Příklady k přednášce 11 - Regulátory

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Příklady k přednášce 11 - Regulátory"

Transkript

1 Příklady k přednášce 11 - Regulátory Michael Šebek Automatické řízení

2 Soustavy s oscilujícími módy V běžných průmyslových procesech je to méně časté, ale některé důležité aplikace mají hodně oscilující módy: pružné rameno robota disková mechanika AMF (Atomic Force Microscope) MEMS (Micro-Electro-Mechanical Systems) pružné konstrukce v kosmu spalovací systémy Velmi obtížně se řídí, zejména je-li tlumení velmi malé, takže systém hodně rezonuje Skoro nemožné řídit PI nepřidá fázový předstih, proto je uzavřená smyčka ještě méně tlumená PI regulátor nesmí vybudit oscilační módy, proto je výsledná reakce velmi pomalá D akce velmi pomůže 2

3 Příklad: Málo tlumená oscilující soustava Pro oscilující soustavu s velmi malým tlumením 2 a Gs () = 2 2 s + 2ς as + a ς = I regulátor (P pomůže jen málo) Cs () = s PID regulátor 27 Cs ( ) = s s ještě lépe b = 0, pak skok nevybudí vysoké frekvence CL OL CL AH_3_5_Oscil.mdl OL Ts 1500s Ts 3s 3

4 Příklad: Soustava vyššího řádu Pro soustavu 3. řádu Gs () = PID regulátor 1 ( s + 1) 3 1 Cs ( ) = s 2.0s TDF regulátor 3.řádu AH_Ex3_3_HiOr.mdl >> G=1/(1+s)^3 >> PID=(1+1/2/s+.6*s) >> R=s*(s^2+11.5*s+57.5), S=144*s^3+575*s^2+870*s+512, T=8*s^3+77*s^2+309*s+512, RST=[T, -S]/R Rsu () = Ssy () + Tsy () sp Rs = ss + s+ 2 ( ) ( ) Ss () = T s s 575s 870s ( ) 8s 77s 309 = s y sp y rst y pid je lepší než PID d 4

5 Příklad: Soustava s dopravním zpožděním Pro soustavu s velkým zpožděním 1 4s Gs () = e 1 + 2s PI regulátor (složka D nepomůže) AH_Ex3_4_TD.mdl 1 Cs ( ) = s Smithův prediktor s PI regulátorem C 0 1 ( s) = s y smith y pi je ve srovnání s PID lepší: má o dost lepší reakce na skok reference a o něco lepší reakce na skok poruchy y sp d 5

6 Rychlá odezva pulzní vstup Větší akční zásahy rychlejší odezva - v praxi omezeny Pak dá nejrychlejší odezvu pulzní vstup bang-bang ut () umin, u Přesný tvar vstupu lze vypočítat (časově optimální řízení) není lineární [ ] max Příklad Soustava Ps () = PI regulátor 1 ( s + 1) K = 0.43, Ti = 2.25 b= 1,( M = 1.4) S 4 u u min max = 4 = 4 AH_5_11_FFPulse.mdl ut () PI regulátor K = 0.78, Ti = 2.05 b= 0.23,( M = 2.0) S Pulzní FF 6 yt ()

7 Rychlá odezva omezená rychlost akce Jiné praktické omezení: rychlost akčního zásahu Také časté kombinované omezení: na velikost i rychlost akčního zásahu Také není lineární Příklad Soustava jako minule Ps () = ale musí být 1 ( s + 1) 4 ut () AH_5_11_FFPulse.mdl du dt < konst yt () 7

8 Hraní s P-I-D a dalšími regulátory po internetu je mnoho zajímavých stránek o PID regulátorech např. o ladění PID regulátorů jsou celé knihy 8

9 Nastavení podle Zieglera a Nicholse 2 klasické metody nastavení (ladění) PID regulátoru publikoval Callender et al. 1936, J.G. Ziegler a N.B. Nichols 1941 a 1943 od té doby se hojně požívají Výhody: nepotřebují model jsou jednoduché jsou založeny na experimentu se samotným procesem prakticky vyzkoušené na mnoha případech fungují rozumně (?) Nevýhody nikdy nebyly dokázány ani pořádně vysvětleny byly nalezeny pomocí pokusů a omylů lze teoreticky ukázat, že mnoho systémů nedokážou ani stabilizovat Shrnuto praktici je mají rádi, teoretici ne používaly se pro řízení procesů opravdu často ale s postupujícím časem jejich význam upadá Metoda Ziegler-Nicholsova 9

