Centrum pro zjišťování výsledků vzdělávání CERMAT Jankovcova 933/63, Praha 7, tel.:

Rozměr: px
Začít zobrazení ze stránky:

Download "Centrum pro zjišťování výsledků vzdělávání CERMAT Jankovcova 933/63, 170 00 Praha 7, tel.: +420 224 507 507 www.cermat.cz, www.novamaturita."

Transkript

1 Analýza výsledků testu - slovníček aktuálních pojmů. Úlohy zařazované do testů jsou různého typu. V uzavřených úlohách a uzavřených podúlohách svazku žák vybírá odpověď z několika nabízených alternativ. Právě jedna z nich (v našich podmínkách) je správná, ostatní jsou nesprávné a nazývají se distraktory. V otevřených úlohách odpověď vytváří žák (číslo, text, nákres apod.). Hodnotitel (komise apod.) za uvedené řešení přidělí body v souladu s pokyny k hodnocení, a to případně i za částečné řešení. Svazek sestavený z několika úloh (v takovém postavení je nazýváme podúlohy) se hodnotí jako celek. Jsou stanovena pravidla pro přidělování počtu bodů za určitý počet správně vyřešených podúloh svazku. Svazkem lze přesněji ohodnotit určitou vědomost či dovednost, navíc jím lze snížit chybu měření způsobenou hádáním. Uspořádací úlohy jsou atraktivní součástí testu a mívají dobré psychometrické vlastnosti. Z formálního hlediska (z hlediska zpracování výsledků) nepředstavují v našich podmínkách zvláštní typ. Můžeme se na ně dívat jako na svazky, kde body jsou přiděleny výhradně za všechny správné odpovědi, tedy za zcela správné řešení. Výsledek řešení úlohy je vždy vyjádřen určitým počtem bodů, které jsou žákovi za vyřešenou úlohu přiděleny. Pravidla pro bodování úlohy jsou obsažena v klíči správných řešení a v otevřených úlohách podrobně popsána v pokynech k hodnocení. Výsledek řešení testu Obvykle, zejména při plošném testování, se přirozeně zajímáme také o celkový výsledek testu. Počítá se a interpretuje: bodový skór, který získáme, sečteme-li u daného žáka získané body za celý test; procentní skór, který získáme, pokud bodový skór vydělíme maximálně dosažitelným počtem bodů a vyjádříme v procentech. Pokud nemůže dojít k nedorozumění, připouštíme, že místo přesnějšího pojmu procentní skór se běžně používá pojem úspěšnost. Cut-off score (hranice úspěšnosti) je limit stanovený pro daný test. Pokud jej žák nedosáhne nebo nepřekročí, v testu neuspěl. Podíl žáků, kteří v testu neuspěli, k celkovému počtu žáků vyjadřujeme v procentech a jde o neúspěšnost (podrobněji viz níže). Rozdělení četností poskytuje kompletní informaci o výsledcích všech žáků v testu. Říká, kterých výsledků bylo dosaženo a kolikrát. Rozdělení četností zobrazí graficky histogram (viz graf vpravo), kde na vodorovné ose jsou možné hodnoty (nebo vhodně zvolené intervaly), svislá osa je vyhrazena právě četnostem či relativním četnostem udávajícím procento celkového počtu žáků, kteří dosáhli konkrétního výsledku. Výsledkem testu může být bodový skór nebo procentní skór.

2 Graf kumulativní četnosti obsahuje ve sloupci procento všech žáků, kteří nedosáhli lepšího výsledku. Průměrná úspěšnost (průměrný procentní skór) je základní charakteristikou při analýze výsledků testu. Vyjadřuje průměrnou úroveň vědomostí, dovedností atd. pro danou množinu žáků (s určitou chybou i pro populaci, z níž by byla tato množina žáků reprezentativním výběrem). V některých analytických výstupech (položková analýza viz níže) se výše definovaná úspěšnost označuje jako čistá (na rozdíl od tzv. hrubé úspěšnosti). Hrubá úspěšnost je pojem, který má specifický význam tehdy, jestliže test obsahuje otevřené úlohy a u nich se hodnotí i částečné řešení. O hrubé úspěšnosti úloh mluvíme tehdy, jestliže ohodnotíme jen úplné a bezchybné řešení. Uvádí tedy procento žáků, kteří úlohu vyřešili bezchybně. Hrubá úspěšnost testu je definována odlišným způsobem, ale pro nás nemá praktický význam. Korigovaná úspěšnost se počítá běžným výše popsaným způsobem, ale pouze z úloh, o kterých se domníváme, že je žák přečetl a začal řešit. Pokud žák může úlohy řešit v libovolném pořadí, má sotva smysl tento ukazatel interpretovat. Medián úspěšnosti (také střední úspěšnost) je výsledek (úspěšnost) prostředního žáka; platí tedy, že počet žáků, kteří mají horší nebo lepší výsledek než medián, je stejný. Variabilita výsledků je jev, o který se vedle úrovně výsledků zajímáme, hledáme-li odpověď na otázku, jak se žáci ve svých výsledcích liší. Zkoumáme-li úroveň znalostí a dovedností v nějaké množině žáků, nemělo by nám být lhostejné, zda daný průměrný skór byl dosažen tím, že jsou všichni průměrní, nebo zda jde o zprůměrovaný skór žáků velmi dobrých a velmi slabých. Pro získání odpovídající informace potřebujeme vhodné míry variability. Směrodatná odchylka je míra variability, která se užívá nejčastěji. Vzorec a způsob výpočtu zde neuvádíme, ale v podstatě si můžeme představit, že vyjadřuje, jak se průměrně liší výsledek jednotlivého žáka od průměru celé množiny žáků (větší směrodatná odchylka ukazuje na větší variabilitu výsledků hodnocené skupiny). Kvantil

