Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Rozměr: px
Začít zobrazení ze stránky:

Download "Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad"

Transkript

1 Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost. Rozdíl hodoty je dá možostí vestovat Pokud des částku Kč vestujeme do termíovaého vkladu s ročí úrokovou sazbou %, získáme za rok Kč a těchto Kč je rozdíl mez hodotou Kč des a za rok. Př jé vestc může být rozdíl větší ebo meší podle její výhodost. Příklad Máme volbu zaplatt daň z příjmu Kč: a) v tomto roce, b) odložt a příští rok a zaplatt 8 Kč, která z možostí je pro ás výhodější? a) zaplatíme v tomto roce hed vydáme Kč a ezbude ám c b) odložíme a příští rok a zaplatíme 8 Kč ) uložíme Kč s % ročí úrokovou sazbou a získáme Kč, za rok ám tedy zůstae Kč ) uložíme 98,8 Kč s % ročí úrokovou sazbou a získáme 8 Kč, máme tedy hed k dspozc 8,8 Kč (potřebá částka k uložeí 8/,).,-Kč 98,8Kč,-Kč.,-Kč Čas (v letech) 98,8 Kč.8,-Kč Čas (v letech)

2 Ovlvňující faktory Časová hodota - Úročeí Iflace zehodoceí měy Úroková sazba cea peěz Typy Jedoduché Složté Spojté částka P F čas Rzko předpověd budoucího vývoje částka P F Úroková sazba % Úroková míra, t Úrok - částka v peězích Složté úročeí (compoud terest) Př složeém úrokováí se k původímu kaptálu přdávají úroky z úroků expoecálí arůstáí základu p. a. p. s. Področí úročeí per aum ročě % per semestre pololetě,% základ vzroste za. úrokovací období + výsledek (+) p. q. p. m. per quartale per mesem čtvrtletě měsíčě,8%,7%. úrokovací období -té úrokovací období (+)*(+) (+)*(+)*..*( +) (+) (+) p. sept. p. d. per septmaam per dem týdě deě,%,% Úročeí x Dskotováí úročeí je zjštěí budoucí hodoty současé vestce dskotováí je zjštěí současé hodoty budoucích výosů Úročtel př področím úročeí Odúročtel ( + ) + m př področím úročeí ( ) m* F P* + F P* + m m* ( + ) ( ) + m m* F P * + F P* + m m*

3 Základí pojmy Nomálí úroková míra Hodota v % udaá (apř. bakou) ČS a.s. Běžý účet, běžý účet World Class, běžý účet World Class Elte, jstotí účet platost: měa:..9 Kč kredtí zůstatek <,- <,- <,-,-, %, %, %, % Efektví úroková míra Úroková míra vyjadřující efekt področího úročeí Reálá úroková míra Zohledňuje vlv flace Efektví úroková míra vyjádřeá jako skutečé tempo (%) přírůstku kaptálu za rok. Odpovídá omálí úrokové míře j př úročeí m- krát ročě Úroková míra, která dává za dobu roku stejou splatou částku jako omálí úroková míra Efektví úroková míra - Půjčka a cokolv ČSOB a.s. ef j + m m j..omálí úroková m.frekvece úrokovacích období v roce m ef,%,%,9%,%,%,7% Zjstěte s výš splátky své Půjčky a cokolv Splatost (roky) 7 Půjčka (Kč) Výše splátky (Kč) RPSN (ročí procetí sazba ákladů) je číslo, které má umožt spotřebtel lépe vyhodott výhodost ebo evýhodost poskytovaého úvěru. RPSN udává procetuálí podíl z dlužé částky, který * Pro tabulku musí platí úroková spotřebtel sazba zaplatt od,9 % za ročě období a RPSN jedoho,7 - roku, v %. souvslost se splátkam, správou a dalším výdaj spojeým s čerpáím úvěru. Reálá úroková míra Př aalýzách je uté rozhodout zda budeme zahrovat do CF vlv flace ebo e Tj. vyjadřovat v běžých ceách (omálí hodotě se zahrutím vlvu flace) Nebo vyjadřovat ve stálých ceách (reálé hodotě bez flace) Reálá úroková míra II Ve stejé podobě jako CF musí být př vyhodoceí dskotí sazba NOMINÁLNÍ(BĚŽNÉ) NOMINÁLNÍ SAZBA REÁLNÉ (STÁLÉ) REÁLNÁ SAZBA Iflac POUZE jedou!

