PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B)

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B)"

Transkript

1 Přijímací řízeí pro akademický rok 24/5 a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata B) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím zadáí vyberte správou odpověď zakroužkováím příslušé variaty [ a), b), c), d) ebo e) ]. Správě je vždy pouze jeda z abízeých odpovědí. V případě, že ebude jedozačě zřejmé, která z variat je zakroužkováa, či pokud ebude zakroužkováa žádá ebo aopak více variat odpovědí, bude otázka hodocea jako esprávě zodpovězeá. ) (b) Na edokoale kokurečím trhu a) se cea statku rová mezímu příjmu firmy b) se cea statku rová mezím ákladům firmy c) cea statku převyšuje mezí příjem firmy d) je cea statku ižší ež mezí příjem firmy 2) (b) Firma v dokoalé kokureci vyrábí oproti firmě v edokoalé kokureci a) méě zboží za ižší ceu b) více zboží za vyšší ceu c) více zboží za ižší ceu d) méě zboží za vyšší ceu ) (b) Obecá ekoomická teorie je věda o: a) výrobě b) trhu c) spotřebě d) tvorbě ce e) všechy odpovědi jsou správé 4) (b) Formálě abstraktí pojetí ek. vědy tkví a) v matematických důkazech zákoů b) v existeci hodotových soudů c) v uplatňováí zákoů tedece d) v odmítáí matematických metod 5) (b) Ekoomie jako věda vzikla a) se vzikem trhu b) a koci 7. stol. c) se vzikem moetarismu d) se vzikem keyesiáství 6) (b) Příčiou zboží výroby je existece a) trhu b) dělby práce c) peěz d) vzácosti

2 7) (b) Firma rozšiřuje všechy své vstupy, přírůstky výstupů jsou ižší ež přírůstky vstupů. Jedá se o a) záko klesajících výosů b) klesající výosy z rozsahu c) záko rostoucích vstupů d) rostoucí vstupy z rozsahu 8) (b) Důchodový efekt zameá a) že při kostatím důchodu změa cey vyvolá změu poptávaého možství b) že při změě důchodu dojde ke změě poptávaého možství c) že při změě důchodu dojde ke změě poptávky d) že změa cey vyvolá změu celkového užitku 9) (b) Cílem eceové kokurece je přilákáí poptávky těmito metodami a) růstem kvality a iovacemi b) desigem a záručí dobou c) reklamou a spotřebím úvěrem d) výhodější otevírací dobou pro zákazíky e) všechy odpovědi jsou správé ) (b) Firma je v rovováze když a) abízí tolik kolik je poptáváo b) využívá plě své kapacity c) má ejižší áklady d) se rovají mezí příjmy a mezí áklady ) (b) Reálá mzda je a) mzda vyjádřeá v peěžích jedotkách b) mzda před odečteím daí c) mzda vyjádřeá ve zboží, které je možo za i koupit d) mzda po odečteí daí 2) (b) Dlouhé období při aalýze firmy zameá: a) období dlouhé 5- let b) období delší ež let c) období, kdy všechy áklady jsou proměé d) vždy období do roku ) (b) Teorie spotřebitele považuje za trazitivitu tuto vlastost tří spotřebích košů X, Y a Z: a) je-li X preferováo před Y a Y před Z, potom je i X preferováo před Z b) je-li X preferováo před Y a Y před Z, emusí X být utě preferováo před Z c) meší možství zboží je vždy preferováo před větším možstvím d) větší možství zboží je vždy preferováo před meším možstvím 4) (b) Nepřízivý ákladový "šok" má v krátkém období za ásledek a) pokles HDP a růst ceové hladiy b) růst HDP a pokles ceové hladiy c) pokles HDP a pokles ceové hladiy d) růst HDP a růst ceové hladiy

3 5) (b) Rozdíl mezi GNP(mp) a NDP(fc) je a) amortizace, čistý příjem z majetku v zahraičí a epřímé daě b) amortizace, čistý příjem z majetku v zahraičí a přímé daě c) amortizace, a epřímé daě a daě ze zisku podiků d) amortizace a epřímé daě 6) (b) Vztah mezi HDP a mírou ezaměstaosti se azývá a) Pigouův záko b) Keyesův záko c) Friedmaův záko d) Mudellův záko 7) (b) Iflace je a) růst všech jedotlivých ce veškerých výrobků a služeb b) růst celkové ceové hladiy výrobků a ceová hladia služeb se ezapočítává c) růst celkové ceové hladiy výrobků a služeb d) růst ceové hladiy pouze regulovaých výrobků a služeb 8) (b) V klasickém modelu makroekoomické rovováhy je křivka AS: a) elastická b) vodorová c) mírě rostoucí d) vertikálí 9) (b) Poteciálí produkt je: a) produkt dlouhodobě evyčerpávající eobovitelé zdroje b) maximálí možý výstup ekoomiky c) produkt dlouhodobě eakcelerující ai edecelerující iflaci d) produkt při ulové ezaměstaosti 2) (b) Dvoustupňový bakoví systém se skládá z: a) komerčích bak a kampeliček b) komerčích bak a spořitele c) komerčích bak a pojišťove d) komerčích bak a ivestičích fodů 2) (b) Desiflací rozumíme: a) pokles ceové hladiy b) růst ceové hladiy c) pokles růstu ceové hladiy d) stabilitu ceové hladiy 22) (b) Iflace tažeá abídkou může vzikout: a) sížeím státích výdajů a ákup statků a služeb b) devalvací árodí měy c) revalvací árodí měy d) poklesem ivestičích výdajů