3 je hodnota zkoumané veličiny (v našem případě například počtu bodů získaných žákem v testu), která odpovídá určitému umístění v souboru uspořádaném podle výsledků (od nejhoršího k nejlepšímu). Mezi nejdůležitější kvantily pak patří především hodnota uprostřed souboru, tedy medián (viz výše), který můžeme označit za 50. percentil (ten lze interpretovat tak, že 50 % žáků nemá lepší výsledek). Při zkoumání výsledků testu nás mohou zajímat také kvartily, tedy výsledky žáků, kteří se umístí na rozhraní první a druhé čtvrtiny nebo na hranici druhé a třetí třetiny či na hranici třetí a čtvrté čtvrtiny, Decily dělí soubor na deset stejně početných částí atd. Běžně se zjišťují a interpretují percentily, které dělí soubor na sto stejně početných částí. Kvantilové rozpětí se používá jako jednoduchá míra variability. Bylo by přirozené usuzovat o variabilitě jednoduše podle rozpětí mezi minimální a maximální hodnotou, ale to je příliš ovlivněno extrémy. Extrémy je vhodné nějakým způsobem z úvah vyloučit, což právě řeší použití kvantilových charakteristik variability. Decilové rozpětí tak vylučuje 10 % nejnižších a 10 % nejvyšších výsledků, a jde tedy o rozdíl mezi 90. A 10. percentilem. Podobně je definováno kvartilové rozpětí jako rozdíl mezi 75. a 25. percentilem. Percentilové umístění (také percentilové pořadí) je kumulativní relativní četnost (viz výše); při analýze výsledků testů udává pro každého žáka, kolik procent žáků dosáhlo horšího nebo stejného výsledku. Práce s percentilovým umístěním umožňuje za určitých předpokladů srovnávat žáky, kteří řešili různé varianty testu. Vlastnosti úlohy posuzujeme především a priori při sestavování testu, ověřujeme try-outy a pilotážemi, ale také hodnotíme ex post, na základě výsledků testování. Jde zejména o obtížnost úlohy a schopnost diskriminace (citlivost). Diskriminační schopnost (citlivost) úlohy vypovídá o schopnosti úlohy rozlišovat mezi žáky s většími znalostmi a dovednostmi a žáky s menšími znalostmi a dovednostmi. K rozlišení žáků na lepší a slabší se většinou používá jejich celkový výsledek v testu. Vysokou citlivost má taková úloha, kterou řeší lepší žáci podstatně úspěšněji než žáci slabší. V případě, že jsou v řešení úlohy úspěšnější slabší žáci, obsahuje úloha pravděpodobně nějakou konstrukční chybu. Míra diskriminace ULI (upper-lower index) je často využívána pro svou jednoduchost. Jde o rozdíl v průměrném procentním skóru mezi nejlepšími a nejslabšími žáky, v našich podmínkách jde konkrétně o čtvrtinu nejlepších a nejslabších. Diskriminační schopnost souvisí s ostatními charakteristikami testové úlohy, například s obtížností. Při interpretaci je proto nutné vzít v úvahu i další psychometrické charakteristiky úlohy. Jednoduše platí, že zařazování úloh s velmi nízkou, nebo dokonce zápornou diskriminací je nevhodné. Korelace RIR (korelační koeficient item-rest) je další psychometrickou charakteristikou, kterou využíváme při analýze výsledků testu. Vypočítá se jako korelační koeficient mezi skórem dosaženým v dané testové úloze a celkovým skórem testu při vyloučení dané úlohy. Nabývá hodnot od -1 do 1. Čím blíže je hodnota krajním pólům intervalu <-1;1>, tím silnější je vzájemný vztah mezi úspěšností v dané úloze a úspěšností ve zbytku testu. Záporné hodnoty znamenají, že žáci, kteří správně řešili danou testovou úlohu, dosáhli spíše nízkého celkového skóre ve zbytku testu, a naopak. Kladné hodnoty svědčí o tom, že žáci úspěšní v řešení dané úlohy byli rovněž úspěšní při řešení ostatních úloh, tj. celého testu. Zjistíme tak, zda úloha tematicky, svým zaměřením a obsahem patří do testu. Často však víme předem, že test se zaměřuje na odlišná témata, odlišné kompetence atd., a je tedy namístě určitá zdrženlivost při interpretaci.

