Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Rozměr: px
Začít zobrazení ze stránky:

Download "Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1"

Transkript

1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, Praha 4 - Komořany tel Abstrakt: Referát stručně seznamuje s nejdůležitějšími vlastnostmi časových řad výšky hladiny vody v mělkých vrtech pozorovací sítě Českého hydrometeorologického ústavu. Důraz je kladen na grafické znázornění vlastností dat. Klíčová slova: statistická analýza, časové řady, podzemní vody 1. Základní vlastnosti časových řad Výšky hladiny vody v mělkých vrtech pozorovací sítě Českého hydrometeorologického ústavu jsou měřeny v metrech nadmořské výšky nejčastěji s periodou jeden týden, postupně se zaváděním automatického měření se přechází na denní měření. Časový režim výšek hladin vody ve vrtech je užitečné rozložit na tři složky. První představuje dlouhodobé kolísání hladin, nejlépe se charakterizuje pomocí časové řady ročních průměrů nebo mediánů. Druhou představuje roční chod hladin a třetí složku tvoří velmi krátkodobé děje (vliv vydatných srážek, čerpání v blízkosti objektu, vliv blízkého toku a podobně). Na Obr.1 je příklad režimu vrtu, u kterého je prakticky zcela potlačena složka ročního chodu. Graf jeho autokorelační funkce je na Obr.3. Opačný extrém je patný na Obr.2. U tohoto objektu je složka ročního chodu velmi silně zastoupena. Potvrzuje to i graf jeho autokorelační funkce na Obr. 4. Objekt je měřen s týdenním krokem, to představuje 52 až 53 měření ročně a tomu odpovídá i lokální maximum autokorelační funkce. Většina pozorovaných objektů vykazuje režimy, které leží mezi dvěma výše popsanými extrémy. Výška [ m n.m.] Objekt: VP Obrázek 1 Graf výšky hladiny vody ve vrtu, ukázka objektu se zcela potlačeným ročním chodem. Výška [ m n.m.] Objekt: VP Obrázek 2 Graf výšky hladiny vody ve vrtu, ukázka objektu s výrazným ročním chodem.

2 Obrázek 3 Výstup z programu CTPA, graf autokorelační funkce dat z obrázku 1, objekt se zcela potlačeným ročním chodem Obrázek 4 Výstup z programu CTPA, graf autokorelační funkce dat z obrázku 2, objekt s výrazným ročním chodem

3 2. Roční chod Roční chod je možné názorně zobrazit například pomocí rozptylového diagramu měsíčních průměrů výšek hladin vody ve vrtu. Na Obr. 5 je ukázka takového diagramu pro vrt, jehož časový režim je zobrazen na Obr. 2 a to pro stejné časové období U naprosté většiny měřených objektů se během roku podstatně mění nejen střední hodnota, ale i rozptyl a šikmost dat. Například pro vrt VP0635 je podle Tab. 1 v březnu průměrná hodnota výšky 241,4m n.m., směrodatná odchylka 0,21m a šikmost -0,51. V září je průměr 240,8m n.m., směrodatná odchylka 0,24m a šikmost -0,74. Rozdíl průměrů března a září je tedy téměř třikrát větší, než je březnová směrodatná odchylka a březnový průměr je dokonce větší, než je největší zářijová, říjnová nebo listopadová hodnota. Tuto skutečnost je třeba respektovat při výpočtu takových charakteristik jako jsou kvantily, pravděpodobnosti překročení nebo křivky překročení. Vždy je třeba je vztahovat k určitému ročnímu období. Znalost charakteristik ročního chodu pro daný měřený objekt je důležitá pro krátkodobé předpovědi výšky hladin v daném roce. Pomocí znalosti jarního maxima je možné odhadnout vývoj v následujících několika měsících za předpokladu, že ve vegetační části roku nedojde k vydatným srážkám, povodni apod. Jednotlivé mělké vrty se od sebe liší podle toho, ve kterém měsíci u nich obvykle dosahuje hladina vody maxima nebo minima. Na Obr. 6 je mapa kalendářních měsíců s nejmenším dlouhodobým průměrem výšek hladin vody ve vrtu a na Obr. 7 pak s největším průměrem. Výška [m n.m.] Objekt: VP Měsíce Obrázek 5 Znázornění ročního chodu,rozptylový diagram měsíčních průměrů výšek hladin vody ve vrtuvp0635 pro období Měsíc Průměr Medián Směrodatná Koeficient odchylka šikmosti [--] [m n.m.] [m n.m.] [m] [---] Tabulka 1 Měsíční průměry, mediány, směrodatné odchylky a koeficienty šikmosti výšek hladin vody ve vrtu VP0365 pro období