10 Metoda 1: Odezva na skok 1/4 poměr útlumu Mnoho řízených procesů má dopravní zpoždění a OL odezvu na skok tvaru S říká se jí reakční křivka procesu můžeme ji aproximovat odezvou na skok jednoduchého systému 1. řádu s dopravním zpožděním Y() s a = e U s τ s Postup získání parametrů u procesu změříme odezvu na skok reference a nakreslíme tečnu v inflexním bodě hodnoty parametrů L přímo odečteme RL z grafu () + 1 yt () a st d yt () a tečna v inflexním bodě R= a τ L= t d τ časová konstanta směrnice = rychlost reakce ustálená hodnota L= t d τ t zpoždění změřená aproximace 1. řád ustálená hodnota t 10

11 Metoda 1: Odezva na skok 1/4 poměr útlumu Cílem ladění 1. metodou je, aby výsledný CL systém měl asi 25% poměr útlumu za jednu periodu to znamená, že druhé maximum je čtvrtinou prvního, což je rozumný kompromis mezi rychlostí a bezpečnou stabilitou. U systému 2. řádu tomu odpovídá ζ = 0.21 sérií experimentálních simulací na analogovém počítači dostali ZN empirické hodnoty pro nastavení parametrů PID regulátoru P PI PID kp = 1 RL k = 0.9 RL, T = 3L P I k = 1.2 RL, T = 2 L, T = 0.5L P I D 1 yt () perioda D () 1 Ts C s = kp + + D Ts I P I D t 11

12 Metoda 2: mezní citlivost frekvenční odezva Založená na měření systému na mezi stability: budíme krátkým impulsem (nenulovými pp.) postupně zvětšujeme zesílení P členu až se systém dostane na mez stability a začne kmitat stálými oscilacemi s amplitudou omezenou saturací akčního členu (s co nejmenší ale ustálenou amplitudou) periodu těchto kmitů změříme a nazveme mezní periodou P U zesílení při němž to nastane nazveme mezním zesílením K U z těchto naměřených hodnot určili ZN empirické P k hodnoty 0.5 pro nastavení P = KU parametrů PID regulátoru PI PID k = 0.45 K, T = P 1.2 P U I U k = 0.6 K, T = P 2, T = P 8 P U I U D U KU yt () proces P U mezní perioda P I D 1 D () 1 Ts C s = kp + + D Ts I t 12

13 Příklad: výměník tepla (volně podle Franklin 5e s 201, Ex. 4.9) Metoda 1 odezva na skok experimentálně určíme odezvu na skok a z ní odměříme L = 18, RL = 02. z toho vypočteme konstanty F=1/((35*s+1)*(25*s+1)),td=10,Ftd=tf(F), Ftd=set(Ftd,'ioDelay',td) L =18 pro P regulátor kp = 1 RL = 5 pro PI regulátor kp = 0.9 RL = 4.5 T = L 0.3 = 60 I RL = D () 1 Ts C s = kp + + D Ts I PI V obou případech je výsledek moc kmitavý Pomůže redukce na polovinu k P P 13

14 Příklad: výměník tepla Volně podle Franklin 5e s 201, Ex Metoda 2 mezní citlivost zapojíme P regulátor a postupně budíme krátkým pulsem (nebo nenulovými pp) zvyšujeme zesílení až nastanou ustálené (lineární) oscilace pak odměříme zesílení a periodu K = 6.87 P = 75s U z toho vypočteme konstanty pro P regulátor D 1 C s kp I kp = 0.5KU = 3.44 pro PI regulátor kp = 0.45KU = 3.09 T = P 1.2 = 62.5 ZN.mdl U 1 () = + + Ts D Ts I U 14 PI Moc kmitá: snížit k p o 50%! P

