Řešení příkladů na rovnoměrně zrychlený pohyb I

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "1.1.15 Řešení příkladů na rovnoměrně zrychlený pohyb I"

Transkript

1 ..5 Řešení příkldů n ronoměrně zrychlený pohyb I Předpokldy: 4 Pedgogická poznámk: Cílem hodiny je, by se sudeni nučili smosně řeši příkldy. Aby dokázli njí zh, kerý umožňuje příkld yřeši, dokázli ze zhů yjdřo, přípdně doszo z jednoho zhu do druhého. Mjí s ím obroské poíže. Druhým problémem je jejich odpor k obecnému řešení. Nezbýá nic jiného než chodi mezi licemi yždo, by příkldy obecně dooprdy dopočíli. Zůsáá oázkou, zd je ůbec reálné u normální řídy (bez probrného yjdřoání ze zorců memice) počíání n úroni z éo následujících hodinách probír. Př. : Auo před jezdem do esnice zpomlilo z s z 9 km/h n 5 km/h. S jkým zrychlení se pohybolo? Jkou při brždění urzilo dráhu? = s = 9 km/h = 5m/s = 5 km/h =,9 m/s =? s =? Ronice zrychleného pohybu: = + s můžeme dosdi do druhé ronice,9 5 m/s,7m/s = = = s = + = 5 + (,7) m = 58,4m Auo brzdilo se zrychlením = + zrychlení můžeme ypočí z prní ronice získnou hodnou pk, 7m/s urzilo při om dráhu 58,4 m. Pedgogická poznámk: Dráh pohybu by se smozřejmě dl počí i obecně, le uo chíli je o bezpochyby nd možnosi sudenů. V předchozím příkldu se nám opě ukázlo, že sejně jko u rychlosi i u zrychlení má znménko sůj ýznm. záporné zrychlení = zrychlení, keré zmenšuje rychlos V někerých přípdech se pro pohyb, kerý se zpomluje (edy se záporným zrychlením) použíá jiná sd ronic ronice pro ronoměrně zpomlený pohyb: = s = záporné znménko před členy se zrychlením má sejný ýznm jko doszení záporného čísl z zrychlení. My si nebudeme plés hly budeme důsledně použí jenom půodní ronice doszo do nich záporné zrychlení.

2 Př. : Záodní uomobil zrychlí z km/h n km/h z 4, s. Urči dráhu, kerou při zrychloání ujede. = = km/h = 7,8 m/s = 4,s s =? Ronice zrychleného pohybu s nuloou počáeční rychlosí: = s = obou ronicích máme dě neznámé eličiny z prní ronice yjádříme (keré nepořebujeme) dosdíme z do druhé ronice: = = s = = = Dosdíme: s = = 7,8 4,m = 6m Auo ujede během zrychloání 6 m. Pedgogická poznámk: Zčáek příkldu je nuné spočí společně, zbyek by měli děl sudeni smi (i když jde podsě jen o memiku), opisoání úpr z bule má nuloý přínos. Posup, kerý jsme použili u předchozího ( budeme použí u dlších příkldů): podle fyzikální siuce rozhodneme, zd budeme použí celou sousu ronic = + = nebo pouze zjednodušenou erzi s nuloou počáeční rychlosí s = + s = podle eličin známých se zdání se rozhodneme, zd můžeme počí pouze s jednou z ronic, nebo budeme muse z jedné yjádři dosdi do druhé ypočeme zh pro zdnou eličinu dosdíme do upreného zhu Pedgogická poznámk: Sudeni by si měli posup sručně někm nps při práci licích by si měli hlíd, že podle něj posupují. Nejčsěji sudeni (hlně kluci) yjdřují zbrkle ze složiější sousy nebo nedopočíájí zhy. Př. : Z bezpečný doskok je požoán koý, při kerém čloěk dopdne n zem mximálně rychlos 8 m/s. Urči mximální ýšku, ze keré je možné bezpečně skák n Zemi (zrychlení pdjících předměů je m/s ) n Měsíci (zrychlení pdjících předměů je 6 x menší než n Zemi). = = 8m/s Z = m/s s =? Ronice zrychleného pohybu s nuloou počáeční rychlosí: = s = obou ronicích máme dě neznámé eličiny z prní ronice yjádříme (keré nepořebujeme) dosdíme z do druhé ronice:

