stavební obzor 1 2/

Rozměr: px
Začít zobrazení ze stránky:

Download "stavební obzor 1 2/2014 11"

Transkript

1 tavebí obzor /04 Exploratorí aalýza výběrového ouboru dat pevoti drátobetou v tlau Ig. Daiel PIESZKA Ig. Iva KOLOŠ, Ph.D. doc. Ig. Karel KUBEČKA, Ph.D. VŠB-TU Otrava Faulta tavebí Věrohodé vyhodoceí experimetálích dat a áledé taoveí tatiticých odhadů charateriticých hodot materiálových vlatotí je při hodoceí exitujících otrucí z hledia fučí způobiloti záadí. Čláe e zabývá možou metodiou ověřeí předpoladů o těchto datech, zejméa metodiou ověřeí ezáviloti prvů, tejé pravděpodoboti zařazeí prvů do výběru, tejého rozděleí hutoty pravděpodoboti a homogeity výběrového ouboru experimetálích dat jao utých podmíe polehlivého vyhodoceí. Exploratory aalyi of SFRC compreive tregth of a ample data file The evaluatio reliability of experimetal data file ad the etimatio of characteritic material property value are the ey poit i the aemet of the erviceability of exitig cotructio. The paper deal with poible procedure for the data aumptio verificatio, epecially procedure for the verificatio of data idepedece, the ame data probability, the ame data probable deity ad ample data file homogeeity a the required coditio for reliable data evaluatio. Úvod Důvodem pro vlatí hodoceí exitující otruce je podle ČSN ISO 38 [] hledio oučaého tavu a jejího budoucího použití, tedy hledio požadavů budoucí fučí způobiloti. Tato způobilot je defiováa úroví bezpečoti uživatelů při užíváí otruce, úroví trvale udržitelých vlatotí a úroví požadavů a použitelot, životot a trvalivot otruce. Fučí způobilot otruce e ověřuje a modelech podle ČSN EN 990 [], teré polehlivě reprezetují zatížeí a chováí otruce a úoot jejích jedotlivých prvů. Tyto výpočetí modely muí reprezetovat taé změy ve způobu budoucího užíváí, poud ěmu dojde. Předpoladem možoti taoveí materiálových vlatotí je zalot fyziálích, chemicých i biologicých vlivů protředí. Vlatoti materiálů e tedy taovují experimetálě, detrutivími či edetrutivími zoušami. V případě detrutivího zoušeí betou v otrucích e pa vychází z ČSN EN 504- [3], alterativě z ČSN EN 397 [4]. Vyhodoceí zouše a taoveí odhadu charateriticých hodot vlatotí materiálů e podle ČSN EN 990 [] provádí tatiticými metodami a pravděpodobotím počtem [8]. Tato zíaé výledy jou vša závilé a charateritiách zoumaého výběrového ouboru dat. Pro oretí tatiticé vyhodoceí je tedy ezbyté ověřit, zda je výběrový oubor reprezetativí (tz. zda jou prvy výběru vzájemě ezávilé, tejě pravděpodobé, zda pocházejí ze tejého rozděleí hutoty pravděpodoboti a zda je celý výběr homogeí). Čláe předládá možý potup ověřeí vlatotí výběrového ouboru e taoveím předpoladů pro áledé tatiticé zpracováí a vyhodoceí. V jedotlivých rocích je prezetová a příladu ověřeí ouboru dat detrutivích měřeí pevoti drátobetou v tlau dle ČSN EN [5] vzorů odebraých z drátobetoové průmylové podlahové otruce v ouladu ČSN EN 504- [3]. Hodoty jedotlivých měřeí jou jao výběrový oubor dat vatitativí proměé uvedey v tab.. Tab.. Pevot betou v tlau f c,i dle metodiy [5] Pevot betou v tlau f c,i pro i-tý vzore, de i = á, 50ñ (po řádcích) 9,9 3,6 38,0,9 4, 7,6 34,9 7,4 37,7 8,4 6,9 3,7 9,9 36, 3,3 3,8 3,9 30,0 4, 38, 5,7 3, 9, 33,9 35,8 34,4 3,9 4, 3, 35, 9,7 38, 5,5 8,5 35,7 36,3 6,3 3,9 7,8 5,9,5 39,3 3,0 34, 3,4 9,7 33,9 35,7 38,9 6, Ověřeí áhodoti výběru Hodoceá pravoúhlá plošá otruce byla před odběrem vzorů položea do roviy x - y artézého ouřadicového ytému a počáte byl ztotožě hraičím rohovým bodem. Poloha jedotlivých vývrtů byla popáa dvojicí ouřadic x i a y i, jejichž veliot byla zíáa z tabuly áhodých číel daého itervalu v ouladu utaoveím čl. 8 ČSN 0050 [7]. Prvy výběru je tedy možo považovat za áhodé. Teto aademicý potup taoveí polohy vývrtů e v praxi ejpíše euplatí, eboť by došlo odběru vzorů i z těch čátí otruce, teré eí žádoucí pošodit (apř. oridory pojížděé maipulačí techiou). Ověřeí ezáviloti prvů výběru Korelace vlatotí prvů výběru bývá způobea zejméa etabilitou měřicího zařízeí a zaedbáím orajových podmíe (teploty, čau), obecě pa ytémovými chybami

