MASARYKOVA UNIVERZITA. Mechanizmy působení proteinů p53 v nádorové buňce

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "MASARYKOVA UNIVERZITA. Mechanizmy působení proteinů p53 v nádorové buňce"

Transkript

1 MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV BIOCHEMIE Mechanizmy působení proteinů p53 v nádorové buňce Bakalářská práce Robert Helma Vedoucí práce: Mgr. Marie Brázdová, PhD. Brno 2012

2 Bibliografický záznam Autor: Název práce: Studijní program: Studijní obor: Vedoucí práce: Robert Helma Přírodovědecká fakulta, Masarykova univerzita Ústav biochemie Mechanizmy působení proteinů p53 v nádorové buňce Bakalářský Biochemie Mgr. Marie Brázdová, PhD. Akademický rok: 2011/2012 Počet stran: 67 Klíčová slova: wild-type p53, mutantní p53, transkripční aktivita, gain of function, regulace p53

3 Bibliographic Entry Author: Title of Thesis: Degree Programme: Field of Study: Supervisor: Robert Helma Faculty of Science, Masaryk University Department of Biochemistry Mechanisms of p53 action in tumor cell Bachelor's Biochemistry Mgr. Marie Brázdová, PhD. Academic Year: 2011/2012 Number of Pages: 67 Keywords: wild-type p53, mutant p53, transcriptional activity, gain of function, regulation of p53

4 Abstrakt Nádory mozku patří mezi vysoce invazivní typy nádorů. Inaktivace specifických genů spolu s bodovými mutacemi nádorového supresorového genu TP53 je spojena s nepříznivou prognózou. Mutantní formy p53 disponují celou řadou specifických vlastností spojených s agresivním charakterem nádorů např. inhibice apoptózy, chemorezistence, angiogeneze či zástava diferenciace prostřednictvím transkripční aktivace či represe řady cílových genů. Regulace cílových genů je předmětem intenzivního studia. Mezi mechanismy jejich regulace patří strukturně specifická vazba p53 na DNA, interakce mutantních proteinů p53 s transkripčními faktory (SP1, ETS1 aj.) a jinými proteiny (p63, p73 či TOP1). V rámci bakalářské práce byl studován vliv mutace TP53 na onkogenní chování glioblastomových linií a mechanismus působení mutantní p53. Pro analýzu byly použity jednak základní glioblastomové linie U87 (wtp53), Onda 11 (R273C), U251 (R273H), Onda 10 (G245S) a klony se sníženou expresí p53, odvozené od těchto linií (Usi 12, Usi 16, Osi 10, P1-37). V rámci naší studie byly selektovány stabilní klony odvozené od linie Onda 10 po transfekci shrna-p53 (psuper-p53, P1-37). Míra exprese p53 byla analyzována pomocí imunodetekce a úspěšnost integrace plazmidu psuper-p53 do genomu linie Onda 10 byla ověřena pomocí PCR. Analýza exprese cílových genů mutp53 byla provedena na základě dat z DNA microarray analýz linií U251/Usi 12/Usi 16 a byly navrženy kandidátní geny pro další analýzy (FRMD5, JAK2, NRG1, PPARGC1A, TGFBR2 a VEGFA). Na závěr byl ověřen vliv exprese mutantního proteinu p53 na onkogenní chování, kdy bylo zjištěno, že u linií s potlačenou expresí p53 (Usi 12, Osi 10 a P1) dochází ke snížení jejich schopnosti tvořit kolonie na měkkém agaru.

5 Abstract Brain tumors belong among highly invasive types of tumors. Inactivation of specific genes along with point mutations of tumor suppressor gene TP53 is linked to poor prognosis. Mutant forms of p53 manage quite a number of specific abilities, associated with aggressive character of tumors e. g. inhibition of apoptosis, chemoresistance, angiogenesis or differentiation block, through transcriptional activation or repression of series of genes. Regulation of target genes is a subject of intensive studies. Into mechanisms of their regulation are involved a structure-specific DNA binding of p53, interaction of p53 mutants with transcriptional factors (SP, ETS1 et al.) and other proteins (p63, p73 or TOP1). In this thesis an influence of TP53 mutation and mutant p53 driven mechanism on oncogenic behaviour of glioblastoma cell lines was studied. Parental glioblastoma cell lines U87 (wtp53), Onda 11 (R273C), U251 (R273H), Onda 10 (G245S) and derived clones with reduced expression of p53 (Usi 12, Usi 16, Osi 10, P1-37) were used for analysis. Stable clones derived from Onda 10 cell line were selected after transfection of shrna-p53 (psuper-p53, P1-37). The amount of p53 expression on protein level was analysed by using immunodetection. Successful integration of plasmid psuper-p53 into the genome of Onda 10 cell line was controlled by PCR. Analysis of mutp53 target genes expression was performed on the basis of DNA microarray data. We analyzed cell line system U251/Usi 12/Usi 16 and suggested couple of a mutp53 target genes, suitable for further analysis (FRMD5, JAK2, NRG1, PPARGC1A, TGFBR2, VEGFA). An influence of mutant p53 expression on oncogenic behaviour was detected by soft agar colony formation assay. The cell lines with repressed expression of mutp53 (Usi 12, Osi 10 and P1) were less able to form colonies in soft agar.

6

7

8 Poděkování Na tomto místě bych rád poděkoval své vedoucí bakalářské práce Mgr. Marii Brázdové, PhD. za cenné rady, připomínky a metodické vedení práce. Zároveň děkuji celému laboratornímu kolektivu za průběžnou pomoc. Tato práce byla podpořena z projektu r.č. P301/10/2370 "Úloha strukturně selektivní vazby proteinu p53 k DNA u nádorů mozku" Grantové agentury ČR. Prohlášení Prohlašuji, že jsem svoji bakalářskou práci vypracoval samostatně s využitím informačních zdrojů, které jsou v práci citovány. Brno 11. května 2012 Robert Helma

9 Obsah 1. Úvod Obecné znaky kancerogeneze Protein p53 jako nádorový supresor Gen TP53 a jeho mutace Obecná charakteristika struktury proteinu p Transkripční aktivita p Regulace p53 na úrovni mrna Buněčná lokalizace a regulace hladiny p Posttranslační modifikace wtp Interakce wtp53 s ostatními proteiny Přehled nejlépe charakterizovaných efektorových genů wtp Mutantní p53 a jeho regulace Získání onkogenních vlastností mutp53 (gain of function) Interakce s p63 a p Vazba mutp53 na DNA a interakce s transkripčními faktory Ztráta funkce nádorového supresoru ( loss of function) Využití znalostí mutací TP53 v klinické praxi Cíle bakalářské práce Materiál Použité chemikálie Složení roztoků a pufrů Použité přístroje Použité buněčné linie Použité plazmidy Použité primery při PCR Metody Transfekce plazmidů psuper a pci-neo Práce s tkáňovými kulturami Příprava peletu savčích nádorových linií Izolace genomové DNA pomocí fenol-chloroformové extrakce Kontrola integrace plazmidů do genomové DNA pomocí PCR Elektroforéza DNA v agarózovém gelu Detekce DNA v agarózovém gelu Stanovení koncentrace proteinů dle Bradfordové... 30

10 3.9 Dělení proteinů metodou SDS-PAGE Přenos proteinů na membránu Imunodetekce proteinů na membráně Test tvorby kolonií v měkkém agaru Výsledky Analýza exprese p53 v glioblastomových liniích Příprava a analýza stabilních klonů Analýza integrace plazmidů psuper a pci-neo do genomu klonů pomocí PCR Vliv exprese mutp53 na onkogenní chování vybraných glioblastomových linií Návrh cílových genů mutp53 pro expresní studie u vybraných glioblastomových linií Diskuze Závěr Seznam použité literatury... 46

11 Seznam použitých zkratek 11D3 monoklonální anti-p53 protilátka Apaf-1 apoptotic protease activating factor 1 APC adenomatous Polyposis Coli ASPP apoptosis-stimulating protein of p53 ATM ataxia telangiectasia mutated ATR ataxia telangiectasia and Rad3 related BAX BCL2-associated X protein BCL-2 B-cell CLL/lymphoma 2 CDKs cyklin dependentní kinázy CK1 casein kinase 1 CP cell permeable styrylquinazoline p53 modulator DDB1/ DDB2 damage- DNA binding protein 1 / damage- DNA binding protein 2 DMEM Dulbecco's Modified Eagle Medium DNE dominantně negativní efekt DO-1 monoklonální protilátka proti proteinu p53 E1A Early E1A 32 kda protein Ets1 transkripční faktor rodiny ETS (E-twenty six-1) FRMD5 FERM domain containing 5 GADD45 growth arrest DNA damage-inducible gene 45 GOF gain of function GPX glutathione peroxidase HR homologní rekombinace HSP90/ HSP70 heat-shock protein 90 / Heat-shock protein 70 CHIP carboxyl-terminus of Hsp70 Interacting Protein CHK1/ CHK2 checkpoint kinase 1/checkpoint kinase 2, protein kinázy JAK2 Janus kinase 2 LFS Li-Fraumeniho syndrom MAPK mitogeny aktivovaná protein kináza MDM2 human homolog of mouse double minute 2 MDM4 (MDMX) human homolog of mouse double minute 4 MDR-1 multi drug resistance 1 mir-34 microrna 34a mir-34b\c microrna 34b\c MLH1 human mutl homolog 1 MMR mismatch repair MRE11 meiotic recombination 11 mtor mammalian Target Of Rapamycin mutp53 mutantní p53 mutp53 mutantní p53 myc protoonkogen kódující transkripční regulační faktory