3 = = s = = = = 8 Bezpečná ýšk pro Zemi: sz = = m =, m Z Z Zrychlení n Měsíci: M = = m/s =,67m/s Bezpečná ýšk pro Měsíc: sm = = m = 9, m M,67 N Zemi je bezpečné skák z ýšky, m n Měsíci dokonce z ýšky 9, m. Poznámk: Z předchozího příkldu je idě jedn z ýhod obecného řešení do ýsledného jednoduchého zhu můžeme ihned doszo různá zdání. Př. 4: Urči jkou rychlosí dopdne n zem kámen pušěný z ýšky m (. pro). Předpokládej, že pdá ronoměrně zrychleně se zrychlením m/s. = m/s s = m = m/s =? Jde o ronoměrně zrychlený pohyb s nuloou počáeční rychlosí: = s = ni z jedné ronice není možné ypočí ( obou jsou dě neznámé) z prní si yjádříme (bychom e yjádření neměli odmocninu, kerá by se objeil, kdybychom yjdřoli ze druhé ronice) dosdíme do druhé = = s = = = = s = / = s = s = m/s = 4,m/s = 5,9 km/h Kámen dopdne n zem rychlosí 5,9 km/h. Pedgogická poznámk: Sudeni se ěžko smiřují s ím, že počíjí rychlos přeso doszují z ronice rychlosi do ronice pro dráhu. Je pořeb zdůrzni, že možné jsou ob posupy, le kůli yhnuí se odmocninám je ždy jednodušší yjdřo z ronice pro rychlos doszo do ronice pro dráhu. Roli nehrje o, kerá z eličin byl ronici půodně yjádřen, le o, zd ronici zůsli pouze eličiny, keré známe nebo keré chceme počí.

4 Př. 5: Jké je zrychlení kulky hlni, je-li její úsťoá rychlos 7 m/s délk hlně 4 cm? Jk dlouho je kulk během ýsřelu hlni? Pro obě eličiny odoď obecné zhy. = 7 m/s s = 4cm =,4m = m/s =? =? Budeme předpoklád, že kulk se hlni pohybuje ronoměrně zrychleně. Proože konečná rychlos dráh neysupují společně ni jedné ronici, budeme muse jednu z neznámých yjádři z ronice pro rychlos dosdi ji do ronice pro dráhu. = = Dosdíme do ronice pro dráhu: s = = = = = s Získný zorec pro zrychlení můžeme použí při odozoání zorce pro čs: s = = = s 7 m/s 65 m/s = = = s, 4 s, 4 = = s =,s 7 Zrychlení kulky hlni je 65m/s, kulk je hlni,s. Pedgogická poznámk: Vnímější sudeni mjí problémy s ýslednou hodnoou zrychlení (zdá se jim příliš elká). Ujisěe je, že číslo je oprdu reálné. Pedgogická poznámk: K následujícím příkldům se ěšin sudenů nedosne, není o žádný problém. Pokud se jim podří spočí prních 5 jde o úspěch, následující příkldy jsou sice zjímé, le není nuné, by je řešili šichni. Př. 6: N obrázku je grf rychlosi pdjícího nfukocího míče. Urči jeho zrychlení. Z jké ýšky byl upušěn, když dopdl n zem z,7 s? [m/s],,,,4,5 [s] d =,7s hodnoy yčené z grfu = m/s =,5s = m/s =? s =? Pomocí hodno yčených z grfu můžeme urči zrychlení míče přímým doszením do ronice pro dráhu ypočeme ýšku, ze keré byl míč upušěn. 4

5 = = s = d m/s 6m/s = = =,5 6,7 s = d = m =,47 m,5m Míč pdl se zrychlením 6m/s byl upušěn z ýšky,5 m. Poznámk: K určení zrychlení bychom mohli použí i jinou dojici hodno rychlosi čsu získných z grfu. Pro určení zrychlení by bylo možné použí i definiční zh pro zrychlení m/s 6m/s = = =,5 Př. 7: Pdjící nfukocí míč získl během, s rychlos,8 m/s. Z jk dlouho získá rychlos m/s? Předpokládej ronoměrně zrychlený pohyb. =,s =,8 m/s = m/s =? Míč se pohybol ronoměrně zrychleně s nuloou počáeční rychlosí. Pro ob okmžiky plí ronice pro rychlos ronoměrně zrychleného pohybu: = = Po celou dobu se pohybuje se sejným zrychlením. Z prní ronice můžeme zrychlení ypočí dosdi do druhé. = = = = = = = =,s =,5s,8 Pdjící míč získá rychlos m/s z,5 s. Shrnuí: 5

Kinematika hmotného bodu

Kinematika hmotného bodu DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Kinemik hmoného bodu Obsh Klsická mechnik... Vzžný sysém... Polohoý ekor... Trjekorie... Prmerické ronice rjekorie... 3 Příkld 1... 3

Více

3.2.7 Příklady řešené pomocí vět pro trojúhelníky

3.2.7 Příklady řešené pomocí vět pro trojúhelníky ..7 Příkldy řešené pomocí ět pro trojúhelníky Předpokldy:, 6 Pedgogická poznámk: U následujících příkldů ( u mnoh dlších příkldů z geometrie) pltí, že nedílnou součástí řešení je nápd (který se tké nemusí

Více

5.4.2 Objemy a povrchy mnohostěnů I

5.4.2 Objemy a povrchy mnohostěnů I 5.. Objemy orchy mnohostěnů I Předokldy: 51 Význm slo objem i orch je intuitině jsný. Mtemtická definice musí být oněkud řesnější. Okoání z lnimetrie: Obsh obrzce je kldné číslo, řiřzené obrzci tk, že

Více

2.9.11 Logaritmus. Předpoklady: 2909

2.9.11 Logaritmus. Předpoklady: 2909 .9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).

Více

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s Ronoměrný poyb eliko rycloi ále ejná (konanní) základní za:. graf záiloi dráy na čae: polopřímka ycázející z počáku (pokud poyb začíná z klidu) m graf záiloi rycloi na čae: ronoběžka odoronou ou m. U poybu