4 2) (b) V zemi je 2 mil. obyvatel, z toho je 9 mil. zaměstaých a mil. ezaměstaých. Jaká je míra ezaměstaosti země? a) % b) % c) 8% d) 5% 24) (b) Co z ásledujícího způsobí posuutí agregátí poptávkové křivky doprava: a) zvýšeí úrokových měr při daé ceové hladiě b) zvýšeí očekávaé iflace c) zvýšeí daí d) sížeí ceové hladiy 25) (b) Národí důchod je jiý ázev pro: a) NNP MP (čistý árodí produkt v tržích ceách) b) NNP FC (čistý árodí produkt v ceách výrobích faktorů) c) GDP FC (hrubý domácí produkt v ceách výrobích faktorů) d) GNP FC (hrubý árodí produkt v ceách výrobích faktorů) 26) (2b) Pa Veselý má trvalý pobyt v Plzi. Od.. 24 je v evideci Úřadu práce, který mu vyplácí hmoté zabezpečeí uchazeče o zaměstáí ve výši 5 8,- Kč měsíčě. Jak vysoké pojisté a zdravotí pojištěí pa Veselý platí? a) platí,5 % z částky 52,- Kč b) platí,5 % z částky 5 8,- Kč c) platí,5% z miimálí mzdy d) pa Veselý eí plátcem pojistého a zdravotí pojištěí 27) (b) Distribučí fukce veřejých fiací je zajišťováa: a) systémem epřímých daí b) systémem soudích poplatků c) systémem sociálích trasferů d) rozdělováím veřejých statků 28) (b) Daňový základ u daě z příjmu fyzických osob se upravuje o: a) slevu a dai b) osvobozeé příjmy c) odčitatelé položky d) příjmy zdaňovaé zvláští sazbou daě 29) (b) Pojisté a zdravotí pojištěí se odvádí: a) do státího rozpočtu b) do rozpočtů okresích správ sociálího zabezpečeí c) do rozpočtů zdravotických zařízeí d) do rozpočtů zdravotích pojišťove

5 ) A. (2b) Mějme zadáy ásledující pravděpodobosti: P(A).6, P ( A B).2, P ( A B) a).2 b).4 c).6 d).8 e) žádá z možostí a) až d) eí správá.8. Pak P(B) je rova: B. (2b) Pro jevy A a B s pravděpodobostmi z předchozího příkladu A platí, že a) jsou eslučitelé a zároveň ezávislé b) ejsou eslučitelé ai ezávislé c) jsou eslučitelé, leč ikoli ezávislé d) jsou ezávislé, leč ikoli eslučitelé e) žádá z možostí a) až d) eí správá ) (2b) Má-li áhodá veličia X ormálí rozděleí se středí hodotou a rozptylem 9, pak áhodá veličia Z (X ) / 9 bude mít rozděleí a) ormálí se středí hodotou a směrodatou odchylkou b) ormálí se středí hodotou a směrodatou odchylkou c) ormálí se středí hodotou a směrodatou odchylkou / d) ormálí se středí hodotou a směrodatou odchylkou e) žádá z možostí a) až d) eí správá 2) (2b) Uvažujme spojitou áhodou veličiu s rovoměrým rozděleím a itervalu (, 5). Pravděpodobost, že tato áhodá veličia abude hodoty z itervalu (, 2) je rova a) 25% b) 5% c) 75% d) % e) žádá z možostí a) až d) eí správá ) (b) Pro asymptoticky estraý odhad platí, že a) má ze všech odhadů ejmeší rozptyl b) jeho rozptyl pro rozsah výběru jdoucí k ekoeču vždy koverguje k ule c) jeho středí hodota je rova odhadovaému parametru pro jakýkoli rozsah výběru d) je vždy kozistetí e) žádá z možostí a) až d) eí správá 4) (2b) Testujeme hypotézu o středí hodotě základího souboru H : µ oproti hypotéze alterativí H : µ. Víme, že testové kritérium má za předpokladu platosti ulové hypotézy ormovaé ormálí rozděleí a záme ásledující kvatily tohoto rozděleí: p z p,95,645,975,96,99 2,26,995 2,576 Vyjde-li ám hodota testového kritéria z - 2.5, pak můžeme učiit ásledující závěr: a) H zamítáme jak a hladiě výzamosti α 5%, tak i a hladiě výzamosti α % b) H ezamítáme a hladiě výzamosti α 5%, ai a hladiě výzamosti α % c) H zamítáme a hladiě výzamosti α 5%, leč ikoli a hladiě výzamosti α % H zamítáme a hladiě výzamosti α %, leč ikoli a hladiě výzamosti α 5% d) e) žádá z možostí a) až d) eí správá