2 tavebí obzor /04 měřeí. Výběrový oubor dat závilých prvů elze áledě považovat za vydatý. K ověřeí ezáviloti ouedích prvů jedorozměrého ouboru dat použijme autoorelačí tet výzamoti autoorelačího oeficietu. řádu r. Výzam orelačího oeficietu vyplývá ze vztahu x i = ρ xi + ei, de e i je ryze áhodá loža čitě áhodého průběhu. Formulujme áledující hypotézy [9]: ulová hypotéza H 0, prvy výběru jou vzájemě ezávilé, r = 0; alterativí hypotéza H A, prvy výběru jou autoorelováy a orelace je výzamá, r 0. Tetovací tatitia de T + t =, () T T T =, () 4 Ověřeí homogeity výběru Homogeitu výběru obecě arušují taové hodoty vatitativí proměé, teré e od otatích hodot mimořádě liší. Tyto mimořádé hodoty ozačme jao odlehlá pozorováí a jejich idetifiaci použijme áledující pravidlo. Za odlehlé pozorováí budeme považovat taovou hodotu x i, jejíž z-core (tab. ) je větší ež 3, tedy je-li tato hodota x i vzdálea od výběrového průměru o více ež trojáobe výběrové měrodaté odchyly (5), (6). xi x z-corei =, (5) poud tedy platí x i x 3, (6) pa x i je odlehlým pozorováím. Výběrový průměr je defiová jao x = x i (7) přičemž T je vo Neumaův poměr T = ( x x ) ( xi x) i+ a riticým oborem pro tet autoorelace I. řádu i (3) a po doazeí x = f c = 3,36 MPa. Výběrová měrodatá odchyla je defiováa jao = ( x i x), (8) po doazeí pa = 4,80 MPa. ( + ) t > t α, (4) de a je hladia výzamoti, zde a = 0,05; po doazeí,5 <,30 ( 5 ) t = = t 0, 975 (5). Tetovací tatitia epadá do riticého oboru hodot a a hladiě výzamoti a = 0,05 eí důvod ulovou hypotézu zamítout. Prvy výběru ejou autoorelovaé, jou ezávilé. Graficy je taé možé pooudit autoorelaci (obr. ). Z grafu je zřejmé, že zoumaé prvy výběru evyazují žádý výzamý tred. řádu a že ejou orelovaé. Tab.. Z-core prvů výběru Z-core i [-] pro i-tý vzore, de i = á, 50ñ (po řádcích) 0,3 0,05,38,76,03 0,78 0,74 0,83,3 0,6 0,93 0,07 0,3 0,99 0,0 0,30 0, 0,8,5,40,8 0,7 0,47 0,53 0,9 0,63 0,3,5 0,03 0,78 0,35,4, 0,60 0,90,03,06 0, 0,74,4,85,65,74 0,57 0, 0,35 0,53 0,90,57,08 Ja je patré z tab., u žádého prvu výběru edoahuje z-core riticé hodoty 3. Ve výběru tedy ejou odlehlá pozorováí a výběr je možé považovat za homogeí. Maximálí hodoty doahuje z-core u hraičích prvů výběru, tj. pro x mi = x 4 =,5 MPa, je z-core rova,85, pro x max = x 5 = 4, MPa, je z-core rova,03 (hodoty x mi a x max viz tab. ). Obr.. Graf autoorelace Ověřeí ormality výběru tet dobré hody c Ověřme hypotézu o předpoladu ormálího rozděleí výběru, tj. předpolad, že výběr pochází z rozděleí N(m, ). Vzhledem abeci apriorí zaloti tředí hodoty m a měrodaté odchyly záladího ouboru ahraďme tyto