4 Graf průběhu úspěšnosti (diskriminační křivka) znázorňuje úspěšnost žáků v testové úloze v závislosti na jejich celkovém výsledku. Při vytváření grafu se postupuje následujícím způsobem: žáci se uspořádají podle skóru v testu do pořadí od nejlepších po nejslabší, rozdělí se na několik (například deset) stejně početných skupin, pro každou skupinu se vypočítá průměrná úspěšnost žáků v řešení dané testové úlohy a průměrné úspěšnosti se nanesou do grafu. Propojením bodů vyjadřujících průměrné úspěšnosti žáků jednotlivých skupin v řešení úlohy vznikne diskriminační křivka. Položková analýza je komplexní metoda vyhodnocení realizovaného testu, obsahuje detailní výsledky pro každou úlohu (také svazek a jeho podúlohy) a souhrnné výsledky za celý test. Jde o hodnoty vhodných statistických a testologických charakteristik, zmíněných výše, doplněné přehlednými grafy. V našich podmínkách vytváří položkovou analýzu program Restan a výsledky shrnuje navazující program Gepard. Souhrnné výsledky plošného testování mají poskytnout komplexní pohled na vědomosti a dovednosti testovaných žáků. Pro plošné testování (mj. maturitní zkouška) je charakteristický předem stanovený cut-off score. Testování předchází proces přihlašování. Existuje množina žáků, kteří byli ke zkoušce přihlášeni, ale test nekonali, což je také pro hodnocení významné. Proto se v souhrnných výsledcích, kromě výše popsaných statistických charakteristik, uvádějí ukazatele neúspěšnosti. Počítáme: podíl žáků s výsledkem nedosahujícím cut-off score k počtu žáků konajících test, což je čistá neúspěšnost; podíl neúspěšných žáků (kteří zkoušku nekonali nebo ji konali neúspěšně) k počtu všech přihlášených žáků, což je hrubá neúspěšnost. Komplexní zkouška je složena z několika dílčích zkoušek (v našich podmínkách zkouška z českého jazyka a literatury a zkouška z cizího jazyka je složena z didaktického testu, písemné zkoušky a ústní zkoušky). Požadujeme-li celkové hodnocení za komplexní zkoušku, musíme stanovit: pravidlo pro rozhodnutí o neúspěšnosti v komplexní zkoušce (pro maturitu aktuálně platí, že neúspěšný je ten žák, který nevykonal úspěšně všechny dílčí zkoušky, nemusí však opakovat celou zkoušku, ale jen tu dílčí zkoušku, ve které neuspěl; počítání opravných pokusů se však vždy vztahuje k celé zkoušce, nikoli samostatně k dílčím zkouškám); pravidlo pro zapracování procentních skórů dosažených v dílčích zkouškách do celkového procentního skóru zkoušky; je nutné rozhodnout o vahách dílčích zkoušek (např. u MZ z cizích jazyků pro DT:PP:UZ jsou stanoveny váhy 2:1:1 (DT zahrnuje dva subtesty), u MZ z českého jazyka a literatury jsou váhy 1:1:1). Podezřelé úlohy Abychom poskytli objektivní základ pro rozhodování ex-post o kvalitě a přípustnosti úloh v testu, označujeme zcela formálně s využitím položkové analýzy jako podezřelé ty úlohy, které se nějakým způsobem vymykají obvyklým nebo požadovaným vlastnostem úloh. Považujeme za podezřelé, nikoliv však nutně za vadné: příliš snadné úlohy (vyřešilo více než 95 % žáků); příliš obtížné úlohy (vyřešilo méně než 20 % žáků); špatně rozlišující úlohy (míra diskriminace ULI menší než 20 %);

5 úlohy vymykající se zaměření testu (korelační koeficient RIR menší než 0,2); uzavřené úlohy, v nichž žáci dali přednost některému distraktoru před správným řešením; uzavřené úlohy, v nichž nejlepší žáci (čtvrtina s nejlepším výsledkem daného testu jako celku) dali přednost některému distraktoru před správným řešením. Formální charakteristiky úloh ovlivňuje jak kvalita úloh, tak i kvalita testovaného souboru. Např. při podzimních maturitách převažují velmi slabí žáci, kteří jsou v jarních maturitách naopak zastoupeni v menší míře. Proto se na podzim značně snižuje očekávaná úspěšnost úloh, výrazně se snižuje i jejich diskriminační schopnost, některé běžně opomíjené distraktory se stávají velmi přitažlivými, RIR může významně klesat apod.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

Výsledky základní statistické charakteristiky

Výsledky základní statistické charakteristiky Výsledky základní statistické charakteristiky (viz - Vyhláška č. 343/00 Sb. o průběhu přijímacího řízení na vysokých školách a Vyhláška 76/004 Sb. kterou se mění vyhláška č. 343/00 Sb., o postupu a podmínkách

Více

Souhrnné výsledky za školu

Souhrnné výsledky za školu XYZ třída počet žáků percentil skupinový percentil (G4) čistá úspěšnost skóre směrodatná odchylka skóre x geometrie funkce algebra třída počet žáků percentil skupinový percentil (G4) čistá úspěšnost skóre

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více

TESTOVÁNÍ 8. A 9. ROČNÍKŮ 2012/2013 PRŮŘEZOVÁ TÉMATA SOUHRNNÁ ZPRÁVA

TESTOVÁNÍ 8. A 9. ROČNÍKŮ 2012/2013 PRŮŘEZOVÁ TÉMATA SOUHRNNÁ ZPRÁVA TESTOVÁNÍ 8. A 9. ROČNÍKŮ 2012/2013 PRŮŘEZOVÁ TÉMATA SOUHRNNÁ ZPRÁVA Ve zprávě komentujeme výsledky testování 8. a 9. ročníků základních škol a odpovídajících ročníků víceletých gymnázií. Toto testování