4 Reálá úroková míra III Úrokové míry udávaé bakam jsou určovaé jako omálí úrokové míry Určují pouze zhodoceí bez vlvu dalších vějších faktorů (apř. flace, zdaěí apod.). real ( tax) * + om f f Příklad Jaké je Vaše reálé zhodoceí peěžích prostředků v případě, že dosažeý omálí výos z vkladu je,%, daň ze zsku je % a flace byla v srpu,% (ČNB). real (,) *,,,9 +, Úročeí a dskotováí Příklad Kolk jste s vypůjčl pokud jste úvěr hradl ásledujícím ročím splátkam. Úrok čl % p.a P. + ( +,) Dskotováí ( +,) ( +,) ( +,) ( +,) ( +,) Kč Kč Kč Kč Kč 8 Kč Jak to budete počítat? P.Kč Příklad Předpokládejme, že jste a koc roku uložl:.,- Kč,.,- Kč,.,- Kč,,-Kč,.,- Kč 7.,- Kč 8.,- Kč Kolk budete mít a účtu a koc roku 9 př úrokové míře % p.a.? Úročeí 7 P *, + *, + *, + *, + *, + *, + *, P. 7Kč

5 Platebí kaledáře Platebí kaledář Slouží k výpočtu rozložeí úmorů a úroků ve splátce úvěru Používají se tzv. platebí kaledáře (umořovací pláy) Možo použít pro úvěry s autím (rovoměrým) erovoměrým spláceím Způsoby spláceí úvěru Kostatíúmory Kostatí splátky Idvduálí splátkový kaledář Výše výpočtu autí splátky úvěru A ( + ) P ( + ) Autí stále stejá výše splátky obsahující úrok a úmor - autou jsou splácey apř. hypotéky Příklad Kupujete s ledc v hodotě Kč. Budete j splácet stejým splátkam vždy a koc měsíce s úrokovou mírou % p.m.. Jak velká bude splátka v případě, že a) začete splácet a koc prvího měsíce od okamžku koupě; b) začete splácet a koc šestého měsíce od okamžku koupě. a) Autí splátky, dlužá částka Kč, počet splátek, úroková sazba % p.m. a ( + ) * ( +,) *,,87 ( + ) (+,) A P * a *,87 87, Kč b) Autí splátky, dlužá částka avýšea o úroky za měsíců, splátek, úroková sazba % p.m. a ( + ) * ( +,) *,,87 ( + ) (+,) A P *a ( *, ) *,87 7. Kč Příklad Stavebí frma hradla v průběhu deset let vždy kocem roku pravdelým splátkam - autam 9.,- Kč úvěr př úrokové míře % p.a. Určete výš úvěru P poskytutého před lety.

6 Řešeí hledáme, částku, kterou s podkatel vypůjčl a ásledě splácel je uté použít zásobtel, který se používá se když souhr pravdelých plateb převádíme do současost Příklad Máte úvěr.,- Kč a úrok % p.a., který budete splácet deset ročím splátkam. Po čtvrté splátce se rozhodete úvěr vyplatt. Kolk zaplatíte? P A ( + ), 9.*..Kč ( + ) *, *, * Řešeí Výpočet výše splátky Výpočet výše splátky pro polhůtí spláceí Sestaveí umořovacího pláu (splátkového kaledáře) pro prví roky ( + ) ( +,) *, A P.* ( + ) ( +,).7, Kč Splátkový kaledář výše úvěru P Kč ročích splátek ročí úrok % Rozložeí úroku a úmoru výpočet výše splátky: A 7, Kč výše úroku v prví splátce se určí jako výše úroku z vypůjčeé částky UMOŘOVACÍ PLÁN tz. % z.,-kč.,-kč Postup sestaveí období výše splátky úrok úmor zůstatek - Kč - Kč - Kč Kč 7, Kč Kč 7, Kč 9 7, Kč 7, Kč 97 Kč 9, Kč 8 8, Kč 7, Kč 88 Kč 79, Kč 7 9, Kč 7, Kč 79 Kč 8, Kč 7 87,99 Kč 7, Kč 79 Kč 98, Kč 9, Kč 7, Kč 7 Kč, Kč 8,8 Kč 7 7, Kč Kč,7 Kč 7, Kč 8 7, Kč Kč,7 Kč 8, Kč 9 7, Kč 8 Kč, Kč 79, Kč 7, Kč 8 Kč 79, Kč, Kč výše úmoru se určí jako rozdíl výše splátky a úroku v daém období:.7,-.7,kč výše zůstatku po prví splátce se určí jako rozdíl výše zůstatku v předchozím období a výší úmoru:. - 7,9.7,Kč stejý postup se opakuje v dalších obdobích výsledek po posleí splátce by měl být vždy ula Kč Kč Kč Kč 8 Kč Kč Kč Kč - Kč Podíl úrokou a úmoru v autí splátce Výše úroku Výše úmoru