15 Příklad: Proti-intuitivní chování Obvyklé pravidlo pro manuální ladění říká, že když snížíme K, tak zvýšíme stabilitu a potlačíme oscilace (zvýšíme tlumení) Platí to obvykle, ale ne vždy: 1 Uvažme soustavu 1 s PI regulátorem Cs () = KP 1+ Gs () = Ts s i Uzavřená smyčka má charakteristický polynom 2 2 K pcl () s = Ts i + KPTs i + K s + KPs+ Proti intuici: Ti PM roste s K P Porovnáním s obecným polynomem 2 2 pro systém 2. řádu s + 2ζωns+ ωn vypočteme tlumení jako K = 0.2 KT P i ς = 2 které zřejmě závisí na K P právě opačně, než říká pravidlo K =1 K = 5 Michael Šebek Pr-ARI

16 Příklad: Soustava 2. řádu a PID regulátor Použití umístění pólů v extrémní situaci, kdy ostatní metody ladění nefungují soustava s nestabilní nulou a málo tlumenými oscilačními módy bs () 1 s = 2 tento příklad nelze jinými (klasickými) metodami řešit as () s + 1 (diskuse viz Åström, Hägglund: Advanced PID Control, s 180) zvolíme cs s s s s s j s j 3 2 ( ) = = ( + 1)( )( ) pak sestavíme soustavu a vyřešíme ji (PolTbx) >> c=s^3+2*s^2+2*s+1,a=s^2+1,b=1-s c = 1 + 2s + 2s^2 + s^3 a = 1 + s^2 b = 1 - s >> [x,y]=axbyc(a*s,b,c) x = y = 1 + 2s^2 qs ks + ks+ k + = = ps () s 3s 2 2 () D P I 2s 1 k k k P I D = 0 = 13 = 23 16

17 jeho kořeny, tedy CL póly jsou jeden z pólů (vlastně dvojnásobný) byl umístěn do požadované polohy a přitom je dominantní Příklad na umístění jednoho pólu bs () 1 k Gs () = = I h D ( ) 2 C () s = ( ) k as () I = = h 1 h = h 2h + h s + 1 s G( h) zvolíme-li s= hh, > 0, pak tento pól přiřadí konstanta vybereme-li např. h = 13 tj. pól v s = 13 pak je potřebná konstanta Tedy I regulátor s přenosem 4 27 k I = 4 27 D () C s = s přiřadí CL charakteristický polynom cs ( ) = s+ 2 s + s 2 3 >> format rat >> P=1/(s+1)^2; >> h=1/3,ki=h/value(p,-h) h = 1/3 ki = 4/27 >> D=kI/s D = 0.15 / s >> c=p.den*d.den+p.num*d.num c = s + 2s^2 + s^3 >> roots(c) ans = -4/3-1/3 + 1/ i -1/3-1/ i 17

18 ideální derivace má pro vysoké frekvence příliš velké zesílení poměr šum : signál Praktické triky: Filtrování derivace dy y = sin t+ asinωt = cost+ aωcos ωt signál šum dt = a = aω D = KTd s KTd s ω D = D KT s 1 + std N d D KN, N 2, 20 ω Proto ji často ještě filtrujeme: místo použijeme [ ] Alternativně nefiltrujeme jen D, ale všechny složky regulátoru 1 1 Cs () = CsC () f () s = K 1+ + std 2 sti 1 + stf + ( stf ) 2 filtr 2. řádu s tlumením ς =1 2 a konstantou pro PI a pro PID T f T = T N = Ti N f d lim C ( jω) = 0 ω high frequency roll-off 18

19 Často se užívá flexibilnější struktura 1 t ut () = K ep() t + e( τ) dτ T T + 0 i e = by y, e = cy y p sp d sp Praktické triky: Set-point weighting ded () t dt Změnou vah dále ladíme např. b = 0 zpomaluje reakci na změnu, ale zase snižuje překmit Je to ekvivalentní struktuře se standardním PID a přímovazebním F d e= y y sp v integrační složce zůstává regulační odchylka kvůli nulové ustálené odchylce! Fs () PID Ps () b =1 b = 0.5 Fs () = ctt s TT s + bst i d i 2 i d sti volbou vah b, c tedy ovlivňujeme nuly výsledného přenosu b = 0 AH_3_9_SetPoint.mdl 19