Více

1.8.10 Proudění reálné tekutiny

1.8.10 Proudění reálné tekutiny .8.0 Proudění reálné tekutiny Předpoklady: 809 Ideální kapalina: nestlačitelná, dokonale tekutá, bez nitřního tření. Reálná kapalina: zájemné posouání částic brzdí síly nitřního tření. Jaké mají tyto rozdíly

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302 7.. Vzájemná oloha aramericky yjádřených římek I Předoklady: 70 Pedagogická oznámka: Tao hodina neobsahje říliš mnoho říkladů. Pos elké čási sdenů je oměrně omalý a časo nesihno sočía ani obsah éo hodiny.

Více

1.6.8 Pohyby v centrálním gravitačním poli Země

1.6.8 Pohyby v centrálním gravitačním poli Země 1.6.8 Pohyby centrálním graitačním poli emě Předpoklady: 160 Pedagogická poznámka: Pokud necháte experimentoat s modelem studenty, i případě, že už program odellus znají, stráíte touto hodinou dě yučoací

Více

2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice)

2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice) ..4 Výpoče epla a zákon zachování energie (kalorimerická rovnice) Teplo je fyzikální veličina, předsavuje aké energii a je udíž možné (i nuné) jej měři. Proč je aké nuné jej měři? Např. je předměem obchodu

Více

Ř Č Č ž ž žž ž Ž ž ž ž ž Ú ž ž ž Ú ČŠ ň Š Ú Š Ú ČŠ ď ň ň Ř Ř Š Č Š Č Ú ČŠ Ú Ž Ú ČŠ Č Ž Ú ČŠ Č Ž Ž Ú Ú ČŠ Ú Ú Ú Č Ž Ú Ž Ž ž Ž Ž Ž ú ž ž Ž ú Ž Č Č Č Ú ž Ž ď ž ž ž Ú ČŠ Ú ČŠ ú ú ú Ú ČŠ ú Ž ž ž ž ž ž ž ž Š

Více

Sbírka A - Př. 1.1.5.3

Sbírka A - Př. 1.1.5.3 ..5 Ronoměrný ohyb říklady nejnižší obtížnosti Sbírka A - ř...5. Kolik hodin normální chůze (rychlost 5 km/h) je od rahy zdálen Řím? Kolik dní by tuto zdálenost šel rekreační chodec, který je schoen ujít

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV

Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV 3 mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 6-7 září 2006 Porovnání způsobů hodnocení invesičních projeků na bázi kriéria Dana Dluhošová

Více

Dopravní kinematika a grafy

Dopravní kinematika a grafy Dopraní kinemaika a grafy Sudijní ex pro řešiele F a oaní zájemce o fyziku Přemyl Šediý Io Volf bah 1 Základní pojmy dopraní kinemaiky 1.1 Poloha.... 1. Rychlo... 3 1.3 Zrychlení.... 5 Grafy dopraní kinemaice

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

1.5.3 Výkon, účinnost

1.5.3 Výkon, účinnost 1.5. Výkon, účinnos ředpoklady: 151 ř. 1: ři výběru zahradního čerpadla mohl er vybíra ze ří čerpadel. rvní čerpadlo vyčerpá za 1 sekundu,5 l vody, druhé čerpadlo vyčerpá za minuu lirů vody a řeí vyčerpá

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

No. 1 Michal Hlaváček Difuse technologií 2001/3

No. 1 Michal Hlaváček Difuse technologií 2001/3 No. Michl Hlváček Difuse echoloií 200/3 . Úvod Hospodářský vývoj ve svěě proděll v posledích páci leech ěkolik změ, přičemž ekoomická eorie ě věšiou v odpovídjící míře ereovl. Trdičí ekoomické eorie, keré

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení

(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení (). Načrněe slepý graf závislosi dráhy sojícího člověka na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 2,9 s do 6,5 s. 3. Jakou rychlosí

Více

FINANČNÍ MATEMATIKA- ÚVĚRY

FINANČNÍ MATEMATIKA- ÚVĚRY Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

FYZIKA 2. ROČNÍK ( ) V 1 = V 2 =V, T 1 = T 2, Q 1 =Q 2 c 1 = 139 J kg 1 K 1-3. Řešení: m c T = m c T 2,2

FYZIKA 2. ROČNÍK ( ) V 1 = V 2 =V, T 1 = T 2, Q 1 =Q 2 c 1 = 139 J kg 1 K 1-3. Řešení: m c T = m c T 2,2 . Do dou sejných nádob nalijeme odu a ruť o sejných objemech a eploách. Jaký bude poměr přírůsků eplo kapalin, jesliže obě kapaliny přijmou při zahříání sejné eplo? V = V 2 =V, T = T 2, Q =Q 2 c = 9 J

