Vstup: graf G Úkol: je graf G eulerovský? Výstup: ANO / NE Důsledek Úloha EUL je řešitelná v polynomiálním čase 4

17 Definice Buď G graf, n = U(G) Řekneme, že G je hamiltonovský, jestliže v G existuje kružnice délky n Věta (Dirac) Nechť G je graf s n = U(G) 3 a Pak je G hamiltonovský δ(g) n 2 TSP (Problém obchodního cestujícího) Vstup: ohodnocený graf G Úkol: najít v G hamiltonovskou kružnici C s minimální hodnotou Výstup: kružnice C h H(C) w(h) A F 14 E G 7 H B 9 C D 5

18 Rozhodovací strom G H C D B C H E D C H C D B G B F E D H D E C D C G B H B C D A D F E H G F E D H D E C B C D G F F H E D E C G H E D H E F D B B G G B G C C B E G E D H E H C D C C F E E G F F F G G C G H B G D B D E E H C H C D F D G E G F H A A A A 6

19 Čas potřebný ke zpracování vstupních dat velikosti n, jestliže je nutno provést f(n) operací a provedení jedné operace trvá jednu mikrosekundu velikost vstupních dat n počet operací f(n) n 2 n 3 n 4 2 n n! 20 0,4 ms 8 ms 0,2 s 1 s let 40 1,6 ms 64 ms 2,6 s 12 dní 60 3,6 ms 0,2 s 13 s let 80 6,4 ms 0,5 s 41 s 3, let ms 1 s 100 s ms 8 s 27 min 500 0,25 s 125 s 17 hod s 17 min 12 dní 7

20 Předpokládáme, že jsme schopni daným algoritmem s časovou náročností f(n) zpracovat v daném časovém limitu vstupní data velikosti n = 100 a ptáme se, jak se zvětší velikost úloh, které jsme schopni zpracovat ve stejném časovém limitu, jestliže zvýšíme rychlost výpočtu 10, 100, 1000 zrychlení počet operací f(n) výpočtu n 2 n 3 n 4 2 n n!

21 Orientované grafy Orientovaný úplný graf: Kn = ( 1, n, 1, n 1, n ) Orientovaná cesta délky n 0: Pn = ( 0, n, {(i, i + 1) i 1, n 1 }}) Cyklus délky n 1: Cn = ( 1, n, {(i, i + 1) i 1, n 1 } {(n, 1)}) pro n 2; pro n = 1 dodefinujeme C 1 = ({1}, {(1, 1)}) Definice Nechť G je orientovaný graf, u U( G) Výstupní (polo)stupeň uzlu u v grafu G je číslo d G (u) = {(u, x) x U( G)} H( G) Vstupní (polo)stupeň uzlu u v grafu G je číslo d + G (u) = {(x, u) x U( G)} H( G) Věta Pro každý orientovaný graf G platí u U( G) d G (u) = u U( G) d + G (u) = H( G) 9

22 Definice 1 Buď G graf, u, v U( G), a nechť f : Pk G je homomorfismus takový, že f(0) = u a f(k) = v Pak se graf f( P k ) nazývá orientovaný sled délky k z uzlu u do uzlu v v grafu G 2 Je-li navíc f hranový monomorfismus, pak se f( P k ) nazývá orientovaný tah (délky k z u do v v G) 3 Je-li navíc f uzlový monomorfismus, pak se f( P k ) nazývá orientovaná cesta (délky k z u do v v G) Definice 1 Nechť G je graf a f : C k G je homomorfismus Pak se graf f( C k ) nazývá uzavřený orientovaný sled délky k v grafu G 2 Je-li navíc f hranový monomorfismus, pak se f( P k ) nazývá uzavřený orientovaný tah (délky k v G) 3 Je-li navíc f uzlový monomorfismus, pak se f( P k ) nazývá cyklus (délky k v G) Definice Řekneme, že orientovaný graf G je (slabě) souvislý, jestliže jeho symetrizace je souvislý neorientovaný graf Definice Řekneme, že orientovaný graf G je silně souvislý, jestliže pro každou dvojici uzlů u, v U( G) existuje v G orientovaný sled z u do v Větička Graf G je silně souvislý právě když pro každé u, v U( G) existuje v G orientovaná cesta z u do v 10

23 Věta Souvislý orientovaný graf G s alespoň 2 uzly je silně souvislý právě když každá jeho hrana leží v alespoň jednom cyklu Definice Buď G G Řekneme, že graf G je kvazikomponenta (silná komponenta) grafu G, jestliže 1 G je silně souvislý graf, 2 je-li G G G a G je silně souvislý, pak G = G (Tedy: kvazikomponenty grafu G jsou jeho maximální silně souvislé podgrafy) Definice Buď G graf Řekneme, že G je acyklický, jestliže G neobsahuje jako podgraf žádný cyklus Věta Je-li G acyklický a G G, pak G je acyklický Definice Uzel u U( G ) se nazývá (i) vstupní uzel grafu G, jestliže d + G = 0, (ii) výstupní uzel grafu G, jestliže d G = 0 Větička Každý acyklický graf má vstupní a výstupní uzel 11

24 Věta Buď G orientovaný graf a n = U( G) Následující tvrzení jsou ekvivalentní: (i) G je acyklický, (ii) každý neprázdný podgraf grafu G má výstupní uzel, (iii) každý neprázdný podgraf grafu G má vstupní uzel, (iv) existuje takové očíslování uzlů grafu G čísly 1,, n, že (i, j) H( G) i < j ACYC Vstup: graf G Úkol: je graf G acyklický? Výstup: ANO / NE Důsledek Úloha ACYC je řešitelná v polynomiálním čase Definice Buď G orientovaný graf, G1,, G k jeho kvazikomponenty Orientovaný graf G C s U( G C ) = { G 1,, G k } a H( G C ) = {( G i, G j ) i j a existují x U( G i ) a y U( G j ) tak, že (x, y) H( G)} se nazývá kondenzace grafu G Věta Buď G orientovaný graf Platí: (i) G C je acyklický graf, (ii) G je silně souvislý právě když G C je graf s jediným uzlem, (iii) G je acyklický graf právě když G = G C 12