4 Obrázek 6 Mapa kalendářních měsíců s nejmenším dlouhodobým průměrem výšek hladin vody ve vrtu pro období Obrázek 7 Mapa kalendářních měsíců s největším dlouhodobým průměrem výšek hladin vody ve vrtu pro období

5 3. Střednědobé trendy v datech Pro celkem 345 mělkých vrtů víceméně rovnoměrně rozložených na území Čech (odpovídá přibližně povodí Labe i s přítoky) byly vypočítány průměrné roční výšky hladin vody. Dále byla data průměrů roků pro každý objekt zvlášť normalizována odečtením celkového průměru řady a vydělena směrodatnou odchylkou. Byla tak pro každý vrt získána poměrná veličina vyjadřující odchylku od průměru vyjádřenou v násobku směrodatné odchylky. Pro takto normalizovaná data byl pro každý rok vypočítán průměr pro celou oblast Čech a zanesen do časového grafu na Obr.8. Na jeho základě si lze udělat alespoň přibližnou představu o typickém časovém průběhu ročních průměrů hladin vrtů v oblasti Čech. Pomocí podrobnější analýzy lze vysledovat především tyto skutečnosti: Data jsou závislá. Mezi po sobě následujícími roky existuje silná autokorelace, jak je patrné z autokorelační funkce na Obr. 10 i z výsledku testu na Obr. 11. V důsledku toho jsou v grafech patrné vlny (pseudoperiody). Během třicetiletí lze vysledovat celkem tři výraznější pseudoperiody. Nadprůměrné výšky hladin byly naměřeny v létech , a S postupující dobou se podprůměrná období prodlužují na úkor nadprůměrných. Celkový trend je tedy spíše klesající (pro velkou závislost v datech a krátké období měření to ale lze těžko dokázat pomocí běžných statistických testů, určitým pokusem o to je výsledek testu na Obr. 12, kde pořadový koeficient korelace vychází záporný a lze tedy předpokládat klesající trend v datech). Stejným způsobem byl sestrojen i graf pro oblast povodí Moravy na Obr. 9 a také pro 16 dalších menších oblastí. Relativní odchylka od průměru Oblast: Čechy Rok y Obrázek 8 Graf relativních odchylek ročních průměrů výšek hladin vody ve vrtech.průměr pro oblast Čechy. Relativní odchylka od průměru Oblast: Morava Roky Obrázek 9 Graf relativních odchylek ročních průměrů výšek hladin vody ve vrtech.průměr pro oblast Morava

6 Obrázek 10 Výstup z programu CTPA, Graf autokorelační funkce dat z obrázku 8 (oblast Čechy) Testy náhodnosti, počet iterací Soubor : CECHY.txt Stanice : - Počet dat: n = 30 Proměnná: - Období : K odhalení změny spíše periodického charakteru Kritické hodnoty: na hladině významnosti pro n1 <= 20 a n2 <= 20 Výsledky: počet iterací = 8 n1 = 15 n2 = 15 Hypotéza H0 : uspořádání řady je náhodné Alternativa H1 : uspořádání řady není náhodné Interpretace výsledků: Hypotézu H0 vzhledem k H1 zamítáme Obrázek 11 Výstup z programu CTPA, iterační test náhodnosti dat z obrázku 8 (oblast Čechy) Testy náhodnosti, Kendallův koeficient pořadové korelace Soubor : CECHY.txt Stanice: - Počet dat: n = 30 Proměnná: - Období : Zaměřen na posuzení existence systematického posunu Kritická hodnota = na hladině významnosti Výsledky: Kendallův koeficient = hodnota testové statistiky = Hypotéza H0: uspořádání řady je náhodné Alternativa H1: uspořádání řady není náhodné Interpretace výsledků: Hypotézu H0 zamítáme Obrázek 12 Výstup z programu CTPA, test náhodnosti-kendalův koeficient pořadové korelace data z obrázku 8 (oblast Čechy) Seznam použitého programového vybavení: Procházka, M., Deyl, M. (2000): Program CTPA ArcView GIS 3.2, ESRI 2000 Kupka. K. (2004): QC.Expert V2.7, TriloByte Pardubice