20 Windup Saturace akčního členu každý reálný akční člen má omezený rozsah ventil může být nejvýše úplně otevřený a nejméně úplně zavřený řídicí plochy letadla se nemohou vychýlit za jistý úhel od nominální polohy elektronické zesilovače mohou produkovat nejvýše konečné napětí Když dojde k saturaci řídicí signál dále neroste/neklesá a smyčka je v podstatě otevřená výstup integračního členu regulátoru za této situace stále zvyšuje svou hodnotu, ale není to k ničemu když se změní znaménko regulační odchylky, začne klesat, ale dlouho trvá, než se dostane pod úroveň saturace důsledkem je velký překmit a špatná odezva na skok v otevřené smyčce je integrační člen nestabilním prvkem a musí být extra stabilizován 20

21 Anti-Windup ±1.0 bez saturace se saturací bez saturace se saturací 21

22 Anti-Windup řešením je obvod anti-windup, který vypne integrální akci, jakmile dojde k saturaci tím se zmenší překývnutí a přechodová charakteristika z hlediska stability způsobuje nelinearita typu saturace dočasné rozpojování smyčky účelem zařízení anti-windup je pomocí lokální ZV stabilizovat regulátor v době, kdy je hlavní smyčka rozpojena saturací každé řešení, které tohle umožní, může být použito jako anti-windup Digitální řešení pokud je regulátor implementován digitálně, řešení je snadné: prostě logika I člen vypne: if u u max, k I = 0 22

23 Anti-Windup: Analogové řešení 1 (snadno se vysvětluje, nesnadno realizuje potřebuje další nelinearitu) k P k I ±u max ±u max po dobu saturace je to ekvivalentní zapojení směrnice k A tedy po dobu saturace má regulátor přenos ki P s+ kk + k I A k P k I který uděláme stabilní po skončení saturace se přidaná ZV rozpojí a regulátor je zase PI 23 k A

24 Anti-Windup: Analogové řešení 2 (nesnadno se vysvětluje, snadno realizuje nepotřebuje další nelinearitu) k P ±u max po dobu saturace je to ekvivalentní zapojení k I k P k A tedy po dobu saturace je přenos regulátoru ks P + ki s+ kk I A k I u C k A ±u max po skončení saturace se přidaná ZV rozpojí a regulátor je zase PI k I k A u C u = 0 C 24

25 Anti-Windup ±1.0 bez anti-windup s anti-windup bez anti-windup s anti-windup 25

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 23. 1. 2009 Číslo: Kontroloval: Datum: 4 Pořadové číslo žáka: 24

Více

4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost

4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost 4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost Michael Šebek Automatické řízení 25 25-2-5 Stabilita obecně Automatické řízení - Kybernetika a robotika Stabilita obecně

Více

Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2)

Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2) Předmět: Ročník: Vytvořil: Datum: AUTOMATIZACE DRUHÝ ZDENĚK KOVAL Název zpracovaného celku: 27. 3. 2013 Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2) 5.5 REGULOVANÉ SOUSTAVY Regulovaná

Více

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit.

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit. Statiké a dynamiké harakteristiky Úvod : Základy Laplaeovy transformae dále LT: viz lit. hlavní užití: - převádí difereniální rovnie na algebraiké (nehomogenní s konstantními koefiienty - usnadňuje řešení

Více

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

Vysoká škola Báňská. Technická univerzita Ostrava

Vysoká škola Báňská. Technická univerzita Ostrava Vysoká škola Báňská Technická univerzita Ostrava Nasazení jednočipových počítačů pro sběr dat a řízení Rešerše diplomové práce Autor práce: Vedoucí práce: Bc. Jiří Czebe Ing. Jaromír ŠKUTA, Ph.D. 2015

Více

Stabiliz atory napˇet ı v nap ajec ıch zdroj ıch - mˇeˇren ı z akladn ıch parametr u Ondˇrej ˇ Sika

Stabiliz atory napˇet ı v nap ajec ıch zdroj ıch - mˇeˇren ı z akladn ıch parametr u Ondˇrej ˇ Sika - měření základních parametrů Obsah 1 Zadání 4 2 Teoretický úvod 4 2.1 Stabilizátor................................ 4 2.2 Druhy stabilizátorů............................ 4 2.2.1 Parametrické stabilizátory....................