12 MYST MOZ, Ybf2/Sas3, Sas2, and Tip60, rodina histon acetyltransferáz NER nucleotide excision repair NES nuclear export signal NF-Y transkripční faktor Y NF-κB nuclear factor- κb NLS nuclear localization signal NRG1 neuregulin 1 p21 waf1 gen kódující protein p21 p300/cbp komplex transkripčních koaktivátorů CBP (CREB binding protein) a p300 p53, p53β a p53γ izoformy proteinu p53 p53aip1 p53-regulated Apoptosis-Inducing Protein 1 PAb421 monoklonální protilátka proti proteinu p53 PCAF P300/CBP-associated factor PCNA proliferating cell nuclear antigen PIG-3/PIG-6 p53-inducible gene 3 / p53-inducible gene 6 PMS2 postmeiotic segregation increased 2 POX proline oxidase PPARGC1A peroxisome proliferator-activated receptor gamma, coactivator 1 alpha PRIMA-1 p53 reactivation and induction of massive apoptosis PTEN phosphatase and tensin homolog PUMA p53 up-regulated modulator of apoptosis PXXP doména bohatá na prolin Rad51 protein z rodiny Rad51, účástnící se opravy DNA dvouřetězcových zlomů Ras onkogen kódující signální transduktory RE responzivní element ROS reactive oxygen species SAM sterile alpha-motif ScFV single chain FV fragments SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis SOD2 superoxide dismutase 2 Sp1 specifity Protein 1 SV40 T simian virus 40 T-antigen TGFBR2 transforming growth factor, beta receptor II TIGAR TP53-inducible glycolysis and apoptosis regulator TIP60 tat-interactive protein 60, acetyltransferáza TMEM108 transmembrane protein 108 TNFα tumor necrosis factor-alpha TOP1 topoizomeráza 1 TP53, TP73, TP63 geny kódující proteiny p53/p63/p73 VDR vitamin D3 receptor VEGFA vascular endothelial growth factor A wtp53 wild-type p53, přirozeně se vyskytující typ p53 XPC xeroderma pigmentosum, complementation group C

13 1. Úvod Problematika vzniku nádorů patří v současnosti stále mezi aktuální témata. Jelikož se na vzniku nádorů podílí velké množství faktorů, je předmětem studia vědců z celého světa najít chybějící díly této skládanky, které by pomohly objasnit úlohu jednotlivých mechanismů zahrnutých do iniciace vzniku nádorů. Jeden z nejdůležitějších faktorů, aktivně se účastnící nádorové suprese, je protein p53. Tento protein může být přirovnán k dirigentovi symfonického orchestru. Jeho hlavní úlohou je udržovat v buňce harmonii všech procesů při odpovědi na různé druhy buněčného stresu. Celkové harmonie je docíleno koordinací exprese velkého množství efektorových genů, které tímto zaujímají roli jednotlivých hráčů symfonického orchestru. Mezi efektorové geny patří i takové, co se přímo podílejí na regulaci buněčného cyklu např. p21. Pokud některý z hráčů orchestru hraje falešně (chybná regulace genové exprese) a zároveň je narušena regulace buněčného dělení, může dojít k transformaci normální buňky v buňku nádorovou. Transkripční aktivita p53 je podmíněna sekvenčně specifickou vazbou k DNA, do oblasti promotorů cílových efektorových genů. Expresí těchto genů poté vznikají molekuly, které se následně účastní boje proti vzniku nádorů. Ztráta zmíněných transkripčních vlastností p53 představuje nejzávažnější problém asociovaný se vznikem nádorů. Nejčastěji bývá v důsledku mutací postižena právě DNA vazebná doména proteinu. Existují však i mutanti s částečně zachovanou transkripční aktivitou. Mutantní formy p53 (mutp53) disponují celou řadou nových schopností, které propůjčují mutp53 vlastnosti onkogenu. Mezi tyto schopnosti patří mj. inhibice apoptózy, chemorezistence či zástava diferenciace. Rozpoznávání a regulace nových efektorových genů (specifických pro mutp53), interakce s jinými transkripčními faktory nebo regulace netranskripčních procesů, pak představují mechanismy, tvořící základ, pro již zmíněné onkogenní vlastnosti mutp53. Každý objev, např. nových mutací či cílových genů mutp53, významně přispívá ke specifikaci daného druhu nádoru a může ve výsledku napomoci lékařům při volbě účinného zacílení léčby. 1

14 1.1 Obecné znaky kancerogeneze Proces vzniku nádoru je vícestupňový proces, jehož podstatou je postupné hromadění genetických a epigenetických změn. Základní jednotkou genetické informace jsou geny, z nichž každý kóduje specifický produkt, jakým je RNA nebo protein. Pokud některý z genů podlehne mutaci, dochází jeho následnou transkripcí a translací ke vzniku produktu, jenž se svými vlastnostmi liší od produktu, který by vznikl transkripcí genu nepostihnutého mutací. Z mutací účastnících se tvorby nádorů jsou nejdůležitější mutace, které mění strukturu genů, což má za následek změnu struktury vznikajících proteinů a současně změnu míry jejich exprese (Adam et al., 2003). Bylo zjištěno, že u hlodavců jsou zapotřebí alespoň dvě genetické změny k tomu, aby došlo k samotné transformaci buňky. U lidí je transformace buněk znesnadněna a minimální počet genetických změn je odhadován na 4. (Hahn et al., 1999). Konkrétních genů, které při tvorbě nádorů podléhají mutaci, je velké množství. Mezi nejdůležitější mutace, způsobující přeměnu normální buňky v buňku nádorovou, však patří mutace protoontogenů a nádorových supresorů (antiontogenů). Protoontogeny kódují proteiny, které jsou zodpovědně za aktivaci buněčného cyklu a stimulaci proliferace, na rozdíl od nádorových supresorů, které udržují buňku v klidovém stadiu (Adam et al., 2003). Jak již bylo zmíněno, kancerogeneze je vícestupňový proces, který vede ke vzniku buněk, jejichž společným jmenovatelem je defekt v některé z drah, zajišťujících normální buněčnou proliferaci a homeostázu. Dosud bylo objeveno přes 100 různých druhů rakoviny. Je nutné si uvědomit, že proces vzniku nádorové buňky je charakterizován individuálním průběhem, který zahrnuje změny v buněčné fyziologii. Ukázalo se, že pro vývoj maligního nádoru musí v buňce proběhnout několik fyziologických změn, které vedou k potlačení protirakovinných obranných mechanismů. Mezi tyto změny společné pro všechny typy nádorů patří: poškození apoptózy, neomezený replikační potenciál, posílená angiogeneze, tvorba metastáz, nestabilita genomu, soběstačnost v produkci růstových signálů a necitlivost k signálům zastavujícím buněčný cyklus (obrázek č. 1). Vzhledem k množství druhů maligních nádorů, závisí jejich tvorba na tom, kolik změn proběhne, v jakém pořadí a na konkrétních genech, které jsou zasaženy (Hanahan a Weineberg, 2000). Cílem této kapitoly bylo uvědomit si, že vznik nádoru není důsledkem jednoho zásahu, ale jedná se o více zásahů, které společně umožňují vznik nádoru. 2

15 Obrázek č. 1. Přehled změn v buněčné fyziologii, nezbytných pro vývoj maligního nádoru (převzato a upraveno dle Hanahan a Weineberg, 2000). 1.2 Protein p53 jako nádorový supresor Nádorové supresory patří do široké skupiny molekul, jejichž primární funkcí je kontrola buněčného dělení, aktivace apoptózy a potlačení tvorby metastáz. Ztrátou některé z těchto funkcí nádorového supresoru, ať už vlivem mutace nebo poškození, může dojít ke vzniku rakoviny. Nejvýznamnějším proteinem, účastnícím se boje proti vzniku rakoviny je protein p53. Od objevu proteinu p53 uběhlo již 33 let. Zpočátku byly tomuto proteinu přisuzovány vlastnosti nádorového antigenu, a to díky jeho schopnosti interagovat s virovým SV40 T-antigenem a díky vysokým hladinám tohoto proteinu detekovaným v nádorových buňkách (Lane a Crawford, 1979; Linzer a Levine, 1979; Kress et al., 1979). Četné pokusy na myších vedly v průběhu 80. let k poznání, že p53 funguje jako pozitivní regulátor buněčné proliferace. S označením p53 jako onkogenu byly spojeny pokusy, zaměřené na kotransfekci myší p53 cdna s plazmidy kódujícími aktivovaný Ras 3

16 onkogen. Výsledkem těchto pokusů byla buněčná transformace, podobná transformaci vyvolané protoonkogeny myc či E1A (Eliyahu et al., 1984, Prada et al., 1984). Koncem 80. let již bylo jasné, že cdna klony p53, které způsobovaly buněčnou transformaci, obsahovaly ve své struktuře mutaci, a že cdna klony wtp53 zabraňují transformaci způsobené onkogeny. Z tohoto důvodu byl protein p53 zařazen do rodiny nádorových supresorů (Finlay et al., 1989). Protein p53 hraje klíčovou roli v boji proti vzniku nádorů a je právem označován jako strážce genomu (Lane, 1992). V roce 1993 byl p53 zvolen molekulou roku (Koshland, 1993). Protein p53 je exprimován v normálních buňkách a je lokalizován v jádře. Tato lokalizace je důležitá pro schopnost odpovědi na podněty, navozující genotoxický stres (Okorokov et al., 2002). Jako nádorový supresor je středem signálních drah, které zajišťují kontrolu buněčného cyklu a integritu lidského genomu (shrnuto v Joerger a Fersht, 2010). Kromě schopnosti zastavovat buněčný cyklus a indukovat apoptózu, jako odpověď na různé druhy buněčného stresu, účastní se p53 dalších procesů, jako jsou reparace DNA, diferenciace a senescence (shrnuto v Colleen et al., 2010). Funkce nádorových supresorů je podmíněna schopností interagovat s DNA. P53 se váže na oblasti DNA označované jako responzivní elementy (RE) a tím způsobuje zvýšení či snížení transkripční aktivity genu, na kterém se daný RE nachází (el-deiry et al., 1992; Funk et al., 1992). 1.3 Gen TP53 a jeho mutace TP53 je gen, kódující fosfoprotein o velikosti 53 kda. Je lokalizován na 17. chromozomu a obsahuje 11 exonů, z nichž první se neexprimuje. Spolu s TP73 a TP63 patří do rodiny vysoce konzervovaných genů (Guimaraes a Hainaut, 2002). V obranné protirakovinné funkci má tento gen významné postavení a jeho mutace se odráží v poškození nádorové supresorové funkce proteinu p53. U lidských nádorů se mutace v genu TP53 vyskytují ve více jak 50%. Největší část tvoří bodové mutace měnící smysl kodonu, jejichž výsledkem je substituce jedné aminokyseliny za jinou. Nejvíce mutací se nachází na DNA-vazebné doméně p53, což může výrazně ovlivňovat vazbu proteinu na DNA (Guimaraes a Hainaut, 2002). 4