7 Fačí model Z údajů zjštěých ve stud sestavíme Cash-Flow (CF) Pro vyhodoceí vestce Bez vlvu facováí Zkoumáme pouze zda projekt vydělá CF pro fačí rozhodutí S vlvem facováí Zkoumáme zda zvoleý způsob facováí projekt uese Pravdla pro sestaveí CF CF je vždy složeo z příjmů a výdajů Pro vyhodoceí vestce se používá ve zjedodušeé formě Pouze peěží toky vyvolaé vestcí CF pro vestčí a provozí fáz zpracovávají se pro celou dobu žvotost projektu; jsou tvořey veškerým příjmy a veškerým výdaj vyvolaým během doby žvotost projektu; pro období výstavby je charakterstcké, že exstují pouze výdaje, a to výdaje vestčí povahy, které jsou v projektu dlouhodobě vázaé; výdaje v období provozu jsou jak provozího, tak vestčího charakteru lkvdace projektu může být spojea jak s příjmy tak s áklady a to v závslost a kokrétí stuac a povaze projektu. Ivestčí fáze Staoveí vestčích výdajů áklady a zajštěí stálých aktv (hmotého ehmotý vestčí majetek) pracoví (provozí) kaptál Provozí fáze Výosy projektu Výosy z tržeb předpokládaé objemy prodejů a předpokládaých prodejích ce v jedotlvých letech začá rzkovost těchto odhadů (velkost prodejů jsou začě ejsté velčy) uto pracovat s růzým varatam - tzv. scéář tržeb. přírůstky zásob vlastí výroby edokočeá výroba a hotové výrobky ostatí výosy provozího charakteru z doplňkových čostí (opravy, servs apod.) fačí výosy úroky z vkladů Provozí fáze Náklady projektu spotřeba materálu a eerge služby osobí áklady odpsy Nejsou výdajem! ostatí áklady fačí áklady Lkvdace projektu Příjmy z lkvdace majetek je možé prodat po skočeí doby provozu pracoví kaptál uvolí se prostředky vázaé v zásobách zůstatková hodota projektu (budovy, pozemky, stavby a techologe) 7

8 Daň zpříjmů předpokládejme výš % po celou dobu žvotost Příklad vestce. sestaveí Zůstatková hodota CF stroje a koc žvotost je..,-kč. Výkaz zsku a ztráty projektu Podk chce vestovat do rozšířeí výroby koupí ové techologe v hodotě..,-kč a s žvotostí let. Zvýšeí tržeb a ákladů (v ts. Kč) vdůsledku vestce jsou v tabulce: (ts. Kč) (ts. Kč) Výosy áklady a materál áklady a eerge osobí áklady ostatí epřímé áklady Tržby Náklady a materál Náklady a eerge Osobí áklady odpsy zsk před zdaěím daň (%) zsk po zdaěí Ostatí epřímé áklady Celkem ákl. (bez odpsů) CF pro vyhodoceí vestce - epřímá metoda (ts. Kč) příjmy z tržeb příjmy z lkvdace příjmy celkem (+) vestčí výdaje výdaje a materál áklady a eerge 7 osobí áklady 8 Ost. epřímé ákl. 9 daň z příjmu výdaje celkem (Σ(:9)) CF celkem (-) Staovea dskotí sazba % (ts. Kč) CF celkem (-) Kumulovaé CF Dskotovaé CF Kumulovaé Dskotovaé CF CF s faktorem času Kumulovaé CF

Opakování. Metody hodnocení efektivnosti investic. Finanční model. Pravidla pro sestavení CF. Investiční fáze FINANČNÍ MODEL INVESTIČNÍHO ZÁMĚRU

Opakování. Metody hodnocení efektivnosti investic. Finanční model. Pravidla pro sestavení CF. Investiční fáze FINANČNÍ MODEL INVESTIČNÍHO ZÁMĚRU Metody hodoceí efektvost vestc Opakováí Typy vazeb v uzlové síťové grafu K čeu slouží stude využtelost Fačí odel vestčího záěru Časová hodota peěz Metody vyhodoceí Napšte strukturu propočtu Fačí odel FINANČNÍ

Více

Pojem času ve finančním rozhodování podniku

Pojem času ve finančním rozhodování podniku Pojem času ve fiačím rozhodováí podiku 1.1. Výzam faktoru času a základí metody jeho vyjádřeí Fiačí rozhodováí podiku je ovlivěo časem. Peěží prostředky získaé des mají větší hodotu ež tytéž peíze získaé

Více

Finanční řízení podniku. Téma: Časová hodnota peněz

Finanční řízení podniku. Téma: Časová hodnota peněz Fiačí řízeí podiku Téma: Časová hodota peěz Faktor času se ve fiačím řízeí uplatňuje a) při rozhodováí o ivesticích b) při staoveí trží cey majetku podiku c) při ukládáí volých peěžích prostředků d) při