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

Číselné charakteristiky

Číselné charakteristiky . Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch

Více

PŘÍSPĚVEK K HODNOCENÍ SUCHA NA JIŽNÍ MORAVĚ

PŘÍSPĚVEK K HODNOCENÍ SUCHA NA JIŽNÍ MORAVĚ PŘÍSPĚVEK K HODNOCENÍ SUCHA NA JIŽNÍ MORAVĚ Jiří Sklenář 1. Úvod Extrémy hydrologického režimu na vodních tocích zahrnují periody sucha a na druhé straně povodňové situace a znamenají problém nejen pro

Více

TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE

TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar

Více

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu

Více

Hydrologické sucho v podzemních a povrchových vodách

Hydrologické sucho v podzemních a povrchových vodách Hydrologické sucho v podzemních a povrchových vodách Setkání vodoprávních úřadů s odborem ochrany vod MŽP Ing. Eva Soukalová, CSc. Nové Město na Moravě 2. 3. dubna 25 Obsah přednášky Pozorovací síť podzemních

Více

Vzorová prezentace do předmětu Statistika

Vzorová prezentace do předmětu Statistika Vzorová prezentace do předmětu Statistika Popis situace: U 3 náhodně vybraných osob byly zjišťovány hodnoty těchto proměnných: SEX - muž, žena PUVOD Skandinávie, Středomoří, 3 západní Evropa IQ hodnota

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Statistické zpracování naměřených experimentálních dat za rok 2012

Statistické zpracování naměřených experimentálních dat za rok 2012 Statistické zpracování naměřených experimentálních dat za rok 2012 Popis dat: Experimentální data byla získána ze tří měřících sloupů označených pro jednoduchost názvy ZELENA, BILA a RUDA. Tyto měřící

Více

Hydrologické sucho v podzemních a povrchových vodách

Hydrologické sucho v podzemních a povrchových vodách Hydrologické sucho v podzemních a povrchových vodách Konference Podzemní vody ve vodárenské praxi Ing. Eva Soukalová, CSc. Dolní Morava. 2. dubna 25 Obsah přednášky Pozorovací síť podzemních vod Aktuální

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

Modul Základní statistika

Modul Základní statistika Modul Základní statistika Menu: QCExpert Základní statistika Základní statistika slouží k předběžné analýze a diagnostice dat, testování předpokladů (vlastností dat), jejichž splnění je nutné pro použití

Více

UNIVERZITA KARLOVA Přírodovědecká fakulta. Hydrometrie. Hodnocení variability odtokového režimu pomocí základních grafických a statistických metod

UNIVERZITA KARLOVA Přírodovědecká fakulta. Hydrometrie. Hodnocení variability odtokového režimu pomocí základních grafických a statistických metod UNIVERZITA KARLOVA Přírodovědecká fakulta Hydrometrie Hodnocení variability odtokového režimu pomocí základních grafických a statistických metod (cvičení z hydrologie) 12.4.26 Pavel Břichnáč 1.ročník.

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

Příloha P.1 Mapa větrných oblastí

Příloha P.1 Mapa větrných oblastí Příloha P.1 Mapa větrných oblastí P.1.1 Úvod Podle metodiky Eurokódů se velikost zatížení větrem odvozuje z výchozí hodnoty základní rychlosti větru, definované jako střední rychlost větru v intervalu

Více

Máme se dál obávat sucha i v roce 2016?

Máme se dál obávat sucha i v roce 2016? Máme se dál obávat sucha i v roce 2016? V našich geografických podmínkách nelze spolehlivě predikovat vznik sucha v horizontu několika týdnů či měsíců. To, zda hrozí sucho i v roce 2016, bude dáno vývojem

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Popisná statistika. Komentované řešení pomocí MS Excel

Popisná statistika. Komentované řešení pomocí MS Excel Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,

Více

Základní statistické charakteristiky

Základní statistické charakteristiky Základní statistické charakteristiky Základní statistické charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme Základní statistické

