Pravoúhlá axonometrie - řezy hranatých těles

Rozměr: px
Začít zobrazení ze stránky:

Download "Pravoúhlá axonometrie - řezy hranatých těles"

Transkript

1 Pravoúhlá axonometrie - řezy hranatých těles KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

2 Příklad (Řez šikmého hranolu) Sestrojte řez šikmého čtyřbokého hranolu ABCDA B C D rovinou σ. Hranol má podstavu ABCD v půdorysně, horní podstava A B C D je rovnoběžná s půdorysnou. Rovina σ je dána stopami. Řešení 1 První bod řezu sestrojíme jako průsečík jedné boční hrany (AA ) s rovinou σ, řešíme metodou krycí přímky. 2 Sestrojíme řez pomocí afinity mezi rovinou podstavy a rovinou řezu. Osou afinity je půdorysná stopa roviny σ, pár odpovídajících si bodů je A, Ā. KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

3 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

4 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

5 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

6 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

7 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

8 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

9 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

10 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

11 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

12 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

13 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

14 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

15 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

16 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

17 Příklad (Řez kolmého hranolu) Je dán kolmý čtyřboký hranol s podstavou ABCD v půdorysně a horní podstavou A B C D rovnoběžnou s půdorysnou. Sestrojte těleso, které vznikne odřiznutím horní části hranolu rovinou σ. Řešení 1 První část řezu najdeme ve stěně ABA B jako průsečnici dvou rovin α = ABA a σ. Získáme tak body řezu Ā, B. 2 Sestrojíme řez pomocí afinity mezi rovinou podstavy a rovinou řezu. Osou afinity je půdorysná stopa roviny σ, pár odpovídajících si bodů je A, Ā. 3 Vyznačíme těleso, které vznikne odříznutím horní části hranolu. KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

18 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

19 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

20 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

21 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

22 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

23 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

24 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

25 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

26 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

27 Příklad (Řez jehlanu) Sestrojte řez pětibokého jehlanu ABCDEV rovinou σ. Podstava jehlanu ABCDE leží v půdorysně, rovina σ je dána stopami Řešení 1 První bod řezu sestrojíme jako průsečík jedné boční hrany (CV ) s rovinou σ, řešíme metodou krycí přímky. 2 Sestrojíme řez pomocí středové kolineace mezi rovinou podstavy a rovinou řezu. Osou kolineace je půdorysná stopa roviny σ, střed kolineace je bod V a pár odpovídajících si bodů je C, C. KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

28 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

29 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

30 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

31 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

32 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

33 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

34 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

35 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

36 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

37 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

38 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

39 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

40 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

41 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS / 41

Mongeova projekce - řezy hranatých těles

Mongeova projekce - řezy hranatých těles Mongeova projekce - řezy hranatých těles KG - L MENDELU KG - L (MENDELU) Mongeova projekce - řezy hranatých těles 1 / 73 Obsah 1 Zobrazení těles v základní poloze 2 Řez hranolu rovinou Osová afinita Sestrojení

Více

Pravoúhlá axonometrie - řezy hranatých těles

Pravoúhlá axonometrie - řezy hranatých těles Pravoúhlá axonometrie - řezy hranatých těles KG - L MENDELU KG - L (MENDELU) Pravoúhlá axonometrie - řezy hranatých těles 1 / 1 Příklad (Řez šikmého hranolu) Sestrojte řez šikmého čtyřbokého hranolu ABCDA

Více

Pravoúhlá axonometrie - osvětlení těles

Pravoúhlá axonometrie - osvětlení těles Pravoúhlá axonometrie - osvětlení těles KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Pravoúhlá axonometrie - osvětlení těles ZS 2008 1 / 39 KG - L (MZLU v Brně) Pravoúhlá axonometrie - osvětlení těles

Více

Průměty rovinných obrazců a těles

Průměty rovinných obrazců a těles Průměty rovinných obrazců a těles Tato část je podmíněna znalostí základních úloh, principů Mongeova promítání a pravoúhlé axonometrie. Slouží jako pracovní sešit na procvičování. Pracovní list č. 1 Zadání:

Více

Pravoúhlá axonometrie. tělesa

Pravoúhlá axonometrie. tělesa Pravoúhlá axonometrie tělesa V Rhinu vypneme osy mřížky (tj. červenou vodorovnou a zelenou svislou čáru). Tyto osy v axonometrii vůbec nevyužijeme a zbytečně by se nám zde pletly. Stejně tak můžeme vypnout

Více

Analytická geometrie (3. - 4. lekce)

Analytická geometrie (3. - 4. lekce) Analytická geometrie (3. - 4. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 16. června 2011 Příklad 1 Příklad 1. Algebraicky

Více

2. EZY NA JEHLANECH. Píklad 47 : Sestrojte ez pravidelného tybokého jehlanu ABCDV rovinou.

2. EZY NA JEHLANECH. Píklad 47 : Sestrojte ez pravidelného tybokého jehlanu ABCDV rovinou. 2. EZY NA JEHLANECH Píklad 47 : Sestrojte ez pravidelného tybokého jehlanu ABCDV rovinou. Popis konstrukce : Podobn jako u píkladu 41 je výhodné proložit nkterými dvma hranami jehlanu rovinu kolmou k pdorysn.