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

I. Výpočet čisté současné hodnoty upravené

I. Výpočet čisté současné hodnoty upravené I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

Využití účetních dat pro finanční řízení

Využití účetních dat pro finanční řízení Využtí účetích dat pro fačí řízeí KAPITOLA 4 V rác této kaptoly se zaěříe a časovou hodotu peěz (a to včetě oceňováí ceých papírů), která se prolíá celý vestčí rozhodováí, dále a fačí aalýzu (vycházející

Více

SPOŘENÍ. Spoření krátkodobé

SPOŘENÍ. Spoření krátkodobé SPOŘENÍ Krátkodobé- doba spořeí epřesáhe jedo úrokové období (obvykle 1 rok). Úroky jsou přpsováy a koc doby spořeí. Jedotlvé složky jsou úročey a základě jedoduchého úročeí. Dlouhodobé doba spořeí bude

Více

ÚROKOVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY

ÚROKOVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY ÚROKOVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY 1. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(r) úrok v % z hodoty kapitálu za časové

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

8.2.10 Příklady z finanční matematiky I

8.2.10 Příklady z finanční matematiky I 8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

DURACE A INVESTIČNÍ HORIZONT PŘI INVESTOVÁNÍ DO DLUHOPISŮ

DURACE A INVESTIČNÍ HORIZONT PŘI INVESTOVÁNÍ DO DLUHOPISŮ DURACE A INVESTIČNÍ HORIZONT PŘI INVESTOVÁNÍ DO DLUHOPISŮ Ivestičí horizot IH: doba, po kterou má ivestor v daé ivestici vázáy své peíze. Při ivestici do dluhopisu jsme vystavei riziku změy výosů Uvažujme

Více

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

Finanční matematika. Téma: Důchody. Současná hodnota anuity

Finanční matematika. Téma: Důchody. Současná hodnota anuity Fnanční matematka Téma: Důchody Současná hodnota anuty Důchody Defnce: Důchodem se rozumí pravdelné platby ve stejné výš, tzv. anuty Pozor na nejednotnost termnologe Různé možnost rozdělení důchodů Členění

Více

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/../.98 IV- Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- SLOŽENÉ ÚROOVÁNÍ

Více

DLUHOPISY. Třídění z hlediska doby splatnosti

DLUHOPISY. Třídění z hlediska doby splatnosti DLUHOISY - dlouhodobý obchodovatelý ceý papír - má staoveou dobu splatost - vyadřue závaze emteta oblgace (dlužía) vůč matel oblgace (věřtel) Tříděí z hledsa doby splatost - rátodobé : splatost do 1 rou

Více

1 Umořovatel, umořovací plán, diskont směnky

1 Umořovatel, umořovací plán, diskont směnky 1 Umořovatel, umořovací plán, diskont směnky Umořovatel je párovým vzorcem k zásobiteli (viz kapitola č. 5), využívá se pro určení anuity, nebo-li pravidelné částky, kterou musím splácet bance, pokud si

Více

FINANČNÍ MATEMATIKA SBÍRKA ÚLOH

FINANČNÍ MATEMATIKA SBÍRKA ÚLOH FINANČNÍ MATEMATIKA SBÍRKA ÚLOH Zpracováo v rámci projektu " Vzděláváí pro kokureceschopost - kokureceschopost pro Třeboňsko", registračí číslo CZ.1.07/1.1.10/02.0063 Gymázium, Třeboň, Na Sadech 308 Autor:

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

HYPOTEČNÍ ÚVĚR. , kde v = je diskontní faktor, Dl počáteční výše úvěru, a anuita, i roční úroková sazba v procentech vyjádřená desetinným číslem.

HYPOTEČNÍ ÚVĚR. , kde v = je diskontní faktor, Dl počáteční výše úvěru, a anuita, i roční úroková sazba v procentech vyjádřená desetinným číslem. HYPTEČNÍ ÚVĚR Spláceí úvěru stejým splátkam - kostatí auta ÚLHA 1: Mladý maželský pár s dostačujícím příjmy (tz. a získáí hypotéčího úvěru) se rozhodl postavt s meší rodý domek. Podle předběžé kalkulace

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evropský socálí fod Praha & EU: Ivesujee do vaší budoucos Ekooka podku aedra ekooky, aažersví a huaích věd Fakula elekroechcká ČVUT v Praze Ig. učerková Blaka, 20 Úrokový poče, základy fačí aeaky (BI-EP)

Více

C V I Č E N Í 4 1. Představení firmy Splintex Czech 2. Vlastnosti skla a skloviny 3. Aditivita 4. Příklady výpočtů