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Využití metody bootstrapping při analýze dat II.část Doc. Ing. Olga TŮMOVÁ, CSc. Obsah Klasické procedury a statistické SW - metody výpočtů konfidenčních

Více

Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni

Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni Kvantifikace dat Pro potřeby statistického zpracování byly odpovědi převedeny na kardinální intervalovou

Více

N-LETOST SRÁŽEK A PRŮTOKŮ PŘI POVODNI 2002

N-LETOST SRÁŽEK A PRŮTOKŮ PŘI POVODNI 2002 N-LETOST SRÁŽEK A PRŮTOKŮ PŘI POVODNI 2002 MARTIN STEHLÍK* * Oddělení povrchových vod, ČHMÚ; e-mail: stehlikm@chmi.cz 1. ÚVOD Povodeň v srpnu 2002 v České republice byla způsobena přechodem dvou frontálních

Více

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické

Více

Tvorba nelineárních regresních modelů v analýze dat

Tvorba nelineárních regresních modelů v analýze dat Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Tvorba nelineárních regresních modelů v analýze dat Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

TEST Z TEORIE EXPLORAČNÍ ANALÝZA DAT

TEST Z TEORIE EXPLORAČNÍ ANALÝZA DAT EXPLORAČNÍ ANALÝZA DAT TEST Z TEORIE 1. Test ze Statistiky píše velké množství studentů. Představte si, že každý z nich odpoví správně přesně na polovinu otázek. V tomto případě bude směrodatná odchylka

Více

Analýza dat na PC I.

Analýza dat na PC I. CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Nejčastější chyby v explorační analýze

Nejčastější chyby v explorační analýze Nejčastější chyby v explorační analýze Obecně doporučuju přečíst přednášku 5: Výběrová šetření, Exploratorní analýza http://homel.vsb.cz/~lit40/sta1/materialy/io.pptx Použití nesprávných charakteristik

Více

4. Zpracování číselných dat

4. Zpracování číselných dat 4. Zpracování číselných dat 4.1 Jednoduché hodnocení dat 4.2 Začlenění dat do písemné práce Zásady zpracování vědecké práce pro obory BOZO, PÚPN, LS 2011 4.1 Hodnocení číselných dat Popisná data: střední

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE

SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor CZ.1.07/1.5.00/34.0797 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT 2M3 Slovní

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

Návrhová 50-ti rázová intenzita dopravy pohledem dostupných dat Ing. Jan Martolos, Ing. Luděk Bartoš, Ing. Dušan Ryšavý, EDIP s.r.o.

Návrhová 50-ti rázová intenzita dopravy pohledem dostupných dat Ing. Jan Martolos, Ing. Luděk Bartoš, Ing. Dušan Ryšavý, EDIP s.r.o. Návrhová 50-ti rázová intenzita dopravy pohledem dostupných dat Ing. Jan Martolos, Ing. Luděk Bartoš, Ing. Dušan Ryšavý, EDIP s.r.o. Úvod Intenzita dopravy (počet vozidel, která projedou příčným řezem

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce STATISTICKÁ

Více

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA

TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA Semestrální práce Semestrální práce z předmětu Statistický rozbor dat z dotazníkového šetření Vypracoval: Bonaconzová, Bryknarová, Milkovičová, Škrdlová

Více

Korelace. Komentované řešení pomocí MS Excel

Korelace. Komentované řešení pomocí MS Excel Korelace Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A2:B84 (viz. obrázek) Prvotní představu o tvaru a síle závislosti docházky a počtu bodů nám poskytne

Více

Vybrané statistické metody. You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.

Vybrané statistické metody. You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf. Vybrané statistické metody Analýza časových řad Statistická řada je posloupnost hodnot znaku, které jsou určitým způsobem uspořádány. Je-li toto uspořádání realizováno na základě časového sledu hodnot

Více

Semestrální práce. 3.3 Tvorba nelineárních regresních modelů v analýze dat

Semestrální práce. 3.3 Tvorba nelineárních regresních modelů v analýze dat Semestrální práce 1 3.3 Tvorba nelineárních regresních modelů v analýze dat Ing. Ján Lengyel, CSc. Centrální analytická laboratoř Ústav jaderného výzkumu Řež, a. s. Husinec Řež 130 250 68 Řež V Řeži, únor

Více

Průběh průměrných ročních teplot vzduchu (ºC) v období na stanici Praha- Klementinum