25 Ohodnocené orientované grafy Definice Buď G graf Funkce w : H( G) (0, ) se nazývá (hranové) ohodnocení grafu G; graf se zadaným ohodnocením se nazývá ohodnocený graf Definice Nechť G je orientovaný graf s ohodnocením w Pro každou cestu P G definujeme w-délku w( P ) cesty P předpisem w( P ) = w(h) h H( P ) Nechť u, v U( G) Pak (i) vzdáleností uzlů u, v v grafu G (značíme d G (u, v)) rozumíme nejmenší délku orientované cesty z uzlu u do uzlu v v grafu G, (ii) w-vzdáleností uzlů u, v v grafu G (značíme d w G (u, v)) rozumíme nejmenší w-délku orientované cesty z uzlu u do uzlu v v grafu G Neexistuje-li v G cesta z u do v, klademe d G (u, v) = d w G (u, v) = 1

26 Nechť G je ohodnocený graf Uzly grafu G očíslujeme 1,, n, a pro 1 i, j n položíme w i,j = w((i, j)) jestliže (i, j) H( G), 0 jinak Matice W( G) = [w i,j ] n i,j=1 se nazývá vážená matice sousednosti grafu G Speciálně, neohodnocený graf považujeme za ohodnocený w i,j = 1 Matice sousednosti grafu G: A( G) = [a i,j ] n i,j=1, kde a i,j = 1 jestliže (i, j) H( G), 0 jinak Matice w-vzdáleností (w-distanční matice) grafu G: D w ( G) = [d w i,j] n i,j=1, kde d w i,j = d w G (i, j) Distanční matice grafu G: D( G) = [d i,j ] n i,j=1, kde d i,j = d G (i, j) 2

27 Výpočet distanční matice D( G): Věta Nechť G je orientovaný graf a k 0 Prvek a (k) i,j matice (A( G)) k je roven počtu sledů délky (přesně) k z uzlu i do uzlu j v G Důsledek Prvek d i,j matice D( G) je roven nejmenší mocnině k, pro kterou je prvek a (k) i,j matice (A( G)) k nenulový Výpočet w-distanční matice D w ( G): Nechť G je ohodnocený orientovaný graf Definujeme matici C( G) = [c i,j ] n i,j=1 předpisem: c i,j = 0 jestliže i = j, jestliže i j a (i, j) / H( G), w i,j jestliže i j a (i, j) H( G) (Matice C( G) se někdy nazývá cenová matice grafu G0 Definujeme nové operace: a b = min{a, b}, a b = a + b, a k-tou mocninu matice C( G) při těchto operacích označíme D (k) ( G) Věta Buď G je ohodnocený orientovaný graf a r nejmenší číslo pro něž D (r) ( G) = D (r+1) ( G) Pak D (r) ( G) = D w ( G) 3

28 Algoritmus 31 (Floydův algoritmus) 1 Položíme D 0 = C( G) 2 Pro k = 1,, n postupně vypočítáváme matice D k = [d k i,j] n i,j=1, kde d k ij = min{d k 1 ij, d k 1 ik + d k 1 kj } 3 D n = D w ( G) Poznámka: d k ij je minimální w-délka cesty z uzlu i do uzlu j množinou uzlů {1,, k} Věta 31 Algoritmus 31 nalezne w-distanční matici D w ( G) grafu G v čase O(n 3 ) 4

29 Dijkstrův algoritmus (minimální cesta z uzlu u do uzlu v) 1 Uzlu u přiřaď trvalou hodnotu th(u) = 0, ostatním uzlům dočasnou hodnotu dh(u) = 2 Je-li x poslední uzel, jemuž byla přiřazena trvalá hodnota th(x), pak všem uzlům y, pro něž (x, y) H( G) a které ještě nemají trvalou hodnotu, přiřaď novou dočasnou hodnotu dh(y) := min{dh(y), th(x) + w(x, y)} 3 Pro uzel z s nejmenší dočasnou hodnotou polož th(z) := dh(z) 4 Má uzel v trvalou hodnotu? NE: vrať se na 2, ANO: th(v) je w-délka minimální cesty z u do v Poznámka: hrany (x, y), na nichž w(x, y) = th(y) th(x), určují minimální cestu z u do v 5

30 Definice Buď G acyklický ohodnocený orientovaný graf a u, v U( G) Orientovaná cesta z u do v maximální w-délky se nazývá kritická cesta (z u do v v G) Příklad Činnost Doba Bezprostředně trvání podmiňující činnosti A 4 B 2 C 1 D 7 A E 6 A F 1 A,B,C G 2 A,B,C H 4 C I 2 E,F,G,H J 8 G,H Uzly stavy hrany činnosti A,4 0 E,6 D,7 B,2 F,1 I,2 C,1 0 G,2 0 J,8 H,4 6

31 Uzly: i t(i) T (i) i: očíslování uzlů podle věty o acyklických grafech (zároveň ověření acykličnosti) t(i): minimální časové ohodnocení minimální doba, za kterou lze dosáhnout stavu i T (i): maximální časové ohodnocení čas, kdy je nutno stav i opustit, aby nedošlo ke zpoždění projektu A,4 0 E,6 D, B,2 4 6 F,1 I, C,1 0 G,2 0 J, H, Kritická cesta: 1, 2, 4, 5, 7 Kritické činnosti: A, G, J 7

32 Algoritmus (kritická cesta z u do v v G) 1 Očísluj uzly grafu G podle věty o acyklických grafech 2 Konstrukce minimálního časového ohodnocení t(i): a) uzlu 1 (tj u) přiřaď t(1) = 0, b) pro i = 2,, n uzlu i přiřaď t(i) = max{t(j) + w((j, i)) (j, i) H( G)}, c) t(n) je w-délka kritické cesty 3 Konstrukce maximálního časového ohodnocení T (i): a) uzlu n (tj v) přiřaď T (n) = t(n), b) pro i = n 1,, 1 uzlu i přiřaď T (i) = min{t (j) w((i, j)) (i, j) H( G)} 4 Kritická cesta prochází těmi uzly i, pro něž T (i) = t(i), a hranami (i, j) pro něž w((i, j)) = t(j) t(i) 8