C V I Č E N Í 4 1. Představení firmy Splintex Czech 2. Vlastnosti skla a skloviny 3. Aditivita 4. Příklady výpočtů Techologe skla 00/03 C V I Č E N Í 4. Představeí rmy pltex Czech. Vlastost skla a sklovy 3. Adtvta 4. Příklady výpočtů Hospodářská akulta. Představeí rmy pltex Czech a.s. [,] Frma pltex Czech je součástí

Více

FINANČNÍ MATEMATIKA- INFLACE

FINANČNÍ MATEMATIKA- INFLACE ojekt ŠABLONY NA GVM Gymázum Velké Mezříčí egstačí číslo pojektu: CZ..7/.5./34.948 V- ovace a zkvaltěí výuky směřující k ozvoj matematcké gamotost žáků středích škol FNANČNÍ MATEMATA- NFLACE Auto Jazyk

Více

cenný papír, jehož koupí si investor zajistí předem definované peněžní toky, které obdrží v budoucnosti

cenný papír, jehož koupí si investor zajistí předem definované peněžní toky, které obdrží v budoucnosti DLUHOPISY ceý papír, jehož koupí si ivestor zajistí předem defiovaé peěží toky, které obdrží v budoucosti podle doby splatosti ~ 1 rok dlouhodobé dluhopisy Pokladičí poukázky

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

CVIČENÍ ZE ZÁKLADŮ FINANCÍ

CVIČENÍ ZE ZÁKLADŮ FINANCÍ CVIČENÍ ZE ZÁKLADŮ FINANCÍ 9.. 0 Veronika Kajurová Katedra financí kancelář č. 0 vkajurova@mail.muni.cz PROGRAM DNEŠNÍHO TUTORIÁLU Část I. - Časová hodnota peněz Příklady - opakování Část II. - Podnikové

Více

( ) = H zásobitel = 1. H i = 1+ +...

( ) = H zásobitel = 1. H i = 1+ +... sou fnance důležté? nanční management Základní pojmy e NPV důležté? Základy úrokového počtu reálná aktva fnanční aktva hmotná aktva nehmotná aktva sou fnance důležté? Kolk a do jakých aktv má frma nvestovat?

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Časová hodnota peněz ve finančním rozhodování podniku. 1.1. Význam faktoru času a základní metody jeho vyjádření

Časová hodnota peněz ve finančním rozhodování podniku. 1.1. Význam faktoru času a základní metody jeho vyjádření Časová hodnota peněz ve fnančním rozhodování podnku 1.1. Význam faktoru času a základní metody jeho vyjádření Fnanční rozhodování podnku je ovlvněno časem. Peněžní prostředky získané dnes mají větší hodnotu

Více

Úvěrový proces. Ing. Dagmar Novotná. Obchodní akademie, Lysá nad Labem, Komenského 1534

Úvěrový proces. Ing. Dagmar Novotná. Obchodní akademie, Lysá nad Labem, Komenského 1534 VY_32_INOVACE_BAN_113 Úvěrový proces Ing. Dagmar Novotná Obchodní akademie, Lysá nad Labem, Komenského 1534 Dostupné z www.oalysa.cz. Financováno z ESF a státního rozpočtu ČR. Období vytvoření: 12/2012

Více

Úroková sazba. Typy úrokových sazeb: pevné (fixní) pohyblivé

Úroková sazba. Typy úrokových sazeb: pevné (fixní) pohyblivé Úroky, úročení Úroková sazba Typy úrokových sazeb: pevné (fixní) pohyblivé Úrokové období roční p.a. (per annum), pololetní p.s. (per semestre), čtvrtletní p.q. (per quartale), měsíční p.m. (per mensem),

Více

7.1. Jistina, úroková míra, úroková doba, úrok

7.1. Jistina, úroková míra, úroková doba, úrok 7. Finanční matematika 7.. Jistina, úroková míra, úroková doba, úrok Základní pojmy : Dlužník osoba nebo instituce, které si peníze půjčuje. Věřitel osoba nebo instituce, která peníze půjčuje. Jistina

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty) (variata s odděleým hodoceím ivestičích ákladů vyaložeých a jedotlivé privatizovaé objekty) Vypracoval: YBN CONSULT - Zalecký ústav s.r.o. Ig. Bedřich Malý Ig. Yvetta Fialová, CSc. Václavské áměstí 1 110

Více

ANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC

ANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC ANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC Jří HŘEBÍČEK, Mchal HEJČ, Jaa SOUKOPOVÁ ECO-Maagemet,

Více

Modul Strategie. 2006... MTJ Service

Modul Strategie. 2006... MTJ Service Představeí obsahuje dvě základí součásti, a to maažerskou (pláováí cash-flow, rozšířeé statistiky) a pracoví (řešeí work-flow). Základem maažerské oblasti je pláováí cash-flow (pláováí fiačího toku firmou).