Více

KEA 2007/2008-6. A. Analýza dovedností a tematických částí - ČJ

KEA 2007/2008-6. A. Analýza dovedností a tematických částí - ČJ Analýza dovedností a tematických částí - ČJ třída 6. A ZŠ 1 9 8 7 69 71 64 66 67 průměrný percentil 6 5 4 58 3 2 1 46 45 46 42 46 44 Celek Mluvnice Sloh a literatura Znalost Porozumění Aplikace Poznámka:

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis nekategorizovaných dat Co se dozvíte v tomto modulu? Kdy používat modus, průměr a medián. Co je to směrodatná odchylka. Jak popsat distribuci

Více

ŠKOLNÍ ZPRÁVA O VÝSLEDCÍCH SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY

ŠKOLNÍ ZPRÁVA O VÝSLEDCÍCH SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY ŠKOLNÍ ZPRÁVA O VÝSLEDCÍCH SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY LISTOPAD 2014 1 ÚVODEM Školní zpráva o výsledcích maturitní zkoušky je dokumentem, prostřednictvím kterého chceme vedení škol, vedoucím předmětových

Více

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013 Výsledky testování školy Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy Školní rok 2012/2013 Základní škola a mateřská škola Kostelní Hlavno, okres

Více

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013 Výsledky testování školy Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy Školní rok 2012/2013 Základní škola Pohoří, okres Rychnov nad Kněžnou Termín

Více

Průměrné percentily - OSP

Průměrné percentily - OSP ZŠ Průměrné percentily - OSP GYM ZŠ 1 9 8 7 průměrný percentil 6 5 4 3 2 1 31 33 46 9. A 9. B 9. C Poznámka: Graf znázorňuje průměrné celkové percentily všech tříd vaší školy. Zároveň je zde pro porovnání

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Optimalizace 2007/2008-9. B

Optimalizace 2007/2008-9. B Analýza částí - NJ třída 9. B ZŠ 1 9 94 89 93 82 83 8 7 71 průměrný percentil 6 5 4 3 2 1 48 45 42 45 46 46 Celek Poslech Konverzace Čtení a porozumění Komplexní cvičení Slovní zásoba a gramatika Poznámka:

Více

Maturita 2013_podzim Výsledky a závěrečné dokumenty

Maturita 2013_podzim Výsledky a závěrečné dokumenty Maturita 2013_podzim Výsledky a závěrečné dokumenty Písemné zkoušky společné části v podzimním zkušebním období maturitní zkoušky 2013 skončily. Je proto účelné připomenout důležitá pravidla předávání

Více

Statistika pro gymnázia

Statistika pro gymnázia Statistika pro gymnázia Pracovní verze učebního textu ZÁKLADNÍ POJMY Statistika zkoumá jevy (společenské, přírodní, technické) ve velkých statistických souborech. Prvky statistických souborů se nazývají

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013 Výsledky testování školy Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy Školní rok 2012/2013 Základní škola Jana Palacha v Kutné Hoře Termín zkoušky:

Více

Analýza pilotáže přijímacích zkoušek z matematiky

Analýza pilotáže přijímacích zkoušek z matematiky Analýza pilotáže přijímacích zkoušek z matematiky 24. 10. 2015 JČMF VOŠP a SPgŠ Litomyšl Zpracoval: Centrum pro zjišťování výsledků vzdělávání ZÁŘÍ 2015 Centrum pro zjišťování výsledků vzdělávání CERMAT,

Více

Výsledky základní statistické charakteristiky

Výsledky základní statistické charakteristiky Výsledky základní statistické charakteristiky (viz - Vyhláška č. 343/2002 Sb. o průběhu přijímacího řízení na vysokých školách a Vyhláška 276/2004 Sb. kterou se mění vyhláška č. 343/2002 Sb., o postupu

Více

Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2

Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2 Semestrální projekt do předmětu Statistika Vypracoval: Adam Mlejnek 2-36 Oponenti: Patrik Novotný 2-36 Jakub Nováček 2-36 Úvod Pro vypracování projektu do předmětu statistika jsem si zvolil průzkum kvality

Více

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013 Výsledky testování školy Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy Školní rok 2012/2013 Základní škola a Mateřská škola Brno, Blažkova 9 Termín

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013 Výsledky testování školy Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy Školní rok 2012/2013 Základní škola Jindřicha Matiegky Mělník, Pražská Termín

Více

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013 Výsledky testování školy Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy Školní rok 2012/2013 Fakultní základní škola při Pedagogické fakultě UK, Praha

Více

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013

Výsledky testování školy. Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy. Školní rok 2012/2013 Výsledky testování školy Druhá celoplošná generální zkouška ověřování výsledků žáků na úrovni 5. a 9. ročníků základní školy Školní rok 2012/2013 Základní škola Bedřicha Hrozného Lysá nad Labem, nám. B.