Více

Otázky z kapitoly Stereometrie

Otázky z kapitoly Stereometrie Otázky z kapitoly Stereometrie 10. února 015 Obsah 1 Krokované příklady (0 otázek) 1 Metrické vlastnosti (30 otázek) 1.1 Obtížnost 1 (16 otázek)....................................... 1. Obtížnost (14

Více

Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ:

Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ: Kapitola 1 Elementární plochy 1.1 Základní pojmy Elementární plochou budeme rozumět hranolovou, jehlanovou, válcovou, kuželovou a kulovou plochu. Pokud tyto plochy omezíme, popř. přidáme podstavy, můžeme

Více

Ráda bych poděkovala RNDr. Jarmile Robové, CSc., která mi pomohla při tvorbě této práce. Dále pak svým spolužákům a rodině za podporu.

Ráda bych poděkovala RNDr. Jarmile Robové, CSc., která mi pomohla při tvorbě této práce. Dále pak svým spolužákům a rodině za podporu. Univerzita Karlova v Praze Matematicko-fyzikální fakulta Bakalářská práce Ludmila Kadlecová Webová aplikace pro výuku stereometrie Katedra didaktiky matematiky Vedoucí bakalářské práce: RNDr. Jarmila Robová,

Více

BA008 Konstruktivní geometrie. Kolmá axonometrie. pro kombinované studium. učebna Z240 letní semestr

BA008 Konstruktivní geometrie. Kolmá axonometrie. pro kombinované studium. učebna Z240 letní semestr BA008 Konstruktivní geometrie pro kombinované studium Kolmá axonometrie Jan Šafařík Jana Slaběňáková přednášková skupina P-BK1VS1 učebna Z240 letní semestr 2016-2017 31. března 2017 Základní literatura

Více

Témata profilové maturitní zkoušky z předmětu Pozemní stavitelství

Témata profilové maturitní zkoušky z předmětu Pozemní stavitelství ta profilové maturitní zkoušky z předmětu Pozemní stavitelství 1. Zaměřování terénu a tvorba vrstevnicového plánu 2. Svislé konstrukce 3. Otvory ve zdech 4. Komíny a ventilační průduchy 5. Příčky 6. Úprava

Více

MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2]

MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2] ZOBRAZENÍ BODU - sdružení průměten MONGEOVO PROMÍTÁNÍ π 1... půdorysna π 2... nárysna x... osa x (průsečnice průměten) sdružení průměten A 1... první průmět bodu A A 2... druhý průmět bodu A ZOBRAZENÍ

Více

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po

Více

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková .. Funkce a jejich graf.. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné je taková binární relace z množin R do množin R, že pro každé R eistuje nejvýše jedno R, pro které [, ] f.

Více

Konstruktivní geometrie

Konstruktivní geometrie Konstruktivní geometrie Elipsa Úloha 1: Najděte bod M takový, aby součet jeho vzdáleností od bodů F 1 a F 2 byl 12cm; tj. F 1 M+F 2 M=12. Najděte více takových bodů. Konstruktivní geometrie Elipsa Oskulační

Více

8. Stereometrie 1 bod

8. Stereometrie 1 bod 8. Stereometrie 1 bod 8.1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného válce je 4 : π b) : π c) : π d) : π e) 4 : π. 8.. Zmenšíme-li poloměr podstavy kužele o polovinu a jeho výšku zvětšíme

Více

Zadání domácích úkolů a zápočtových písemek

Zadání domácích úkolů a zápočtových písemek Konstruktivní geometrie (KG-L) Zadání domácích úkolů a zápočtových písemek Sestrojte elipsu, je-li dáno a = 5cm a b = 3cm. V libovolném bodě sestrojte její tečnu. Tento úkol je na krásu, tj. udělejte oskulační

Více

Poznámka 1: Každý příklad začneme pro přehlednost do nového souboru tímto krokem:

Poznámka 1: Každý příklad začneme pro přehlednost do nového souboru tímto krokem: Mongeovo promítání základní úlohy metrické (skutečná velikost úsečky - sklápění, kolmice k rovině, vzdálenost bodu od roviny, vzdálenost bodu od přímky, rovina kolmá k přímce, otáčení roviny, trojúhelník

Více

Elementární plochy-základní pojmy

Elementární plochy-základní pojmy -základní pojmy Kulová plocha je množina bodů v prostoru, které mají od pevného bodu S stejnou vzdálenost r. Hranolová plocha je určena lomenou čarou k (k σ) a směrem s, který nenáleží dané rovině (s σ),

Více

STEREOMETRIE, OBJEMY A POVRCHY TĚLES

STEREOMETRIE, OBJEMY A POVRCHY TĚLES STEREOMETRIE, OBJEMY POVRCHY TĚLES Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia utoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

Mongeovo zobrazení. Řez jehlanu

Mongeovo zobrazení. Řez jehlanu Mongeovo zobrazení Řez jehlanu Středová kolineace Středová kolineace Definice Geometrická příbuznost mezi útvary dvou rovin (různých nebo totožných) splňující následující podmínky Středová kolineace Definice

Více

AXONOMETRIE - 2. část

AXONOMETRIE - 2. část AXONOMETRIE - 2. část Průmět přímky K určení přímky stačí její dva libovolné průměty, zpravidla používáme axonometrický průmět a půdorys. Bod ležící na přímce se zobrazí do bodu na přímce v každém průmětu.