Průběh průměrných ročních teplot vzduchu (ºC) v období na stanici Praha- Klementinum Změna klimatu v ČR Trend změn na území ČR probíhá v kontextu se změnami klimatu v Evropě. Dvě hlavní klimatologické charakteristiky, které probíhajícím změnám klimatického systému Země nejvýrazněji podléhají

Více

Využití hydrologického modelu drenážního systému při popisu vodního režimu odvodněných

Využití hydrologického modelu drenážního systému při popisu vodního režimu odvodněných Eichler J., Kulhavý Z. : přednáška Seč březen 2002 1 z 5 Využití hydrologického modelu drenážního systému při popisu vodního režimu odvodněných půd RNDr. Josef Eichler CSc., Ing. Zbyněk Kulhavý CSc. Výzkumný

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY

ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY zhanel@fsps.muni.cz ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY METODY DESKRIPTIVNÍ STATISTIKY 1. URČENÍ TYPU ŠKÁLY (nominální, ordinální, metrické) a) nominální + ordinální neparametrické stat. metody b) metrické

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan 1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce

Více

Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy

Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy Výrobní produkce divizí Ice Cream Polo ha planet Rozložený výsečový 3D graf Bublinový graf Ice Cream 1 15% Ice Cream 2 12% Ice Cream 3 18% Ice Cream 4 20% Statistika 40 30 20 Ice Cream 6 19% Ice Cream

Více

Česká zemědělská univerzita v Praze. Provozně ekonomická fakulta. Statistické softwarové systémy projekt

Česká zemědělská univerzita v Praze. Provozně ekonomická fakulta. Statistické softwarové systémy projekt Česká zemědělská univerzita v Praze Provozně ekonomická fakulta Statistické softwarové systémy projekt Analýza časové řady Analýza počtu nahlášených trestných činů na území ČR v letech 2000 2014 autor:

Více

5 HODNOCENÍ PŘEDPOVĚDÍ TEPLOT A SRÁŽEK PRO OBDOBÍ JARNÍCH POVODNÍ V ROCE 2006

5 HODNOCENÍ PŘEDPOVĚDÍ TEPLOT A SRÁŽEK PRO OBDOBÍ JARNÍCH POVODNÍ V ROCE 2006 HODNOCENÍ PŘEDPOVĚDÍ TEPLOT A SRÁŽEK PRO OBDOBÍ JARNÍCH POVODNÍ V ROCE 26 Jedním z nejdůležitějších vstupů pro tvorbu meteorologických předpovědí počasí jsou tzv. numerické předpovědní modely, které simulují

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Obsah Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v

Více

Cyklické změny v dynamice sluneční konvektivní zóny

Cyklické změny v dynamice sluneční konvektivní zóny Cyklické změny v dynamice sluneční konvektivní zóny P. Ambrož, Astronomický ústav AVČR, Ondřejov, pambroz @asu.cas.cz Abstrakt Na základě analýzy rozsáhlého materiálu evoluce fotosférických pozaďových

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

Zpráva o testu dřevin na pozemku ve Stachách na Šumavě

Zpráva o testu dřevin na pozemku ve Stachách na Šumavě Ústřední kontrolní a zkušební ústav zemědělský Oddělení půdy a lesnictví Zpráva o testu dřevin na pozemku ve Stachách na Šumavě Průběžná zpráva Zpracoval: Ing. Dušan Reininger, Ph.D Dr.Ing. Přemysl Fiala

Více

České vysoké učení technické v Praze Fakulta dopravní Ústav aplikované matematiky, K611. Semestrální práce ze Statistiky (SIS)

České vysoké učení technické v Praze Fakulta dopravní Ústav aplikované matematiky, K611. Semestrální práce ze Statistiky (SIS) České vysoké učení technické v Praze Fakulta dopravní Ústav aplikované matematiky, K611 Semestrální práce ze Statistiky (SIS) Petr Procházka, Jakub Feninec Skupina: 97 Akademický rok: 01/013 Úvod V naší

Více

Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely )

Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Úloha M608 Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Zadání : Při kvantitativní analýze lidského krevního séra ovlivňují hodnotu obsahu vysokohustotního