Více

Příloha č. 1 1. KRITÉRIA HODNOCENÍ ZKOUŠEK A DÍLČÍCH ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY

Příloha č. 1 1. KRITÉRIA HODNOCENÍ ZKOUŠEK A DÍLČÍCH ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY Ministerstvo školství, mládeţe a tělovýchovy Sdělení MŠMT čj.: MSMT-10054/2012-23 Příloha č. 1 1. KRITÉRIA HODNOCENÍ ZKOUŠEK A DÍLČÍCH ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ 1.1 ZPŮSOB VÝPOČTU A VYJÁDŘENÍ VÝSLEDKU

Více

S D Ě L E N Í 1. KRITÉRIA HODNOCENÍ ZKOUŠEK A DÍLČÍCH ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY

S D Ě L E N Í 1. KRITÉRIA HODNOCENÍ ZKOUŠEK A DÍLČÍCH ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY V Praze dne 19. března 2013 Č. j.: MSMT-10139/2013-211 S D Ě L E N Í V souladu s 22, odst. 1 vyhlášky č. 177/2009 Sb., o bližších podmínkách ukončování vzdělávání ve středních školách maturitní zkouškou,

Více

Zveřejnění výsledků výběrové zjišťování výsledků žáků 2015

Zveřejnění výsledků výběrové zjišťování výsledků žáků 2015 Zveřejnění výsledků výběrové zjišťování výsledků žáků 2015 V souladu s Plánem hlavních úkolů České školní inspekce na školní rok 2014/2015 a v rámci zákonem definovaných úkolů získávat a analyzovat informace

Více

PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11

PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11 PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11 PRO PŘEDMĚTY: ČESKÝ JAZYK A LITERATURA MATEMATIKA ANGLICKÝ JAZYK Jak bych dopadl, kdybych

Více

VÝSLEDKY MATURITNÍGENERÁLKY. www.novamaturita.cz

VÝSLEDKY MATURITNÍGENERÁLKY. www.novamaturita.cz VÝSLEDKY MATURITNÍGENERÁLKY PROČBYLA MATURITNÍGENERÁLKA? V ROCE 2011 POPRVÉMATURITNÍZKOUŠKA SE SPOLEČNOU (STÁTNÍ) ČÁSTÍ CÍLE MATURITNÍ GENERÁLKY: 1.Prověřit připravenost logistického systému a technické

Více

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech.

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech. 3 Grafické zpracování dat Grafické znázorňování je velmi účinný způsob, jak prezentovat statistické údaje. Grafy nejsou tak přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých

Více

STONOŽKA 2008/2009-7. a 8. TŘÍDY

STONOŽKA 2008/2009-7. a 8. TŘÍDY Škola: Název: Obec: BDHS BDHS Základní škola, Komenského Základní 5 škola, Komenského 5 Velké Popovice Velké Popovice STONOŽKA 28/29-7. a 8. TŘÍDY ANGLICKÝ JAZYK Svými výsledky v anglickém jazyce se Vaše

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

TESTOVÁNÍ STONOŽKA 3. TŘÍD - 2009/2010

TESTOVÁNÍ STONOŽKA 3. TŘÍD - 2009/2010 Škola: Název: Obec: DEJV ZŠ a MŠ, U školy 1 Opava - Komárov DEJV ZŠ a MŠ, U školy 1 Opava - Komárov TESTOVÁNÍ STONOŽKA 3. TŘÍD - 29/21 ČESKÝ JAZYK Výsledky Vaší školy v českém jazyce se řadí mezi ty průměrné.

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

1. KRITÉRIA HODNOCENÍ ZKOUŠEK A DÍLČÍCH ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY

1. KRITÉRIA HODNOCENÍ ZKOUŠEK A DÍLČÍCH ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY V Praze dne 11. března 2015 Č. j.: MSMT-6626/2015-1 SDĚLENÍ V souladu s 22, odst. 1 vyhlášky č. 177/2009 Sb., o bližších podmínkách ukončování vzdělávání ve středních školách maturitní zkouškou, ve znění

Více

Nová maturita od roku 2011

Nová maturita od roku 2011 Nová maturita od roku 2011 Základní charakteristika Nová maturitní zkouška se skládá ze dvou částí společné (státní) a profilové (školní). Aby žák uspěl u maturity, musí úspěšně složit povinné zkoušky

Více

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že

Více

Výsledky testování školy. Výběrové zjišťování výsledků žáků 2014/2015 9. ročník ZŠ. Školní rok 2014/2015

Výsledky testování školy. Výběrové zjišťování výsledků žáků 2014/2015 9. ročník ZŠ. Školní rok 2014/2015 Výsledky testování školy Výběrové zjišťování výsledků žáků 2014/2015 9. ročník ZŠ Školní rok 2014/2015 Gymnázium, Teplice, Čs. dobrovolců 11, příspěvková organizace Termín akce: 11.05.2015 22.05.2015 Termín

Více

Prezentace dat. Grafy Aleš Drobník strana 1

Prezentace dat. Grafy Aleš Drobník strana 1 Prezentace dat. Grafy Aleš Drobník strana 1 8.3 GRAFY Užití: Grafy vkládáme do textu (slovního popisu) vždy, je-li to vhodné. Grafy zvýší přehlednost sdělovaných informací. Výhoda grafu vůči tabulce či

Více

TESTOVÁNÍ STONOŽKA 3. TŘÍD - 2009/2010

TESTOVÁNÍ STONOŽKA 3. TŘÍD - 2009/2010 Škola: Název: Obec: ABDHU ABDHU Základní škola a Mateřská Základní škola škola Lomnice a Mateřská nad Lužnicí, škola Lomnice Nám. 5. nad Lužnicí, Nám. 5. května 131 Lomnice nad Lužnicí Lomnice nad Lužnicí

Více

Statistika jako obor. Statistika. Popisná statistika. Matematická statistika TEORIE K MV2