Více

2.1 POHYB 2.2 POLOHA A POSUNUTÍ

2.1 POHYB 2.2 POLOHA A POSUNUTÍ 2 P ÌmoËar pohyb V roce 1977 vyvo ila Kiy OíNeilov rekord v z vodech dragser. Dos hla ehdy rychlosi 628,85 km/h za pouh ch 3,72 s. Jin rekord ohoo ypu zaznamenal v roce 1958 Eli Beeding ml. p i jìzdï na

Více

Slovní úlohy na pohyb

Slovní úlohy na pohyb VY_32_INOVACE_M-Ar 8.,9.09 Sloní úlohy na pohyb Anoace: Praconí li ukazuje žákoi poup řešení loních úloh na pohyb. Jou zde rozebrány ypy, keré mohou naa. Poupy řešení zoroých příkladů jou žákům promínuy

Více

Frézování - řezné podmínky - výpočet

Frézování - řezné podmínky - výpočet Předmě: Ročník: Vyvořil: Daum: Základy výroby 2 M. Geisová 10. červen 2012 Název zpracovaného celku: Frézování - řezné podmínky - výpoče Posup při určování řezných podmínek, výpoče řezné síly Fř, výkonu

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

NA POMOC FO KATEGORIE E,F

NA POMOC FO KATEGORIE E,F NA POMOC FO KATEGORIE E,F Výledky úloh 46. ročníku FO, ka. E, F Io Volf *, ÚV FO, Unierzia Hradec Králoé Mirola Randa **, ÚV FO, Pedagogická fakula ZČU, Plzeň Jak je již naší ouěži obyklé, uádíe pouze

Více

Ň Ú ř ř ř Č ř ř š ž Č ř š ž š š š ž š ř ú ř ž š ř ú Š ú ú ú š š ú ú ú ú ť ř š š ř ř ř š š ř ř ž ř ř ř š ř š ó Č ť š š š ř ť ř žš š ž ť ž ž š ř ž ř ť ž ř ř ú Ť ó Č Č šř š žš ř ž ř š ř ř ž Č ř ř ť ř š š

Více

S t u d i j n í m a t e r i á l - M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e

S t u d i j n í m a t e r i á l - M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e S d i j n í m a e i á l - M a i c e e s ř e d o š k o l s k é m a e m a i c e 9 Vyžií ablkoého poceso Open.Office.og Calc při počíání s maicemi a deeminany Tao kapiola je čena předeším po y čenáře, keří

Více

10. Nebezpečné dotykové napětí a zásady volby ochran proti němu, ochrana živých částí.

10. Nebezpečné dotykové napětí a zásady volby ochran proti němu, ochrana živých částí. 10. Nebezpečné dotykové npětí zásdy volby ochrn proti němu, ochrn živých částí. Z hledisk ochrny před nebezpečným npětím rozeznáváme živé neživé části elektrického zřízení. Živá část je pod npětím i v

Více

FAKULTA APLIKOVANÝCH VĚD

FAKULTA APLIKOVANÝCH VĚD FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÁ UNIVERZITA V PLZNI Semesrální práce z předměu KMA/MAB Téma: Schopnos úrokového rhu předvída sazby v době krize Daum: 7..009 Bc. Jan Hegeď, A08N095P Úvod Jako éma pro

Více

NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013,

NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013, EVROPSKÁ KOMISE V Bruselu dne 30.4.2013 C(2013) 2420 finl NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013, kterým se mění nřízení (ES) č. 809/2004, pokud jde o poždvky n zveřejňování

Více

ALGEBRA, ROVNICE A NEROVNICE

ALGEBRA, ROVNICE A NEROVNICE ALGEBRA, ROVNICE A NEROVNICE Gymnázium Jiřího Wolker v Prostějově Výukové mteriály z mtemtiky pro nižší gymnázi Autoři projektu Student n prhu 1. století - využití ICT ve vyučování mtemtiky n gymnáziu

Více

1.5.1 Mechanická práce I

1.5.1 Mechanická práce I .5. Mechanická ráce I Předoklady: Práce je velmi vděčné éma k rozhovoru: někdo se nadře a ráce za ním není žádná, jiný se ani nezaoí a udělá oho sousu, a všichni se cíí nedocenění. Fyzika je řírodní věda

Více

ó ž é ě ž ž ř é ý ě ž š ž ř ý ř ž ý ř ý é é ř Ř ý š ř é ý ě ž ě ř é ý ě ž ž é ř é ý é ž ě ě ř é ě ý ž ó ž ó ě ř é ý ě ž é ř é ě ř é ě ý ž Ž ř é ě ž ž š ě é ř é ý ě ž ž š ě ř é ý ě ž ě ř é ý ě ž ž š ě ř

Více

Ď Ů Ň ž Ů ž ň ž ž ž Č Č Ď Č ž Ě ž ž ž ž ň ž ž ž ž ž ž ž Ě ň ž ž ž ž Ďž ň ž Č Č ň Č Ď Ě Ň Č Ň ž ž ž Ů ň Ň ž ň ň ž ň ň ň ž ň ž Č ž ž Ř ž ž ž ž ň ž ž ž ž Ř ž ň ž ž ž ž ž ž ž Ě Ě Ě Č ž Ď Ř ž ň ň Ř ž ž ž ž

Více

Regulace f v propojených soustavách

Regulace f v propojených soustavách Regulce f v propojených soustvách Zopkování principu primární sekundární regulce f v izolovné soustvě si ukážeme obr.,kde je znázorněn S Slovenské Republiky. Modře jsou vyznčeny bloky, které jsou zřzeny

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy Fzikální kbinet GmKT Gmnázium J. Vrchlického, Kltov stženo z http:kbinet.zik.net Optické přístroje Subjektivní optické přístroje - vtvářejí zánlivý (neskutečný) obrz, který pozorujeme okem (subjektivně)

Více

ČSN EN 1991-1-1 (Eurokód 1): Zatížení konstrukcí Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha : ČNI, 2004.