Více

Zpráva o testu klonů topolů a vrb na pozemku ve Stachách na Šumavě

Zpráva o testu klonů topolů a vrb na pozemku ve Stachách na Šumavě Ústřední kontrolní a zkušební ústav zemědělský Oddělení bezpečnosti půdy a lesnictví Zpráva o testu klonů topolů a vrb na pozemku ve Stachách na Šumavě Průběžná zpráva Zpracoval : Ing. Dušan Reininger

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,

Více

STATISTICKÉ CHARAKTERISTIKY

STATISTICKÉ CHARAKTERISTIKY STATISTICKÉ CHARAKTERISTIKY 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Tvorba grafů a diagramů v ORIGIN

Tvorba grafů a diagramů v ORIGIN Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Tvorba grafů a diagramů v ORIGIN Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza dat Brno, 2016

Více

Úvod do analýzy rozptylu

Úvod do analýzy rozptylu Úvod do analýzy rozptylu Párovým t-testem se podařilo prokázat, že úprava režimu stravování a fyzické aktivity ve vybrané škole měla vliv na zlepšené hodnoty HDLcholesterolu u školáků. Pro otestování jsme

Více

Motivace příklad použití lokace radarového echa Význam korelace Popis náhodných signálů číselné charakteristiky

Motivace příklad použití lokace radarového echa Význam korelace Popis náhodných signálů číselné charakteristiky A0M38SPP - Signálové procesory v praxi - přednáška 7 2 Motivace příklad použití lokace radarového echa Význam korelace Popis náhodných signálů číselné charakteristiky (momenty) Matematická definice korelační

Více

Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat )

Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat ) Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat ) Zadání : Čistota vody v řece byla denně sledována v průběhu 10 dní dle biologické spotřeby kyslíku BSK 5. Jsou v

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Český hydrometeorologický ústav

Český hydrometeorologický ústav Český hydrometeorologický ústav Průvodce operativními hydrologickými informacemi na webu ČHMÚ Vaše vstupní brána do sítě webových stránek Českého hydrometeorologického ústavu, které mají za úkol informovat

Více

Z P R Á V A. Vodohospodářská bilance dílčího povodí Horní Odry

Z P R Á V A. Vodohospodářská bilance dílčího povodí Horní Odry Vodohospodářská bilance dílčího povodí Horní Odry Z P R Á V A O H O D N O C E N Í M N O Ž S T V Í P O D Z E M N Í C H V O D V D Í LČÍM POVODÍ HORNÍ ODRY ZA ROK 2012 Povodí Odry, státní podnik, odbor vodohospodářských

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce KALIBRACE

Více

Opakování. Neparametrické testy. Pořadí. Jednovýběrový Wilcoxonův test. t-testy: hypotézy o populačním průměru (střední hodnoty) předpoklad normality

Opakování. Neparametrické testy. Pořadí. Jednovýběrový Wilcoxonův test. t-testy: hypotézy o populačním průměru (střední hodnoty) předpoklad normality Opakování Opakování: Testy o střední hodnotě normálního rozdělení 1 jednovýběrový t-test 2 párový t-test 3 dvouvýběrový t-test jednovýběrový Wilcoxonův test párový Wilcoxonův test dvouvýběrový Wilcoxonův

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,

Více

Pearsonův korelační koeficient

Pearsonův korelační koeficient I I.I Pearsonův korelační koeficient Úvod Předpokládejme, že náhodně vybereme n objektů (nebo osob) ze zkoumané populace. Často se stává, že na každém z objektů měříme ne pouze jednu, ale několik kvantitativních

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové

Více

Tvorba nelineárních regresních modelů v analýze dat

Tvorba nelineárních regresních modelů v analýze dat Univerzita Pardubice Fakulta chemicko-technologická, Katedra analytické chemie Licenční studium GALILEO Interaktivní statistická analýza dat Semestrální práce z předmětu Tvorba nelineárních regresních

Více

Aproximace binomického rozdělení normálním

Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

IES FSV UK. Domácí úkol Pravděpodobnost a statistika I. Cyklistův rok

IES FSV UK. Domácí úkol Pravděpodobnost a statistika I. Cyklistův rok IES FSV UK Domácí úkol Pravděpodobnost a statistika I Cyklistův rok Radovan Fišer rfiser@gmail.com XII.26 Úvod Jako statistický soubor jsem si vybral počet ujetých kilometrů za posledních 1 dnů v mé vlastní

Více