17 Mezi další změny vedoucí k inaktivaci TP53 patří ztráta alel nebo inaktivace genu virovými či buněčnými proteiny. Mutace genu TP53 můžeme rozdělit na somatické a zárodečné. K tomu, aby se mutace uplatnila při tvorbě nádoru, musí proběhnout inaktivace obou alel daného genu. Proto jsou somatické a zárodečné mutace doprovázeny ztrátou heterozygotnosti během nádorové progrese (shrnuto v Brosh a Rotter 2009). Druhou možností je dělit mutace TP53 podle jejich vlivu na termodynamickou stabilitu proteinu p53. Vzniklé mutantní formy p53 můžeme rozdělit na kontaktní a konformační mutanty. Důsledkem těchto mutací jsou poruchy schopnosti p53 sekvenčně specificky se vázat na DNA (Joerger a Fersht, 2007; Bullock a Fersht, 2001). Četnost a distribuce mutací p53 je zobrazena na obrázku č. 2. Dědičnost mutantní formy TP53, vede k predispozicím vzniku rakoviny, konkrétně rakoviny prsu, mozku a kůry nadledvinek. Tato familiární dědičnost predispozice různých druhů rakoviny je označována jako Li-Fraumeniho (LFS) a Li-Fraumeniho-like (LFL) syndrom (Li et al., 1988, Olivier et al., 2003). LFS je vzácný druh autozomálně-dominantní poruchy. Postižené rodiny vykazují vysokou incidenci při vzniku rakoviny. Zatímco somatické mutace se vyskytují téměř v každém typu rakoviny, pro LFS jsou charakteristické zárodečné mutace v jedné z alel, kódujících p53 (Levine et al., 1991, Brosh a Rotter 2009). Obrázek č. 2. Četnost a distribuce mutací p53 (převzato a upraveno dle Bullock a Fersht, 2001). Římské číslice označují vysoce evolučně konzervované sekvence proteinu p53. Histogram mutací měnících smysl kodonu ukazuje, že 97% mutací se vyskytuje v DNA-vazebné 5

18 doméně. Nejčastěji frekventovaná místa mutací jsou označována jako hotspots (R175, G245, R248, R249, R273, R282). 1.4 Obecná charakteristika struktury proteinu p53 Protein se skládá celkem z 393 aminokyselin, které jsou uspořádány do čtyř hlavních domén (obrázek č. 3). Na N-terminálním konci se nachází transaktivační doména (TAD), která je zodpovědná za transkripční aktivitu tohoto proteinu. Umožňuje regulaci exprese cílových genů, ať už přímou vazbou na koaktivátory transkripce, či vazbu na komponenty bazální transkripce (shrnuto v Millau et al. 2010). Zároveň je TAD místem, kde se odehrávají četné posttranslační modifikace a interakce negativních regulátorů, jakými jsou např. MDM2, MDM4. TAD se dále dělí na tři části, kterými jsou TAD1, TAD2 a doména bohatá na prolin. (shrnuto v Joerger a Fersht, 2010). Doména bohatá na prolin obsahuje pět kopií PXXP, kde X představuje libovolnou aminokyselinu. Ukázalo se, že její přítomnost je nezbytná pro účinnou supresi buněčného růstu a je klíčová při apoptóze zprostředkované proteinem p53 (Baptiste et al., 2002; Zhu et al., 1999). Tato doména je zároveň zahrnuta do odpovědi na poškození buňky, díky zprostředkování vazby p53 na F-aktin v jaderné matrix (Okorokov et al., 2002). Další součástí domény bohaté na prolin je negativní regulační doména, která snižuje vazebné schopnosti p53 vůči DNA (Müller-Tiemann et al., 1998). DNA vazebná doména zodpovídá za interakci p53 s DNA, jeho konformaci a vazbu zinku. Mimo jiné, umožňuje vazebná doména interakci s celou škálou proteinů a účastní se tak nádorové suprese. Příkladem mohou být proteiny z rodin ASPPs, p63 a p73, které jsou zahrnuty do procesu apoptózy (shrnuto v Millau et al., 2010). Poslední část proteinu p53 tvoří C-terminální oblast. Je složená z oligomerizační domény a bazické domény. Oligomerizační doména umožňuje p53 tvorbu dimerů při kotranslačních procesech a následně tvorbu tetramerů v posttranslačních procesech (Nicholls et al. 2002). Také je zde přítomná sekvence aminokyselin tvořících NES (Nuclear Export Signal), která řídí přesun proteinu z jádra do cytoplazmy. Na bazické doméně se potom nachází několik sekvencí NLS (Nuclear Localization Signal), jejichž úkolem je naopak zprostředkovat migraci proteinu z cytoplazmy do jádra. Nachází se zde také druhá negativní autoregulační doména (Shaulsky et al., 1990). Kromě toho umožňuje 6

19 bazická doména i sekvenčně nespecifickou vazbu proteinu na DNA (Wang et al., 1993). Obrázek č. 3. Struktura proteinu p53 (převzato a upraveno dle Millau et al. 2010). 1.5 Transkripční aktivita p53 Jako transkripční faktor koordinuje wtp53 buněčnou odpověď na stresové podněty a poškození DNA prostřednictvím iniciace transkripce cílových genů. Výsledkem je především zástava buněčného cyklu, oprava DNA nebo apoptóza (Horvath et al., 2007). Transkripční aktivita p53 je podnícena přímou vazbou proteinu na DNA, do oblastí RE. Tyto oblasti jsou charakteristické tím, že obsahují dvojici invertních pentamerních sekvencí, zpravidla se vyskytujících v tandemech nebo s rozestupem 0-13 bp. RE se nachází v oblasti promotorů nebo prvních intronů efektorových genů (shrnuto v Millau et al. 2010). P53 rozpoznává a váže se na RE ve formě tetramerů. Tvorba tetramerů je umožněna díky oligomerizační doméně na C-terminálním konci proteinu. Tetramery jsou složeny z dvojice symetrických dimerů, z nichž všechny čtyři podjednotky jsou geometricky ekvivalentní (Mc Lure a Lee, 1998). Po rozpoznání a navázání tetrameru na RE dochází k regulaci genové exprese interakcí s bazálním transkripčním faktorem TFIID nebo interakcí transkripčních koaktivátorů, jako jsou p300 a CBP. Vazbou tetrameru na DNA může p53 regulovat transkripci cílových genů také nepřímo, tvorbou komplexů s jinými transkripčními faktory. Příkladem může být Sp1 (Specifity Protein 1), který jakožto transkripční faktor hraje významnou roli v regulaci důležitých biologických procesů kontrolovaných proteinem p53 prostřednictvím genu p21. Expresí genu p21 vzniká stejnojmenný protein, který je zahrnutý do progrese buněčného cyklu v savčích buňkách (shrnuto v Millau et al. 2010; Koutsondotis et al., 2001). 7

20 1.5.1 Regulace p53 na úrovni mrna První stupeň v regulaci p53 tvoří změny, odehrávající se na úrovni mrna. Transkripce genu TP53 může být iniciována jak z promotoru přítomného na prvním exonu, tak z interního promotoru nacházejícího se na intronu č. 4. Kombinací alternativního sestřihu intronů 2 a 9 společně s využitím interního promotoru na intronu č. 4 a alternativní iniciace translace, můžeme rozlišit až 9 různých izoforem p53. Alternativním sestřihem C-konce vznikají 3 izoformy: p53, p53β a p53γ. Využití alternativního promotoru vede ke vzniku izoforem se zkrácenou N-terminální částí (obrázek č. 4) (Bourdon et al., 2005). Obrázek č. 4. Schéma lidského TP53 a izoforem p53. (A) Schéma genu, kódujícího p53 u lidí. (B) Schéma izoforem p53 teoreticky kódovaných lidským TP53 (převzato a upraveno dle Bourdon et al., 2005). Izoforma p53i9 (p53β) vzniká alternativním sestřihem intronu 9. Na rozdíl od fulllength p53 se tato izoforma skládá pouze z 341 aminokyselin. In vitro se p53i9 není schopný vázat na DNA a in vivo vykazuje defekt v transkripční aktivitě. Příčinou těchto 8