33 2 Toky v sítích Definice 21 Síť je orientovaný graf G s ohodnocením hran r : H( G) (0, ) a ohodnocením uzlů a : U( G) R Značení: uzly G očíslujeme 1,, n, pro i U( G) budeme a(i) krátce značit a i, pro (i, j) E( G) budeme r((i, j)) krátce značit r ij, i, j = 1,, n Definice 22 Buď G síť s ohodnocením uzlů a i a s ohodnocením hran r ij Tok v síti G je nezáporné hranové ohodnocení x : H( G) 0, ), splňující následující podmínky: 1 pro každý uzel i U( G) platí x ij j;(i,j) H( G) j;(j,i) H( G) x ji = a i, 2 pro každou hranu (i, j) H( G) platí 0 x ij r ij a i : intenzita uzlu i U( G) r ij : propustnost hrany (i, j) H( G) Uzel i U( G) se nazývá zdroj, je-li a i > 0, stok, je-li a i < 0, neutrální uzel, je-li a i = 0 9

34 Definice 24 Nechť G je síť, A U( G) je množina uzlů, a položme Ā = U( G) \ A Množina hran (A, Ā) = {(x, y) x A, y Ā} se nazývá řez sítě G Označení Je-li f : U( G) R funkce na U( G), označíme f(a) = f i, je-li g : H( G) R funkce na H( G), označíme g(a, Ā) = i A (i,j) (A,Ā) g ij Tvrzení 21 Nechť G je síť, x je tok v G a nechť A U( G) je množina uzlů G Pak platí a(a) = x(a, Ā) x(ā, A) Věta 21 V síti G existuje tok právě když a(u( G)) = 0 a pro každou množinu uzlů A U( G) je a(a) r(a, Ā) 10

35 Síť s jedním zdrojem a jedním stokem Síť G s jedním zdrojem z a jedním stokem s, nechť x je tok v G Zdroj z má intenzitu a 0 stok má intenzitu a Číslo a se nazývá velikost toku x a značí se x Definice 25 Tok x je maximální tok v G, jestliže pro každý tok x v G platí x x Definice 26 Nechť G je síť s jedním zdrojem z a jedním stokem s, a nechť (A, Ā) je řez sítě G Číslo r(a, Ā) se nazývá propustnost řezu (A, Ā) Řekneme, že řez (A, Ā) je minimální řez sítě G, jestliže pro každý řez (A, Ā ) sítě G platí r(a, Ā) r(a, Ā ) Jsou-li u, v U( G) dva uzly G, pak řekneme, že řez (A, Ā) odděluje uzly u, v, jestliže u A a v Ā Tvrzení 22 Nechť G je síť s jedním zdrojem z a jedním stokem s, nechť (A, Ā) je řez sítě G, oddělující z a s, a nechť x je tok v G Pak platí: (i) x = x(a, Ā) x(ā, A), (ii) x r(a, Ā) 1

36 Definice 27 Nechť u, w U( G) Polocesta z u do w je posloupnost u = v 0, h 1, v 1, h 2,, h k, v k = w, kde v i jsou navzájem různé uzly, h i jsou hrany a pro každé i = 1,, k platí buď h i = v i 1 v i (pak jde o souhlasnou hranu dané polocesty) nebo h i = v i v i 1 nesouhlasná hrana) Nechť x je tok v síti G Rezerva polocesty P je nezáporné číslo Θ(P ) = min{θ s (P ), Θ n (P )}, kde Θ s (P ) = min{r ij x ij (i, j) je souhlasná hrana P } a Θ n (P ) = min{x ij (i, j) je nesouhlasná hrana P} Polocesta P je rezervní, jestliže Θ(P ) > 0 Tvrzení 23 Nechť G je síť s jedním zdrojem z a jedním stokem s, a nechť x je tok v G Existuje-li v G rezervní polocesta ze z do s vzhledem k x, pak tok x není maximální Věta 22 (Ford, Fulkerson) Buď G síť s jedním zdrojem z a jedním stokem s Velikost maximálního toku v G je rovna propustnosti minimálního řezu, oddělujícího z a s 2

37 Algoritmus 21 (Ford Fulkersonův algoritmus) 1 Jako výchozí tok x zvolme nulový tok: x ij := 0 pro každou hranu (i, j) H( G) 2 Jestliže v grafu G existuje nějaká rezervní polocesta P ze z do s, upravme podél ní tok x: x ij := x ij + Θ pokud (i, j) je souhlasná hrana polocesty P, x ij Θ pokud (i, j) je nesouhlasná hrana polocesty P, x ij pokud (i, j) neleží na P, a pokračujme bodem (2) 3 V případě, že rezervní polocesta ze z do s neexistuje, je tok x maximální Tvrzení 24 Jsou-li v síti G propustnosti všech hran celá čísla, pak Ford Fulkersonův algoritmus skončí po konečném počtu kroků 3

38 Edmonds Karpův algoritmus Myšlenka: zvolíme vždy nejkratší rezervní polocestu ze z do s Jedna z iterací kroku (2): máme nějaký tok x a hledáme nejkratší rezervní polocestu ze z do s (a) T je strom na jediném uzlu z, Seznam uzlů L obsahuje jedinou položku z, Zdroj je označený, Všechny ostatní uzly sítě G jsou neoznačené (b) Je-li L, pak nechť v je první uzel seznamu L Je-li v = s, algoritmus končí Jednoznačně určená polocesta spojující z a s ve stromu T je hledaná nejkratší polocesta Upravíme podél této polocesty tok x jako ve Ford Fulkersonově algoritmu Jinak označíme všechny neoznačené sousedy w uzlu v, pro něž (v, w) je nenasycená hrana nebo (w, v) je nenulová hrana, ve stromu T je připojíme hranami k v, a přidáme je na konec seznamu L Vyřadíme uzel v ze seznamu L a pokračujeme bodem (b) (c) je-li L =, pak rezervní polocesta ze z do s neexistuje a tok x je maximální 4

39 3 Grafy a matice Definice 32 Čtvercová matice A se nazývá rozložitelná, lze-li ji napsat ve tvaru A = A 11 A 12 0 A 22 kde A 11 a A 22 jsou čtvercové matice řádu alespoň 1 a 0 je nulová matice, anebo lze-li ji do tohoto tvaru převést permutací řádků a stejnou permutací sloupců, Ekvivalentně: A je rozložitelná, jestliže existuje permutační matice P tak, že PAP T = A 11 A 12 0 A 22 1