Statistika jako obor. Statistika. Popisná statistika. Matematická statistika TEORIE K MV2 Statistika jako obor Statistika Statistika je vědní obor zabývající se zkoumáním jevů hromadného charakteru. Tím se myslí to, že zkoumaný jev musí příslušet určité části velkého množství objektů (lidí,

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

Souhrnné výsledky za školu

Souhrnné výsledky za školu Souhrnné výsledky za školu OSP celkový průměrný výsledek za části testu třída počet žáků percentil skupinový percentil čistá úspěšnost průměrné skóre směrodatná odchylka skóre verbální analytická kvantitativní

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo

Více

Informace k maturitní zkoušce ve školním roce 2014/2015

Informace k maturitní zkoušce ve školním roce 2014/2015 Informace k maturitní zkoušce ve školním roce 2014/2015 MATURITNÍ ZKOUŠKA 2014 JARNÍ TERMÍN REKAPITULACE MINULOSTI Statistické údaje - ve 4. ročníku studovalo celkem 55 žáků; - z toho u druhé povinné výběrové

Více

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Obsah Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v

Více

Střední odborná škola a Střední odborné učiliště Praha 10, Weilova 4. www.skolahostivar.cz

Střední odborná škola a Střední odborné učiliště Praha 10, Weilova 4. www.skolahostivar.cz Střední odborná škola a Střední odborné učiliště Praha 10, Weilova 4 www.skolahostivar.cz Maturitní zkouška školní rok 2010/2011 Nová maturitní zkouška se skládá ze dvou částí: společné (státní) a profilové

Více

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové

Více

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy

Více

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT PROKAZOVÁNÍ SHODY VÝROBKŮ část 3, díl 8, kapitola 4, str. 1 3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT Vyjadřování standardní kombinované nejistoty výsledku zkoušky Výsledek zkoušky se vyjadřuje v

Více

STONOŽKA 2014/15 6. ROČNÍKY modul KEA

STONOŽKA 2014/15 6. ROČNÍKY modul KEA Škola: Název: Obec: ADHN ADHN Církevní základní škola, Česká Církevní 4787 základní škola, Česká 4787 Zlín Zlín STONOŽKA 14/15 6. ROČNÍKY modul KEA ČESKÝ JAZYK Výsledky Vaší školy v českém jazyce jsou

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

Cvičení ze statistiky. Filip Děchtěrenko ZS 2012/2013

Cvičení ze statistiky. Filip Děchtěrenko ZS 2012/2013 Cvičení ze statistiky Filip Děchtěrenko ZS 2012/2013 Cvičení ze statistiky Pondělí 16:40, C328 http://www.ms.mff.cuni.cz/~dechf7am Praktické zaměření Proč potřebuji statistiku, když chci dělat (doplň)?

Více

Písemná práce k modulu Statistika

Písemná práce k modulu Statistika The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem

Více

Matematické modelování dopravního proudu

Matematické modelování dopravního proudu Matematické modelování dopravního proudu Ondřej Lanč, Alena Girglová, Kateřina Papežová, Lucie Obšilová Gymnázium Otokara Březiny a SOŠ Telč lancondrej@centrum.cz Abstrakt: Cílem projektu bylo seznámení

Více

Průměr je ve statistice často používaná hodnota, která se počítá jako aritmetický průměr hodnot.

Průměr je ve statistice často používaná hodnota, která se počítá jako aritmetický průměr hodnot. Průměr Průměr je ve statistice často používaná hodnota, která se počítá jako aritmetický průměr hodnot. Co je to průměr # Průměrem se rozumí klasický aritmetický průměr sledovaných hodnot. Můžeme si pro

Více

VNITROSKUPINOVÝ ROZPTYL. Je mírou variability uvnitř skupin Jiný název: průměr rozptylů Vypočítává se jako průměr rozptylů v jednotlivých skupinách

VNITROSKUPINOVÝ ROZPTYL. Je mírou variability uvnitř skupin Jiný název: průměr rozptylů Vypočítává se jako průměr rozptylů v jednotlivých skupinách ROZKLAD ROZPTYLU ROZKLAD ROZPTYLU Rozptyl se dá rozložit na vnitroskupinový a meziskupinový rozptyl. Celkový rozptyl je potom součet meziskupinového a vnitroskupinového Užívá se k výpočtu rozptylu, jestliže

Více

1. PŘEDNÁŠKA - ZPRACOVÁNÍ DAT ZÁKLADNÍ ANALÝZA DAT

1. PŘEDNÁŠKA - ZPRACOVÁNÍ DAT ZÁKLADNÍ ANALÝZA DAT Základní soubor celkový počet lidí, zvířat, věcí, jevů, které zkoumáme. Většinou nás zajímá minimálně střední hodnota dat (μ) a směrodatná odchylka (σ). Protože je prakticky nemožné zjistit hodnoty z celého

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Společná část 2013. 3 povinné zkoušky:

Společná část 2013. 3 povinné zkoušky: Maturitní model Nová maturitní zkouška se skládá ze dvou částí společné (státní) a profilové (školní). Aby žák uspěl u maturity, musí úspěšně složit povinné zkoušky obou těchto částí. Zavedení společné

Více

Souhrnné výsledky za školu

Souhrnné výsledky za školu BDGKM třída počet žáků percentil skupinový percentil (GV) rozšířený percetil o PZ čistá úspěšnost skóre směrodatná odchylka skóre x mluvnice literatura sloh a komunikace třída počet žáků percentil skupinový