3 tavebí obzor /04 3 parametry výběrovým průměrem x a výběrovou měrodatou odchylou. Nulová hypotéza H 0 áhodý výběr pochází ze záladího ouboru ormálím rozděleím, alterativí hypotéza H A áhodý výběr epochází ze záladího ouboru ormálím rozděleím. Výběrový oubor o rozahu rozdělme do třídích itervalů J až J, de veliot itervalu volme mezi /4 a /. Dále taovme třídí četoti a tředy tříd c (tab. 3). Horí hraice itervalů x převeďme a hodoty ormovaé proměé x µ u =, (9) σ de ezámé parametry rozděleí záladího ouboru ahraďme parametry výběru taoveými podle (7), (8), tedy u x x =. (0) Tab. 3. Třídy, třídí četoti a ditribučí fuce výběrového ouboru dat Třídy Třídí četot [-] Střed třídy c Hodoty ditribučí fuce F(f c ) [-] horí hraici třídy J = á,0; 4,0ñ 3 3,0 0,060 J = (4,0; 6,0ñ 5 5,0 0,60 J 3 = (6,0; 8,0ñ 6 7,0 0,80 J 4 = (8,0; 30,0ñ 8 9,0 0,440 J 5 = (30,0; 3,0ñ 6 3,0 0,560 J 6 = (3,0; 34,0ñ 7 33,0 0,700 J 7 = (34,0; 36,0ñ 6 35,0 0,80 J 8 = (36,0; 38,0ñ 5 37,0 0,90 J 9 = (38,0; 40,0ñ 3 39,0 0,980 J 0 = (40,0; 4,0ñ 4,0,000 S i = 50 Dále taovme odpovídající ditribučí fuci ormovaého ormálího rozděleí N(0, ) Φ ( u ), () relativí třídí četot abolutí třídí četot ( u ) ( u ) π, () 0, = Φ Φ π 0, ; (3) podmíou dalšího potupu je ověřeí, zda platí p 0, > 5. Poud podmía eí plěa, přílušé itervaly loučíme. V tomto případě tedy loučíme itervaly J a J a itervaly J 8, J 9, J 0 (tab. 4). Nyí taovme hodotu tetovaé tatitiy ( π 0, ) G = c = ; (4) π = 0, pře reduovaý počet tříd je tedy hodota tetovaé tatitiy G = c =,9. Kriticým oborem pro tet ormality je ( h ) c > c α, (5) de a je hladia výzamoti, zde a = 0,05, h je počet odhadovaých parametrů (m, ), tj. h =. Obr.. Hitogram (tab. 3) Tab. 4. Výpočet tatitiy c Horí mez itervalu x Třídí četot [-] Norm. horí hraice u Norm. ditribučí fuce F(u ) Relativí třídí četot p 0, Abolutí třídí četot p 0, Upraveá ab. četot p 0, (p 0, > 5) Upraveá Statitia třídí četot c (G ) 4,0 3 -,53 0,0630 0,0630 3,50 6,0 5 -, 0,34 0,0684 3,40 6, ,3 8,0 6-0,70 0,40 0,06 5,530 5, ,040 30,0 8-0,8 0,3897 0,477 7,385 7, ,05 3,0 6 0,3 0,557 0,60 8,00 8,00 6 0,544 34,0 7 0,55 0,7088 0,57 7,855 7, ,093 36,0 6 0,97 0,8340 0,5 6,60 6,60 6 0,0 38,0 5,38 0,96 0,08 4,0 40,0 3,80 0,964 0,0479,395 4,0, 0,9868 0,07,35 7, ,4 Sc,9

4 4 tavebí obzor /04 Dle tatiticých tabule [7] je riticá hodota pro čtyři tupě voloti c 0,05 (7 ) = c 0,975 (4) =,43. Vypočteá hodota tetovaé tatitiy epadá do oboru riticých hodot c =,9 <,43 = c 0,975 (4). Neí je tedy důvod a hladiě výzamoti a = 0,05 zamítout ulovou hypotézu, že výběr pochází ze záladího ouboru ormálím rozděleím. Zamítáme hypotézu alterativí. Pro poouzeí ymetrie rozložeí hodot výběru olem výběrového průměru taovme výběrovou šimot dle vztahu α 3 = ( x i x) ; (6) ( )( ) 3 výběrového ouboru je výběrovou chybou. Je-li bodový odhad parametru ezreleý, pa měřítem přeoti je měrodatá odchyla, v této ouviloti ozačovaá jao tředí chyba odhadu. Bodový odhad tředí hodoty Požadovaé vlatoti dobrého bodového odhadu tředí hodoty m záladího ouboru plňuje výběrový průměr x. µ = x = x i = 3,36 MPa, (9) tředí chyba odhadu = 4,80 MPa. Bodový odhad rozptylu Požadovaé vlatoti dobrého bodového odhadu rozptylu záladího ouboru plňuje výběrový rozptyl ( ) po doazeí a = 0,0. Hodoty výběru jou olem výběrového průměru rozložey ymetricy (a 0). Pro poouzeí ocetrace hodot výběru olem výběrového průměru taovíme výběrovou špičatot dle vztahu ( + ) ( )( )( 3) β = 4 ( ) ( )( ) + 4 = ( ) 3 4 ( )( )( 3) xi x 3 po doazeí b = 0,84. Kocetrace hodot olem výběrového průměru eodpovídá přímo ormálímu rozděleí, pro teré platí b = 0. Křiva hutoty rozděleí pravděpodoboti výběrového ouboru je plošší ež u ormového ormálího rozděleí. Podle hitogramu a obr. e vša plochot ejeví jao výzamá. Staovme výběrový variačí oeficiet 4,80 V c = = = 0,5. (8) x 3,36 Míra variability proměé x i, tedy měřeé pevoti betou v tlau f c,i, je 5 %. Statiticá aalýza dat a jejich vyhodoceí Výběrový oubor můžeme yí považovat za reprezetativí výběr ze záladího ouboru ormálím rozděleím, eboť bylo ověřeo, že jedotlivé prvy výběru jou vzájemě ezávilé, tejě pravděpodobé, pocházejí ze tejého ormálího rozděleí hutoty pravděpodoboti a výběr je homogeí. Teprve yí je možé přitoupit e taoveí bodových odhadů parametrů záladího ouboru. I zde ovšem platí určitá pravidla. Dobrý (věrohodý) bodový odhad muí být zejméa etraý, vydatý, ozitetí a dotatečý. Každý bodový odhad parametru je ám o obě áhodou veličiou, eboť je taove z výběrového ouboru dat. Tato vypočteá hodota parametru e bude od utečého parametru záladího ouboru lišit. Veliot chyby při taoveí parametru z jedoho σ = = ( x i x) = 3 3,08., (0) Bodový odhad charateriticé pevoti ( ) Charateriticá pevot betou v tlau je dle požadavů 3 (7) ČSN EN 990 ed. [] defiováa jao 5% vatil, tj. ( )( 3) 4 ( xi x) f c = f c;0,05 = x 0,05. () Metodia určeí tohoto vatilu je rověž taovea v []. Předepaou metodou je metoda předpovědí, vycházející z výběrové měrodaté odchyly. Obecě je pa hodota vatilu defiováa jao x = (, p, v) + p, predp x t p α, () de x je výběrový průměr, je výběrová měrodatá odchyla, t p p-procetí vatil Studetova t-rozděleí, a je výběrová šimot, v je počet tupňů voloti, de v =. Dle doporučeí ormy e výběrová šimot zaedbává. Vztah pro taoveí 5% vatilu má tedy tvar / x 0,05,predp = x t p (0; 0,05; 49) ( + ). 50 Jedotraá hodota 5% vatilu Studetova t-rozděleí pro 49 tupňů voloti je dle tabule [] po doazeí t 0,05 (49) =,6766; / x 0,05,predp = 3,36 4,80,6766) ( + ) = 3,3 MPa; 50 charateriticá pevot betou v tlau je pro tetovaou otruci f c = 3,3 MPa.