Více

Účinky měničů na elektrickou síť

Účinky měničů na elektrickou síť Účinky měničů na elektrickou síť Výkonová elektronika - přednášky Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Definice pojmů podle normy ČSN

Více

Pracovní list žáka (SŠ)

Pracovní list žáka (SŠ) Pracovní list žáka (SŠ) vzorová úloha (SŠ) Jméno Třída.. Datum.. 1 Teoretický úvod Rezistory lze zapojovat do série nebo paralelně. Pro výsledný odpor sériového zapojení rezistorů platí: R = R1 + R2 +

Více

Příklady k přednášce 25 Dopravní zpoždění

Příklady k přednášce 25 Dopravní zpoždění Příklady k přednášce 25 Dopravní zpoždění Michael Šebek Automatické řízení 23 2-4-3 L { } Dopravní zpoždění v Laplaceově tranformaci v ( + τ ) { f t } { } t f(): t f() t = t

Více

Ideální frekvenční charakteristiky filtrů podle bodu 1. až 4. v netypických lineárních souřadnicích jsou znázorněny na následujícím obrázku. U 1.

Ideální frekvenční charakteristiky filtrů podle bodu 1. až 4. v netypických lineárních souřadnicích jsou znázorněny na následujícím obrázku. U 1. Aktivní filtry Filtr je obecně selektivní obvod, který propouští určité frekvenční pásmo, zatímco ostatní frekvenční pásma potlačuje. Filtry je možno realizovat sítí pasivních součástek, tj. rezistorů,

Více

Šum AD24USB a možnosti střídavé modulace

Šum AD24USB a možnosti střídavé modulace Šum AD24USB a možnosti střídavé modulace Vstup USB měřicího modulu AD24USB je tvořen diferenciálním nízkošumovým zesilovačem s bipolárními operačními zesilovači. Charakteristickou vlastností těchto zesilovačů

Více

FAKULTA STROJNÍHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Vyšší formy řízení. Autor textu: Prof. Ing. Petr Pivoňka, CSc.

FAKULTA STROJNÍHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Vyšší formy řízení. Autor textu: Prof. Ing. Petr Pivoňka, CSc. FAKULA SROJNÍHO INŽENÝRSVÍ VYSOKÉ UČENÍ ECHNICKÉ V BRNĚ Vyšší formy řízení Autor textu: Prof. Ing. Petr Pivoňka, CSc. Brno 9.0.2003 2 FSI Vysokého učení technického v Brně Obsah ÚVOD... 6 2 PID REGULÁORY,

Více

Při návrhu FIR filtru řešíme obvykle následující problémy:

Při návrhu FIR filtru řešíme obvykle následující problémy: Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.

Více

Pracovní list žáka (ZŠ)

Pracovní list žáka (ZŠ) Pracovní list žáka (ZŠ) Účinky elektrického proudu Jméno Třída.. Datum.. 1. Teoretický úvod Elektrický proud jako jev je tvořen uspořádaným pohybem volných částic s elektrickým nábojem. Elektrický proud

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

43A111 Návrh řízení podvozku vozidla pomocí lineárního elektrického pohonu.

43A111 Návrh řízení podvozku vozidla pomocí lineárního elektrického pohonu. 43A111 Návrh řízení podvozku vozidla pomocí lineárního elektrického pohonu. Popis aktivity Návrh a realizace řídicích algoritmů pro lineární elektrický motor použitý jako poloaktivní aktuátor tlumení pérování

Více

Základní elektronické obvody

Základní elektronické obvody Základní elektronické obvody Soustava jednotek Coulomb (C) = jednotka elektrického náboje q Elektrický proud i = náboj, který proteče průřezem vodiče za jednotku času i [A] = dq [C] / dt [s] Volt (V) =

Více

Měření rychlosti zvuku z Dopplerova jevu

Měření rychlosti zvuku z Dopplerova jevu Měření rychlosti zvuku z Dopplerova jevu Online: http://www.sclpx.eu/lab2r.php?exp=10 Měření rychlosti zvuku z Dopplerova jevu patří k dalším zcela původním a dosud nikým nepublikovaným experimentům, které

Více

Title: IX 6 11:27 (1 of 6)

Title: IX 6 11:27 (1 of 6) PŘEVODNÍKY ANALOGOVÝCH A ČÍSLICOVÝCH SIGNÁLŮ Převodníky umožňující transformaci číslicově vyjádřené informace na analogové napětí a naopak zaujímají v řídícím systému klíčové postavení. Značná část měřených

Více

DIGITÁLNÍ MĚŘIČ OSVĚTLENÍ AX-L230. Návod k obsluze

DIGITÁLNÍ MĚŘIČ OSVĚTLENÍ AX-L230. Návod k obsluze DIGITÁLNÍ MĚŘIČ OSVĚTLENÍ AX-L230 Návod k obsluze 1.NÁVOD Digitální luxmetr slouží k přesnému měření intenzity osvětlení plochy (v luxech, stopových kandelách). Vyhovuje spektrální odezvě CIE photopic.