40 Věta 32 Buď G ohodnocený orientovaný graf Platí: a) Je-li G silně souvislý, pak je matice W( G) nerozložitelná b) Jsou-li G 1,, G k kvazikomponenty grafu G, očíslované tak, že v kondenzaci G C jsou pouze hrany ( G k, G l ) pro k < l a očíslujeme-li uzly grafu G souhlasně s očíslováním kvazikomponent, tj tak, že je-li i G k a j G l pro k < l, pak i < j, pak matice W( G) má tvar W( G) = W 11 W 12 W 13 W 1k 0 W 22 W 23 W 2k 0 0 W 33 W 3k W kk, kde W ii = W( G) i, i = 1,, k, a tyto matice jsou již nerozložitelné Důsledek 31 Čtvercová matice A je nerozložitelná právě když její diagram G(A) je silně souvislý 2

41 Definice 33 Řekneme, že čtvercová matice A je slabě rozložitelná, jestliže existují permutační matice P a Q tak, že PAQ = A 11 A 12 0 A 22 kde A 11 a A 22 jsou čtvercové matice řádu alespoň 1 a 0 je nulová matice Čtvercová matice, která není slabě rozložitelná, se nazývá úplně nerozložitelná, Definice 34 Bigraf je orientovaný graf G, jehož množinu uzlů lze rozložit na disjunktní neprázdné podmnožiny U 1, U 2 tak, že pro každou hranu (u, v) H( G) je u U 1 a v U 2 Definice 35 Buď A = [a ij ] čtvercová matice řádu n; označme U 1 množinu řádkových indexů a U 2 množinu sloupcových indexů matice A Bigraf matice A je orientovaný graf B(A) s množinou uzlů a množinou hran U = U 1 U 2 H = {(i, j) i U 1, j U 2, a ij 0} 3

42 Definice 36 Buď G bigraf s množinou uzlů U( G) = U 1 U 2 Množina V U 1, V U 1, se nazývá stabilní množina v G, jestliže pro množinu uzlů W = {j U 2 i V tak, že (i, j) H( G)} platí W V Věta 33 Čtvercová matice A je slabě rozložitelná právě když v jejím bigrafu B(A) existuje stabilní množina 4

43 Definice 37 Řekneme, že bigraf G je lineární, jestliže pro každý uzel u U 1 je d (u) = 1 a pro každý uzel v U 2 je d + (v) = 1 Definice 38 Je-li G bigraf a G1 G jeho lineární podbigraf, pak říkáme, že G 1 je párování v G Je-li G 1 G párování v G takové, že U( G 1 ) = U( G) (tj G 1 je faktorem bigrafu G), pak říkáme, že G 1 je perfektní párování v G Věta 34 1 Je-li A regulární matice, pak její bigraf B(A) má perfektní párování 2 Jestliže bigraf G má perfektní párování, pak existuje regulární matice A taková, že B(A) = G 5

44 Definice Strukturální matice řádu n 1 je čtvercová matice řádu n, u níž je dána pouze struktura nulových a nenulových prvků, ale nejsou určeny jejich konkrétní hodnoty (Poněkud přesněji: na strukturální matici lze pohlížet jako na funkci hodnot jejích nenulových prvků) Pro každou strukturální matici A nastává právě jedna z následujících možností: (i) polynom det(a) je nenulový, a při náhodné volbě nenulových prvků matice A je matice A regulární s pravděpodobností 1, (ii) polynom det(a) je nulový a matice A je singulární při každé volbě jejích nenulových prvků V prvním případě říkáme, že strukturální matice A je genericky regulární, ve druhém případě je A genericky singulární Věta 35 Nechť A je čtvercová strukturální matice Pak platí: A je genericky regulární B(A) má perfektní párování 6

45 Definice Nechť A je strukturální matice Největší přirozené číslo k, pro které v matici A existuje genericky regulární podmatice řádu k, se nazývá generická hodnost matice A a značí se gh(a) Definice Počet hran největšího párování v bigrafu B se nazývá párovací číslo bigrafu B a značí se ν( B) Věta 36 Nechť A je strukturální matice Pak gh(a) = ν( B(A)) 7

46 Největší párování v bigrafu je možno najít v polynomiálním čase převodem na úlohu maximálního toku: bigrafu B s U( B) = U 1 U 2 přiřadíme síť G tak, že k B přidáme nový uzel z (zdroj), nový uzel s (stok), hrany (z, u) pro všechny uzly u U 1, hrany (v, s) pro všechny uzly v U 2 Propustnosti všech hran jsou rovny jedné U 1 nové hrany nové hrany z bigraf B s U 2 Najdeme-li v G (celočíselný) maximální tok, pak hrany bigrafu B s nenulovým tokem určují největší párování v B 8

47 4 Míry souvislosti grafu Definice 41 Hrana {x, y} H(G) se nazývá most grafu G, jestliže v grafu G neexistuje žádná kružnice, která ji obsahuje Tvrzení 41 Je-li graf G souvislý a hrana {x, y} jeho most, pak graf G {x, y}, vzniklý odstraněním hrany {x, y} z G, je nesouvislý Věta 41 Má-li souvislý graf G most, pak má alespoň dva uzly lichého stupně Definice 42 Uzel x U(G) je artikulace grafu G, jestliže existují hrany {x, y 1 } a {x, y 2 }, které nepatří současně téže kružnici grafu G Definice 43 Buď G graf, G G jeho souvislý podgraf Řekneme, že G je blok grafu G, jestliže: a) G nemá artikulaci, b) jestliže G je souvislý graf bez artikulace takový, že G G G, pak G = G 1