ČSN EN 1991-1-1 (Eurokód 1): Zatížení konstrukcí Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha : ČNI, 2004. STÁLÁ UŽITNÁ ZTÍŽENÍ ČSN EN 1991-1-1 (Eurokód 1): Ztížení konstrukcí Objemové tíhy, vlstní tíh užitná ztížení pozemních stveb. Prh : ČNI, 004. 1. Stálá ztížení stálé (pevné) ztížení stvebních prvků zhrnuje

Více

3. APLIKACE URČITÉHO INTEGRÁLU

3. APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

10.1 CO JE TO SRÁŽKA?

10.1 CO JE TO SRÁŽKA? 10 Sr ûky Fyzik Ronald McNair byl jednìm z astronaut, kte Ì zahynuli p i ha rii raketopl nu Challenger. Byl takè nositelem ËernÈho p sku karate a jedin m derem dok zal zlomit nïkolik betono ch tabulek.

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

3.4.3 Množiny bodů dané vlastnosti I

3.4.3 Množiny bodů dané vlastnosti I 3.4.3 Množiny odů dné vlstnosti I Předpoldy: 3401 Něteé z těchto množin už známe. J je definován užnice ( ; )? Množin všech odů oviny, teé mjí od středu vzdálenost. Předchozí vět znmená dvě věci: Vzdálenost

Více

Ke schválení technické způsobilosti vozidla je nutné doložit: Musí být doložen PROTOKOL O TECHNICKÉ KONTROLE? ANO NE 10)

Ke schválení technické způsobilosti vozidla je nutné doložit: Musí být doložen PROTOKOL O TECHNICKÉ KONTROLE? ANO NE 10) ÚTAV INIČNÍ A MĚTKÉ DPRAVY.s., Prh 4,Chodovec, Türkov 1001,PČ 149 00 člen skupiny DEKRA www.usmd.cz,/ Přehled zákldních vrint pltných pro dovoz jednotlivých vozidel dle zákon č.56/2001b. ve znění zákon

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu):

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 5. Konstruke trojúhelníků Konstruke trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 1. Nrýsuj trojúhelník ABC, je-li dáno: AB = 7,6 m, BC = 4,2 m, AC = 5,6 m Řešení: Pro strny trojúhelníku musí pltit

Více

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p Analýza časových řad Informační a komunikační echnologie ve zdravonicví Definice Řada je posloupnos hodno Časová řada chronologicky uspořádaná posloupnos hodno určiého saisického ukazaele formálně je realizací

Více

MINISTERSTVO PRO MÍSTNÍ ROZVOJ Národní orgán pro koordinaci POKYN PRO TVORBU A OBSAH ZPRÁVY O REALIZACI OPERAČNÍHO PROGRAMU PRO MONITOROVACÍ VÝBOR

MINISTERSTVO PRO MÍSTNÍ ROZVOJ Národní orgán pro koordinaci POKYN PRO TVORBU A OBSAH ZPRÁVY O REALIZACI OPERAČNÍHO PROGRAMU PRO MONITOROVACÍ VÝBOR MINISTERSTVO PRO MÍSTNÍ ROZVOJ Národní orgán pro koordinci POKYN PRO TVORBU A OBSAH ZPRÁVY O REALIZACI OPERAČNÍHO PROGRAMU PRO MONITOROVACÍ VÝBOR ŘÍJEN 2014 MINISTERSTVO PRO MÍSTNÍ ROZVOJ Odbor řízení

Více

ž ž é ěřž ěřž Ž ý ř ý é ř ě ě ý Ž ř ě é ř ý ú ý ý é ú Žď ř ý ř š Ú žď ý Ž ř ř ň Ž ů š ú ů Ú é ýš Ž š ů é ýó ů ď Ž ě ý ů ý ř ě ú ě ú ů ě ě ě ý ů ě ě š ř ů é é ě ý é Ž ú Ž ý ž ý é ě ý ž é é é é ý ů ý é ý

Více

Finanční a pojistná matematika ve škole Jarmila Ranošová, Allianz pojišťovna, a.s., Praha

Finanční a pojistná matematika ve škole Jarmila Ranošová, Allianz pojišťovna, a.s., Praha Finnční pojisná memi e šoe Jrmi Rnošoá inz pojišťon s rh Rozho jsem se n Eou ysoupi s ímo příspěem nbínou jej o sborníu z náseujících ůoů: ž o ro 000 y jsem nsoupi o Česé pojišťony jsem se s finnční pojisnou