Více

ROZVINUTELNÉ PLOCHY. Plocha tečen šroubovice. Rozvinutelná šroubová plocha

ROZVINUTELNÉ PLOCHY. Plocha tečen šroubovice. Rozvinutelná šroubová plocha Plocha tečen šroubovice ROZVINUTELNÉ PLOCHY Rozvinutelná plocha je přímková plocha, pro kterou existuje izometrické zobrazení do roviny, tj. lze ji rozvinout do roviny. Dá se ukázat, že každá rozvinutelná

Více

(k 1)x k + 1. pro k 1 a x = 0 pro k = 1.

(k 1)x k + 1. pro k 1 a x = 0 pro k = 1. . Funkce dvou a více proměnných. Úvod. Určete definiční obor funkce a proveďte klasifikaci bodů z R vzhledem k a rozhodněte zda je množina uzavřená či otevřená. Určete a načrtněte vrstevnice grafu funkce

Více

Zobrazení hranolu. Příklad 5: Sestrojte řez pravidelného šestibokého hranolu s podstavou v půdorysně rovinou ρ. Sestrojte síť seříznuté části.

Zobrazení hranolu. Příklad 5: Sestrojte řez pravidelného šestibokého hranolu s podstavou v půdorysně rovinou ρ. Sestrojte síť seříznuté části. Zobrazení hranolu Příklad 1: Zobrazte pravidelný pětiboký hranol s podstavou v půdorysně π. Podstava je dána středem S a vrcholem A. Výška hranolu je v. Určete zbývající průmět bodu M pláště hranolu. 1

Více

1. rys - Rotační válec V Mongeově promítání sestrojte sdružené průměty rotačního válce, jsou-li dány:

1. rys - Rotační válec V Mongeově promítání sestrojte sdružené průměty rotačního válce, jsou-li dány: Pokyny pro vypracování zápočtových prací (rysů): okraje (uvnitř rámečku) napište nadpis (Rotační válec), u dolního okraje akademický rok, rys č. 1, varianta n, jméno, příjmení a číslo studijní skupiny.

Více

MONGEOVO PROMÍTÁNÍ - 2. část

MONGEOVO PROMÍTÁNÍ - 2. část MONGEOVO PROMÍTÁNÍ - 2. část ZOBRAZENÍ KRUŽNICE Příklad: V rovině ρ zobrazte kružnici o středu S a poloměru r. kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice

Více

DESKRIPTIVNÍ GEOMETRIE - elektronická skripta. ŘEZY HRANOLŮ A JEHLANŮ V MONGEOVĚ PROMÍTÁNÍ (sada řešených příkladů) ---

DESKRIPTIVNÍ GEOMETRIE - elektronická skripta. ŘEZY HRANOLŮ A JEHLANŮ V MONGEOVĚ PROMÍTÁNÍ (sada řešených příkladů) --- DESKRIPTIVNÍ GEOMETRIE - elektronická skripta ŘEZY HRANOLŮ A JEHLANŮ V MONGEOVĚ PROMÍTÁNÍ (sada řešených příkladů) --- PŘÍKLA: A4 na výšku, O [10,5; 9,5] Pravidelný šestiboký hranol má podstavu v půdorysně

Více

Pracovní listy MONGEOVO PROMÍTÁNÍ

Pracovní listy MONGEOVO PROMÍTÁNÍ Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ Petra Pirklová Liberec, únor 07 . Zobrazte tyto body a určete jejich

Více

ROČNÍKOVÁ PRÁCE TEORETICKÉ ŘEŠENÍ STŘECH

ROČNÍKOVÁ PRÁCE TEORETICKÉ ŘEŠENÍ STŘECH ROČNÍKOVÁ PRÁCE TEORETICKÉ ŘEŠENÍ STŘECH Vypracoval: Jan Vojtíšek Třída: 8.M Školní rok: 2011/2012 Seminář: Aplikace Deskriptivní geometrie Prohlašuji, že jsem svou ročníkovou práci napsal samostatně a

Více

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 29. srpna 2005 verze 1.0 Předmluva

Více

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin

Více

Zadání. stereometrie. 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK =3 AK ; M EH; HM =3 EM.