48 Tvrzení 42 Buď G souvislý graf Pak G nemá artikulaci právě když pro každé dvě jeho hrany existuje kružnice, na níž obě leží Důsledek 41 Pro každé dvě hrany bloku, který není mostem, existuje kružnice, na níž obě leží Věta 42 Buďte G 1, G 2 dva bloky grafu G Pak buďto G 1 = G 2, nebo G 1 a G 2 nemají žádnou společnou hranu Definice 44 Buď G souvislý graf, B 1,, B r všechny jeho bloky a x 1,, x s všechny jeho artikulace Graf B(G), definovaný předpisem U(B(G)) = {x 1,, x s, B 1,, B r }, H(B(G)) = {{a, b} i, j tak, že a = x i, b = B j a x i U(B j )}, se nazývá blokový graf grafu G Věta 43 Pro každý souvislý graf G je blokový graf B(G) stromem 2

49 Definice 45 Buď G souvislý graf a x, y U(G) Množina B H(G) taková, že 1) každá cesta z uzlu x do uzlu y obsahuje alespoň jednu hranu množiny B, 2) žádná vlastní podmnožina množiny B nemá vlastnost 1), se nazývá hranový řez grafu G mezi uzly x a y Definice 46 Nejmenší počet prvků hranového řezu mezi uzly x a y se nazývá hranový stupeň souvislosti grafu G mezi uzly x a y a značí se h G (x, y) Definice 47 Buď G souvislý graf, x, y jeho uzly Množina A U(G) taková, že 1) každá cesta z x do y obsahuje alespoň jeden uzel z množiny A, 2) žádná vlastní podmnožina množiny A nemá vlastnost 1), se nazývá uzlový řez grafu G mezi uzly x a y Definice 48 Nejmenší počet prvků uzlového řezu, oddělujícího uzly x a y, se nazývá uzlový stupeň souvislosti grafu G mezi uzly x a y a značí se u G (x, y) Neexistuje-li uzlový řez mezi x a y, tj jsou-li uzly x a y sousední, klademe u G (x, y) = U(G) 1 3

50 Definice 49 (i) Nejmenší z čísel u G (x, y) nazveme uzlový stupeň souvislosti grafu G a budeme je značit u(g) (ii) Nejmenší z čísel h G (x, y) nazveme hranový stupeň souvislosti grafu G a budeme je značit h(g) Řekneme, že graf G je uzlově (resp hranově) k-souvislý, jestliže je u(g) k (resp h(g) k) Věta 44 Pro každý graf G platí u(g) h(g) δ(g) u(g) = 2, h(g) = 3, δ(g) = 4 u(g) = h(g) = δ(g) = 3 Věta 45 V každém grafu G platí h(g) 2 H(G) U(G) 4

51 Věta 46 (Ford, Fulkerson) Graf G je hranově k-souvislý mezi uzly a a b, a b, právě když v něm existuje k hranově disjunktních cest, vedoucích z a do b Věta 47 (Menger) Graf G je uzlově k-souvislý mezi nesousedními uzly a a b, právě když v něm existuje k uzlově disjunktních cest, vedoucích z a do b Konstrukce sítě G: U( G) = {(x, i) x U(G), i = 1, 2}, H( G) = {((x, 1), (x, 2)) x U(G)} {((x, 2), (y, 1)) {x, y} H(G)} Propustnosti hran: u hran typu ((x, 1) (x, 2)) položíme propustnost rovnu jedné, u hran druhého typu (tj ((x, 2), (y, 1)) ) bude propustnost nekonečná Zdrojem je uzel (a, 2), stokem je uzel (b, 1) G x G (x, 1) 1 (x, 2) a b (a, 1) 1 (a, 2) (b, 1) 1 (b, 2) y (y, 1) 1 (y, 2) 5

Definice 7.2. Nejmenší přirozené číslo k, pro které je graf G k-obarvitelný, se nazývá chromatické číslo (barevnost) grafu G a značí se χ(g).

Definice 7.2. Nejmenší přirozené číslo k, pro které je graf G k-obarvitelný, se nazývá chromatické číslo (barevnost) grafu G a značí se χ(g). 7 Barevnost grafu Definice 71 Graf G se nazývá k-obarvitelný, jestliže každému jeho uzlu lze přiřadit jednu z barev 1 k tak, že žádné dva sousední uzly nemají stejnou barvu Definice 72 Nejmenší přirozené

Více

Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování.

Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování. 9.5 Třída NP Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování. Příklad. Uvažujme problém IND a následující

Více

Ohodnocené orientované grafy

Ohodnocené orientované grafy Ohodnocené orientované grafy Definice Buď G graf Funkce w : H( G) (, ) se nazývá (hranové) ohodnocení grafu G; graf se zadaným ohodnocením se nazývá ohodnocený graf Definice Nechť G je orientovaný graf

Více

3. Grafy a matice. Definice 3.2. Čtvercová matice A se nazývá rozložitelná, lze-li ji napsat ve tvaru A =

3. Grafy a matice. Definice 3.2. Čtvercová matice A se nazývá rozložitelná, lze-li ji napsat ve tvaru A = 3 Grafy a matice Definice 32 Čtvercová matice A se nazývá rozložitelná, lze-li ji napsat ve tvaru A = A 11 A 12 0 A 22 kde A 11 a A 22 jsou čtvercové matice řádu alespoň 1 a 0 je nulová matice, anebo lze-li

Více

Teorie grafů a diskrétní optimalizace 1

Teorie grafů a diskrétní optimalizace 1 KMA/TGD1 Teorie grafů a diskrétní optimalizace 1 Pracovní texty přednášek Obsahem předmětu KMA/TGD1 jsou základy algoritmické teorie grafů a výpočetní složitosti Kapitoly 1 5 rozšiřují a prohlubují předchozí

Více

1 Homomorfismus a isomorfismus grafů, souvislost, stromy, kostry, minimální kostra 2. 2 Metrika grafu, minimální cesta, distanční matice grafu 4

1 Homomorfismus a isomorfismus grafů, souvislost, stromy, kostry, minimální kostra 2. 2 Metrika grafu, minimální cesta, distanční matice grafu 4 Obsah 1 Homomorfismus a isomorfismus grafů, souvislost, stromy, kostry, minimální kostra 2 2 Metrika grafu, minimální cesta, distanční matice grafu 4 3 Silná souvislost, kvazikomponenty, kondenzace, acyklické

Více

Teorie grafů, diskrétní optimalizace a

Teorie grafů, diskrétní optimalizace a KMA/TGD1 Teorie grafů, diskrétní optimalizace a výpočetní složitost 1 Pracovní texty přednášek http://wwwkmazcucz/tgd1 Obsahem předmětu KMA/TGD1 jsou základy algoritmické teorie grafů a výpočetní složitosti