21 defektů je ztráta části oligomerizační domény na C-terminální části, a tím pádem neschopnost p53 tvořit tetramery a vázat se na DNA (Murray-Zmijewski et al., 2006). Druhá izoforma zvaná p47 vzniká buď alternativním sestřihem 2. intronu nebo alternativní iniciací translace. Na rozdíl od p53i9 je p47 zkrácený o prvních 40 aminokyselin v N-terminální části proteinu. Vzhledem k tomu, že p47 obsahuje velkou část transaktivační domény, může po transfekci aktivovat genovou expresi prostřednictvím sekundární transaktivační domény. Kromě toho může p47 vykazovat dominantně negativní efekt vůči wtp53, jehož důsledkem je inhibice transkripční aktivity a p53-zprostředkované apoptózy. Ukázalo se také, že p47 může modifikovat buněčnou lokalizaci p53 a tím inhibovat jeho degradaci pomocí MDM2 (Bourdon et al., 2005) Buněčná lokalizace a regulace hladiny p53 Buněčná lokalizace je dalším z faktorů významně se podílejících na regulaci transkripční aktivity p53. Nově vzniklý p53 se během G1 fáze buněčného cyklu akumuluje v cytoplazmě. Na přelomu G1/S fáze vstupuje do jádra a v S fázi se vrací opět do cytoplazmy. Protože primárně vystupuje p53 jako transkripční faktor, přispívá jeho snížená koncentrace v jádře ke snížení transkripční aktivity. Jedním z hlavních mechanismů, které zprostředkovávají přesun p53 z jádra do cytoplazmy a naopak, je ubiquitinace zprostředkovaná proteinem MDM2 (Shaulsky et al., 1990; Moll et al., 1996). Tento mechanismus hraje ústřední roli v odpovědi buňky na různé druhy buněčného stresu. Kromě MDM2 je kontrola stability a aktivity proteinu p53 zprostředkována ještě dalším proteinem (MDM4). Hlavní úlohou těchto proteinů je kontrolovat hladinu p53 a v případě zvýšené hladiny proteinu, zprostředkovat jeho degradaci na proteozomu (Goh et al., 2010). Pokud buňka nečelí stresové situaci, váže se MDM2 na transaktivační doménu proteinu p53. Tato vazba způsobí utlumení transkripční aktivity p53 zablokováním vazebného místa pro koaktivátory transkripce. Druhou vlastností MDM2 je její ubiquitin ligázová aktivita, způsobující ubiquitinaci zbytků lysinu na C-terminálním konci proteinu, což má za následek následné navození jeho degradace na proteozomu. 9

22 Buněčný stres způsobí aktivaci příslušných kináz, které zahajují fosforylaci zbytků serinu a threoninu na transaktivační doméně. Modifikace způsobené fosforylací, snižují schopnost vazby MDM2 k transaktivační doméně p53. Schopnost specifické vazby MDM2 utlumují také modifikace v doméně bohaté na prolin. Snížení vazebné schopnosti MDM2 vede k akumulaci p53, aby se následně mohly tvořit tetramery. Vznik tetramerů maskuje signály, jejichž úkolem je řídit přesun p53 z jádra do cytoplazmy. Výsledkem je tendence tetramerů zůstat v jádře. Nicméně studie ukázaly, že zlomek molekul p53 může zůstat v cytoplazmě, kde se účastní procesů apoptózy (shrnuto v Toledo a Wahl, 2006). Druhou molekulou spojenou s regulací p53 je MDM4, známý také jako MDMX. Tento protein je strukturou podobný MDM2, zejména v oblasti p53-vazebné domény. Díky této podobnosti je schopen MDM4 vázat se přímo na p53, avšak na rozdíl od MDM2 není schopen zprostředkovat ubiquitinaci. Při zvýšené expresi inhibuje MDM4 degradaci p53 zprostředkovanou MDM2 soupeřením o vazebné místo na p53. Další schopností MDM4 je stabilizace MDM2 prostřednictvím tvorby heterodimeru. Tento komplex zabraňuje vlastní ubiquitinaci MDM2 a zvyšuje schopnost ubiquitinace p53. (Shvarts et al., 1996; Gu et al., 2002). Kromě interakce MDM2 s wtp53, interaguje tento protein také s mutp53. Interakce MDM2 s mutp53 se liší od interakce s wtp53 v tom ohledu, že mutp53 postrádá schopnost aktivovat MDM2. Z tohoto důvodu může být v buňce nedostatečné množství proteinu MDM2, který by zajistil snížení hladiny mutp53 (Terzian et al., 2008). Zjednodušeně je působení negativních regulátorů znázorněno na obrázku č

23 Obrázek č. 5. Znázornění rozdílů v regulaci wild-type a mutantní formy p53. Za normálních podmínek je hladina p53 držena pomocí MDM2 a MDM4 na nízkých hodnotách. Buněčný stres či aktivace onkogenů mají za následek zvýšení hladiny wtp53 a mutp53. Vzniklý tetramer se poté váže na DNA a umožňuje transkripci cílového genu. Zároveň zvýšená exprese MDM2 obnovuje původní hladinu p53. Mutantní p53 není schopná této negativní regulace a může tak inhibovat wtp53, p63, p73 či jiné proteiny (převzato a upraveno podle Goh et al., 2010) Posttranslační modifikace wtp53 Jako posttranslační modifikace označujeme kovalentní adici funkčních skupin k proteinu vzniklého translací. Mezi nejdůležitější modifikace p53 patří fosforylace a acetylace zbytků serinu a threoninu (Bode a Dong, 2004). Velké množství serinových a threoninových zbytků se nachází na transaktivační doméně N-terminálního konce p53 a v C-terminální části. Fosforylace umožňuje regulaci biologické aktivity stovek proteinů. Je zprostředkována proteinkinázami, mezi které patří např. ATM, ATR, CHK1, CHK2, MAPK a CK1. Uvedené kinázy jsou aktivovány při poškození DNA nebo následkem působení jiného stresového signálu. Výsledkem je zvýšení stability proteinu a tím pádem zvýšení jeho funkčnosti nebo ovlivnění schopnosti p53 vázat se na cílové sekvence v genomu (shrnuto v Olsson et al., 2007). Hlavním místem kde se odehrávají fosforylace, ovlivňující transkripční aktivitu p53, jsou zbytky aminokyselin Ser15, Thr18 a Ser20. Tyto aminokyseliny se nachází se na transaktivační doméně N-terminálního konce v blízkosti nebo přímo v oblastech, kde se k p53 váže MDM2. Konkrétně je fosforylace Ser15 spojená s transaktivací závislou na p53, zástavou buněčného cyklu a apoptózou, které jsou odpovědí na poškození DNA. Fosforylace Ser20 a Thr18 ovlivňují interakci mezi p53 a MDM2 tím způsobem, že zabraňují ubiquitinaci p53. Specifická vazba p53 k promotoru p53aip1 a následná indukce apoptózy je způsobena fosforylací Ser46 (Bode a Dong, 2004; Apella a Anderson, 2001; Oda et al., 2000). Mezi další významné posttranslační modifikace patří acetylace. Acetylovány jsou především zbytky lysinu za účasti různých acetyltransferáz. Na rozdíl od fosforylací, probíhají acetylace na C-terminálním konci proteinu. Acetylace zbytků Lys370, 372, 373, 381, 382 je zajištěná heterodimery CBP/p300. Naproti tomu, Lys305 a Lys320, nacházející se v jaderné lokalizační doméně C-konce, jsou acetylovány pomocí PCAF a p

Beličková 1, J Veselá 1, E Stará 1, Z Zemanová 2, A Jonášová 2, J Čermák 1

Beličková 1, J Veselá 1, E Stará 1, Z Zemanová 2, A Jonášová 2, J Čermák 1 Beličková 1, J Veselá 1, E Stará 1, Z Zemanová 2, A Jonášová 2, J Čermák 1 1 Ústav hematologie a krevní transfuze, Praha 2 Všeobecná fakultní nemocnice, Praha MDS Myelodysplastický syndrom (MDS) je heterogenní

Více

Interakce proteinu p53 s genomovou DNA v kontextu chromatinu glioblastoma buněk

Interakce proteinu p53 s genomovou DNA v kontextu chromatinu glioblastoma buněk MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fakulta Ústav experimentální biologie Oddělení genetiky a molekulární biologie Interakce proteinu p53 s genomovou DNA v kontextu chromatinu glioblastoma buněk

Více

Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno

Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno Brno, 17.5.2011 Izidor (Easy Door) Osnova přednášky 1. Proč nás rakovina tolik zajímá?

Více

VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ

VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ REGULACE APOPTÓZY 1 VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ Příklad: Regulace apoptózy: protein p53 je klíčová molekula regulace buněčného cyklu a regulace apoptózy Onemocnění: více než polovina (70-75%) nádorů

Více

PREZENTACE ANTIGENU A REGULACE NA ÚROVNI Th (A DALŠÍCH) LYMFOCYTŮ PREZENTACE ANTIGENU

PREZENTACE ANTIGENU A REGULACE NA ÚROVNI Th (A DALŠÍCH) LYMFOCYTŮ PREZENTACE ANTIGENU PREZENTACE ANTIGENU A REGULACE NA ÚROVNI Th (A DALŠÍCH) LYMFOCYTŮ PREZENTACE ANTIGENU Podstata prezentace antigenu (MHC restrikce) byla objevena v roce 1974 V současnosti je zřejmé, že to je jeden z klíčových

Více

Elementy signálních drah. cíle protinádorové terapie

Elementy signálních drah. cíle protinádorové terapie Elementy signálních drah cíle protinádorové terapie Martin Pešta, Ondřej Topolčan Department of Internal Medicine II, Faculty of Medicine in Pilsen, Charles University in Prague, Czech Republic Cílená

Více

Mgr. Veronika Peňásová vpenasova@fnbrno.cz Laboratoř molekulární diagnostiky, OLG FN Brno Klinika dětské onkologie, FN Brno

Mgr. Veronika Peňásová vpenasova@fnbrno.cz Laboratoř molekulární diagnostiky, OLG FN Brno Klinika dětské onkologie, FN Brno Retinoblastom Mgr. Veronika Peňásová vpenasova@fnbrno.cz Laboratoř molekulární diagnostiky, OLG FN Brno Klinika dětské onkologie, FN Brno Retinoblastom (RBL) zhoubný nádor oka, pocházející z primitivních

Více

Biomarkery - diagnostika a prognóza nádorových onemocnění

Biomarkery - diagnostika a prognóza nádorových onemocnění Biomarkery - diagnostika a prognóza nádorových onemocnění O. Topolčan,M.Pesta, J.Kinkorova, R. Fuchsová Fakultní nemocnice a Lékařská fakulta Plzeň CZ.1.07/2.3.00/20.0040 a IVMZČR Témata přednášky Přepdpoklady

Více

Výuka genetiky na PřF OU K. MALACHOVÁ

Výuka genetiky na PřF OU K. MALACHOVÁ Výuka genetiky na PřF OU K. MALACHOVÁ KATEDRA BIOLOGIE A EKOLOGIE BAKALÁŘSKÉ STUDIJNÍ PROGRAMY Experimentální Systematická Aplikovaná (prezenční, kombinovaná) Jednooborová Dvouoborová KATEDRA BIOLOGIE

Více

DUM č. 10 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

DUM č. 10 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika projekt GML Brno Docens DUM č. 10 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 26.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Procesy následující bezprostředně po transkripci.