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Příručka k měsíčním zprávám ING fondů

Příručka k měsíčním zprávám ING fondů Příručka k měsíčním zprávám ING fondů ING Investment Management vydává každý měsíc aktuální zprávu ke každému fondu, která obsahuje základní informace o fondu, jeho aktuální výkonnosti, složení portfolia

Více

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

SYSTÉM TECHNICKO-EKONOMICKÉ ANALÝZY VÝROBY TEKUTÉHO KOVU - CESTA KE SNIŽOVÁNÍ NÁKLADŮ

SYSTÉM TECHNICKO-EKONOMICKÉ ANALÝZY VÝROBY TEKUTÉHO KOVU - CESTA KE SNIŽOVÁNÍ NÁKLADŮ SYSTÉM TECHNICKO-EKONOMICKÉ ANALÝZY VÝROBY TEKUTÉHO KOVU - CESTA KE SNIŽOVÁNÍ NÁKLADŮ FIGALA V. a), KAFKA V. b) a) VŠB-TU Ostrava, FMMI, katedra slévárenství, 17. listopadu 15, 708 33 b) RACIO&RACIO, Vnitřní

Více

Souhrnné výsledky za školu

Souhrnné výsledky za školu DFGJK třída počet žáků percentil skupinový percentil (GV) čistá úspěšnost skóre směrodatná odchylka skóre x poslech čtení a porozumění textu konverzace gramatika a slovní zásoba komplexní cvičení třída

Více

KEA 2009/2010-9. ROČNÍKY

KEA 2009/2010-9. ROČNÍKY Škola: Název: Obec: DEHK DEHK Základní škola, Kvítková 4338 Základní škola, Kvítková 4338 Zlín Zlín KEA 9/1-9. ROČNÍKY ČESKÝ JAZYK Výsledky Vaší školy v českém jazyce jsou špičkové. Vaše škola patří mezi

Více

IT Fitness 2015 získané výsledky testování

IT Fitness 2015 získané výsledky testování IT Fitness 2015 získané výsledky testování Kapitola 1. Popis průběhu testování a testové baterie V závěru roku 2015 proběhlo veřejnosti přístupné testování znalostí v oblasti informačních a komunikačních

Více

Pracovní list č. 3 Charakteristiky variability

Pracovní list č. 3 Charakteristiky variability 1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte

Více

ZLOMKY. Standardy: M-9-1-01 CELÁ A RACIONÁLNÍ ČÍSLA. Záporná celá čísla Racionální čísla Absolutní hodnota Početní operace s racionálními čísly

ZLOMKY. Standardy: M-9-1-01 CELÁ A RACIONÁLNÍ ČÍSLA. Záporná celá čísla Racionální čísla Absolutní hodnota Početní operace s racionálními čísly a algoritmů matematického aparátu Vyjádří a zapíše část celku. Znázorňuje zlomky na číselné ose, převádí zlomky na des. čísla a naopak. Zapisuje nepravé zlomky ve tvaru smíšeného čísla. ZLOMKY Pojem zlomku,

Více

Maturitní zkoušk a ve školním roce 2012/2013. Podávám přihlášku k maturitě podzim 2013

Maturitní zkoušk a ve školním roce 2012/2013. Podávám přihlášku k maturitě podzim 2013 Maturitní zkoušk a ve školním roce 2012/2013 Podávám přihlášku k maturitě podzim 2013 p r ů v o d c e ž á k a p ř i h l a š o v á n í m k p o d z i m n í m at u r i t n í z k o u š c e 2 0 1 3 Vážená maturantko,

Více

Informační technologie a statistika 1

Informační technologie a statistika 1 Informační technologie a statistika 1 přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 21. září 2015, 1/33 Požadavek

Více

Analýza výsledků testu čtenářské gramotnosti v PRO23 2010/11

Analýza výsledků testu čtenářské gramotnosti v PRO23 2010/11 Analýza výsledků testu čtenářské gramotnosti v PRO23 2010/11 Zpracoval: www.scio.cz, s.r.o. (15. 2. 2012) Datové podklady: výsledky a dotazníky z PRO23, test čtenářské gramotnosti, www.scio.cz, s.r.o.

Více

průměrný percentil za části testu odchylka skóre analytická verbální směrodatná

průměrný percentil za části testu odchylka skóre analytická verbální směrodatná ZŠ Souhrnné výsledky za školu OSP celkový průměrný výsledek za části testu za dovednosti v testu třída počet žáků skupinový čistá úspěšnost průměrné skóre směrodatná odchylka skóre verbální analytická

Více

Analýza úspěšnosti studia na Národohospodářské fakultě VŠE v Praze a její predikce testem OSP (2. část)

Analýza úspěšnosti studia na Národohospodářské fakultě VŠE v Praze a její predikce testem OSP (2. část) Analýza úspěšnosti studia na Národohospodářské fakultě VŠE v Praze a její predikce testem OSP (2. část) Zpracovala: www.scio.cz., s.r.o. (14. 11. 2011) Datové podklady: Národohospodářská fakulta VŠE v