6 5) (2b) Pro středí hodotu µ základího souboru jsme určili 95%-í iterval spolehlivosti (99.6,.7) a 99%-í iterval spolehlivosti (99.49,.5). Pokud bychom testovali hypotézu µ.45 oproti alterativě µ.45, došli bychom k ásledujícímu závěru: a) zamítáme hypotézu µ.45 a hladiě výzamosti %, leč ikoli 5% b) hypotézu µ.45 ezamítáme ai a 5%-í, ai a %-í hladiě výzamosti c) zamítáme hypotézu µ.45 a hladiě výzamosti 5%, leč ikoli % d) hypotézu µ.45 zamítáme jak a 5%-í, tak i a %-í hladiě výzamosti e) žádá z možostí a) až d) eí správá 6) (2b) Víme, že koeficiet korelace dvou áhodých veliči je rove. Z toho plye, že a) kovariace je rova ule, obě áhodé veličiy jsou ezkorelovaé a ezávislé b) kovariace je rova ule, obě áhodé veličiy jsou ezkorelovaé, ale závislé c) kovariace je kladá, obě áhodé veličiy jsou zkorelovaé a závislé d) kovariace je kladá, obě áhodé veličiy jsou zkorelovaé, ale ezávislé e) ai jeda z možostí a) až d) eí správá 7) Defiujme proměé y i,,2,,, které vyjadřují objem prostředků (v tis. Kč) které daá firma vkládá v rámci reklamí kampaě do i-tého druhu médií (apř. TV, rozhlas, časopisy, apod.). Nechť hodota c i udává účiost reklamy v daém médiu (počet "osloveých" osob a Kč ivestovaých do daého média). Firma může ve sledovaém období ivestovat do reklamí kampaě maximálě 5 tis. Kč. a.(b) V lieárím matematickém modelu této optimalizačí úlohy bude mít podmíka omezující maximálí celkovou výši ivestic této firmy do reklamy tvar: 5 a) d) i y i 5 b) j c i y i 5 e) y j 5 c) i c i j y i 5 y j 5 b.(b) c.(b) V lieárím matematickém modelu optimalizačí úlohy z předchozí otázky může mít účelová fukce pro maximalizaci celkového účiku ivestic daé firmy do reklamy tvar: a) max z c i d) max z i y i b) max z i c ij y ij e) max z i c j y j c i y i c) mi z c i V lieárím matematickém modelu výše uvedeé optimalizačí úlohy bude mít podmíka zabezpečující požadavek, aby do prvích médií bylo ivestováo ejvýše % všech prostředků vkládaých do reklamí kampaě tvar: p y i x i a) x i 5 b) x i 5 c) x i, i d) p x i, i c i e) x i 5 8) (b) Jaké je optimálí řešeí úlohy lieárího programováí daé ásledujícím modelem? Použijte grafickou metodu s využitím obrázku. miimalizujte z x + x 2 za podmíek: x +2x 2 6 x x 2 x, x 2 x 2 x +2x 2 6 x 2 x x

7 a) [, ] b) [, ] c) [2, ] d) [, ] e) emá optimálí řešeí 9) (b) Při řešeí časové aalýzy jistého projektu bylo zjištěo, že ejpozději utý koec čiosti (5,7) je v čase 22 a čiost trvá právě 8 čas. jedotek. Kdy je ejdříve možý začátek této čiosti? (Poz.: Jde o ekritickou čiost s celkovou časovou rezervou 2 jedotky.) a) 8 b) c) 2 d) 4 e) elze ze zadaých údajů určit 4) (2b) Mírou produktivity práce se rozumí a) počet odpracovaých hodi za kaledáří měsíc b) podíl celkových mzdových ákladů a počtu pracovíků c) možství výrobků vyrobeé jedím pracovíkem za jedotku času d) počet prodaých výrobků za rok e) peěžě vyjádřeá spotřeba výrobích faktorů 4) (2b) Bod zvratu představuje a) objem výroby, při kterém se tržby rovají celkovým ákladům b) průsečík přímky tržeb a fixích ákladů c) bod, kdy tržby klesou pod fixí áklady a podik jde do kokurzu d) bod, kdy variabilí áklady se rovají tržbám e) průsečík fixích a variabilích ákladů 42) (2b) Saace podiku jsou a) opatřeí k likvidaci podiku b) odkup dlouhodobých pohledávek c) metody likvidace obtížě prodejých zásob v podikových skladech d) rozdíl omiálí a trží cey akcií podiku. e) vhodá opatřeí k odstraěí ztráty ebo epřízivého vývoje podiku 4) (2b) Frachisig je a) forma sdružeí podiků b) způsob fiacováí podiku c) druh dlouhodobého mezibakovího úvěru d) způsob převodu ceých papírů a jiého majitele e) odkup pohledávek 44) (2b) Nejvyšším orgáem společosti s ručeím omezeým je a) valá hromada b) jedatel c) představestvo d) dozorčí rada e) ředitel 45) (2b) Početí postup, kterým zjišťujeme současou hodotu budoucích příjmů ebo výdajů azýváme a) úročeí b) odúročeí c) auita d) úmor e) odepisováí 46) (2b) Metoda ABC představuje a) metodu uspořádáí sortimetu zásob ve skladu podle abecedy b) metodu ulových zásob a vstupu podiku c) metodu automatického doobjedáváí materiálu d) diferecovaé řízeí zásob vycházející z Parettova pricipu e) strategické pláováí počtu skladů v závislosti a počtu dodavatelů