5 tavebí obzor /04 5 Závěr Na uvedeém příladu byly předvedey možé způoby ověřeí vlatotí experimetálích dat a jejich způobiloti pro áledé tatiticé vyhodoceí. Předložeý potup je použitelý pro jedorozměrá vatitativí data. Při poouzeí vzájemé záviloti prvů byl v čláu apliová tet autoorelace. řádu. Poouzeí záviloti prvů autoorelačími tety vyšších řádů poechává oletiv autorů a čteáři. Přío tatiticých metod pro tavebí praxi epočívá je v ověřováí vlatotí materiálů, ale taé ve vlatím ávrhu tavebích otrucí. Při avrhováí podle mezích tavů e uplatňují ve výpočtu protředictvím dílčích oučiitelů, teré zohledňují ejitoty modelů zatížeí, ejitoty modelů účiů zatížeí, ejitoty způobeé epřízivými odchylami vlatotí materiálů od jejich charateriticých hodot, dále pa ejitoty modelů odoloti a v epoledí řadě zohledňují ejitoty geometricých rozměrů otruce. Literatura [] ČSN ISO 38 Záady avrhováí otrucí Hodoceí exitujících otrucí. ČNI, 005. [] ČSN EN 990 ed. Euroód: Záady avrhováí otrucí. ÚNMZ, 0. [3] ČSN EN 504- Zoušeí betou v otrucích Čát : Vývrty Odběr, vyšetřeí a zoušeí v tlau. ÚNMZ, 009. [4] ČSN EN 379 Pouzováí pevoti betou v tlau v otrucích a v prefabriovaých dílcích. ČNMZ, 007. [5] ČSN EN Zoušeí ztvrdlého betou Čát 3: Pevot v tlau zušebích těle. ÚNMZ, 0. [6] ČSN 0 050, Zb. Statiticé metody v průmylové praxi. Všeobecé zálady. ÚNMZ, 978. [7] Lida, B. Kubaová, J.: Statiticé tabuly a vzorce. Uiverzita Pardubice, 000. [8] Tichý, M.: Co tou pravděpodobotí? Stavebí obzor,, 0, č. 0, ISSN (Olie) [9] Kubeča, K.: Využití tatiticých metod při taticém avrhováí a pouzováí železobetoových otrucí. VŠB-TU Otrava, 004.

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta troího ižeýrtví Matematika IV Semetrálí práce Zpracoval: Čílo zadáí: 7 Studií kupia: Datum: 8.4. 0 . Při kotrole akoti výrobků byla ledováa odchylka X [mm] eich rozměru

Více

Testování statistických hypotéz

Testování statistických hypotéz Tetováí tatitických hypotéz CHEMOMETRIE I, David MILDE Jedá e o jedu z ejpoužívaějších metod pro vyloveí závěrů o základím ouboru, který ezkoumáme celý, ale pomocí áhodého výběru. Př.: Je obah účié látky

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Statistické charakteristiky (míry)

Statistické charakteristiky (míry) Stattcé charaterty (míry) - hrují formac, obažeou v datech (vyjadřují j v ocetrovaé formě); - charaterzují záladí ryy zoumaého ouboru dat; - umožňují porováváí více ouborů. upy tattcých charatert :. charaterty

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

ZÁKLADY POPISNÉ STATISTIKY

ZÁKLADY POPISNÉ STATISTIKY ZÁKLADY POPISNÉ STATISTIKY Statitia věda o metodách běru, zpracováí a vyhodocováí tatiticých údaů. Statiticé údae ou apř. údae o přirozeém přírůtu či migraci obyvateltva, obemu výroby průmylových podiů,