Více

MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA

MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV BIOCHEMIE VLIV STRUKTURY MUTANTNÍCH PROTEINŮ P53 NA ONKOGENNÍ CHOVÁNÍ IN VIVO Bakalářská práce Alena Polášková Vedoucí práce: Mgr. Marie Brázdová PhD.

Více

Interakce různých forem proteinu p53 s p73 izoformami

Interakce různých forem proteinu p53 s p73 izoformami Masarykova univerzita v Brně Přírodovědecká fakulta katedra biochemie Interakce různých forem proteinu p53 s p73 izoformami Diplomová práce Brno 2006 Martin Klepárník Prohlašuji, že jsem tuto diplomovou

Více

VZTAH DÁRCE A PŘÍJEMCE

VZTAH DÁRCE A PŘÍJEMCE TRANSPLANTAČNÍ IMUNITA Transplantace je přenos buněk, tkáně nebo orgánu z jedné části těla na jinou nebo z jednoho jedince na jiného. Transplantační reakce je dána genetickými rozdíly mezi dárcem a příjemcem.

Více

RNA interference (RNAi)

RNA interference (RNAi) Liběchov, 29. 11. 2013 RNA interference (RNAi) post-transkripční umlčení genové exprese přirozený mechanismus regulace genové exprese a genomové stability obranný antivirový mechanismus konzervovaný mechanismus

Více

Stárnutí organismu Fyziologické hodnoty odchylky během stárnutí

Stárnutí organismu Fyziologické hodnoty odchylky během stárnutí Stárnutí organismu Stárnutí organismu Fyziologické hodnoty odchylky během stárnutí poklesy funkcí se liší mezi orgánovými systémy Některé projevy stárnutí ovlivňuje výživa Diagnostické metody odlišují

Více

UPOZORNĚNÍ PRO STUDENTY

UPOZORNĚNÍ PRO STUDENTY UPOZORNĚNÍ PRO STUDENTY Abychom vyhověli žádostem zřad studentů, předkládáme textovou část prezentací vybraných přednášek z patologie pro usnadnění orientace v přednášené látce. Nejedná se v žádném ohledu

Více

Pavlína Tinavská Laboratoř imunologie, Nemocnice České Budějovice

Pavlína Tinavská Laboratoř imunologie, Nemocnice České Budějovice Pavlína Tinavská Laboratoř imunologie, Nemocnice České Budějovice nízce agresivní lymfoproliferativní onemocnění základem je proliferace a akumulace klonálních maligně transformovaných vyzrálých B lymfocytů

Více

Opatření děkana č. 1/2012 Pokyny pro vypracování bakalářských, diplomových a rigorózních prací na Přírodovědecké fakultě MU

Opatření děkana č. 1/2012 Pokyny pro vypracování bakalářských, diplomových a rigorózních prací na Přírodovědecké fakultě MU Opatření děkana č. 1/2012 Pokyny pro vypracování bakalářských, diplomových a rigorózních prací na Přírodovědecké fakultě MU Bakalářské, diplomové a rigorózní práce odevzdávané k obhajobě na Přírodovědecké

Více

DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika projekt GML Brno Docens DUM č. 3 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 02.06.2014 Ročník: 6AF, 6BF Anotace DUMu: chromatin - stavba, organizace a struktura

Více

Veronika Janů Šárka Kopelentová Petr Kučera. Oddělení alergologie a klinické imunologie FNKV Praha

Veronika Janů Šárka Kopelentová Petr Kučera. Oddělení alergologie a klinické imunologie FNKV Praha Veronika Janů Šárka Kopelentová Petr Kučera Oddělení alergologie a klinické imunologie FNKV Praha interakce antigenu s protilátkou probíhá pouze v místech epitopů Jeden antigen může na svém povrchu nést

Více

doc. RNDr. Milan Bartoš, Ph.D.

doc. RNDr. Milan Bartoš, Ph.D. doc. RNDr. Milan Bartoš, Ph.D. Konference Klonování a geneticky modifikované organismy Parlament České republiky, Poslanecká sněmovna 7. května 2015, Praha Výroba léků rekombinantních léčiv Výroba diagnostických

Více

Zhoubné nádory druhá nejčastější příčina úmrtí v rozvinutých zemích. Imunologické a genetické metody: Zlepšování dg. Zlepšování prognostiky

Zhoubné nádory druhá nejčastější příčina úmrtí v rozvinutých zemích. Imunologické a genetické metody: Zlepšování dg. Zlepšování prognostiky NÁDOROVÁ IMUNOLOGIE Zhoubné nádory druhá nejčastější příčina úmrtí v rozvinutých zemích. Imunologické a genetické metody: Zlepšování dg. Zlepšování prognostiky NÁDOROVÁ IMUNOLOGIE Vztahy mezi imunitním

Více

HD - Huntingtonova chorea. monogenní choroba HDF (CAG) 6-35 (CAG) 36-100+ čistě genetická choroba?

HD - Huntingtonova chorea. monogenní choroba HDF (CAG) 6-35 (CAG) 36-100+ čistě genetická choroba? HD - Huntingtonova chorea monogenní choroba HD 4 HDF (CAG) 6-35 (CAG) 36-100+ čistě genetická choroba? 0% geny 100% podíl genů a prostředí na rozvoji chorob 0% prostředí 100% F8 - hemofilie A monogenní

Více

Možnosti využití technologie DNA microarrays v predikci odpovědi na neoadjuvantní terapii u pacientů s karcinomem jícnu

Možnosti využití technologie DNA microarrays v predikci odpovědi na neoadjuvantní terapii u pacientů s karcinomem jícnu Možnosti využití technologie DNA microarrays v predikci odpovědi na neoadjuvantní terapii u pacientů s karcinomem jícnu Srovnal J. 1, Cincibuch J. 2, Cwierkta K. 2, Melichar B. 2, Aujeský R. 3, Vrba R.

Více

Cytomegalovirus a nádory mozku. Seminář VIDIA SZÚ 26.5.2014

Cytomegalovirus a nádory mozku. Seminář VIDIA SZÚ 26.5.2014 Cytomegalovirus a nádory mozku Seminář VIDIA SZÚ 26.5.2014 Lidské onkogenní viry Modifikovaná kritéria pro Kochovy postuláty pro lidské nádorové viry splňují: Virus Epsteina-Barrové (EBV) Virus hepatitidy

Více

Návrh směrnic pro správnou laboratorní diagnostiku Friedreichovy ataxie.

Návrh směrnic pro správnou laboratorní diagnostiku Friedreichovy ataxie. Návrh směrnic pro správnou laboratorní diagnostiku Friedreichovy ataxie. Připravila L.Fajkusová Online Mendelian Inheritance in Man: #229300 FRIEDREICH ATAXIA 1; FRDA *606829 FRDA GENE; FRDA Popis onemocnění

Více

Eva Benešová. Dýchací řetězec

Eva Benešová. Dýchací řetězec Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ

Více

Progrese HIV infekce z pohledu laboratorní imunologie

Progrese HIV infekce z pohledu laboratorní imunologie Progrese HIV infekce z pohledu laboratorní imunologie 1 Lochmanová A., 2 Olbrechtová L., 2 Kolčáková J., 2 Zjevíková A. 1 OIA ZÚ Ostrava 2 klinika infekčních nemocí, FN Ostrava HIV infekce onemocnění s

Více

Fyziologická regulační medicína

Fyziologická regulační medicína Fyziologická regulační medicína Otevírá nové obzory v medicíně! Pacienti hledající dlouhodobou léčbu bez nežádoucích účinků mohou být nyní uspokojeni! 1 FRM italská skupina Zakladatelé GUNY 2 GUNA-METODA

Více

Degenerace genetického kódu

Degenerace genetického kódu AJ: degeneracy x degeneration CJ: degenerace x degenerace Degenerace genetického kódu Genetický kód je degenerovaný, resp. redundantní, což znamená, že dva či více kodonů může kódovat jednu a tutéž aminokyselinu.

Více

Molekulární diagnostika

Molekulární diagnostika Molekulární diagnostika Odry 11. 11. 2010 Michal Pohludka, Ph.D. Buňka základní jednotka živé hmoty Všechny v současnosti známé buňky se vyvinuly ze společného předka, tedy buňky, která žila asi před 3,5-3,8

Více

PROTOKOL WESTERN BLOT

PROTOKOL WESTERN BLOT WESTERN BLOT 1. PŘÍPRAVA ELEKTROFORETICKÉ APARATURY Saponátem a vodou se důkladně umyjí skla, plastové vložky a hřebínek, poté se důkladně opláchnou deionizovanou/destilovanou vodou a etanolem a nechají

Více

Léčba MM: pohled za horizont Přehled molekulárních mechanismů potenciálních nových léků v léčbě MM

Léčba MM: pohled za horizont Přehled molekulárních mechanismů potenciálních nových léků v léčbě MM Léčba MM: pohled za horizont Přehled molekulárních mechanismů potenciálních nových léků v léčbě MM RNDr. Sabina Ševčíková, Ph.D. Babákova myelomová skupina při ÚPF, LF MU Tato prezentace vznikla za finanční

Více

Mutace s dobrou prognózou, mutace se špatnou prognózou omezené možnosti biologické léčby pro onkologické pacienty

Mutace s dobrou prognózou, mutace se špatnou prognózou omezené možnosti biologické léčby pro onkologické pacienty Mutace s dobrou prognózou, mutace se špatnou prognózou omezené možnosti biologické léčby pro onkologické pacienty J.Berkovcová, M.Dziechciarková, M.Staňková, A.Janošťáková, D.Dvořáková, M.Hajdúch Laboratoř