Zadání. stereometrie. 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK =3 AK ; M EH; HM =3 EM. STEREOMETRIE Zadání 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK = AK ; M EH; HM = EM ) Sestrojte řez pravidelného čtyřbokého jehlanu ABCDV rovinou KLM; K AB; BK = AK ; L CD; DL = CL ; M

Více

Rostislav Horčík. 13. října 2006

Rostislav Horčík. 13. října 2006 3. přednáška Rostislav Horčík 13. října 2006 1 Lineární prostory Definice 1 Lineárním prostorem nazýváme každou neprázdnou množinu L, na které je definováno sčítání + : L L L a násobení reálným číslem

Více

Č É ř š ř ř ú Č ř ě ž š Í ř Č ř ě ž Č ú Č ř ě Č ž ň ň Č ú Č ř Ú ř š ě ě š ř ů ř š ř ř ě ě š ř ů ř ř ů ř ř ě ř ě ř ř ě ě ž ř ž ř ě ř ř ž ř ě ů ř ů ě ě š ř ů ř ě ě ř ě ř ě ě ř ž š ěř ř ě ř š ú ů ř ú ř ř

Více

STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI. STEREOMETRIE geometrie v prostoru

STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI. STEREOMETRIE geometrie v prostoru Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ Mgr. Tomáš MAŇÁK 4. května 2014 Název zpracovaného celku: STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI STEREOMETRIE geometrie

Více

Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU

Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU Konstruktivní geometrie & technické kreslení PODKLADY PRO PŘEDNÁŠKU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

5.2.3 Kolmost přímek a rovin I

5.2.3 Kolmost přímek a rovin I 5.2.3 Kolmost římek rovin I ředokldy: 5202 vě římky jsou k soě kolmé rávě tehdy, když jejich odchylk je 90. Nvzájem kolmé mohou ýt i mimoěžky. vě úsečky jsou kolmé, rávě když leží n kolmých římkách. íšeme:

Více

Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2.

Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2. Výklad Dalším typem extrémů, kterým se budeme zabývat jsou tzv. vázané extrémy. Hledáme extrémy nějaké funkce vzhledem k předem zadaným podmínkám. Definice 6.2.1. Řekneme, že funkce f : R n D f R má v

Více

2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic

2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic .3.19 Grafické řešení soustav lineárních rovnic a nerovnic Předpoklad: 307, 311 Př. 1: Vřeš soustavu rovnic + =. Pokud se také o grafické řešení. = 5 Tak jednoduchou soustavu už jsme dlouho neměli: + =

Více

Konstruktivní geometrie Bod Axonometrie. Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11].

Konstruktivní geometrie Bod Axonometrie. Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11]. Konstruktivní geometrie Bod Axonometrie Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11]. VŠB-TU Ostrava 1 Jana Bělohlávková Konstruktivní geometrie

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.] 1 CÍL KAPITOLY Cílem této kapitoly je naučit uživatele efektivně navrhovat objekty v režimu

Více

Průniky rotačních ploch

Průniky rotačních ploch Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Průniky rotačních ploch Vypracoval: Vojtěch Trnka Třída: 8. M Školní rok: 2012/2013 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

ý ý Í ř é Ž Ž é ú š ý é Č é ý ý é ř ř é é ž Č ř ý ř ř ř ř ř ř ř ý š ý ú š ř é ř ň é ř š é ž ř ř ž é é ý ý ř ž é š ů ř ř š ý š ý ř é š ů ř ý š ž ý é é ř ý ů ř ř ř ř š š ů š š š š š ů ů ř é š ř ý ň š ů ž

Více

A[ 20, 70, 50] a výška v = 70, volte z V > z S ; R[ 40, 20, 80], Q[60, 70, 10]. α(90, 60, 70).

A[ 20, 70, 50] a výška v = 70, volte z V > z S ; R[ 40, 20, 80], Q[60, 70, 10]. α(90, 60, 70). Úkoly k zápočtu z BA008 Všechny úkoly jsou povinné. Úkoly číslo 4, 7, 12, 14 budou uznány automaticky, pokud poslední den semestru, tj. 3. 5. 2019, budou všechny ostatní úkoly odevzdané a uznané. 1. Je

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Teoretické řešení střech

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Teoretické řešení střech Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Teoretické řešení střech Vypracoval: Michal Drašnar Třída: 8.M Školní rok: 2015/2016 Seminář: Deskriptivní geometrie Prohlašuji, že

Více

Vysoká škola báňská Technická univerzita Ostrava KUŽELOSEČKY, KOLINEACE

Vysoká škola báňská Technická univerzita Ostrava KUŽELOSEČKY, KOLINEACE Vysoká škola báňská Technická univerzita Ostrava KUŽELOEČKY KOLINECE Deskriptivní geometrie Krista Dudková Radka Hamříková O T R V 0 0 5 OH 1. Kuželosečky 5 1.1. Řezy na kuželové ploše 5 1.. Elipsa 7 odová

Více

BA03 Deskriptivní geometrie

BA03 Deskriptivní geometrie BA03 Deskriptivní geometrie Mgr. Jan Šafařík přednášková skupina P-B1VS2 učebna Z240 letní semestr 2013-2014 Jan Šafařík: Úvod do předmětu deskriptivní geometrie Kontakt: Ústav matematiky a deskriptivní

Více

Axonometrie KG - L ZS MZLU v Brně. KG - L (MZLU v Brně) Axonometrie ZS / 60

Axonometrie KG - L ZS MZLU v Brně. KG - L (MZLU v Brně) Axonometrie ZS / 60 Axonometrie KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Axonometrie ZS 2008 1 / 60 Obsah 1 Úvod 2 Typy axonometrií 3 Pravoúhlá axonometrie Zobrazení přímky Zobrazení roviny Polohové úlohy KG - L (MZLU

Více

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz.