8 47) (2b) Miimálí zákoá výše základího kapitálu u společosti s ručeím omezeým je a) 5 b) c) 2 d) milió e) 2 milióy 48) (2b) Ozačte, kdo ručí eomezeě. a) společíci v. o. s. d) společíci s. r. o. b) komaditisté c) akcioáři e) čleové družstev 49) (2b) Nevyplaceé mzdy a dividedy patří do a) vlastího kapitálu podiku b) cizího dlouhodobého kapitálu podiku c) cizího krátkodobého kapitálu podiku d) oběžého majetku podiku e) dlouhodobého fiačího majetku podiku 5) (b) Emisí ážio je: a) vlastí, exterí a dlouhodobý fiačí zdroj s eomezeou splatostí b) iterí, cizí a dlouhodobý fiačí zdroj s eomezeou splatostí c) cizí, exterí a dlouhodobý fiačí zdroj s eomezeou splatostí d) vlastí, vitří a krátkodobý fiačí zdroj e) cizí, vější a dlouhodobý fiačí zdroj 5) (b) Zdrojem samofiacováí je ásledující zisková kategorie: a) dispoibilí zisk b) čistý zisk c) rozděleý zisk d) zadržeý zisk e) zisk k rozděleí 52) (b) Kolik čií ukazatel pohotové likvidity podiku, jestliže krátkodobé závazky čií 2.,-Kč, dlouhodobé závazky.,- Kč, zásoby materiálu 2., krátkodobé pohledávky 8.,- Kč, krátkodobé ceé papíry v držeí podiku v hodotě 5.,-Kč a peíze v pokladě 5.,- Kč: a) 2, b), c), d), e),66 5) (2b) Nakupovaé zásoby se oceňují: a) pořizovací ceou b) vlastími áklady c) reprodukčí pořizovací ceou d) reálou hodotou e) současou hodotou 54) (2b) Meziárodí účetí stadardy IAS/IFRS: a) jsou jediým ve světě používaým komplexem účetích stadardů b) jsou teoretickým východiskem světového účetictví, prakticky se zatím evyužívají c) jsou komplexem stadardů používaých společostmi, jejichž akcie jsou kotovaé a burzách v USA d) jsou jediým komplexem stadardů používaých společostmi, jejichž akcie jsou kotovaé a všech světových burzách

9 e) patří mezi výzamé, světově používaé komplexy účetích stadardů 55) (2b) Vztah výsledku hospodařeí a čistým cash flow a) Výsledek hospodařeí a čistý cash flow se ikdy eliší b) Výsledek hospodařeí je rozdílem výosů a ákladů, zatímco čistý cash flow je rozdílem příjmů a výdajů c) Výsledek hospodařeí je zisk ebo ztráta, zatímco čistý cash flow je přebytek příjmů ad výdaji d) Výsledek hospodařeí je rozdíl výosů a příjmů, čistý cash flow je rozdíl výdajů a ákladů e) Výsledek hospodařeí se od čistého cash flow liší je tehdy, jestliže jsou krátkodobé závazky převýšey krátkodobými pohledávkami 56) (2b) Účet Výosy příštích období má charakter: a) rozvahový pasiví b) rozvahový aktiví c) výsledkový ákladový d) závěrkový e) závěrkový 57) (2b) Ivetarizací se rozumí a) ivetura majetku a závazků b) průběžé zjišťováí skutečého stavu majetku účetí jedotky c) zjištěí skutečého stavu majetku a závazků, jeho srováí se stavem účetím a zjištěí a vypořádáí rozdílů d) přepočítáí všech zásob a skladě a zjištěí mak a přebytků e) kotrola evidece zásob a dlouhodobého majetku podiku fiačím úřadem 58) (2b) Účetí uzávěrka obsahuje a) uzavřeí všech účetích kih a sestaveí účetích výkazů b) uzavřeí všech účetích kih, sestaveí účetích výkazů a vyhotoveí výročí zprávy c) zaúčtováí uzávěrkových účetích případů, uzavřeí účetích kih, provedeí ivetarizace a vyhotoveí kotrolích sestav d) zaúčtováí uzávěrkových účetích případů, uzavřeí všech účetích kih a sestaveí účetích výkazů e) sestaveí účetích výkazů, jejich přepočty a pevou kupí sílu ebo reprodukčí cey a provedeí jejich aalýzy 59) (b) Aktuálí pricip zameá: a) jedotlivé účetí případy jsou vykázáy v období, kdy astaly, bez ohledu a to, zda byly zaplacey b) účetí případy jsou vykázáy buď v období, kdy astaly, ebo až když byly zaplacey záleží a rozhodutí účetí jedotky c) účetí trasakce jsou vykázáy v období, kdy byly zaplacey d) účetí trasakce jsou vykázáy v účelovém čleěí e) účetí trasakce jsou vykázáy v druhovém čleěí

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

Makroekonomie cvičení 1

Makroekonomie cvičení 1 Makroekoomie cvičeí 1 D = poptávka. S = Nabídka. Q = Možství. P = Cea. Q* = Rovovážé možství (Q E ). P* = Rovovážá caa (P E ). L = Práce. K = Kapitál. C = Spotřeba domácosti. LR = Dlouhé období. SR = Krátké

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná Výročí zpráva fodů společosti Pioeer ivestičí společost, a.s. - eauditovaá Obsah 1. Účetí závěrka: Pioeer Sporokoto, Pioeer obligačí fod, Pioeer růstový fod, Pioeer dyamický fod, Pioeer akciový fod, BALANCOVANÝ