Více

Makroekonomie cvičení 1

Makroekonomie cvičení 1 Makroekoomie cvičeí 1 D = poptávka. S = Nabídka. Q = Možství. P = Cea. Q* = Rovovážé možství (Q E ). P* = Rovovážá caa (P E ). L = Práce. K = Kapitál. C = Spotřeba domácosti. LR = Dlouhé období. SR = Krátké

Více

FINANČNÍ MATEMATIKA Základní pojmy od P do Z. www.zlinskedumy.cz

FINANČNÍ MATEMATIKA Základní pojmy od P do Z. www.zlinskedumy.cz FINANČNÍ MATEMATIKA Základní pojmy od P do Z www.zlinskedumy.cz plat - mzda, kterou dostávají státní zaměstnanci promile jedna tisícina ze základu pohledávka právo věřitele na plnění určitého dluhu dlužníkem

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B) Přijímací řízeí pro akademický rok 24/5 a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata B) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

Investiční činnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic

Investiční činnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic Ivesičí čios Exisují růzá pojeí ivesičí čiosi: Z pohledu ekoomické eorie Podikové pojeí ivesic Klasifikace ivesic v podiku 1) Hmoé (věcé, fyzické, kapiálové) ivesice 2) Nehmoé (emaeriálí) ivesice 3) Fiačí

Více

FINANČNÍ MATEMATIKA. Jarmila Radová KBP VŠE Praha

FINANČNÍ MATEMATIKA. Jarmila Radová KBP VŠE Praha FINANČNÍ MATEMATIA Jarmila Radová BP VŠE Praha Osova Jedoduché úročeí Diskotováí krátkodobé ceé papíry Metody vedeí a výpočtu úroku z běžého účtu Skoto Složeé úrokováí Budoucí hodota auity spořeí Současá

Více

Nepředvídané události v rámci kvantifikace rizika

Nepředvídané události v rámci kvantifikace rizika Nepředvídaé událost v rác kvatfkace rzka Jří Marek, ČVUT, Stavebí fakulta {r.arek}@rsk-aageet.cz Abstrakt Z hledska úspěchu vestce ohou být krtcké právě ty zdroe ebezpečí, které esou detfkováy. Vzhlede

Více

Základy finanční matematiky

Základy finanční matematiky Hodna 38 Strana 1/10 Gymnázum Budějovcká Voltelný předmět Ekonome - jednoletý BLOK ČÍSLO 6 Základy fnanční matematky ředpokládaný počet : 5 hodn oužtá lteratura : Frantšek Freberg Fnanční teore a fnancování

Více

Ing. Barbora Chmelíková 1

Ing. Barbora Chmelíková 1 Numercká gramotnost 1 Obsah BUDOUCÍ A SOUČASNÁ HODNOTA TYPY ÚROČENÍ JEDNODUCHÉ vs SLOŽENÉ ÚROČENÍ JEDNODUCHÉ ÚROČENÍ SLOŽENÉ ÚROČENÍ FREKVENCE ÚROČENÍ KOMBINOVANÉ ÚROČENÍ EFEKTIVNÍ ÚROKOVÁ MÍRA SPOJITÉ

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Nedejte šanci drahým a nevýhodným úvěrům

Nedejte šanci drahým a nevýhodným úvěrům Nedejte šanci drahým a nevýhodným úvěrům Finanční gramotnost v praxi Praha, 26/5/2011 Autor: Ing. Pavel Voříšek Česká spořitelna v 1.0 18/5/2011 Obsah RPSN: Jak jednoduše srovnávat různé úvěry?» Poskytovatelé

Více

1 Cash Flow. Zdroj: Vlastní. Obr. č. 1 Tok peněžních prostředků

1 Cash Flow. Zdroj: Vlastní. Obr. č. 1 Tok peněžních prostředků 1 Cash Flow Rozvaha a výkaz zisku a ztráty jsou postaveny na aktuálním principu, tj. zakládají se na vztahu nákladů a výnosů k časovému období a poskytují informace o finanční situaci a ziskovosti podniku.

Více

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná Výročí zpráva fodů společosti Pioeer ivestičí společost, a.s. - eauditovaá Obsah 1. Účetí závěrka: Pioeer Sporokoto, Pioeer obligačí fod, Pioeer růstový fod, Pioeer dyamický fod, Pioeer akciový fod, BALANCOVANÝ

Více

Finanční řízení podniku. cv. 8

Finanční řízení podniku. cv. 8 Finanční řízení podniku cv. 8 Podstata finančního řízení podniku Věcná stránka tok statků (strojů, surovin, materiálu) lze rozdělit na 3 hlavní aktivity zásobování, výrobu a prodej. Finanční zdroje každá

Více

Úvod do korelační a regresní analýzy

Úvod do korelační a regresní analýzy Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