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz. 7. Shodná zobrazení 6. ročník 7. Shodná zobrazení 7.1. Shodnost geometrických obrazců Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor,

Více

ě ě ú ě ě ě ě ě ň ě ň ů ě ů Ý ě ě ů ň ě Í ě ň ě ě Ž ě ň ě ě ú ů ú ě ě ě ú ě ě ě ě ě ě ů ě ů ě ě ú ů ě ě ě Ž ů ě ě ú Ž Ž Ú ě ě ě ě Ž Ž ě ť Ž Í ě Ž ě Ž Ž ů ěž ů ěž ě Í Ú ů ě ů ě Ž Ž Ž ě ě ě ů ě ě ě ě ě ů

Více

ř ú ú Š Í Á É ř ř ř é é ř ř š é ř ř š ř é ž é ž š é š é é ř ů ž ž ř é ř ů é é ž é ř é é ř é ú é é ž é é š ň é ř š é š é Ť é ř ů ž ž ď ř é é é ž ř é Š ů é ř é ř é Š ú ř Í ž ž ř ř Í é š ž é ř Ť š ř ř ř š

Více

ň ý ě ý ý ý ě ň ý ě ý Ú ú ň ň ý ě ý ó ž ý ň ě ě ě ú ú Ř ň ň ý ě ý ě ě ž ý ž ě ý ě ý ě ě ů ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ě ů ě ý ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ý ě Č Č ě Č ě ů ý ě ý ý ž ě ě ž ů ž ě

Více

ň Š ý ě ý Ě Á ý ý ě ň Š ý ě ý ú ň ň ý ě ý ó ě ž ý ň ě ě Š ú Š ú Š ň Á ň Š ň ý ě ý Š ž ý ě ý ů ě ě ž ý ě Š ě ě ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ó ě ů ě ý Š ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ě Č Č ě Š Č ě

Více

Taky si zkuste promyslet, která zobrazení jsou afinní: to které zobrazí přímku jako rovinu? Nebo snad to které zobrazí rovinu jako přímku?

Taky si zkuste promyslet, která zobrazení jsou afinní: to které zobrazí přímku jako rovinu? Nebo snad to které zobrazí rovinu jako přímku? Afinní zobrazenní Úmluva Symbolem V (popř V ) budu vždy značit nějaký vektorový prostor, symbolem A (popř A ) pak vždy afinní bodový prostor, zdvojená písmena (např A, B, C, ) značí vždy matice Definice

Více

0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.

0 x 12. x 12. strana Mongeovo promítání - polohové úlohy. strana 9 3.1a Sestrojte sdružené průměty stopníků přímek a = AB, b = CD, c = EF. A [-2, 5, 1], B [3/2, 2, 5], C [3, 7, 4], D [5, 2, 4], E [-5, 3, 3], F [-5, 3, 6]. 3.1b Určete parametrické vyjádření přímek

Více

Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu.

Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu. Svarové spoje Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu. Vybrané druhy svarů a jejich posouzení dle EN ČSN 1993-1-8. Koutový svar -T-spoj - přeplátovaný

Více

Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem

Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem Geometrie Mongeovo promítání................................ 1 Řezy těles a jejich průniky s přímkou v pravoúhlé axonometrii......... 3 Kuželosečky..................................... 4 Šroubovice......................................

Více

MATEMATIKA vyšší úrove obtížnosti MAMVD12C0T04

MATEMATIKA vyšší úrove obtížnosti MAMVD12C0T04 MATEMATIKA vyššíúroveobtížnosti MAMVD12C0T04 DIDAKTICKÝTEST Maximálníbodovéhodnocení:50bod Hraniceúspšnosti:33% 1Základníinformacekzadánízkoušky Didaktickýtestobsahuje23úloh. asovýlimitproešenídidaktickéhotestu

Více

Geometrické těleso je prostorově omezený geometrický útvar. Jeho hranicí, povrchem, je uzavřená plocha.

Geometrické těleso je prostorově omezený geometrický útvar. Jeho hranicí, povrchem, je uzavřená plocha. 18. Tělesa řezy, objemy a povrchy, (řez krychle, kvádru, jehlanu, objemy a povrchy mnohostěnů, rotačních těles a jejich částí včetně komolých těles, obvody a obsahy mnohoúhelníků, kruhu a jeho částí) Tělesa

Více

GEOMETRICKÁ TĚLESA. Mnohostěny

GEOMETRICKÁ TĚLESA. Mnohostěny GEOMETRICKÁ TĚLESA Geometrické těleso je prostorový geometrický útvar, který je omezený (ohraničený), tato hranice mu náleží. Jeho povrch tvoří rovinné útvary a také různé složitější plochy. Geometrická

Více

ROTAČNÍ KVADRIKY. Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou

ROTAČNÍ KVADRIKY. Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou ROTAČNÍ KVADRIKY Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou Rotační kvadriky jsou rotační plochy, které vzniknou rotací kuželosečky kolem některé její osy.