Více

1. Dráha rovnoměrně zrychleného (zpomaleného) pohybu

1. Dráha rovnoměrně zrychleného (zpomaleného) pohybu . Dráha ronoměrně zrychleného (zpomaleného) pohybu teorie Veličina, která charakterizuje změnu ektoru rychlosti, se nazýá zrychlení. zrychlení akcelerace a, [a] m.s - a a Δ Δt Zrychlení je ektoroá fyzikální

Více

SEMINÁŘ I Teorie absolutních a komparativních výhod

SEMINÁŘ I Teorie absolutních a komparativních výhod PODKLDY K SEMINÁŘŮM ŘEŠENÉ PŘÍKLDY SEMINÁŘ I eorie bsolutních komprtivních výhod Zákldní principy teorie komprtivních výhod eorie komprtivních výhod ve své klsické podobě odvozuje motivci k obchodu z rozdílných

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B Zákon síly. Hmonos jako míra servačnosi. Vyvození hybnosi a impulsu síly. Závislos zrychlení a hmonosi Cvičení k zavedeným pojmům Jméno auora: Mgr. Zdeněk Chalupský Daum vyvoření: 11. 11. 2012 Číslo DUM:

Více

Stochastické modelování úrokových sazeb

Stochastické modelování úrokových sazeb Sochasické modelování úrokových sazeb Michal Papež odbor řízení rizik 1 Sochasické modelování úrokových sazeb OBSAH PŘEDNÁŠKY Úvod do problemaiky sochasických procesů Brownův pohyb, Wienerův proces Ioovo

Více

Ó Á Ň Í Ž Č Í Ž ň Ž Ž ú Ž Ž Á Ž Í ú ú ú Í Í ť ť ď Í Í ú Í ď Ž Ř Í ň ď Č Í Č Č ď ď Ž Č ď Ž Ž ď Í Ž ú ď Ó ď ú Í Í ď ď ď ď ň Žď ú ú ť ď ď ď Ž Ž Á ď Ž Í Ž Ž Ž ď Ž Č Ž Ž ú Ž Í ú ň Ž ú ď ň ď Č Č ď ú Č ť Ó Í

Více

Vojtěch Janoušek: III. Statistické zpracování a interpretace analytických dat

Vojtěch Janoušek: III. Statistické zpracování a interpretace analytických dat Vojěch Janoušek: III. Sascké zpracování a nerpreace analyckých da Úvod III. Zpracování a nerpreace analyckých da Sascké vyhodnocení analyckých da Zdroje chyb, přesnos a správnos analýzy Sysemacké chyby,

Více

PENZIJNÍ PLÁN Allianz transformovaný fond, Allianz penzijní společnost, a. s.

PENZIJNÍ PLÁN Allianz transformovaný fond, Allianz penzijní společnost, a. s. PEZIJÍ PLÁ Allianz ransformovaný fond, Allianz penzijní společnos, a. s. Preambule Penzijní plán Allianz ransformovaného fondu, Allianz penzijní společnos, a. s. (dále jen Allianz ransformovaný fond ),

Více

1. Vznik zkratů. Základní pojmy.

1. Vznik zkratů. Základní pojmy. . znik zkrtů. ákldní pojmy. E k elektrizční soustv, zkrtový proud. krt: ptří do ktegorie příčných poruch, je prudká hvrijní změn v E, je nejrozšířenější poruchou v E, při zkrtu vznikjí přechodné jevy v

Více

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šblony Mendelov střední škol, Nový Jičín NÁZEV MATERIÁLU: Trojúhelník zákldní pozntky Autor: Mgr. Břetislv Mcek Rok vydání: 2014 Tento projekt je spolufinncován

Více

Dveřní a podlahové zavírače

Dveřní a podlahové zavírače Dveřní podlhové zvírče Dveřní zvírče, s.r.o., člen celosvětového zámkřského koncernu ASSA ABLOY AB, zujímá vedoucí postvení n českém trhu změřeném n bezpečnostní systémy, zámky ochrnu mjetku. Výrobky společnosti,

Více

SPS SPRÁVA NEMOVITOSTÍ

SPS SPRÁVA NEMOVITOSTÍ SMLOUVA O REZERVACI POZEMKU A SMLOUVA O BUDOUCÍ SMLOUVĚ O DÍLO Níže uvedeného dne, měsíce roku uzvřeli: 1. EURO DEVELOPMENT JESENICE, s.r.o., IČ 282 44 451, se sídlem Ječná 550/1, Prh 2, PSČ 120 00, zpsná

Více

Protipožární obklad ocelových konstrukcí

Protipožární obklad ocelových konstrukcí Technický průvoce Proipožární obkla ocelových konsrukcí Úvo Ocel je anorganický maeriál a lze jí ey bez zvlášních zkoušek zařai mezi nehořlavé maeriály. Při přímém působení ohně vlivem vysokých eplo (nárůs