Více

,6 32, ,6 29,7 29,2 35,9 32,6 34,7 35,3

,6 32, ,6 29,7 29,2 35,9 32,6 34,7 35,3 Př 7: S 95% polehlivotí odhaděte variabilitu (protředictvím odhadu měrodaté odchylky) a tředí hodotu obahu vitamíu C u rajčat. Záte-li výledky rozboru 0-ti vzorků rajčat: 3 4 5 6 7 8 9 0 9,6 3,4 30 3,6

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá

1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá Statitická šetřeí a zpracováí dat Statitika e věda o metodách běru, zpracováí a vyhodocováí tatitických údaů. Statitika zkoumá polečeké, přírodí, techické a. evy vždy a dotatečě rozáhlém ouboru údaů. Matematická

Více

3. cvičení 4ST201 - řešení

3. cvičení 4ST201 - řešení cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 - řešeí Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry

Více

Jednoduchá lineární závislost

Jednoduchá lineární závislost Jedoduchá leárí závlot Regreí fuce: ),...,, ( 0 m f Předpolad: Fuce je leárí v parametrech: ) (... ) 0 ( 0 f f m m f 0 ()... f m () regreor 0... m regreí parametr určujeme METODOU NEJMENŠÍCH ČTVERCŮ Regreí

Více

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení. MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je

Více

8. cvičení 4ST201-řešení

8. cvičení 4ST201-řešení cvičící 8. cvičeí 4ST01-řešeí Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST01 Neparametricé testy Neparametricétesty využíváme,

Více

3. cvičení 4ST201. Míry variability

3. cvičení 4ST201. Míry variability cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry varablty

Více

Odhady a testy hypotéz o regresních přímkách

Odhady a testy hypotéz o regresních přímkách Lekce 3 Odhad a tet hpotéz o regreích přímkách Ve druhé lekc jme kotruoval kofdečí terval a formuloval tet hpotéz o korelačím koefcetu Korelačí koefcet je metrckou charaktertkou tezt závlot, u které ezáleží

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

Téma 5: Analýza závislostí

Téma 5: Analýza závislostí Aalýza závlotí Téma 5: Aalýza závlotí Předáša 5 Závlot mez ev Záladí pom Předmětem této aptol ude zoumáí závlotí ouvlotí mez dvěma a více ev. Jedá e o proutí do vztahů mez ledovaým ev a tím přlížeí tzv.

Více

Směrnice 1/2011 Statistické vyhodnocování dat, verze 3 Verze 3 je shodná s původní Směrnicí 1/2011 verze 2, za čl. 2.3 je vložen nový odstavec

Směrnice 1/2011 Statistické vyhodnocování dat, verze 3 Verze 3 je shodná s původní Směrnicí 1/2011 verze 2, za čl. 2.3 je vložen nový odstavec Směrice /0 Statitické vyhodocováí dat, verze 3 Verze 3 e hodá ůvodí Směricí /0 verze, za čl..3 e vlože ový odtavec. Statitické metody ro zkoušeí zůobiloti Statitická aalýza oužívaá ro aalýzu výledků zkoušky

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 3. ÚKOL JB TEST 3. Úkol zadáí pro statistické testy U každého z ásledujících testů uveďte ázev (včetě autora), předpoklady použití, ulovou

Více

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln Číselé řady - řešeé přílady ČÍSELNÉ ŘADY - řešeé přílady A. Součty řad Vzorové přílady:.. Přílad. Určete součet řady + = + 6 + +.... Řešeí: Rozladem -tého čleu řady a parciálí zlomy dostáváme + = + ) =

Více

1 STATISTICKÁ ŠETŘENÍ

1 STATISTICKÁ ŠETŘENÍ STATISTICKÁ ŠETŘENÍ Záladem aždého tattcého zoumáí jou údaje (data). Lze je zíat v záadě dvěma způoby. Buď je převzít z ějaého zdroje ebo je am zjtt. Seudárí data údaje, teré převezmeme z růzých zdrojů;

Více

Zá k l a d y k v a n t i t a t i v n í g e n e t i k y

Zá k l a d y k v a n t i t a t i v n í g e n e t i k y Virtuálí vět geetiky 1 Základy kvatitativí geetiky Zá k l a d y k v a t i t a t i v í g e e t i k y Doud byly základí geetické procey (přeo geetické iformace) ledováy a zacích a vlatotech dikrétími hodotami

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

Směrnice 1/2011 Statistické vyhodnocování dat, verze 4 Verze 4 je shodná se Směrnicí 1/2011 verze 3, pouze byla rozšířena o robustní analýzu

Směrnice 1/2011 Statistické vyhodnocování dat, verze 4 Verze 4 je shodná se Směrnicí 1/2011 verze 3, pouze byla rozšířena o robustní analýzu Směrce /0 Stattcké vyhodocováí dat, verze 4 Verze 4 e hodá e Směrcí /0 verze 3, ouze byla rozšířea o robutí aalýzu. Stattcké metody ro zkoušeí zůoblot Cílem tattcké aalýzy výledků zkoušek ř zkouškách zůoblot

Více

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

8. cvičení 4ST201. Obsah: Neparametrické testy. Chí-kvadrát test dobréshody Kontingenční tabulky Analýza rozptylu (ANOVA) Neparametrické testy