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty) (variata s odděleým hodoceím ivestičích ákladů vyaložeých a jedotlivé privatizovaé objekty) Vypracoval: YBN CONSULT - Zalecký ústav s.r.o. Ig. Bedřich Malý Ig. Yvetta Fialová, CSc. Václavské áměstí 1 110

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Prof. Ig. Albert Bradáč, DrSc. STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Příspěvek vazuje publikovaý

Více

SH = BH*( 1 + i) n nebo

SH = BH*( 1 + i) n nebo PEKS 2 Literatura Syek PEK 4. vydáí Faktor času v peěžím vyjádřeí Peěží jedotka Kč přijata ebo vyplacea v růzých časových okamžicích má rozdílou hodotu. Deší korua je ceější, ež korua získaá později apř.

Více

AMC/IEM J - HMOTNOST A VYVÁŽENÍ

AMC/IEM J - HMOTNOST A VYVÁŽENÍ ČÁST JAR-OPS 3 AMC/IEM J - HMOTNOST A VYVÁŽENÍ ACJ OPS 3.605 Hodoty hmotostí Viz JAR-OPS 3.605 V souladu s ICAO Ae 5 a s meziárodí soustavou jedotek SI, skutečé a omezující hmotosti vrtulíků, užitečé zatížeí

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH ECHNICKÝ AUDI VODÁRENSKÝCH DISRIBUČNÍCH SYSÉMŮ Ig. Ladislav uhovčák, CSc. 1), Ig. omáš Kučera 1), Ig. Miroslav Svoboda 1), Ig. Miroslav Šebesta 2) 1) 2) Vysoké učeí techické v Brě, Fakulta stavebí, Ústav

Více

Neparametrické metody

Neparametrické metody I. ÚVOD Neparametrické metody EuroMISE Cetrum v Neparametrické testy jsou založey a pořadových skórech, které reprezetují původí data v Data emusí utě splňovat určité předpoklady vyžadovaé u parametrických

Více

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY.

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. Ig.Karel Hoder, ÚAMT-VUT Bro. 1.Úvod Optimálí rozděleí ákladů a vytápěí bytového domu mezi uživatele bytů v domě stále podléhá

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

SPOŘENÍ. Spoření krátkodobé

SPOŘENÍ. Spoření krátkodobé SPOŘENÍ Krátkodobé- doba spořeí epřesáhe jedo úrokové období (obvykle 1 rok). Úroky jsou přpsováy a koc doby spořeí. Jedotlvé složky jsou úročey a základě jedoduchého úročeí. Dlouhodobé doba spořeí bude

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

Patří slovo BUSINESS do zdravotnictví?. 23. 6. 2005

Patří slovo BUSINESS do zdravotnictví?. 23. 6. 2005 Patří slovo BUSINESS do zdravotictví?. 23. 6. 2005 Společost Deloitte Společost Deloitte v České republice má více ež 550 zaměstaců a kaceláře v Praze a Olomouci. Naše česká pobočka je součástí aší regioálí

Více

z z z Úvodní slovo generálního ředitele Vážení partneři České exportní banky,

z z z Úvodní slovo generálního ředitele Vážení partneři České exportní banky, Výročí zpráva 2O13 z z z Úvodí slovo geerálího ředitele Vážeí parteři České exportí baky, jistě jste již zazameali, že ai miulý rok ebyl pro baku lehký. Věřím však, že většia z vás pochopila pravou podstatu

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu.

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu. KVALIMETRIE Miloslav Sucháek 16. Statistické metody v metrologii a aalytické chemii Řešeé příklady a CD-ROM v Excelu Eurachem ZAOSTŘENO NA ANALYTICKOU CHEMII V EVROPĚ Kvalimetrie 16 je zatím posledí z

Více

Pro likvidaci uniklých látek. Příručka Pro Prevenci a HavariJní situace Při PrÁci s nebezpečnými látkami

Pro likvidaci uniklých látek. Příručka Pro Prevenci a HavariJní situace Při PrÁci s nebezpečnými látkami sorpčí ProstřeDkY a ProDuktY Pro likvidaci uiklých látek Příručka Pro Preveci a HavariJí situace Při PrÁci s ebezpečými látkami záchyté ProstřeDkY / sorbety / likvidace uiklých látek všude tam, kde jsou

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

17. INDIVIDUÁLNÍ ÚČETNÍ ZÁVĚRKA SPOLEČNOSTI CZECH PROPERTY INVESTMENTS, A.S. v tis. Kč Pozn. 31. prosince 2010 31. prosince 2009

17. INDIVIDUÁLNÍ ÚČETNÍ ZÁVĚRKA SPOLEČNOSTI CZECH PROPERTY INVESTMENTS, A.S. v tis. Kč Pozn. 31. prosince 2010 31. prosince 2009 17. INDIVIDUÁLNÍ ÚČETNÍ ZÁVĚRKA SPOLEČNOSTI CZECH PROPERTY INVESTMENTS, A.S. zpracovaná za rok končící 31. prosincem 2010 v souladu s Mezinárodními standardy účetního výkaznictví ve znění přijatém Evropskou