Více

Pr niky ploch a t les

Pr niky ploch a t les Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 RONÍKOVÁ PRÁCE Prniky ploch a tles Vypracoval: Tomáš Martínek ída: 4.C Školní rok: 2013/2014 Seminá: Deskriptivní geometrie Prohlašuji, že jsem svou

Více

ě ý ě ě š ů ě ň ý ě ú ě ě ě ě š ě ě ý ů ť ě ú ů ě ě ě ě ě š ě ě ž ý ě ý ě ů ý ů ý ě ě ů ý ů ů ě ž ý ě ý ý ů ť ý ů ě ě ý ě ů ý ů ů ý ů ě ě ý ý ě ž ž ů ž ů ý ě ě ý ě ůž ý ž ě š ý š ý ý ý ý ž ý ó ů ý ě ý

Více

Ý Á Á Á Š É Ř ý ě ů Č ě ě ě ě ý ě ý ý š ě ě ě ý ě ů ž ě ě ě ů ě ů š ý ý ů ž ě ůž ž ý ů ú ě ž ú ě ě ú ě ůž ú ž ě ů ž ě ů š š ý ů ž ě ů ž ě ů ě ě ý ž ý ž ý ě ě ě ě ň ý ě ě ý ž ý š ů ž ý ý ý ž ý ů ž ě ý ů

Více

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/ Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol STEREOMETRIE

Více

BAKALÁŘSKÁ PRÁCE. Řešené úlohy v axonometrii. UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie

BAKALÁŘSKÁ PRÁCE. Řešené úlohy v axonometrii. UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie BAKALÁŘSKÁ PRÁCE Řešené úlohy v axonometrii Vypracovala: Barbora Bartošová M-DG, III. ročník Vedoucí práce: RNDr. Miloslava

Více

KVADRATICKÉ ROVNICE A NEROVNICE (početní a grafická řešení)

KVADRATICKÉ ROVNICE A NEROVNICE (početní a grafická řešení) KVADRATICKÉ ROVNICE A NEROVNICE (početní a grafická řešení) KVADRATICKÉ ROVNICE (početně) Teorie: Kvadratická rovnice o jedné neznámé se nazývá každá taková rovnice, kterou lze ekvivalentními úpravami

Více

Č část četnost. 部 分 频 率 relativní četnost 率, 相 对 频 数

Č část četnost. 部 分 频 率 relativní četnost 率, 相 对 频 数 A absolutní člen 常 量 成 员 absolutní hodnota čísla 绝 对 值 algebraický výraz 代 数 表 达 式 ar 公 亩 aritmetický průměr 算 术 均 数 aritmetika 算 术, 算 法 B boční hrana 侧 棱 boční hrany jehlanu 角 锥 的 侧 棱 boční stěny jehlanu

Více

Definice : Jsou li povrchové pímky kolmé k rovin, vzniká kolmá kruhová válcová plocha a pomocí roviny také kolmý kruhový válec.

Definice : Jsou li povrchové pímky kolmé k rovin, vzniká kolmá kruhová válcová plocha a pomocí roviny také kolmý kruhový válec. 3. EZY NA VÁLCÍCH 3.1. VÁLCOVÁ PLOCHA, VÁLEC Definice : Je dána kružnice k ležící v rovin a pímka a rznobžná s rovinou. Všechny pímky rovnobžné s pímkou a protínající kružnici k tvoí kruhovou válcovou

Více

Řez jehlanu. Mongeovo promítání. Pravidelný šestiboký jehlan o výšce v má podstavu ABCDEF v půdorysně. Zobrazte řez jehlanu rovinou σ.

Řez jehlanu. Mongeovo promítání. Pravidelný šestiboký jehlan o výšce v má podstavu ABCDEF v půdorysně. Zobrazte řez jehlanu rovinou σ. Řez jehlanu Mongeovo promítání Pravidelný šestiboký jehlan o výšce v má podstavu ABCDEF v půdorysně. Zobrazte řez jehlanu rovinou σ. A[ 3; 1; 0], B[0; 2; 0], y C > y B, v = 8cm, σ(4; 7; 3) B 2 A 2 Vyneseme

Více

Plochy stavebně-inženýrské praxe

Plochy stavebně-inženýrské praxe Plochy stavebně-inženýrské praxe 9. Plochy rourové In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 95 98. Persistent

Více

Ě ÁÁ Ú é é ý ů ý ů é ý ů é é ú Ž ý ů é ů é é Ě ÁÁ Ú é Ý ž ý ž ý ý ů ž ů ň é Ž ý Ž ů ý é é é é ý ž Í Ě ÁÁ Ú é é ň é Ž ý ž Ž Í ý é ý Í ů ý ý ý é ý é ý é ň Ž Ž Ě ÁÁ Ú é é ý Ý é é ý Ž Í Í é ž Í Ž Ě ÁÁ Ú é

Více

A 1. x x. 1.1 V pravoúhlé axonometrii zobrazte průměty bodu A [4, 5, 8].