8. cvičení 4ST201. Obsah: Neparametrické testy. Chí-kvadrát test dobréshody Kontingenční tabulky Analýza rozptylu (ANOVA) Neparametrické testy cvičící 8. cvičeí 4ST1 Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST1 Neparametricé testy Neparametricétesty využíváme,

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006 8 ELEKTRCKÉ STROJE TOČVÉ říklad 8 Základí veličiy Určeo pro poluchače akalářkých tudijích programů FS Aychroí motory g Vítězlav Stýkala, hd, úor 006 Řešeé příklady 3 fázový aychroí motor kotvou akrátko

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

2. Vícekriteriální a cílové programování

2. Vícekriteriální a cílové programování 2. Vícerterálí a cílové programováí Úlohy vícerterálího programováí jsou úlohy, ve terých se a možě přípustých řešeí optmalzuje ěol salárích rterálích fucí. Moža přípustých řešeí je přtom defováa podobě

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta dopraví Statistika Semestrálí práce Zdražováí pohoých hmot Jméa: Martia Jelíková, Jakub Štoudek Studijí skupia: 2 37 Rok: 2012/2013 Obsah Úvod... 2 Použité

Více

Přednáška č. 2 náhodné veličiny

Přednáška č. 2 náhodné veličiny Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující

Více

} kvantitativní znaky. korelace, regrese. Prof. RNDr. Jana Zvárov. Obecné principy

} kvantitativní znaky. korelace, regrese. Prof. RNDr. Jana Zvárov. Obecné principy Měřeí statistické závislosti, korelace, regrese Prof. RNDr. Jaa Zvárov rová,, DrSc. MĚŘENÍZÁVISLOSTI Cílem statistické aalýzy vepidemiologii bývá eje staovit, zda oemocěí závisí a výskytu rizikového faktoru,

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

MEMBRÁNOVÉ PŮSOBENÍ OCELOBETONOVÉ KONSTRUKCE VYSTAVENÉ POŽÁRU

MEMBRÁNOVÉ PŮSOBENÍ OCELOBETONOVÉ KONSTRUKCE VYSTAVENÉ POŽÁRU Moorafie vyila při práci a projetu MACS + Membráové půobeí při požárím ávrhu ocelobetoové tropí dey plotěými a prolamovaými oíy č. RFS-CT--5 MEMBRÁNOVÉ PŮSOBENÍ OCELOBETONOVÉ KONSTRUKCE VYSTAVENÉ POŽÁRU

Více

vají statistické metody v biomedicíně

vají statistické metody v biomedicíně Statistika v biomedicísk ském m výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Proč se používaj vají statistické metody v biomedicíě Biomedicísk

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

Teorie hromadné obsluhy

Teorie hromadné obsluhy 4..5 Teorie hromadé obluhy Radim Faraa Podlady pro výuu pro aademicý ro 3/4 Obah Teorie hromadé obluhy Klaiiace ytémů hromadé obluhy Sytém hromadé obluhy M/M// / /FIFO Sytém hromadé obluhy M/M/// Sytém

Více

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor 1 Měřeí závlot tattckých zaků 1.1 Dvourozměrý tattcký oubor Př aalýze ekoomckých kutečotí á čato ezajímají jedotlvé velč jako takové, ale vztah mez m. Ptáme e, jak záví poptávka a ceě produktu, plat zamětaců

Více

Přednáška VIII. Testování hypotéz o kvantitativních proměnných

Přednáška VIII. Testování hypotéz o kvantitativních proměnných Předáška VIII. Testováí hypotéz o kvatitativích proměých Úvodí pozámky Testy o parametrech rozděleí Testy o parametrech rozděleí Permutačí testy Opakováí hypotézy Co jsou to hypotézy a jak je staovujeme?

Více

Zpracování a prezentace výsledků měření (KFY/ZPM)

Zpracování a prezentace výsledků měření (KFY/ZPM) Jihočká uivrzita Pdagogická fakulta katdra fyziky Zpracováí a prztac výldků měří (KFY/ZPM) tručý učbí tt Pavl Kříž Čké Budějovic 005 Úvod Přdmět Zpracováí a prztac výldků měří (ZPM) volě avazuj a přdmět

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ TESTOVÁNÍ STATISTICKÝC YPOTÉZ je postup, pomocí ěhož a základě áhodého výběru ověřujeme určité předpoklady (hypotézy) o základím souboru STATISTICKÁ YPOTÉZA předpoklad (tvrzeí) o parametru G základího

Více

Aktivita 1 Seminář základů statistiky a workshop (Prof. Ing. Milan Palát, CSc., Ing. Kristina Somerlíková, Ph.D.)