Více

5 Orientované grafy, Toky v sítích

5 Orientované grafy, Toky v sítích Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost

Více

H {{u, v} : u,v U u v }

H {{u, v} : u,v U u v } Obyčejný graf Obyčejný graf je dvojice G= U, H, kde U je konečná množina uzlů (vrcholů) a H {{u, v} : u,v U u v } je (konečná) množina hran. O hraně h={u, v} říkáme, že je incidentní s uzly u a v nebo

Více

TGH02 - teorie grafů, základní pojmy

TGH02 - teorie grafů, základní pojmy TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 5. března 2013 Počátek teorie grafů Leonard Euler (1707 1783) 1735 pobyt v Královci (Prusko), dnes Kaliningrad (Rusko) Úloha:

Více

Vzdálenost uzlů v neorientovaném grafu

Vzdálenost uzlů v neorientovaném grafu Vzdálenosti a grafy Vzdálenost uzlů v neorientovaném grafu Je dán neorientovaný neohodnocený graf G = (V,E,I) vzdálenost uzlů u a v v neorientovaném souvislém grafu G je délka nejkratší cesty spojující

Více

Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta.

Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta. 6 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info množina vrcholů a množina hran hrana vždy spojuje

Více

TGH02 - teorie grafů, základní pojmy

TGH02 - teorie grafů, základní pojmy TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 31. března 2015 Počátek teorie grafů Leonard Euler (1707 1783) 1735 pobyt v Královci (Prusko), dnes Kaliningrad (Rusko)

Více

TGH02 - teorie grafů, základní pojmy

TGH02 - teorie grafů, základní pojmy TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 28. února 2017 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms)

Více

Základní pojmy teorie grafů [Graph theory]

Základní pojmy teorie grafů [Graph theory] Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme

Více

Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest

Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest Obsah prezentace Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest 1 Základní pojmy Vrchol grafu: {množina V} Je to styčná vazba v grafu, nazývá se též uzlem, prvkem

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou

Více

07 Základní pojmy teorie grafů

07 Základní pojmy teorie grafů 07 Základní pojmy teorie grafů (definice grafu, vlastnosti grafu, charakteristiky uzlů, ohodnocené grafy) Definice grafu množina objektů, mezi kterými existují určité vazby spojující tyto objekty. Uspořádaná

Více

NP-ÚPLNÉ PROBLÉMY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze

NP-ÚPLNÉ PROBLÉMY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze NP-ÚPLNÉ PROBLÉMY Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 13 Evropský sociální fond Praha & EU: Investujeme do

Více

Operační výzkum. Síťová analýza. Metoda CPM.

Operační výzkum. Síťová analýza. Metoda CPM. Operační výzkum Síťová analýza. Metoda CPM. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA

3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

10 Podgrafy, isomorfismus grafů

10 Podgrafy, isomorfismus grafů Typické příklady pro zápočtové písemky DiM 470-2301 (Kovář, Kovářová, Kubesa) (verze: November 25, 2018) 1 10 Podgrafy, isomorfismus grafů 10.1. Určete v grafu G na obrázku Obrázek 10.1: Graf G. (a) největší

Více

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová

Více

Přijímací zkouška - matematika

Přijímací zkouška - matematika Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,

Více

Vybíravost grafů, Nullstellensatz, jádra

Vybíravost grafů, Nullstellensatz, jádra Vybíravost grafů, Nullstellensatz, jádra Zdeněk Dvořák 10. prosince 2018 1 Vybíravost Přiřazení seznamů grafu G je funkce L, která každému vrcholu G přiřadí množinu barev. L-obarvení je dobré obarvení

Více

Definice 1 eulerovský Definice 2 poloeulerovský

Definice 1 eulerovský Definice 2 poloeulerovský Dále budeme předpokládat, že každý graf je obyčejný a má aspoň tři uzly. Definice 1 Graf G se nazývá eulerovský, existuje-li v něm uzavřený tah, který obsahuje každou hranu v G. Definice 2 Graf G se nazývá

Více

Úvod do teorie grafů

Úvod do teorie grafů Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí

Více

4. NP-úplné (NPC) a NP-těžké (NPH) problémy

4. NP-úplné (NPC) a NP-těžké (NPH) problémy Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA 4. NP-úplné (NPC) a NP-těžké (NPH) problémy Karpova redukce

Více

TEORIE GRAFŮ TEORIE GRAFŮ 1

TEORIE GRAFŮ TEORIE GRAFŮ 1 TEORIE GRAFŮ 1 TEORIE GRAFŮ Přednášející: RNDr. Jiří Taufer, CSc. Fakulta dopravní ČVUT v Praze, letní semestr 1998/99 Zpracoval: Radim Perkner, tamtéž, v květnu 1999 ZÁKLADNÍ POJMY Říkáme, že je dán prostý

Více

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R... Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2013/2014 1 / 20 Základní syntax Jazyk Výroková logika je logikou

Více

Úvod do vybíravosti grafů, Nullstellensatz, polynomiální metoda

Úvod do vybíravosti grafů, Nullstellensatz, polynomiální metoda Úvod do vybíravosti grafů, Nullstellensatz, polynomiální metoda Zdeněk Dvořák 12. prosince 2017 1 Vybíravost Přiřazení seznamů grafu G je funkce L, která každému vrcholu G přiřadí množinu barev. L-obarvení

Více

VLASTNOSTI GRAFŮ. Vlastnosti grafů - kap. 3 TI 5 / 1

VLASTNOSTI GRAFŮ. Vlastnosti grafů - kap. 3 TI 5 / 1 VLASTNOSTI GRAFŮ Vlastnosti grafů - kap. 3 TI 5 / 1 Pokrytí a vzdálenost Každý graf je sjednocením svých hran (jak je to přesně?).?lze nalézt složitější struktury stejného typu, ze kterých lze nějaký graf

Více

VLASTNOSTI GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze. BI-GRA, LS 2010/2011, Lekce 5

VLASTNOSTI GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze. BI-GRA, LS 2010/2011, Lekce 5 VLASTNOSTI GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 5 Evropský sociální fond Praha & EU: Investujeme do vaší