Více

SILOVÉ PŮSOBENÍ MAGNETICKÉHO POLE

SILOVÉ PŮSOBENÍ MAGNETICKÉHO POLE Experiment P-17 SILOVÉ PŮSOBENÍ MAGNETICKÉHO POLE CÍL EXPERIMENTU Studium základních vlastností magnetu. Sledování změny silového působení magnetického pole magnetu na vzdálenosti. MODULY A SENZORY PC

Více

katedra statistiky PEF, Vysoká škola zemědělská, 165 21 Praha 6 - Suchdol

katedra statistiky PEF, Vysoká škola zemědělská, 165 21 Praha 6 - Suchdol STATISTICKÁ ANALÝZA PŘIJÍMACÍHO ŘÍZENÍ NA PEF PRO AKADEMICKÝ ROK 1994/1995 Bohumil Kába, Libuše Svatošová katedra statistiky PEF, Vysoká škola zemědělská, 165 21 Praha 6 - Suchdol Anotace: Příspěvek pojednává

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Sedm základních nástrojů řízení kvality Doc. RNDr. Jiří Šimek,

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Maturitní model Nová maturitní zkouška se skládá ze dvou částí společné (státní) a profilové (školní). Aby žák uspěl u maturity, musí úspěšně složit povinné zkoušky obou těchto částí. Zavedení společné

Více

Kartogramy. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita

Kartogramy. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Kartogramy Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Datum vytvoření dokumentu: 20. 9. 2004 Datum poslední aktualizace: 17. 10. 2011 Definice Kartogram je

Více

343/2002 Sb. VYHLÁŠKA. Ministerstva školství, mládeže a tělovýchovy

343/2002 Sb. VYHLÁŠKA. Ministerstva školství, mládeže a tělovýchovy 343/2002 Sb. VYHLÁŠKA Ministerstva školství, mládeže a tělovýchovy ze dne 11. července 2002 o postupu a podmínkách při zveřejnění průběhu přijímacího řízení na vysokých školách Změna: 276/2004 Sb. Ministerstvo

Více

Příručka k měsíčním zprávám ING fondů

Příručka k měsíčním zprávám ING fondů Příručka k měsíčním zprávám ING fondů ING Investment Management vydává každý měsíc aktuální zprávu ke každému fondu, která obsahuje základní informace o fondu, jeho aktuální výkonnosti, složení portfolia

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

Výsledky dětí v testech, zkouškách a přijímacím řízení na vyšší stupeň

Výsledky dětí v testech, zkouškách a přijímacím řízení na vyšší stupeň Výsledky dětí v testech, zkouškách a přijímacím řízení na vyšší stupeň V rámci celé školy je zaveden systém sledování, jak žáci dosahují očekávaných výstupů. Na konci každého pololetí jsou v každé třídě

Více

Vliv věku a příjmu na výhodnost vstupu do důchodového spoření (II. pilíře)

Vliv věku a příjmu na výhodnost vstupu do důchodového spoření (II. pilíře) Vliv věku a příjmu na výhodnost vstupu do důchodového spoření (II. pilíře) Následující analýza výhodnosti vstupu do II. pilíři vychází ze stejné metodologie, která je popsána v Pojistněmatematické zprávě

Více

Výsledky projektu Vektor 2008

Výsledky projektu Vektor 2008 Výsledky projektu Vektor 2008 Projekt Vektor firmy SCIO hodnotí vědomosti studentů v jedenácti předmětech a posun znalostí studentů za dobu studia na střední škole. Studenti jsou testováni na začátku studia

Více

Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Pardubice, Štefánikova 325, 530 43 Pardubice

Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Pardubice, Štefánikova 325, 530 43 Pardubice Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Pardubice, Štefánikova 325, 530 43 Pardubice Pokyn ředitelky školy č. 1/2014/2015 ke konání maturitní zkoušky ve školním roce 2014/2015

Více

METODIKA. hodnocení rizika vývoje produkce zpracovatelského průmyslu

METODIKA. hodnocení rizika vývoje produkce zpracovatelského průmyslu METODIKA hodnocení rizika vývoje produkce zpracovatelského průmyslu Ministerstvo průmyslu a obchodu (2005) odbor hospodářské politiky Adviser-EURO, a.s. Metodika - hodnocení rizika vývoje produkce zpracovatelského

Více

Třídění statistických dat

Třídění statistických dat 2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.

Více

Pythagorova věta Pythagorova věta slovní úlohy

Pythagorova věta Pythagorova věta slovní úlohy Vyučovací předmět: Matematika Ročník: 8. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo provádí početní operace v oboru celých a racionálních čísel, užívá ve výpočtech druhou mocninu

Více

Matematická statistika

Matematická statistika Matematická statistika Daniel Husek Gymnázium Rožnov pod Radhoštěm, 8. A8 Dne 12. 12. 2010 v Rožnově pod Radhoštěm Osnova Strana 1) Úvod 3 2) Historie matematické statistiky 4 3) Základní pojmy matematické

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

PLATOVÁ STUDIE PRO FINANČNÍ POZICE 2013. Vyhodnocení průzkumu

PLATOVÁ STUDIE PRO FINANČNÍ POZICE 2013. Vyhodnocení průzkumu PLATOVÁ STUDIE PRO FINANČNÍ POZICE 2013 Vyhodnocení průzkumu Česká asociace pro finanční řízení (CAFIN) si jako jeden ze svých cílů klade pomoc při rozvoji finanční profese. Zajímají nás aktuální trendy

Více