Více

DIAGNOSTICKÝ KIT PRO DETEKCI MINIMÁLNÍ REZIDUÁLNÍ CHOROBY U KOLOREKTÁLNÍHO KARCINOMU

DIAGNOSTICKÝ KIT PRO DETEKCI MINIMÁLNÍ REZIDUÁLNÍ CHOROBY U KOLOREKTÁLNÍHO KARCINOMU Úvod IntellMed, s.r.o., Václavské náměstí 820/41, 110 00 Praha 1 DIAGNOSTICKÝ KIT PRO DETEKCI MINIMÁLNÍ REZIDUÁLNÍ CHOROBY U KOLOREKTÁLNÍHO KARCINOMU Jednou z nejvhodnějších metod pro detekci minimální

Více

Projekt realizovaný na SPŠ Nové Město nad Metují

Projekt realizovaný na SPŠ Nové Město nad Metují Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty Hana Gajdušková 1 Viry

Více

DIAGNOSTICKÝ KIT PRO DETEKCI MINIMÁLNÍ REZIDUÁLNÍ CHOROBY U KARCINOMU PANKREATU

DIAGNOSTICKÝ KIT PRO DETEKCI MINIMÁLNÍ REZIDUÁLNÍ CHOROBY U KARCINOMU PANKREATU Úvod IntellMed, s.r.o., Václavské náměstí 820/41, 110 00 Praha 1 DIAGNOSTICKÝ KIT PRO DETEKCI MINIMÁLNÍ REZIDUÁLNÍ CHOROBY U KARCINOMU PANKREATU Jednou z nejvhodnějších metod pro detekci minimální reziduální

Více

Vakcíny z nádorových buněk

Vakcíny z nádorových buněk Protinádorové terapeutické vakcíny Vakcíny z nádorových buněk V. Vonka, ÚHKT, Praha Výhody vakcín z nádorových buněk 1.Nabízejí imunitnímu systému pacienta celé spektrum nádorových antigenů. 2. Jejich

Více

Sylabus pro předmět Biochemie pro jakost

Sylabus pro předmět Biochemie pro jakost Sylabus pro předmět Biochemie pro jakost Kód předmětu: BCHJ Název v jazyce výuky: Biochemie pro Jakost Název česky: Biochemie pro Jakost Název anglicky: Biochemistry Počet přidělených ECTS kreditů: 6 Forma

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním

Více

Modul obecné onkochirurgie

Modul obecné onkochirurgie Modul obecné onkochirurgie 1. Principy kancerogeneze, genetické a epigenetické faktory 2. Onkogeny, antionkogeny, reparační geny, instabilita nádorového genomu 3. Nádorová proliferace a apoptóza, důsledky

Více

Inovace profesní přípravy budoucích učitelů chemie

Inovace profesní přípravy budoucích učitelů chemie Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku

5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku 5. Příjem, asimilace a fyziologické dopady anorganického dusíku Zdroje dusíku dostupné v půdě: Amonné ionty + Dusičnany = největší zdroj dusíku v půdě Organický dusík (aminokyseliny, aminy, ureidy) zpracování

Více

Genetika. Genetika. Nauka o dědid. dičnosti a proměnlivosti. molekulárn. rní buněk organismů populací

Genetika. Genetika. Nauka o dědid. dičnosti a proměnlivosti. molekulárn. rní buněk organismů populací Genetika Nauka o dědid dičnosti a proměnlivosti Genetika molekulárn rní buněk organismů populací Dědičnost na úrovni nukleových kyselin Předávání vloh z buňky na buňku Předávání vlastností mezi jednotlivci

Více

Přínos molekulární genetiky pro diagnostiku a terapii malignit GIT v posledních 10 letech

Přínos molekulární genetiky pro diagnostiku a terapii malignit GIT v posledních 10 letech Přínos molekulární genetiky pro diagnostiku a terapii malignit GIT v posledních 10 letech Minárik M. Centrum aplikované genomiky solidních nádorů (CEGES), Genomac výzkumný ústav, Praha XXIV. JARNÍ SETKÁNÍ

Více

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_CHE_419 Jméno autora: Třída/ročník: Mgr. Alena

Více

Změny genomu a jeho exprese u chronické lymfocytární leukémie

Změny genomu a jeho exprese u chronické lymfocytární leukémie Změny genomu a jeho exprese u chronické lymfocytární leukémie Šárka Pospíšilová Centrum molekulární biologie a genové terapie Interní hematoonkologická klinika LF MU a FN Brno Konference DNA Analýza V,

Více

cílem mnoha terapií je dostatečně zvýšit hladinu dystrofinu a změnit DMD fenotyp na BMD

cílem mnoha terapií je dostatečně zvýšit hladinu dystrofinu a změnit DMD fenotyp na BMD Shrnutí webináře Dystrofin 101: vše, co jste kdy chtěli vědět o dystrofinu (a nebáli jste se zeptat) Francesco Muntoni (University College of London), John Porter (PPMD) Dystrofinopatie: DMD versus BMD

Více

Lékařská genetika a onkologie. Renata Gaillyová OLG a LF MU Brno 2012/2013

Lékařská genetika a onkologie. Renata Gaillyová OLG a LF MU Brno 2012/2013 Lékařská genetika a onkologie Renata Gaillyová OLG a LF MU Brno 2012/2013 *genetické souvislosti *onkogenetická vyšetření u onkologických onemocnění * genetické vyšetření u hereditárních nádorů *presymptomatické

Více

Diagnostika genetických změn u papilárního karcinomu štítné žlázy

Diagnostika genetických změn u papilárního karcinomu štítné žlázy Diagnostika genetických změn u papilárního karcinomu štítné žlázy Vlasta Sýkorová Oddělení molekulární endokrinologie Endokrinologický ústav, Praha Nádory štítné žlázy folikulární buňka parafolikulární

Více

Biochemie. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Platnost: od 1. 9. 2009 do 31. 8.

Biochemie. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Platnost: od 1. 9. 2009 do 31. 8. Studijní obor: Aplikovaná chemie Učební osnova předmětu Biochemie Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

Urychlení úpravy krvetvorby poškozené cytostatickou terapií (5-fluorouracil a cisplatina) p.o. aplikací IMUNORu

Urychlení úpravy krvetvorby poškozené cytostatickou terapií (5-fluorouracil a cisplatina) p.o. aplikací IMUNORu Urychlení úpravy krvetvorby poškozené cytostatickou terapií (5-fluorouracil a cisplatina) p.o. aplikací IMUNORu Úvod Myelosuprese (poškození krvetvorby) patří mezi nejčastější vedlejší účinky chemoterapie.

Více

ISOLATION OF PHOSPHOPROTEOM AND ITS APPLICATION IN STUDY OF THE EFFECT OF CYTOKININ ON PLANTS

ISOLATION OF PHOSPHOPROTEOM AND ITS APPLICATION IN STUDY OF THE EFFECT OF CYTOKININ ON PLANTS ISOLATION OF PHOSPHOPROTEOM AND ITS APPLICATION IN STUDY OF THE EFFECT OF CYTOKININ ON PLANTS IZOLACE FOSFOPROTEOMU A JEHO VYUŽITÍ PŘI STUDIU ÚČINKU CYTOKININŮ NA ROSTLINU Černý M., Brzobohatý B. Department

Více

Studie zdravotního stavu dětí

Studie zdravotního stavu dětí Studie zdravotního stavu dětí z Radvanic a Bartovic Miroslav Dostál Ústav experimentální mediciny AV ČR, v.v.i., Praha 1 Zdravotní stav dětí Cíl porovnat zdravotní stav dětí žijících v Radvanicích & Bartovicích

Více

Molekulární základ dědičnosti

Molekulární základ dědičnosti Molekulární základ dědičnosti Dědičná informace je zakódována v deoxyribonukleové kyselině, která je uložena v jádře buňky v chromozómech. Zlomovým objevem pro další rozvoj molekulární genetiky bylo odhalení

Více

Nové poznatky v patofyziologii ARDS

Nové poznatky v patofyziologii ARDS Nové poznatky v patofyziologii ARDS Jan Maláska Klinika anesteziologie, resuscitace a intenzivní medicíny FN Brno a LF MU Brno 1. Akutní fáze - exudativní 2. Subakutní fáze regenerativní, proliferativní

Více

analýza dat a interpretace výsledků

analýza dat a interpretace výsledků Genetická transformace bakterií III analýza dat a interpretace výsledků Předmět: Biologie ŠVP: Prokaryotní organismy, genetika Doporučený věk žáků: 16-18 let Doba trvání: 45 minut Specifické cíle: analyzovat

Více

Sandwichová metoda. x druhů mikrokuliček rozlišených různou kombinací barev (spektrální kód)

Sandwichová metoda. x druhů mikrokuliček rozlišených různou kombinací barev (spektrální kód) Jindra Vrzalová x druhů mikrokuliček rozlišených různou kombinací barev (spektrální kód) na každém druhu je navázána molekula vázající specificky jeden analyt (protilátka, antigen, DNAsonda,,) Sandwichová

Více

PŘÍLOHA I. Page 1 of 5

PŘÍLOHA I. Page 1 of 5 PŘÍLOHA I SEZNAM NÁZVŮ, LÉKOVÁ FORMA, KONCENTRACE VETERINÁRNÍHO LÉČIVÉHO PŘÍPRAVKU, ŽIVOČIŠNÉ DRUHY, ZPŮSOB(Y) PODÁNÍ, DRŽITEL ROZHODNUTÍ O REGISTRACI V ČLENSKÝCH STÁTECH Page 1 of 5 Členský stát Žadatel

Více

Co jsou imunodeficience? Imunodeficience jsou stavy charakterizované zvýšenou náchylností k infekcím

Co jsou imunodeficience? Imunodeficience jsou stavy charakterizované zvýšenou náchylností k infekcím Imunodeficience. Co jsou imunodeficience? Imunodeficience jsou stavy charakterizované zvýšenou náchylností k infekcím Základní rozdělení imunodeficiencí Primární (obvykle vrozené) Poruchy genů kódujících

Více

CADASIL. H. Vlášková, M. Boučková Hnízdová, A. Loužecká, M. Hřebíček, R. Matěj, M. Elleder

CADASIL. H. Vlášková, M. Boučková Hnízdová, A. Loužecká, M. Hřebíček, R. Matěj, M. Elleder CADASIL analýza mutací v genu NOTCH3 H. Vlášková, M. Boučková Hnízdová, A. Loužecká, M. Hřebíček, R. Matěj, M. Elleder Ústav dědičných metabolických poruch 1. LF UK a VFN Oddělení patologie a nár. ref.