A 1. x x. 1.1 V pravoúhlé axonometrii zobrazte průměty bodu A [4, 5, 8]. strana 1 1. onometrie. 1.1 V pravoúhlé aonometrii obrate průmět bodu [4, 5, 8]. 1.2 Zobrate bývající pravoúhlé průmět bodu do souřadnicových rovin. Určete souřadnice bodu, který je obraen v pravoúhlé aonometrii.

Více

NÁVOD K POUŽÍVÁNÍ OSTŘIČKY NOŽŮ OŘEZU

NÁVOD K POUŽÍVÁNÍ OSTŘIČKY NOŽŮ OŘEZU NÁVOD K POUŽÍVÁNÍ OSTŘIČKY NOŽŮ OŘEZU 1. Úvod Tento návod slouží jako dodatek k návodu k používání elektrické stolní brusky a omezuje oblast jejího použití pro ostření nožů ořezu průmyslových šicích strojů.

Více

š Ě Á š Á š š š ú š ů ú š ú š š ž š Š ú š ž ž š ž ž ů ů ů ž š ň ž ž ň š ů Ž ú š ž ž š ň Č Č ž Ů Ž Č Í Ť Í ň ť Í Č Ě Í š ú š Š Č šť š ů š ň ž šť šť ž ž ň šť ž ž šť š ú š Š Č š ž Ž š ů ů ž ž ň š ž ž ú ž

Více

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol. ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní

Více

souřadné systémy geometrické určení polohy pevně spojené se vztažným tělesem

souřadné systémy geometrické určení polohy pevně spojené se vztažným tělesem souřadné systémy geometrické určení polohy pevně spojené se vztažným tělesem kartézský souřadný systém Z Y X kartézský souřadný systém Z Y X kartézský souřadný systém Z x y Y X kartézský souřadný systém

Více

Prùniky tìles v rùzných projekcích

Prùniky tìles v rùzných projekcích UNIVERZITA PALACKÉHO V OLOMOUCI PØÍRODOVÌDECKÁ FAKULTA Katedra algebry a geometrie Prùniky tìles v rùzných projekcích Bakalářská práce Vedoucí práce: RNDr. Lenka Juklová, Ph.D. Rok odevzdání: 2010 Vypracoval:

Více

3.cvičení. k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR. 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ),

3.cvičení. k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR. 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ), 3.cvičení 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ), k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR Bodem A rovnoběžku: Ještě jednu kolmici. Tři úhly, které je možno rozdělit

Více

ř á ž é á á ý á Í Ě Í Č ú ý é á á ů ů á Č Č Č á ř ý ž é ý é ó ť é ř é řá é ú á é é á é é ř š ý á ž ý ž á ř é ý é š ž ř á ř é é á á á ř ú š á ž ý ď é ý ý é ř á é ů é é ú ž á š š ž á ý é ý ž ú ž ý ř ý é

Více

Š É Á á á é č ě ž é ž á č ž é ě á ž ě č é č č ž č á Ž ě Í ě ž áž ě ž ň á ě ž á ž č á é é ě é á ě č ž á é é ě é é ě é č ě é é é á á ž á ž é á Š é Ž ž é č é á á á á ď č á Š é á ěž á č č ě ě é č ě ě é á Ž

Více

Č É É Č ď Č ž ž Ž ď ě š ě š ě ě š ě ď ž ď šť ť ďš Č ď Č Č ě ž ž Í ě Č ě š ě š š Ž ě ě ť ě ž ě Č ě ž š Í Í ě ě ď ě ě ě ě Í ě ť ě ě ď ě ť ě ď ž ě ě š ě ť Č ě Ž Ž ě ž š š Ž ě Č Ž ě ě ě ě ě ě ě Ž ž ě ť É šš

Více

5.1.2 Volné rovnoběžné promítání

5.1.2 Volné rovnoběžné promítání 5.1.2 Volné rovnoběžné promítání Předpoklady: 5101 Základní stereometrický problém: zabýváme se trojrozměrnými objekty, ale k práci používáme dvojrozměrný papír musíme najít způsob, jak trojrozměrné objekty

Více

B 047 - PAVÍ VRCH, SMÍCHOV 1431/2-3

B 047 - PAVÍ VRCH, SMÍCHOV 1431/2-3 -3 12/2006 -3 ŠIRŠÍ VZTAHY, SITUOVÁNÍ PARCELY 01 B047 PAVÍ VRCH Základní údaje: Katastrální území: Plocha pozemku: Číslo pozemku: Praha 5 Smíchov 2 2454 m 1431/2-3 Stávající stav: Funkční využití ploch:

Více

Deskriptivní geometrie 0A5

Deskriptivní geometrie 0A5 Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Deskriptivní geometrie 0A5 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Veronika Roušarová Brno c 2003 Obsah