Aktivita 1 Seminář základů statistiky a workshop (Prof. Ing. Milan Palát, CSc., Ing. Kristina Somerlíková, Ph.D.) Aktvta Semář základů tattky a workhop (Prof. Ig. Mla Palát, CSc., Ig. Krta Somerlíková, Ph.D.) Stattcké tříděí Základí metoda tattckého zpracováí. Sekupováí hodot proměé, které jou z hledka klafkačího

Více

Téma 3: Popisná statistika

Téma 3: Popisná statistika Popá tatta Téma : Popá tatta Předáša 7 Záladí tattcé pojmy Pojem a úoly tatty Statta je věda, teá e zabývá zíáváím, zpacováím a aalýzou dat po potřeby ozhodováí. Zoumá tav a vývoj homadých jevů a vztahů

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

Dvourozměrná tabulka rozdělení četností

Dvourozměrná tabulka rozdělení četností ANALÝZA ZÁVILOTÍ - zouáí závlot dvou evet více poěých, ěřeí íl této závlot, atd - cíle je hlubší vutí do podtat ledovaých jevů a poceů, přblížeí tzv příčý ouvlote Dvouozěá tabula ozděleí četotí - je eleetáí

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

13 Popisná statistika

13 Popisná statistika 13 Popisá statistika 13.1 Jedorozměrý statistický soubor Statistický soubor je možia všech prvků, které jsou předmětem statistického zkoumáí. Každý z prvků je statistickou jedotkou. Prvky tvořící statistický

Více

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

Prostředky automatického řízení

Prostředky automatického řízení VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ Protředky automatického řízeí Měřící a řídící řetězec Vypracoval: Petr Oadík Akademický rok: 006/007 Semetr: letí Zadáí Navrhěte měřicí

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Momenty a momentové charakteristiky

Momenty a momentové charakteristiky Lekce 3 Momety a mometové charaktertky Pokud jme e v předešlém výkladu zmňoval o ěkteré tattcké charaktertce, zpravdla jme rověž uváděl, zda j řadíme mez více ebo méě důležté. A byly to právě artmetcký

Více

Teorie chyb a vyrovnávací počet. Obsah:

Teorie chyb a vyrovnávací počet. Obsah: Teorie chyb a vyrovávací počet Obsah: Testováí statistických hypotéz.... Ověřováí hypotézy o středí hodotě základího souboru s orálí rozděleí... 4. Ověřováí hypotézy o rozptylu v základí souboru s orálí

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III. Iovace a zkvalitěí výuky prostředictvím ICT Téma III..3, pracoví list 3 Techická měřeí v MS Ecel Průměry a četosti, odchylky změřeých hodot. Ig. Jiří Chobot

Více

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků).

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků). Učebí text k předášce UFY8 Dvojvzková tererece teké vrtvě Dvojvzková tererece teké vrtvě Předpokládejme, vl o mpltudě dvou delektrk tk, že mpltud održeé vly bude o dexu lomu bude t (vz obr. DI-1). v protředí

Více

Přednášky část 7 Statistické metody vyhodnocování dat

Přednášky část 7 Statistické metody vyhodnocování dat DŽ ředášky část 7 tatistické metody vyhodocováí dat Mila Růžička mechaika.fs.cvt.cz mila.rzicka@fs.cvt.cz DŽ tatistické metody vyhodocováí dat Jak velké rozptyly lze očekávat mezi dosažeými pevostmi ebo

Více

Lineární regrese ( ) 2

Lineární regrese ( ) 2 Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující

Více

Pravděpodobnostní model doby setrvání ministra školství ve funkci

Pravděpodobnostní model doby setrvání ministra školství ve funkci Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí

Více

MOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ

MOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ PŘÍSPĚVKY THE SCIENCE FOR POPULATION PROTECTION 0/008 MOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ STATISTICAL ASSESSMENT

Více

Integrace hodnot Value-at-Risk lineárních subportfolií na bázi vícerozměrného normálního rozdělení výnosů aktiv

Integrace hodnot Value-at-Risk lineárních subportfolií na bázi vícerozměrného normálního rozdělení výnosů aktiv 3. meziárodí koferece Řízeí a modelováí fiačích rizik Ostrava VŠB-U Ostrava, Ekoomická fakulta, katedra Fiací 6.-7. září 006 tegrace hodot Value-at-Risk lieárích subportfolií a bázi vícerozměrého ormálího

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

10 - Přímá vazba, Feedforward

10 - Přímá vazba, Feedforward 0 - Přímá vazba, Feedforward Michael Šebek Automatické řízeí 03 4--3 Motivace (FF podle Atroma) Automatické řízeí - Kberetika a robotika Už máme avržeu zpětovazebí čát Chceme zajitit přeo referece rový

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

5. Lineární diferenciální rovnice n-tého řádu

5. Lineární diferenciální rovnice n-tého řádu 5 3.3.8 8:44 Josef Herdla lieárí difereciálí rovice -tého řádu 5. Lieárí difereciálí rovice -tého řádu (rovice s ostatími oeficiety) ( ), a,, a (5.) ( ) ( ) y a y a y ay q L[ y] y a y a y a y, q je spojitá

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP Teováí hypoéz PRAVDĚPODOBNOST A STATISTIKA SP Teováí hypoéz Teováí hypoéz Nechť je áhodá proměá, kerá má diribučí fukci Fx, ϑ. Předpokládejme, že záme var diribučí fukce víme jaké má rozděleí a ezáme

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

Doc. Ing. Dagmar Blatná, CSc.