Více

Matematická analýza 1

Matematická analýza 1 Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod

Více

Dijkstrův algoritmus

Dijkstrův algoritmus Dijkstrův algoritmus Hledání nejkratší cesty v nezáporně hranově ohodnoceném grafu Necht je dán orientovaný graf G = (V, H) a funkce, která každé hraně h = (u, v) H přiřadí nezáporné reálné číslo označované

Více

TGH12 - Problém za milion dolarů

TGH12 - Problém za milion dolarů TGH12 - Problém za milion dolarů Jan Březina Technical University of Liberec 7. května 2013 Složitost problému Co je to problém? Složitost problému Co je to problém? K daným vstupním datům (velkému binárnímu

Více

Teorie grafů. Teoretická informatika Tomáš Foltýnek

Teorie grafů. Teoretická informatika Tomáš Foltýnek Teorie grafů Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Opakování z minulé přednášky Co je to složitostní třída? Jaké složitostní třídy známe? Kde leží hranice mezi problémy řešitelnými

Více

Učební texty k státní bakalářské zkoušce Matematika Teorie grafů. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Teorie grafů. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Teorie grafů študenti MFF 15. augusta 2008 1 17 Teorie grafů Požiadavky Základní pojmy teorie grafů, reprezentace grafu. Stromy a jejich základní vlastnosti,

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

Teorie grafů Jirka Fink

Teorie grafů Jirka Fink Teorie grafů Jirka Fink Nejprve malý množinový úvod Definice. Množinu {Y; Y X} všech podmnožin množiny X nazýváme potenční množinoumnožiny Xaznačíme2 X. Definice. Množinu {Y; Y X, Y =n}všech n-prvkovýchpodmnožinmnožiny

Více

4 Pojem grafu, ve zkratce

4 Pojem grafu, ve zkratce Petr Hliněný, FI MU Brno, 2014 1 / 24 FI: IB000: Pojem grafu 4 Pojem grafu, ve zkratce Třebaže grafy jsou jen jednou z mnoha struktur v matematice a vlastně pouze speciálním případem binárních relací,

Více

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška Disjunktivní a konjunktivní normáln lní tvar formule 2.přednáška Disjunktivní normáln lní forma Definice Řekneme, že formule ( A ) je v disjunktivním normálním tvaru (formě), zkráceně v DNF, jestliže je

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce

Více

Diskrétní matematika. DiM /01, zimní semestr 2018/2019

Diskrétní matematika. DiM /01, zimní semestr 2018/2019 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2018/2019 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti: Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé

Více

4EK311 Operační výzkum. 5. Teorie grafů

4EK311 Operační výzkum. 5. Teorie grafů 4EK311 Operační výzkum 5. Teorie grafů 5. Teorie grafů definice grafu Graf G = uspořádaná dvojice (V, E), kde V označuje množinu n uzlů u 1, u 2,, u n (u i, i = 1, 2,, n) a E označuje množinu hran h ij,

Více

Výroková a predikátová logika - III

Výroková a predikátová logika - III Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/2018 1 / 16 2-SAT 2-SAT Výrok je v k-cnf, je-li v CNF a

Více

Grafové algoritmy. Programovací techniky

Grafové algoritmy. Programovací techniky Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být

Více

Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová

Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Základy informatiky Teorie grafů Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Obsah přednášky Barvení mapy Teorie grafů Definice Uzly a hrany Typy grafů Cesty, cykly, souvislost grafů Barvení mapy

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

Složitost 1.1 Opera ní a pam ová složitost 1.2 Opera ní složitost v pr rném, nejhorším a nejlepším p ípad 1.3 Asymptotická složitost

Složitost 1.1 Opera ní a pam ová složitost 1.2 Opera ní složitost v pr rném, nejhorším a nejlepším p ípad 1.3 Asymptotická složitost 1 Složitost 1.1 Operační a paměťová složitost Nezávislé určení na konkrétní implementaci Několik typů operací = sčítání T+, logické T L, přiřazení T A(assign), porovnání T C(compare), výpočet adresy pole

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Stromové rozklady. Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom,

Stromové rozklady. Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom, Stromové rozklady Zdeněk Dvořák 25. října 2017 Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom, β je funkce přiřazující každému vrcholu T podmnožinu vrcholů v G, pro každé

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

Složitost. Teoretická informatika Tomáš Foltýnek

Složitost. Teoretická informatika Tomáš Foltýnek Složitost Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika 2 Opakování z minulé přednášky Co říká Churchova teze? Jak lze kódovat Turingův stroj? Co je to Univerzální

Více

STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta

STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach vlož do fronty kořen opakuj, dokud není fronta prázdná 1. vyber uzel z fronty a zpracuj jej 2. vlož do fronty levého následníka

Více

Vztah teorie vyčíslitelnosti a teorie složitosti. IB102 Automaty, gramatiky a složitost, /31

Vztah teorie vyčíslitelnosti a teorie složitosti. IB102 Automaty, gramatiky a složitost, /31 Vztah teorie vyčíslitelnosti a teorie složitosti IB102 Automaty, gramatiky a složitost, 2. 12. 2013 1/31 IB102 Automaty, gramatiky a složitost, 2. 12. 2013 2/31 Časová složitost algoritmu počet kroků výpočtu

Více

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo 0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

Kostry. 9. týden. Grafy. Marie Demlová (úpravy Matěj Dostál) 16. dubna 2019

Kostry. 9. týden. Grafy. Marie Demlová (úpravy Matěj Dostál) 16. dubna 2019 Grafy 16. dubna 2019 Tvrzení. Je dán graf G, pak následující je ekvivalentní. 1 G je strom. 2 Graf G nemá kružnice a přidáme-li ke grafu libovolnou hranu, uzavřeme přesně jednu kružnici. 3 Graf G je souvislý

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Třídy složitosti P a NP, NP-úplnost

Třídy složitosti P a NP, NP-úplnost Třídy složitosti P a NP, NP-úplnost Cíle přednášky: 1. Definovat, za jakých okolností můžeme problém považovat za efektivně algoritmicky řešitelný. 2. Charakterizovat určitou skupinu úloh, pro které není

Více

TOKY V SÍTÍCH II. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze

TOKY V SÍTÍCH II. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze TOKY V SÍTÍCH II Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 010/011, Lekce 10 Evropský sociální fond Praha & EU: Investujeme do vaší

Více

Operace s maticemi. 19. února 2018

Operace s maticemi. 19. února 2018 Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice

Více

10 Přednáška ze

10 Přednáška ze 10 Přednáška ze 17. 12. 2003 Věta: G = (V, E) lze nakreslit jedním uzavřeným tahem G je souvislý a má všechny stupně sudé. Důkaz G je souvislý. Necht v je libovolný vrchol v G. A mějme uzavřený eurelovský

Více

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů? Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti

Více

Grafové algoritmy. Programovací techniky

Grafové algoritmy. Programovací techniky Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být

Více

Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.

Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2. 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste

Více

Diskrétní matematika. DiM /01, zimní semestr 2018/2019

Diskrétní matematika. DiM /01, zimní semestr 2018/2019 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2018/2019 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez

= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez Síť Síť je čtveřice N = ( G, s, t, c) kde G ( V, A) = je prostý orientovaný graf a každé orientované hraně ( u, v) je přiřazeno nezáporné číslo, které se nazývá kapacita hrany ( u, v), formálně c ( u,

Více

1. Toky, řezy a Fordův-Fulkersonův algoritmus

1. Toky, řezy a Fordův-Fulkersonův algoritmus 1. Toky, řezy a Fordův-Fulkersonův algoritmus V této kapitole nadefinujeme toky v sítích, odvodíme základní věty o nich a také Fordův-Fulkersonův algoritmus pro hledání maximálního toku. Také ukážeme,

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 204 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je

doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je 28 [181105-1236 ] 2.7 Další uzávěrové vlastnosti třídy regulárních jazyků Z předchozích přednášek víme, že třída regulárních jazyků je uzavřena na sjednocení, průnik, doplněk, zřetězení, Kleeneho operaci

Více

PLANARITA A TOKY V SÍTÍCH

PLANARITA A TOKY V SÍTÍCH PLANARITA A TOKY V SÍTÍCH Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 9 Evropský sociální fond Praha & EU: Investujeme

Více

Věta o dělení polynomů se zbytkem

Věta o dělení polynomů se zbytkem Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)

Více

Metody síťové analýzy

Metody síťové analýzy Metody síťové analýzy Řeší problematiku složitých systémů, zejména pak vazby mezi jejich jednotlivými prvky. Vychází z teorie grafů. Základní metody síťové analýzy: CPM (Critical Path Method) deterministický

Více

Graf. Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd.

Graf. Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd. Graf 2 0 3 1 4 5 Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd. Běžné reprezentace grafu Uzly = indexy Stupně uzlů

Více

Další NP-úplné problémy

Další NP-úplné problémy Další NP-úplné problémy Známe SAT, CNF, 3CNF, k-klika... a ještě následující easy NP-úplný problém: Existence Certifikátu (CERT ) Instance: M, x, t, kde M je DTS, x je řetězec, t číslo zakódované jako

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento

Více

10 Funkce více proměnných

10 Funkce více proměnných M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y

Více

Vrcholová barevnost grafu

Vrcholová barevnost grafu Vrcholová barevnost grafu Definice: Necht G = (V, E) je obyčejný graf a k N. Zobrazení φ : V {1, 2,..., k} nazýváme k-vrcholovým obarvením grafu G. Pokud φ(u) φ(v) pro každou hranu {u, v} E, nazveme k-vrcholové

Více

Drsná matematika III 10. demonstrovaná cvičení Kostry grafů

Drsná matematika III 10. demonstrovaná cvičení Kostry grafů Drsná matematika III 10. demonstrovaná cvičení Kostry grafů Martin Panák Masarykova univerzita Fakulta informatiky 21.11. 2006 1 Domácí úlohy z minulého týdne Příklad 1 Příklad 2 Příklad 3 2 Borůvkův algoritmus

Více

Učební texty k státní bakalářské zkoušce Matematika Diskrétní matematika. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Diskrétní matematika. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Diskrétní matematika študenti MFF 15. augusta 2008 1 16 Diskrétní matematika Požadavky Uspořádané množiny Množinové systémy, párování, párování v bipartitních

Více

NP-úplnost problému SAT

NP-úplnost problému SAT Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin.

Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin. 1.2. Cíle Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin. Průvodce studiem Množina je jedním ze základních pojmů moderní matematiky. Teorii množin je možno budovat

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

Barevnost grafů MFF UK

Barevnost grafů MFF UK Barevnost grafů Z. Dvořák MFF UK Plán vztah mezi barevností a maximálním stupněm (Brooksova věta) hranová barevnost (Vizingova věta) příště: vztah mezi barevností a klikovostí, perfektní grafy Barevnost

Více

Naproti tomu gramatika je vlastně soupis pravidel, jak

Naproti tomu gramatika je vlastně soupis pravidel, jak 1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Lineární algebra - I. část (vektory, matice a jejich využití)

Lineární algebra - I. část (vektory, matice a jejich využití) Lineární algebra - I. část (vektory, matice a jejich využití) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 2. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 40 Obsah 1 Vektory

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

1 Nenulové toky. 1.1 Úvod. 1.2 Definice

1 Nenulové toky. 1.1 Úvod. 1.2 Definice 1 Nenulové toky 1.1 Úvod Naším výchozím bodem bude grafová dualita. Nechť G je graf s daným vnořením v rovině, které určuje jeho duální graf G. V rámci duality si navzájem odpovídají například následující

Více

PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy

PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PAVEL RŮŽIČKA Abstrakt. Ukážeme, že každý prvek distributivního svazu odpovídá termu v konjuktivně-disjunktivním (resp. disjunktivně-konjunktivním)

Více

TGH10 - Maximální toky

TGH10 - Maximální toky TGH10 - Maximální toky Jan Březina Technical University of Liberec 23. dubna 2013 - motivace Elektrická sít : Elektrická sít, jednotlivé vodiče mají různou kapacitu (max. proud). Jaký maximální proud může

Více

Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť.

Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť. Přednáška 3, 19. října 2015 Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť X i = M i I je jeho pokrytí otevřenými

Více