Více

YU = I kde I = 0 (6.1)

YU = I kde I = 0 (6.1) Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

1. Stanovte a graficky znázorněte charakteristiky vakuové diody (EZ 81) a Zenerovy diody (KZ 703).

1. Stanovte a graficky znázorněte charakteristiky vakuové diody (EZ 81) a Zenerovy diody (KZ 703). 1 Pracovní úkoly 1. Stanovte a graficky znázorněte charakteristiky vakuové diody (EZ 81) a Zenerovy diody (KZ 703). 2. Určete dynamický vnitřní odpor Zenerovy diody v propustném směru při proudu 200 ma

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry 18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry Digitální voltmetry Základním obvodem digitálních voltmetrů je A/D

Více

0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí

0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí Program Sorpce1.m psaný v prostředí Matlabu slouží k vyhlazování naměřených sorpčních křivek a výpočtu difuzních koeficientů. Kromě standardního Matlabu vyžaduje ještě Matlab Signal Processing Toolbox

Více

Derivační spektrofotometrie a rozklad absorpčního spektra

Derivační spektrofotometrie a rozklad absorpčního spektra Derivační spektrofotometrie a rozklad absorpčního spektra Teorie: Derivační spektrofotometrie, využívající derivace absorpční křivky, je obecně používanou metodou pro zvýraznění detailů průběhu záznamu,

Více

Převodníky AC / DC signálů Galvanické oddělovače Napájecí zdroje Zobrazovače

Převodníky AC / DC signálů Galvanické oddělovače Napájecí zdroje Zobrazovače Převodníky AC / DC signálů Galvanické oddělovače Napájecí zdroje Zobrazovače 48,1,2,47,4 6,3,4,4 5,44,5,6,43,42, 7,8,41,4 0,9,10, 39,38,1 1,12,37, 36,13,1 4,35,34,15,16, 33,32,1 7,18,31, 30,19,2 0,29,28,21,22,

Více

Elektronické jednotky pro řízení PRL1 a PRL2

Elektronické jednotky pro řízení PRL1 a PRL2 Elektronické jednotky pro řízení PRL1 a PRL2 EL 2 HC 9130 2/99 Nahrazuje HC 9130 2/97 Elektronické jednotky určené k řízení PRL1 a PRL2 Kompaktní jednotky montovatelné na lištu 35,7 x 7,5 dle DIN 50 022

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

16 - Pozorovatel a výstupní ZV

16 - Pozorovatel a výstupní ZV 16 - Pozorovatel a výstupní ZV Automatické řízení 2015 14-4-15 Hlavní problém stavové ZV Stavová zpětná vazba se zdá být nejúčinnějším nástrojem řízení, důvodem je síla pojmu stav, který v sobě obsahuje

Více

5. MĚŘENÍ TEPLOTY TERMOČLÁNKY

5. MĚŘENÍ TEPLOTY TERMOČLÁNKY 5. MĚŘENÍ TEPLOTY TERMOČLÁNKY Úkol měření 1. Ověření funkce dvoudrátového převodníku XTR 101 pro měření teploty termoelektrickými články (termočlánky). 2. Použití měřicího modulu Janascard AD232 s izotermální

Více

Ultrazvuková defektoskopie. Vypracoval Jan Janský

Ultrazvuková defektoskopie. Vypracoval Jan Janský Ultrazvuková defektoskopie Vypracoval Jan Janský Základní principy použití vysokých akustických frekvencí pro zjištění vlastností máteriálu a vad typické zařízení: generátor/přijímač pulsů snímač zobrazovací

Více

200W ATX PC POWER SUPPLY

200W ATX PC POWER SUPPLY 200W ATX PC POWER SUPPLY Obecné informace Zde vám přináším schéma PC zdroje firmy DTK. Tento zdroj je v ATX provedení o výkonu 200W. Schéma jsem nakreslil, když jsem zdroj opravoval. Když už jsem měl při

Více

Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně. Přístroje

Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně. Přístroje Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně Rozmanitost signálů v komunikační technice způsobuje, že rozdělení měřicích metod není jednoduché a jednoznačné.