Více

dálniced3 a rychlostní silnice Praha x Tábor x České Budějovice x Rakousko

dálniced3 a rychlostní silnice Praha x Tábor x České Budějovice x Rakousko dáliced3 a rychlostí silice R3 Praha Tábor České Budějovice Rakousko w w obsah základí iformace 3 dálice D3 a rychlostí silice R3 PrahaTáborČeské BudějoviceRakousko 3 > základí iformace 4 > čleěí dálice

Více

8 Průzkumová analýza dat

8 Průzkumová analýza dat 8 Průzkumová aalýza dat Cílem průzkumové aalýzy dat (také zámé pod zkratkou EDA - z aglického ázvu exploratory data aalysis) je alezeí zvláštostí statistického chováí dat a ověřeí jejich předpokladů pro

Více

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie Veteriárí a farmaceutická uiverzita Bro Základy statistiky pro studující veteriárí medicíy a farmacie Doc. RNDr. Iveta Bedáňová, Ph.D. Prof. MVDr. Vladimír Večerek, CSc. Bro, 007 Obsah Úvod.... 5 1 Základí

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

jako investor a developer spojován převážně s BB Centrem v Praze 4 Michli, které je jedním z největších a nejúspěšnějších developerských projektů v

jako investor a developer spojován převážně s BB Centrem v Praze 4 Michli, které je jedním z největších a nejúspěšnějších developerských projektů v 23 výročí zpráva Od druhé poloviy 9. let je PASSERINVEST GROUP jako ivestor a developer spojová převážě s BB Cetrem v Praze 4 Michli, které je jedím z ejvětších a ejúspěšějších developerských projektů

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

Informační systémy o platu a služebním příjmu zahrnují:

Informační systémy o platu a služebním příjmu zahrnují: Katalog datových prvků a dalších položek používaých v Iformačích systémech o platu a služebím příjmu (ISPSP) verze 2014-6 16. 4. 2014 ISPSP Iformačí systémy o platu a služebím příjmu zahrují: ISP Iformačí

Více

Využití Markovových řetězců pro predikování pohybu cen akcií

Využití Markovových řetězců pro predikování pohybu cen akcií Využití Markovových řetězců pro predikováí pohybu ce akcií Mila Svoboda Tredy v podikáí, 4(2) 63-70 The Author(s) 2014 ISSN 1805-0603 Publisher: UWB i Pilse http://www.fek.zcu.cz/tvp/ Úvod K vybudováí

Více

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK)

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK) Systém itralaboratorí kotroly kvality v kliické laboratoři (SIKK) Doporučeí výboru České společosti kliické biochemie ČLS JEP Obsah: 1. Volba systému... 2 2. Prováděí kotroly... 3 3. Dokumetace výsledků

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

Klonování, embryonální kmenové buňky, aj. proč ano a proč ne

Klonování, embryonální kmenové buňky, aj. proč ano a proč ne Kloováí, embryoálí kmeové buňky, aj. proč ao a proč e Doc. MUDr. Petr Hach, Csc., Em. předosta ústavu pro histologii a embryologii 1. lékařské fakulty Uiversity Karlovy v Praze Neí určeo k dalšímu šířeí

Více

Aplikace marginálních nákladů. Oceňování ztrát v distribučním rozvodu

Aplikace marginálních nákladů. Oceňování ztrát v distribučním rozvodu Apliace margiálích áladů Oceňováí ztrát v distribučím rozvodu Učebí text předmětu MES Doc. Ig. J. Vastl, CSc. Celové ročí álady a ztráty N P ( T ) z z sj z wj Kč de N z celové ročí álady a ztráty *Kč+

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě Rekostrukce vodovodích řadů ve vztahu ke spolehlvost vodovodí sítě Ig. Jaa Šekapoulová Vodáreská akcová společost, a.s. Bro. ÚVOD V oha lokaltách České republky je v současost aktuálí problée zastaralá

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

Model péče o duševně nemocné

Model péče o duševně nemocné Model péče o duševě emocé v regiou hlavího města Prahy Zázam jedáí závěrečé koferece projektu Vzděláváí odboríků, státí správy a samosprávy v oblasti trasformace istitucioálí péče o duševě emocé Praha,

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

Měření na D/A a A/D převodnících

Měření na D/A a A/D převodnících Měřeí a D/A a A/D převodících. Zadáí A. Na D/A převodíku ealizovaém pomocí MDAC 8: a) Změřte závislost výstupího apětí převodíku v ozsahu až V a zvoleé vstupí kombiaci sousedích kódových slov. Měřeí poveďte

Více

Základní údaje. Ing. Zdeněk Jindrák JUDr. Dana Musalová. n Vznik společnosti 29.9.1997. n Obchodní název HYDRA a.s.