Aspects of Intangible Property Valuation in Intragroup Financial Management. Aspekty ocenění nehmotného majetku ve vnitroskupinovém finančním řízení

Aspects of Intangible Property Valuation in Intragroup Financial Management. Aspekty ocenění nehmotného majetku ve vnitroskupinovém finančním řízení 6 th Iteratoal Scetfc Coferece Maagg ad Modellg of Facal Rsks Ostrava VŠB-TU Ostrava, Faculty of Ecoomcs,Face epartmet 0 th th September 202 Aspects of Itagble Property Valuato Itragroup Facal Maagemet

Více

Důchody jako pravidelné platby z investice

Důchody jako pravidelné platby z investice ůchody jko prdelé pltby z estce ůchod prdelá pltb e stejé ýš (ut) Podle toho kdy jsou uty plcey rozlšujeme důchod: Předlhůtí uty plcey počátku určtého čsoého terlu. Polhůtí uty plcey koc určtého čsoého

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1 Středí hodoty. Artmetcký průměr prostý Aleš Drobík straa 0. STŘEDNÍ HODNOTY Př statstckém zjšťováí často zpracováváme statstcké soubory s velkým možstvím statstckých jedotek. Např. soubor pracovíků orgazace,

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

Téma: Jednoduché úročení

Téma: Jednoduché úročení Téma: Jednoduché úročení 1. Půjčili jste 10 000 Kč. Za 5 měsíců Vám vrátili 11 000 Kč. Jaká byla výnosnost této půjčky (při jaké úrokové sazbě jste ji poskytli)? [24 % p. a.] 2. Za kolik dnů vzroste vklad

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

APLIKACE REGRESNÍ ANALÝZY NA VÝPOČET BODU ZVRATU

APLIKACE REGRESNÍ ANALÝZY NA VÝPOČET BODU ZVRATU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV FINANCÍ FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF FINANCES APLIKACE REGRESNÍ ANALÝZY NA VÝPOČET BODU ZVRATU

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

RPSN (Roční Procentní Sazba Nákladů) (2015-01-18)

RPSN (Roční Procentní Sazba Nákladů) (2015-01-18) RPSN (Roční Procentní Sazba Nákladů) (2015-01-18) Zkratkou RPSN se označuje takzvaná roční procentní sazba nákladů. Udává, kolik procent z původní dlužné částky musí spotřebitel za jeden rok zaplatit v

Více

19.10.2015. Finanční matematika. Čas ve finanční matematice. Finanční matematika v osobních a rodinných financích

19.10.2015. Finanční matematika. Čas ve finanční matematice. Finanční matematika v osobních a rodinných financích Finanční matematika v osobních a rodinných financích Garant: Ing. Martin Širůček, Ph.D. Lektor: Ing. Martin Širůček, Ph.D. - doktorské studium oboru Finance na Provozně ekonomické fakultě Mendelovy univerzity

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě Rekostrukce vodovodích řadů ve vztahu ke spolehlvost vodovodí sítě Ig. Jaa Šekapoulová Vodáreská akcová společost, a.s. Bro. ÚVOD V oha lokaltách České republky je v současost aktuálí problée zastaralá

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA

5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA 5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA Střadatel se používá pro výpočet úroku na konc období, kdy jste pravdelně ukládal stejnou částku, ve stejný okamžk, po určté

Více

PENÍZE, BANKY, FINANČNÍ TRHY

PENÍZE, BANKY, FINANČNÍ TRHY PENÍZE, BANKY, FINANČNÍ TRHY Úročení 2 1. Jednoduché úročení Kapitál, Jistina označení pro peněžní částku Úrok odměna věřitele, u dlužníka je to cena za úvěr = CENA PENĚZ Doba splatnosti doba, po kterou

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

2. přednáška. Ing. Josef Krause, Ph.D.

2. přednáška. Ing. Josef Krause, Ph.D. EKONOMIKA PODNIKU I 2. přednáška Ing. Josef Krause, Ph.D. Majetková a kapitálová struktura Rozvaha ROZVAHA účetní přehled majetku podniku, zachycující bilanční formou stav podnikových prostředků (aktiv)

Více

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH ECHNICKÝ AUDI VODÁRENSKÝCH DISRIBUČNÍCH SYSÉMŮ Ig. Ladislav uhovčák, CSc. 1), Ig. omáš Kučera 1), Ig. Miroslav Svoboda 1), Ig. Miroslav Šebesta 2) 1) 2) Vysoké učeí techické v Brě, Fakulta stavebí, Ústav

Více

Průběžné výsledky 3. ročníku Soutěže Finanční gramotnost. Školní kola. Partneři:

Průběžné výsledky 3. ročníku Soutěže Finanční gramotnost. Školní kola. Partneři: Průběžné výsledky 3. ročníku Soutěže Finanční gramotnost Školní kola 3. ročník Soutěže Finanční gramotnost 2011/2012 - výsledky školních kol Rozdělení žáků respondentů dle jednotlivých krajů: Výsledek

Více

FINANČNÍ MATEMATIKA. Ing. Oldřich Šoba, Ph.D. Rozvrh. Soukromá vysoká škola ekonomická Znojmo ZS 2009/2010

FINANČNÍ MATEMATIKA. Ing. Oldřich Šoba, Ph.D. Rozvrh. Soukromá vysoká škola ekonomická Znojmo ZS 2009/2010 Soukromá vysoká škola ekonomická Znojmo FINANČNÍ MATEMATIKA ZS 2009/2010 Ing. Oldřich Šoba, Ph.D. Kontakt: e-mail: oldrich.soba@mendelu.cz ICQ: 293-727-477 GSM: +420 732 286 982 http://svse.sweb.cz web

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Středí hodoty Artmetcý průměr vážeý Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Zatím jsme počítal s tím, že četost ve vztahu pro vážeý artmetcý průměr byla přrozeá čísla Četost mohou

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Prof. Ig. Albert Bradáč, DrSc. STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Příspěvek vazuje publikovaý

Více

CZK EUR USD 6 měsíců 0.60 0.90 0.70 1 rok 0.80 1.10 0.90 2 roky 1.00 1.30 1.10 3 roky 1.20 1.50 1.30 4 roky 1.30 - - 5 let 1.

CZK EUR USD 6 měsíců 0.60 0.90 0.70 1 rok 0.80 1.10 0.90 2 roky 1.00 1.30 1.10 3 roky 1.20 1.50 1.30 4 roky 1.30 - - 5 let 1. Kontakt ÚROKOVÉ SAZBY PRO TERMÍNOVANÉ VKLADY Privátní a osobní bankovnictví IQ MAXI vklad Platnost od: 02.02.2015 CZK EUR USD 6 měsíců 0.60 0.90 0.70 1 rok 0.80 1.10 0.90 2 roky 1.00 1.30 1.10 3 roky 1.20

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

Metodický postup pro určení úspor primární energie

Metodický postup pro určení úspor primární energie Metodický postup pro určeí úspor primárí eergie Parí protitlaká turbía ORGRZ, a.s., DIVIZ PLNÉ CHNIKY A CHMI HUDCOVA 76, 657 97 BRNO, POŠ. PŘIHR. 97, BRNO 2 z.č. Obsah abulka hodot vstupujících do výpočtu...3

Více

Složené úročení. Škoda, že to neudělal

Složené úročení. Škoda, že to neudělal Složené úročení Charakteristika (rozdíl oproti jednoduchému) Kdy je obecně užíváno Využití v praxi Síla složeného úročení Albert Einstein: Je to další div světa Složené úročení Složené úročení Kdyby Karel

Více

Úkol: ve výši 11.000 Kč. zachovat? 1. zjistěte, jestli by paní Sirotková byla schopna splácet hypotéku

Úkol: ve výši 11.000 Kč. zachovat? 1. zjistěte, jestli by paní Sirotková byla schopna splácet hypotéku Mgr. Zuzana Válková Zadání: Paní Sirotková má měsíční příjem 27.890 Kč. Bydlí v městském bytě, kde platí měsíční nájem 8.500 Kč. Celkové měsíční výdaje (včetně nájmu) činí 21.600 Kč. Vlastní majetek v

Více

Tab. č. 1 Druhy investic

Tab. č. 1 Druhy investic Investiční činnost Investice představuje vydání peněz dnes s představou, že v budoucnosti získáme z uvedených prostředků vyšší hodnotu. Vzdáváme se jisté spotřeby dnes, ve prospěch nejistých zisků v budoucnosti.

Více

Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně

Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: VI/2 Sada: 1 Číslo

Více

Excel COUNTIF COUNTBLANK POČET

Excel COUNTIF COUNTBLANK POČET Excel Výpočty a vazby v tabulkách COUNTIF Sečte počet buněk v oblasti, které odpovídají zadaným kritériím. Funkce je zapisována ve tvaru: COUNTIF(Oblast;Kritérium) Oblast je oblast buněk, ve které mají

Více

Návod pro výpočet základních induktorů s jádrem na síťové frekvenci pro obvody výkonové elektroniky.

Návod pro výpočet základních induktorů s jádrem na síťové frekvenci pro obvody výkonové elektroniky. Návod pro cvičeí předmětu Výkoová elektroika Návod pro výpočet základích iduktorů s jádrem a síťové frekveci pro obvody výkoové elektroiky. Úvod V obvodech výkoové elektroiky je možé většiu prvků vyrobit

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více