Více

Věty o pravoúhlém trojúhelníku. Vztahy pro výpočet obvodu a obsahu. Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu

Věty o pravoúhlém trojúhelníku. Vztahy pro výpočet obvodu a obsahu. Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu Věty o pravoúhlém trojúhelníku Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu b v a obou úseků přepony: v 2 = c a c b c b c a Eukleidova věta o odvěsně A c B Druhá mocnina délky

Více

Obsah a průběh zkoušky 1PG

Obsah a průběh zkoušky 1PG Obsah a průběh zkoušky PG Zkouška se skládá z písemné a ústní části. Písemná část (cca 6 minut) dvě konstrukční úlohy dle části po. bodech a jedna úloha výpočetní úloha dle části za bodů. Ústní část jedna

Více

STŘECHY ŠIKMÉ. 03. Tesařské spoje střešních konstrukcí. Digitální učební materiál projektu: SŠS Jihlava - šablony

STŘECHY ŠIKMÉ. 03. Tesařské spoje střešních konstrukcí. Digitální učební materiál projektu: SŠS Jihlava - šablony S třední škola stavební Jihlava STŘECHY ŠIKMÉ 03. Tesařské spoje střešních konstrukcí Digitální učební materiál projektu: SŠS Jihlava - šablony Ing. Jaroslava Lorencová 2012 Projekt je spolufinancován

Více

α + β < 180 trojúhelník lze sestrojit 3. ROZBOR 5. KONSTRUKCE

α + β < 180 trojúhelník lze sestrojit 3. ROZBOR 5. KONSTRUKCE GEOMETRIE KONSTRUKCE TROJÚHELNÍKŮ Knstrukce trjúhelníku zadanéh pdle věty sss SSS strana, strana, strana Př. Sestrjte trjúhelník ABC, je-li dán a = 6 cm, b = 8 cm a c = 7 cm 1. NÁČRT VĚTA sss Dva trjúhelníky

Více

2.8.8 Kvadratické nerovnice s parametrem

2.8.8 Kvadratické nerovnice s parametrem .8.8 Kvadratické nerovnice s arametrem Předoklady: 806 Pedagogická oznámka: Z hlediska orientace v tom, co studenti očítají, atří tato hodina určitě mezi nejtěžší během celého středoškolského studia. Proto

Více

Spoje se styčníkovými deskami s prolisovanými trny

Spoje se styčníkovými deskami s prolisovanými trny cvičení Dřevěné konstrukce Spoje se styčníkovými deskami s prolisovanými trny Úvodní poznámky Styčníkové desky s prolisovanými trny se používají pro spojování dřevěných prvků stejné tloušťky v jedné rovině,

Více

SMĚŠOVACÍ KALORIMETR -tepelně izolovaná nádoba s míchačkou a teploměrem, která je naplněná kapalinou

SMĚŠOVACÍ KALORIMETR -tepelně izolovaná nádoba s míchačkou a teploměrem, která je naplněná kapalinou KALORIMETRIE Kalorimetr slouží k měření tepla, tepelné kapacity, případně měrné tepelné kapacity Kalorimetrická rovnice vyjadřuje energetickou bilanci při tepelné výměně mezi kalorimetrem a tělesy v kalorimetru.

Více

Pokyny k hodnocení úlohy 1 ZADÁNÍ. nebo NEDOSTATEČNÉ ŘEŠENÍ. nebo CHYBNÉ ŘEŠENÍ. nebo CHYBĚJÍCÍ ŘEŠENÍ 0

Pokyny k hodnocení úlohy 1 ZADÁNÍ. nebo NEDOSTATEČNÉ ŘEŠENÍ. nebo CHYBNÉ ŘEŠENÍ. nebo CHYBĚJÍCÍ ŘEŠENÍ 0 PZK 9 M9-Z-D-PR_OT_ST M9PZD6CT Pokyny k hodnocení Pokyny k hodnocení úlohy BODY ZADÁNÍ Vypočtěte, kolikrát je rozdíl čísel,4 a,7 (v tomto pořadí) menší než jejich součet. (V záznamovém archu je očekáván

Více

Vlastnosti a zkoušení materiálů. Přednáška č.2 Poruchy krystalické mřížky

Vlastnosti a zkoušení materiálů. Přednáška č.2 Poruchy krystalické mřížky Vlastnosti a zkoušení materiálů Přednáška č.2 Poruchy krystalické mřížky Opakování z minula Materiál Degradační procesy Vnitřní stavba atomy, vazby Krystalické, amorfní, semikrystalické Vlastnosti materiálů

Více

Ě Ů Ý Ů Á ý ě č č š š ý č ý ý č č Ú ě č ů ů Ú ý č ý ý ě ů č č š ě ů ý č ý č č č č Ř š ě ů ě ů ěž ý š ě ě ů ž ě Ř ů ě ž č ů ě ů ů č č ý Ú ů ě Ú Ú Ú Ž ž ů č Č ý š úč Ú úč Ú ů ů Ú Ú ě ž Ú š ě ž ž č č ě ě

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.057 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více