Více

16. DEFINIČNÍ OBORY FUNKCÍ

16. DEFINIČNÍ OBORY FUNKCÍ 6 DEFINIČNÍ OBORY FUNKCÍ 6 Urči definiční obor funkce 7 46 0 7 46 = 0 46 ± 5, = = 7; = 4 7 D ( f ) = ( ; 7 ; ) 7 f : y = 7 46 Funkce odmocnina je definována pro kladná reálná čísla a pro nulu Problematické

Více

Cílem tohoto textu je shrnout teorii do jediného celku. Text také nabízí oporu v oblastech, které jsou

Cílem tohoto textu je shrnout teorii do jediného celku. Text také nabízí oporu v oblastech, které jsou MATMATIKA (NJN) PRO KRAJINÁŘ A NÁBYTKÁŘ Robert Mřík 26. říjn 2012 KAT. MATMATIKY FAKULTA LSNICKÁ A DŘVAŘSKÁ MNDLOVA UNIVRZITA V BRNĚ -mil ddress: mrik@mendelu.cz URL: user.mendelu.cz/mrik ABSTRAKT. Předkládný

Více

1.3.5 Řešení slovních úloh pomocí Vennových diagramů II

1.3.5 Řešení slovních úloh pomocí Vennových diagramů II 1.3.5 Řešení slovníh úloh pomoí Vennovýh igrmů II Přepokly: 1304 Pegogiká poznámk: Ieální je poku tto hoin vyje n vičení. Postup stuentů je totiž velmi iniviuální ěljí velké množství hy, oěht elou tříu

Více

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 24. 7. 212 Název zpracovaného celku: KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Fyzikální veličiny popisují vlastnosti, stavy a změny hmotných

Více

ŠŤĚľ É ř ý ý ě ř Š ř ě ř ě Ú é Č Ę ř é ě ý ž ř ř łł ł Č ř ě é ý Ú łľ ľ ě ř ř ř é ŕ š ě é ľ ń ř ř Ž ť ě ř é ľ é Žš ł ě š Ö ř ó ř ý é ř Ž Í ř ř é ÚČ ř š Ú ů ě ý ř ý ě ě š ř ů ů ě ř é ř ř ý Ú ý ř ů ý Ú ů

Více

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém

Více

Výzkum e-learningu - experti

Výzkum e-learningu - experti Výzkum e-lerningu - experti ýzkumná zprá Doc. PhDr. Petr Sk, CSc. Mgr. Krolín Skoá Grnt MPSV ČR Vli computerizce n edukční procesy n osobnost čloěk informční společnosti Prh 2006 . Témtické ymezení ýzkumu

Více

ř ě ž é ě ď ó ě ý ř ý ý ž ě ř ý ě ě ý ř ř ý š ř ý Ž Ž é ň é ě ě ý š š Ž é ě é ž é ň ž š ě ť ý Ž š Ž ř ř é ž é ý ž ý ý ě é é š é ě é é ě ě é ú Č ěš ý ř ř Ž ěď Č é ř ž ř ý ř š ř ř ř é ž ě š ř ž š é ť ý ý

Více

ě ž ý ě é ž ý ě š ě ú ě ě ž ě ý ě ů š ě š ě é é ě ž ý é ý ž ě ě é ň ů Ř ě ě ž žď ů ů ů ů ě ů š ů ý ž ý ů ě ň úě ů ě ů é ů ě ů ý é ě ž ů ě é ý ů ž ě ů ý ě ě ě ů Č ě ýš ě ý ě ů é ž ě é ě š é ě ů Č ě é ý

Více

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

Úvod do analýzy časových řad

Úvod do analýzy časových řad VŠB TU OSTRAVA, FEI, KATEDRA APLIKOVANÉ MATEMATIKY Úvod do lýz čsových řd [Zdeje podiul dokueu.] Mri Lischová Popis čsových řd Čsová řd je uerická proěá, jejíž hodo podsě závisí čse, v ěž bl získá (posloupos

Více

Ť Ť Ó Ť Ť Ť ň Í ť Ť Ť Ů Ť Ť Ť Ť Ž Č Ť ň Ů Ó Ů Ž Ž Í Á Ť ň Ů Ó ň ň Ť ň ň Ž ň Ť Ť ď Í Žď Ť Í ď Ů ň ď ú ň Ť ď ř Ž Ď ť Ť Ť Ť Ť Ď ň Ť Ť ť ť Ů Ť Ť Ž Ť Ť Ť Ť ú Ť ú ň ň ú ň Č Ť Ť Í Ť Ť Ť Ů Í Ť Í ř Š Ů ň Ť ť ř

Více

Stavební firma. Díky nám si postavíte svůj svět. 1.D Klára Koldovská Šárka Baronová Lucie Pancová My Anh Bui

Stavební firma. Díky nám si postavíte svůj svět. 1.D Klára Koldovská Šárka Baronová Lucie Pancová My Anh Bui Stvební firm Díky nám si postvíte svůj svět. 1.D Klár Koldovská Šárk Bronová Lucie Pncová My Anh Bui Obsh 1) Úvod 2) Přesvědčení bnky 3) Obchodní jméno, chrkteristik zákzník, propgce 4) Seznm mjetku 5)