Více

Co je to genová terapie?

Co je to genová terapie? Obsah přednášky 1. Definice genové terapie 2. Typy a strategie genové terapie 3. Principy genového přenosu 4. Základní technologie genové terapie 5. Způsoby přenosu genů 6. Příklady využití genové terapie

Více

1.12.2009. Maligní nádory. Nádorová onemocnění. Protoonkogeny. Maligní nádorová onemocnění. Protoonkogeny - amplifikace sekvence DNA.

1.12.2009. Maligní nádory. Nádorová onemocnění. Protoonkogeny. Maligní nádorová onemocnění. Protoonkogeny - amplifikace sekvence DNA. NÁDORY BENIGNÍ Nádorová onemocnění rostou v původním loţisku, zachovávají charakter tkáně, ze které vznikly NÁDORY MALIGNÍ invazivní růst, poškozují strukturu a funkci tkáně, indukují vlastní angiogenezu,

Více

Aminokyseliny, proteiny, enzymologie

Aminokyseliny, proteiny, enzymologie Aminokyseliny, proteiny, enzymologie Aminokyseliny Co to je? Organické látky karboxylové kyseliny, které mají na sousedním uhlíku navázanou aminoskupinu Jak to vypadá? K čemu je to dobré? AK jsou stavební

Více

Nádorová onemocnění NÁDORY BENIGNÍ

Nádorová onemocnění NÁDORY BENIGNÍ Nádorová onemocnění NÁDORY BENIGNÍ rostou v původním ložisku, zachovávají charakter tkáně, ze které vznikly NÁDORY MALIGNÍ invazivní růst, poškozují strukturu a funkci tkáně, indukují vlastní angiogenezu,

Více

Alzheimerova choroba. senility nádoba? Helena Janíčková 8.3.2012, Krásný Ztráty

Alzheimerova choroba. senility nádoba? Helena Janíčková 8.3.2012, Krásný Ztráty Alzheimerova choroba senility nádoba? Helena Janíčková 8.3.2012, Krásný Ztráty Alzheimerova choroba senilita demence stařecká demence další typy demence... Peter Falk Charles Bronson Charlton Heston Marice

Více

Molekulární diagnostika infekční bronchitidy v České republice a na Slovensku. Richard J W Currie

Molekulární diagnostika infekční bronchitidy v České republice a na Slovensku. Richard J W Currie Molekulární diagnostika infekční bronchitidy v České republice a na Slovensku Richard J W Currie Virus infekční bronchitidy RNA (nukleová kyselina) uvnitř Proteiny (spike proteiny S1 a S2) na vnější straně

Více

SLEDOVÁNÍ VÝSKYTU GENOTOXICKÝCH LÁTEK V POVODÍ ŘEKY SVRATKY V SOUVISLOSTI S URANOVÝM PRŮMYSLEM

SLEDOVÁNÍ VÝSKYTU GENOTOXICKÝCH LÁTEK V POVODÍ ŘEKY SVRATKY V SOUVISLOSTI S URANOVÝM PRŮMYSLEM SLEDOVÁNÍ VÝSKYTU GENOTOXICKÝCH LÁTEK V POVODÍ ŘEKY SVRATKY V SOUVISLOSTI S URANOVÝM PRŮMYSLEM Jana Badurová, Hana Hudcová, Radoslava Funková, Helena Mojžíšková, Jana Svobodová Toxikologická rizika spojená

Více

Personalizovaná medicína Roche v oblasti onkologie. Olga Bálková, Roche s.r.o., Diagnostics Division Pracovní dny, Praha, 11.

Personalizovaná medicína Roche v oblasti onkologie. Olga Bálková, Roche s.r.o., Diagnostics Division Pracovní dny, Praha, 11. Personalizovaná medicína Roche v oblasti onkologie Olga Bálková, Roche s.r.o., Diagnostics Division Pracovní dny, Praha, 11. listopadu 2013 Personalizovaná vs standardní péče Cílená léčba Spojení diagnostiky

Více

Buněčný cyklus. G0 M G1 G2 Aleš Hampl S. Replikace DNA. Buněčný cyklus skládající se z fází G1, S, G2 a M

Buněčný cyklus. G0 M G1 G2 Aleš Hampl S. Replikace DNA. Buněčný cyklus skládající se z fází G1, S, G2 a M Buněčný cyklus G0 M G1 G2 Aleš Hampl S Replikace DNA Rozdělení jádra Cytokineze Odehrávají se postupně během každého buněčného cyklu = Buněčný cyklus skládající se z fází G1, S, G2 a M Nahlédnutí do nepříliš

Více

MOLEKULÁRNÍ ZÁKLADY DĚDIČNOSTI

MOLEKULÁRNÍ ZÁKLADY DĚDIČNOSTI Maturitní téma č. 33 MOLEKULÁRNÍ ZÁKLADY DĚDIČNOSTI NUKLEOVÉ KYSELINY - jsou to makromolekuly tvořené řetězci vzájemně spojených nukleotidů. Molekula nukleotidu sestává z : - pětiuhlíkatého monosacharidu

Více

Fyziologický proces udržující rovnováhu mezi buněčným růstem a smrtí buněk Kaskáda reakcí cysteinových proteáz (kaspázy), vazba na tzv.

Fyziologický proces udržující rovnováhu mezi buněčným růstem a smrtí buněk Kaskáda reakcí cysteinových proteáz (kaspázy), vazba na tzv. 4. Apoptóza Fyziologický proces udržující rovnováhu mezi buněčným růstem a smrtí buněk Kaskáda reakcí cysteinových proteáz (kaspázy), vazba na tzv. substráty smrti (proteiny cytoskeletu, proteinyřídící

Více

ÚSTAV FYZIKÁLNÍ BIOLOGIE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH

ÚSTAV FYZIKÁLNÍ BIOLOGIE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH ÚSTAV FYZIKÁLNÍ BIOLOGIE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH ZPRÁVA O UKONČENÍ PROJEKTU Projekt Název projektu: Stanovení biomarkerů oxidativního stresu u kapra obecného (Cyprinus carpio L.) po

Více

Rodina proteinů 14-3-3: Dvojsečná zbraň v nádorové biologii

Rodina proteinů 14-3-3: Dvojsečná zbraň v nádorové biologii MASARYKOVA UNIVERZITA Přírodovědecká fakulta Ústav biochemie Rodina proteinů 14-3-3: Dvojsečná zbraň v nádorové biologii Bakalářská práce Brno 2011 Jana Nováková Poděkování Ráda bych touto cestou poděkovala

Více

Výuka genetiky na Přírodovědecké fakultě UK v Praze

Výuka genetiky na Přírodovědecké fakultě UK v Praze Výuka genetiky na Přírodovědecké fakultě UK v Praze Studium biologie na PřF UK v Praze Bakalářské studijní programy / obory Biologie Biologie ( duhový bakalář ) Ekologická a evoluční biologie ( zelený

Více

EFFECT OF ZINC(II) IONS ON THE EXPRESSION OF PRO- AND ANTI-APOPTOTIC FACTORS IN HIGH-GRADE PROSTATE CARCINOMA CELLS

EFFECT OF ZINC(II) IONS ON THE EXPRESSION OF PRO- AND ANTI-APOPTOTIC FACTORS IN HIGH-GRADE PROSTATE CARCINOMA CELLS EFFECT OF ZINC(II) IONS ON THE EXPRESSION OF PRO- AND ANTI-APOPTOTIC FACTORS IN HIGH-GRADE PROSTATE CARCINOMA CELLS EFEKT ZINEČNATÝCH IONTŮ NA EXPRESI PRO- A ANTI- APOPTOTICKÝCH FAKTORŮ V PROSTATICKÝCH

Více

Protein S100B Novinky a zajímavosti

Protein S100B Novinky a zajímavosti Protein S100B Novinky a zajímavosti Olga Bálková, Roche s.r.o., Diagnostics Division Odborný seminář Roche, Kurdějov, 29. dubna 2014 S100: biochemické minimum S100 = kalcium vážící nízkomolekulární proteiny

Více

KURZY OBOROVÉ RADY BIOLOGIE A PATOLOGIE BUŇKY A DALŠÍ INFORMACE

KURZY OBOROVÉ RADY BIOLOGIE A PATOLOGIE BUŇKY A DALŠÍ INFORMACE KURZY OBOROVÉ RADY BIOLOGIE A PATOLOGIE BUŇKY A DALŠÍ INFORMACE Pokroky v biologii buňky (přednáškový kurz): Koordinátor a odborný garant kurzu: prof. RNDr. Ivan Raška, DrSc., Ústav buněčné biologie a

Více

Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316

Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316 Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316 Využití houbových organismů v genovém inženýrství MIKROORGANISMY - bakterie, kvasinky a houby využíval

Více

Bi8240 GENETIKA ROSTLIN

Bi8240 GENETIKA ROSTLIN Bi8240 GENETIKA ROSTLIN Prezentace 07 Rezistence rostlin k abiotickým faktorům doc. RNDr. Jana Řepková, CSc. repkova@sci.muni.cz Abiotické faktory 1. Nízké teploty ( chladuvzdornost, mrazuvzdornost, zimovzdornost)

Více

Lodish et al, Molecular Cell Biology, 4-6 vydání Alberts et al, Molecular Biology of the Cell, 4 vydání

Lodish et al, Molecular Cell Biology, 4-6 vydání Alberts et al, Molecular Biology of the Cell, 4 vydání Lodish et al, Molecular Cell Biology, 4-6 vydání Alberts et al, Molecular Biology of the Cell, 4 vydání http://web.natur.cuni.cz/~zdenap/zdenateachingnf.html CHEMICKÉ SLOŽENÍ BUŇKY BUŇKA: 99 % C, H, N,

Více

DEN OTEVŘENÝCH DVEŘÍ NA ÚMG

DEN OTEVŘENÝCH DVEŘÍ NA ÚMG DEN OTEVŘENÝCH DVEŘÍ NA ÚMG Místo konání: Datum a doba konání: Budova F, Vídeňská 1083, 142 20 Praha 4-Krč 31. 10. 2014 od 9:00 do 16:00 hod. Kontakt pro styk s veřejností: Organizační záležitosti: Leona

Více

V organismu se bílkoviny nedají nahradit žádnými jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.