Doc. Ing. Dagmar Blatná, CSc. PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj

Více

Testování statistických hypotéz

Testování statistických hypotéz Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím

Více

124 KP5C Požární bezpečnost staveb cvičení č KP5C Požární bezpečnost staveb cvičení č Požární odolnost (PO)

124 KP5C Požární bezpečnost staveb cvičení č KP5C Požární bezpečnost staveb cvičení č Požární odolnost (PO) KP5C Požárí bezpečot taveb cvičeí č. KP5C Požárí bezpečot taveb cvičeí č.. Požárí odolot (PO) Požárí odolot je doba v miutách, po kterou jou chopy tavebí kotrukce (těy, loupy, tropy, průvlaky, podhledy,

Více

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou 4. Testováí statistických hypotéz Úvod Při práci s daty se mohdy spokojujeme s itervalovým či bodovým odhadem parametrů populace. V mohých případech se však uchylujeme k jiému postupu, většiou jde o případy,

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem Popisá statistika - zavedeí pojmů Popisá statistika - zavedeí pojmů Soubor idividuálích údajů o objektech azýváme základí soubor ebo také populace. Zkoumaé objekty jsou tzv. statistické jedotky a sledujeme

Více

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých 9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie

Více

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model EKONOMETRIE 9. předáška Zobecěý lieárí regresí model Porušeí základích podmíek klasického modelu Metoda zobecěých emeších čtverců Jestliže sou porušey ěkteré podmíky klasického modelu. E(u),. E (uu`) σ

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý.

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý. evost a životost - Hr III EVNOT a ŽIVOTNOT Hr III Mila Růžička, Josef Jreka, Zbyěk Hrbý zbyek.hrby@fs.cvt.cz evost a životost - Hr III tatistické metody vyhodocováí dat evost a životost - Hr III 3 tatistické

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb: ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy

Více

AMC/IEM J - HMOTNOST A VYVÁŽENÍ

AMC/IEM J - HMOTNOST A VYVÁŽENÍ ČÁST JAR-OPS 3 AMC/IEM J - HMOTNOST A VYVÁŽENÍ ACJ OPS 3.605 Hodoty hmotostí Viz JAR-OPS 3.605 V souladu s ICAO Ae 5 a s meziárodí soustavou jedotek SI, skutečé a omezující hmotosti vrtulíků, užitečé zatížeí

Více

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním Lekce Itervalový odhad Itervalový odhad je jedou ze stadardích statistických techik Cílem je sestrojit iterval (kofidečí iterval, iterval spolehlivosti, který s vysokou a avíc předem daou pravděpodobostí

Více

} kvantitativní znaky

} kvantitativní znaky Měřeí tattcké závlot, korelace, regree Obecé prcpy závlot vzájemá ouvlot měřeých zaků Prof. RNDr. Jaa Zvárov rová,, DrSc. fukčí závlot x tattcká závlot átroje pro měřeí závlot leár rí regree korelace }

Více

Úloha II.S... odhadnutelná

Úloha II.S... odhadnutelná Úloha II.S... odhadutelá 10 bodů; průměr 7,17; řešilo 35 studetů a) Zkuste vlastími slovy popsat, k čemu slouží itervalový odhad středí hodoty v ormálím rozděleí a uveďte jeho fyzikálí iterpretaci (postačí

Více

11 TESTOVÁNÍ PARAMETRICKÝCH HYPOTÉZ

11 TESTOVÁNÍ PARAMETRICKÝCH HYPOTÉZ TESTOVÁNÍ PARAMETRICKÝCH HYPOTÉZ Pojmem tetováí tatitických hypotéz ozaujeme ozhodováí o pavdivoti paametických, ep. epaametických hypotéz o populaci. V tomto ozhodovacím poceu opoti ob tojí ulová a alteativí

Více

523/2006 Sb. VYHLÁŠKA

523/2006 Sb. VYHLÁŠKA 523/2006 Sb. VYHLÁŠKA ze de 21. listopadu 2006, kterou se staoví mezí hodoty hlukových ukazatelů, jejich výpočet, základí požadavky a obsah strategických hlukových map a akčích pláů a podmíky účasti veřejosti

Více

Popis datového souboru

Popis datového souboru Lece 3 Pop datového ouboru Zatím jme hovořl převážě o zjšťováí dat a jejch zpracováí Údaje datového ouboru popují aždý případ zvlášť Ní e pouíme vužít údaje tomu, abchom zobecl určté tpcé vlatot datového

Více

MĚŘENÍ PARAMETRŮ OSVĚTLOVACÍCH SOUSTAV VEŘEJNÉHO OSVĚTLENÍ NAPÁJENÝCH Z REGULÁTORU E15

MĚŘENÍ PARAMETRŮ OSVĚTLOVACÍCH SOUSTAV VEŘEJNÉHO OSVĚTLENÍ NAPÁJENÝCH Z REGULÁTORU E15 VŠB - T Ostrava, FE MĚŘENÍ PARAMETRŮ OVĚTLOVACÍCH OTAV VEŘEJNÉHO OVĚTLENÍ NAPÁJENÝCH Z REGLÁTOR E5 Řešitelé: g. taislav Mišák, Ph.D., Prof. g. Karel okaský, Cc. V Ostravě de.8.2007 g. taislav Mišák, Prof.

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů. Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího

Více