Více

213/2001 ve znění 425/2004 VYHLÁŠKA. Ministerstva průmyslu a obchodu. ze dne 14. června 2001,

213/2001 ve znění 425/2004 VYHLÁŠKA. Ministerstva průmyslu a obchodu. ze dne 14. června 2001, 213/2001 ve znění 425/2004 VYHLÁŠKA Minisersva průmyslu a obchodu ze dne 14. června 2001, kerou se vydávají podrobnosi náležiosí energeického audiu Minisersvo průmyslu a obchodu sanoví podle 14 ods. 5

Více

teorie elektronických obvodů Jiří Petržela zpětná vazba, stabilita a oscilace

teorie elektronických obvodů Jiří Petržela zpětná vazba, stabilita a oscilace Jiří Petržel zpětná vzb, stbilit oscilce zpětná vzb, stbilit oscilce zpětnou vzbou (ZV) přivádíme záměrněčást výstupního signálu zpět n vstup ZV zásdně ovlivňuje prkticky všechny vlstnosti dného zpojení

Více

Č š ž ý ČŠ ý š šš é é ďě š ý ě ě š ů ě ě š ů é ě ě ě ě ý ů ě ě š ů Č ď š Í ě Í ě Č é ě ž ů ý ý š š ý Ť Ť ý ý š šš é é ě š ý ě ú é é š ý š é š ě ě ú ž ů ě ý š ě ýš ě ů š é ú ě ť ú ů š š ý š š š ý Ť š ě

Více

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace VY_32_INOVACE_MAT_190 Opkovcí test lgebrické výrzy, logik, množiny A, B Mgr. Rdk Mlázovská Období vytvoření: září 2012 Ročník: čtvrtý Temtická oblst: mtemtické vzdělávání Klíčová slov: výrz, intervl, množin,

Více

Posloupnosti na střední škole Bakalářská práce

Posloupnosti na střední škole Bakalářská práce MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fkult Ktedr mtemtiky Poslouposti středí škole Bklářská práce Bro 00 Kteři Rábová Prohlášeí Prohlšuji, že tto bklářská práce je mým původím utorským dílem, které

Více

TERMOMECHANIKA 4. První zákon termodynamiky

TERMOMECHANIKA 4. První zákon termodynamiky FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá

Více

II. termodynamický zákon a entropie

II. termodynamický zákon a entropie Přednášk 5 II. termodynmický zákon entropie he lw tht entropy lwys increses holds, I think, the supreme position mong the lws of Nture. If someone points out to you tht your pet theory of the universe

Více

Laboratorní práce č. 4: Úlohy z paprskové optiky

Laboratorní práce č. 4: Úlohy z paprskové optiky Přírodí ědy moderě a iteraktiě FYZKA 4. ročík šestiletého a. ročík čtyřletého studia Laboratorí práce č. 4: Úlohy z paprskoé optiky G Gymázium Hraice Přírodí ědy moderě a iteraktiě FYZKA 3. ročík šestiletého

Více

Á Í Ě Č ý Í Ř Á ÁŠ Á Í Í ě Ú ú ě ú ř Ý ě ě ř ů ě Í é Ú Ú ř é ě Ú ú ě ř é ě Ú é ó ě ě ě ě ř ý ř ú ř ř ě ě ř ů ě éú ě ř é ý ě Ú ú ř éý Í é Ú ř ě ř é é ě ě ě ě Ú Ú é ú ý ě Ú Ú ř é é ě ě ě é ě ř ě ř é é ě

Více

Letí letí včelka světem, nese zprávy naším dětem. O tom jak je velký svět, budeme si vyprávět

Letí letí včelka světem, nese zprávy naším dětem. O tom jak je velký svět, budeme si vyprávět Mteřská škol Jorník, Míru 356 příspěkoá orgnizce Míru 356, 790 70 Jorník IČO : 70986258 tel. 584 440 347 mob. 604 243 757 e-mil: msmiru.jorník@tiscli. cz Školní zdělácí progrm : Rok Včeličkou Letí letí

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

Vysoká škola báňská Technická univerzita Ostrava MODULOVANÉ SIGNÁLY. učební text. Zdeněk Macháček, Pavel Nevřiva

Vysoká škola báňská Technická univerzita Ostrava MODULOVANÉ SIGNÁLY. učební text. Zdeněk Macháček, Pavel Nevřiva Vysoká škola báňská Tehniká univerzia Osrava MODULOVANÉ SIGNÁLY učební ex Zdeněk Maháček, Pavel Nevřiva Osrava Reenze: Ing. Jiří Kozian, Ph.D. RNDr. Miroslav Liška, CS. Název: Modulované signály Auor:

Více

É á ž ž ý Ů Ů ý Ů ř ž š ě á ň č ř ž ý Ů Ž É Á á á š á ř ú ř Č ě š ř š ň ů ě ěž ý ů á ří ář č ě Ů ář Á á ř č á á Č á ě ÍÁ á č ř áž Š ě á ě á á á Š ř řá ě ě ý ř á á á ý ě ě Ž á ž ý č á á ý ů á č č ě č á

Více