V organismu se bílkoviny nedají nahradit žádnými jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy. BÍLKOVINY Bílkoviny jsou biomakromolekulární látky, které se skládají z velkého počtu aminokyselinových zbytků. Vytvářejí látkový základ života všech organismů. V tkáních vyšších organismů a člověka je

Více

binding protein alpha (CEBPA) a prognostický význam mutací v jeho genu u Ota Fuchs, Arnošt t Kostečka, Monika

binding protein alpha (CEBPA) a prognostický význam mutací v jeho genu u Ota Fuchs, Arnošt t Kostečka, Monika Transkripční faktor CCAAT/enhancer binding protein alpha (CEBPA) a prognostický význam mutací v jeho genu u akutní myeloidní leukemie Ota Fuchs, Arnošt t Kostečka, Monika Holická,, Martin Vostrý, ÚHKT

Více

Etiopatogeneze nádorů

Etiopatogeneze nádorů Etiopatogeneze nádorů Kontrola buněčného cyklu Nádorová transformace buňky Interakce nádoru a organizmu Metastazování Nádory (tumory) - úvod Nádor je patologický stav (nemoc) v důsledku porušené kontroly

Více

MEMBRÁNOVÉ STRUKTURY EUKARYONTNÍCH BUNĚK

MEMBRÁNOVÉ STRUKTURY EUKARYONTNÍCH BUNĚK MEMBRÁNOVÉ STRUKTURY EUKARYONTNÍCH BUNĚK PLASMATICKÁ MEMBRÁNA EUKARYOTICKÝCH BUNĚK Všechny buňky (prokaryotické a eukaryotické) jsou ohraničeny membránami zajišťujícími integritu a funkci buněk Ochrana

Více

Bioinformatika. hledání významu biologických dat. Marian Novotný. Friday, April 24, 15

Bioinformatika. hledání významu biologických dat. Marian Novotný. Friday, April 24, 15 Bioinformatika hledání významu biologických dat Marian Novotný Bioinformatika sběr biologických dat archivace biologických dat organizace biologických dat interpretace biologických dat 2 Biologové sbírají

Více

BOVINE BLOOD NEUTROPHILS: INFLUENCE OF ISOLATION TECHNIQUES TO SURVIVAL KREVNÍ NEUTROFILY SKOTU: VLIV IZOLAČNÍCH TECHNIK NA ŽIVOTNOST

BOVINE BLOOD NEUTROPHILS: INFLUENCE OF ISOLATION TECHNIQUES TO SURVIVAL KREVNÍ NEUTROFILY SKOTU: VLIV IZOLAČNÍCH TECHNIK NA ŽIVOTNOST BOVINE BLOOD NEUTROPHILS: INFLUENCE OF ISOLATION TECHNIQUES TO SURVIVAL KREVNÍ NEUTROFILY SKOTU: VLIV IZOLAČNÍCH TECHNIK NA ŽIVOTNOST Sláma P. Ústav morfologie, fyziologie a veterinářství, Agronomická

Více

*Mléko a mléčné výrobky obsahují řadu bioaktivních

*Mléko a mléčné výrobky obsahují řadu bioaktivních www.bileplus.cz Mléko a mléčné výrobky obsahují řadu bioaktivních látek (vápník, mastné kyseliny, syrovátka, větvené aminokyseliny) ovlivňující metabolismus tuků spalování tuků Mléčné výrobky a mléčné

Více

VITAMIN D Z POHLEDU FUNKCE A VÝŽIVY

VITAMIN D Z POHLEDU FUNKCE A VÝŽIVY VITAMIN D Z POHLEDU FUNKCE A VÝŽIVY Mgr. Jitka Pokorná, Prof. MVDr. Jiří Ruprich, CSc. Státní zdravotní ústav, Centrum zdraví, výživy a potravin Palackého 3a, 612 42 Brno www.szu.cz, e-mail: pokorna@chpr.szu.cz

Více

Enzymy v molekulární biologii, RFLP. Molekulární biologie v hygieně potravin 3, 2014/15, Ivo Papoušek

Enzymy v molekulární biologii, RFLP. Molekulární biologie v hygieně potravin 3, 2014/15, Ivo Papoušek Enzymy v molekulární biologii, RFLP Molekulární biologie v hygieně potravin 3, 2014/15, Ivo Papoušek Enzymy v molekulární biologii umožňují nám provádět celou řadu přesně cílených manipulací Výhody enzymů:

Více

CHEMIE. Pracovní list č. 10 - žákovská verze Téma: Bílkoviny. Mgr. Lenka Horutová

CHEMIE. Pracovní list č. 10 - žákovská verze Téma: Bílkoviny. Mgr. Lenka Horutová www.projektsako.cz CHEMIE Pracovní list č. 10 - žákovská verze Téma: Bílkoviny Lektor: Mgr. Lenka Horutová Projekt: Student a konkurenceschopnost Reg. číslo: CZ.1.07/1.1.07/03.0075 Teorie: Název proteiny

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces

Více

ZÁVĚREČNÝ PROTOKOL O TESTOVÁNÍ BIOAKTIVNÍCH VLASTNOSTÍ LÁTKY CYTOPROTECT

ZÁVĚREČNÝ PROTOKOL O TESTOVÁNÍ BIOAKTIVNÍCH VLASTNOSTÍ LÁTKY CYTOPROTECT MIKROBIOLOGICKÝ ÚSTAV Akademie věd České republiky Vídeňská 1083, 420 20 Praha 4 Krč Imunologie a gnotobiologie ZÁVĚREČNÝ PROTOKOL O TESTOVÁNÍ BIOAKTIVNÍCH VLASTNOSTÍ LÁTKY CYTOPROTECT Zadání: Na základě

Více

ZOBRAZENÍ NÁDORŮ MOZKU NA MOLEKULÁRNÍ ÚROVNI Jiří Ferda, Eva Ferdová, Jan Kastner, Hynek Mírka, *Jan Mraček, *Milan Choc **Ondřej Hes KLINIKA

ZOBRAZENÍ NÁDORŮ MOZKU NA MOLEKULÁRNÍ ÚROVNI Jiří Ferda, Eva Ferdová, Jan Kastner, Hynek Mírka, *Jan Mraček, *Milan Choc **Ondřej Hes KLINIKA ZOBRAZENÍ NÁDORŮ MOZKU NA MOLEKULÁRNÍ ÚROVNI Jiří Ferda, Eva Ferdová, Jan Kastner, Hynek Mírka, *Jan Mraček, *Milan Choc **Ondřej Hes KLINIKA ZOBRAZOVACÍCH METOD *NEUROCHIRURGICKÉ ODDĚLENÍ **ŠIKLŮV ÚSTAV

Více

Organely vyskytující se pouze u rostlinné bu ky. Bun ná st na neživá sou ást všech rostlinných bun k (celulóza)

Organely vyskytující se pouze u rostlinné bu ky. Bun ná st na neživá sou ást všech rostlinných bun k (celulóza) Organely vyskytující se pouze u rostlinné bu ky Bun ná st na neživá sou ást všech rostlinných bun k (celulóza) Plastidy semiautonomní organely charakteristické pro zelené rostliny 1. Bezbarvé leukoplasty

Více

Regulace aktivity proteinu p53 a p63 v lidské epidermis

Regulace aktivity proteinu p53 a p63 v lidské epidermis UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA BOTANIKY Regulace aktivity proteinu p53 a p63 v lidské epidermis DIPLOMOVÁ PRÁCE Autor práce: Bc. Šárka Urbanová Vedoucí práce: prof. MUDr.

Více

MOBILNÍ GENETICKÉ ELEMENTY. Lekce 13 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc.

MOBILNÍ GENETICKÉ ELEMENTY. Lekce 13 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. MOBILNÍ GENETICKÉ ELEMENTY Lekce 13 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. Demerec (1937) popsal nestabilní mutace u D. melanogaster B. McClintocková (1902-1992, Nobelova cena 1983) ukázala ve

Více

CZ.1.07/2.4 .00/31.00233. republiky. VÝHLEDEM

CZ.1.07/2.4 .00/31.00233. republiky. VÝHLEDEM CZ.1.07/2.4.00/31.00233 Tento projekt je spolufinancovánn z Evropského sociálníhoo fondu a státního rozpočtu České PILOTNÍ STUDIE BIOMOLEKULA METALOTHIONEIN A JEJÍ VÝZNAMM PRO NANOBIOTECHNOLOGIE VÝZNAMEM

Více

Přehled výzkumných aktivit

Přehled výzkumných aktivit Přehled výzkumných aktivit ROK 2004 Lenka Zahradová Laboratoř experimentální hematologie a buněčné imunoterapie Oddělení klinické hematologie FNB Bohunice Přednosta: prof. MUDr. M. Penka, CSc. Oddělení

Více