Základní údaje. Ing. Zdeněk Jindrák JUDr. Dana Musalová. n Vznik společnosti 29.9.1997. n Obchodní název HYDRA a.s. Základí údaje Vzik společosti 29.9.1997 Obchodí ázev HYDRA a.s. Sídlo: Na Zámecké 1518, 140 00 Praha 4 IČO/DIČ 25610562 / CZ25610562 Předmět podikáí Výroba kodezátorů Provozovy: Průmyslová 1110, Jičí Hradecká

Více

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

Využití účetních dat pro finanční řízení

Využití účetních dat pro finanční řízení Využtí účetích dat pro fačí řízeí KAPITOLA 4 V rác této kaptoly se zaěříe a časovou hodotu peěz (a to včetě oceňováí ceých papírů), která se prolíá celý vestčí rozhodováí, dále a fačí aalýzu (vycházející

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

Strukturální model nekryté úrokové parity a jeho empirická verifikace 1

Strukturální model nekryté úrokové parity a jeho empirická verifikace 1 5. meziárodí koferece Fiačí řízeí podiku a fiačích isiucí Osrava VŠB-TU Osrava, Ekoomická fakula, kaedra Fiací 7.-8. září 2005 Srukurálí model ekryé úrokové pariy a jeho empirická verifikace 1 Jaroslava

Více

VOX PEDIATRIAE. časopis praktických lékařů pro děti a dorost. březen 2011 číslo 3 ročník 11. Vrozené vývojové vady uropoetického traktu

VOX PEDIATRIAE. časopis praktických lékařů pro děti a dorost. březen 2011 číslo 3 ročník 11. Vrozené vývojové vady uropoetického traktu VOX PEDIATRIAE časopis praktických lékařů pro děti a dorost březe 2011 číslo 3 ročík 11 Vrozeé vývojové vady uropoetického traktu Základí vyšetřeí fukcí uropoetického traktu Nejčastější kýly v dětském

Více

VOX PEDIATRIAE. časopis praktických lékařů pro děti a dorost. civilizační choroby. listopad 2011 číslo 9 ročník 11

VOX PEDIATRIAE. časopis praktických lékařů pro děti a dorost. civilizační choroby. listopad 2011 číslo 9 ročník 11 VOX PEDIATRIAE časopis praktických lékařů pro děti a dorost listopad 2011 číslo 9 ročík 11 Kritické momety aktivace dětské obezity Postaveí dietologie v dětské obezitologii Pohybová aktivita v preveci

Více

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich.

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich. Fukce. Základí pojmy V kpt.. jsme mluvili o zobrazeí mezi možiami AB., Připomeňme, že se jedá o libovolý předpis, který každému prvku a A přiřadí ejvýše jede prvek b B. Jsou-li A, B číselé možiy, azýváme

Více

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman ASYNCHRONNÍ STROJE Obsah. Pricip čiosti asychroího motoru. Náhradí schéma asychroího motoru. Výko a momet asychroího motoru 4. Spouštěí trojfázových asychroích motorů 5. Řízeí otáček asychroích motorů

Více

Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová

Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová Matematicko-fyzikálí fakulta Uiverzita Karlova Diplomová práce e Reata Sikorová Obor: Učitelství matematika - fyzika Katedra didaktiky matematiky Vedoucí práce: RNDr. Jiří Kottas, CSc. i Prohlašuji, že

Více

1. Pražská účetní společnost, s. r. o. Účetní závěrka k 31. prosinci 2013

1. Pražská účetní společnost, s. r. o. Účetní závěrka k 31. prosinci 2013 1. Pražská účetní společnost, s. r. o. Účetní závěrka k 31. prosinci 2013 Rozvaha v plném rozsahu k 31.12.2013 v celých tisících Kč 1. Pražská účetní společnost s.r.o. Na Výtoni 1259/12 128 00 Praha 2

Více

EKONOMIKA A ŘÍZENÍ PODNIKU. (korekce 1. vydané verze)

EKONOMIKA A ŘÍZENÍ PODNIKU. (korekce 1. vydané verze) EKONOMIKA A ŘÍZENÍ PODNIKU (korekce 1. vydané verze) Příklad 4.1: Sestavte zahajovací rozvahu a její průběžné podoby podle níže uváděných údajů. 1. Pět společníků zakládá firmu a každý z nich do počátku

Více

Makroekonomie I. Co je podstatné z Mikroekonomie - co již známe obecně. Nabídka a poptávka mikroekonomické kategorie

Makroekonomie I. Co je podstatné z Mikroekonomie - co již známe obecně. Nabídka a poptávka mikroekonomické kategorie Model AS - AD Makroekonomie I Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky Osnova: Agregátní poptávka a agregátní nabídka : Agregátní poptávka a její změny Agregátní nabídka krátkodobá a dlouhodobá Rovnováha

Více

1 Cash Flow. Zdroj: Vlastní. Obr. č. 1 Tok peněžních prostředků

1 Cash Flow. Zdroj: Vlastní. Obr. č. 1 Tok peněžních prostředků 1 Cash Flow Rozvaha a výkaz zisku a ztráty jsou postaveny na aktuálním principu, tj. zakládají se na vztahu nákladů a výnosů k časovému období a poskytují informace o finanční situaci a ziskovosti podniku.

Více

DLUHOPISY. Třídění z hlediska doby splatnosti

DLUHOPISY. Třídění z hlediska doby splatnosti DLUHOISY - dlouhodobý obchodovatelý ceý papír - má staoveou dobu splatost - vyadřue závaze emteta oblgace (dlužía) vůč matel oblgace (věřtel) Tříděí z hledsa doby splatost - rátodobé : splatost do 1 rou

Více

POJIŠŤOVNICTVÍ A POJISTNÁ MATEMATIKA

POJIŠŤOVNICTVÍ A POJISTNÁ MATEMATIKA VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA Katedra ateatiky a katedra ekooických studií POJIŠŤOVNICTVÍ A POJISTNÁ MATEMATIKA STUIJNÍ MATERIÁL LENKA LÍZALOVÁ, RAEK STOLÍN 04 Recezovali: RNr. Ig. Haa Kotoučková,

Více

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů - 12.1 - Přehled Ifomace po odhad ákladů Míy po áklady dotazu Opeace výběu Řazeí Opeace spojeí Vyhodocováí výazů Tasfomace elačích výazů Výbě pláu po vyhodoceí Kapitola 12: Zpacováí dotazů Základí koky

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

Témata profilové maturitní zkoušky z předmětu Účetnictví a daně

Témata profilové maturitní zkoušky z předmětu Účetnictví a daně Témata profilové maturitní zkoušky z předmětu Účetnictví a daně obor Podnikání 1. Právní úprava účetnictví - předmět účetnictví, podstata, význam a funkce - právní normy k účetnictví - účtová osnova a

Více

Informační systémy o platu a služebním příjmu zahrnují:

Informační systémy o platu a služebním příjmu zahrnují: Katalog datových prvků a dalších položek používaých v Iformačích systémech o platu a služebím příjmu (ISPSP) verze 2015-06 2. 3. 2015 ISPSP Iformačí systémy o platu a služebím příjmu zahrují: ISP Iformačí

Více

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/../.98 IV- Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- SLOŽENÉ ÚROOVÁNÍ

Více

Rozvaha firmy YAZ, s.r.o období 2009-2012

Rozvaha firmy YAZ, s.r.o období 2009-2012 Rozvaha firmy YAZ, s.r.o období 2009-2012 Rozvaha v plném rozsahu (tis. Kč) 2012 2011 2010 2009 AKTIVA CELKEM 2 133 720 1 943 174 1 850 647 1 459 933 A. POHLEDÁVKY ZA UPSANÝ VLASTNÍ KAPITÁL B. DLOUHODOBÝ

Více

Metodika výpočtu finančního zdraví pro OP Zemědělství

Metodika výpočtu finančního zdraví pro OP Zemědělství Příloha 19 pro OP Zemědělství Vyhodnocení finančního zdraví žadatele je: a) kriterium přijatelnosti b) bodovací kriterium u opatření 1.1., 1.2. a 2.1.5. (viz Příloha 3 Bodovací kritéria) Požadované dokumenty

Více

Finanční řízení podniku. cv. 8

Finanční řízení podniku. cv. 8 Finanční řízení podniku cv. 8 Podstata finančního řízení podniku Věcná stránka tok statků (strojů, surovin, materiálu) lze rozdělit na 3 hlavní aktivity zásobování, výrobu a prodej. Finanční zdroje každá

Více

4 Získejte to nejlepší. Všestranně využitelný prostor se stylovým exteriérem. 6 Poznejte své druhé já. Připravte se na zážitek z dynamické jízdy.

4 Získejte to nejlepší. Všestranně využitelný prostor se stylovým exteriérem. 6 Poznejte své druhé já. Připravte se na zážitek z dynamické jízdy. Mazda2 Mazda2 4 Získejte to ejlepší Všestraě využitelý prostor se stylovým exteriérem. 6 Pozejte své druhé já Připravte se a zážitek z dyamické jízdy. 8 Prostor a všestraá využitelost Flexibilí ložý prostor

Více

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu . ýpočty s využití vztahů ezi stavovýi veličiai ideálího plyu Ze zkušeosti víe, že obje plyu - a rozdíl od objeu pevé látky ebo kapaliy - je vyeze prostore, v ěž je ply uzavře. Přítoost plyu v ádobě se

Více

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,

Více

PLASTIC FICTIVE COMPANY

PLASTIC FICTIVE COMPANY Strana 1 z 7 Identifikace firmy PLASTIC FICTIVE COMPANY a.s. Telefon 00420/ 246810246 Janáčkova 78 Telefax 00420/ 369113691 508 08 Nové Město e-mail info@pfc-plastic.cz Česká republika Web www.pfc-plastic.cz

Více

Miroslav Singer viceguvernér České národní banky

Miroslav Singer viceguvernér České národní banky lede 2009 Deset let eura Miroslav Siger viceguverér České árodí baky Miroslav Siger: Deset let eura Ja Eichler: Koflikt v Gaze v historické perspektivě Václav Klaus: Rok 2009 výzvy z České republiky Jiří

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. upraveé vydáí Josef Tvrdík OSTRAVSKÁ UNIVERZITA 008 OBSAH: Úvod... 3 Parametrcké testy o shodě středích hodot... 4. Jedovýběrový t-test...

Více

ZÁKLADY DISKRÉTNÍ MATEMATIKY

ZÁKLADY DISKRÉTNÍ MATEMATIKY ZÁKLADY DISKRÉTNÍ MATEMATIKY Michael Kubesa Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská

Více

APLIKOVANÁ STATISTIKA

APLIKOVANÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA MANAGEMENTU A EKONOMIKY VE ZLÍNĚ APLIKOVANÁ STATISTIKA FRANTIŠEK PAVELKA PETR KLÍMEK ZLÍN 000 Recezoval: Haa Lošťáková Fratšek Pavelka, Petr Klímek, 000 ISBN 80 4

Více