Více

O /OFF a PID REGULACE Co je to O /OFF regulace?

O /OFF a PID REGULACE Co je to O /OFF regulace? O /OFF a PID REGULACE Pro jednoduchost se budeme zabývat regulací na konstantní hodnotu žádaná hodnota se v čase nemění. Co je to O /OFF regulace? Je to základní typ regulace zapnuto / vypnuto, též dvoupolohová

Více

Měření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM

Měření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM Měření hustoty plazmatu interferometrickou metodou na Tokamaku GOLEM Ondřej Grover Gymnázium Jana Nerudy 7. konference projektu Cesta k Vědě 26.5.2011 Osnova prezentace 1 Vlnovodný systém 2 Analogový vyhodnocovací

Více

Lineární diferenciální rovnice 1. řádu verze 1.1

Lineární diferenciální rovnice 1. řádu verze 1.1 Úvod Lineární diferenciální rovnice. řádu verze. Následující tet popisuje řešení lineárních diferenciálních rovnic. řádu. Měl by sloužit především studentům předmětu MATEMAT2 na Univerzitě Hradec Králové

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

1. Základy teorie přenosu informací

1. Základy teorie přenosu informací 1. Základy teorie přenosu informací Úvodem citát o pojmu informace Informace je název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. N.

Více

Mikroskop atomárních sil: základní popis instrumentace

Mikroskop atomárních sil: základní popis instrumentace Mikroskop atomárních sil: základní popis instrumentace Jednotlivé komponenty mikroskopu AFM Funkce, obecné nastavení parametrů a jejich vztah ke konkrétním funkcím software Nova Verze 20110706 Jan Přibyl,

Více

3. Kmitočtové charakteristiky

3. Kmitočtové charakteristiky 3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny

Více

Bezdrátový přenos signálu v reálné aplikaci na letadle.

Bezdrátový přenos signálu v reálné aplikaci na letadle. Bezdrátový přenos signálu v reálné aplikaci na letadle. Jakub Nečásek TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Parametry a aplikace diod

Parametry a aplikace diod Cvičení 6 Parametry a aplikace diod Teplotní závislost propustného úbytku a závěrného proudu diody (PSpice) Reálná charakteristika diody, model diody v PSpice Extrakce parametrů diody pro PSpice Měření

Více

2. Pro každou naměřenou charakteristiku (při daném magnetickém poli) určete hodnotu kritického

2. Pro každou naměřenou charakteristiku (při daném magnetickém poli) určete hodnotu kritického 1 Pracovní úkol 1. Změřte V-A charakteristiky magnetronu při konstantním magnetickém poli. Rozsah napětí na magnetronu volte 0-200 V (s minimálním krokem 0.1-0.3 V v oblasti skoku). Proměřte 10-15 charakteristik

Více

Úloha D - Signál a šum v RFID

Úloha D - Signál a šum v RFID 1. Zadání: Úloha D - Signál a šum v RFID Změřte úrovně užitečného signálu a šumu v přenosovém řetězci systému RFID v závislosti na čtecí vzdálenosti. Zjistěte maximální čtecí vzdálenost daného RFID transpondéru.

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

4.2.13 Regulace napětí a proudu reostatem a potenciometrem

4.2.13 Regulace napětí a proudu reostatem a potenciometrem 4..3 Regulace napětí a proudu reostatem a potenciometrem Předpoklady: 405, 407, 40 Nejde o dva, ale pouze o jeden druh součástky (reostat) ve dvou různých zapojeních (jako reostat a jako potenciometr).

Více

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10 Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy MĚŘENÍ CHARAKTERISTIK REZONANČNÍCH OBVODŮ Číslo úlohy 301-3R Zadání

Více

Přípravek pro demonstraci řízení pohonu MAXON prostřednictvím

Přípravek pro demonstraci řízení pohonu MAXON prostřednictvím Přípravek pro demonstraci řízení pohonu MAXON prostřednictvím karty Humusoft MF624. (Jan Babjak) Popis přípravku Pro potřeby výuky na katedře robototechniky byl vyvinut přípravek umožňující řízení pohonu

Více

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze.

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze. Nejprve několik fyzikálních analogií úvodem Rezonance Rezonance je fyzikálním jevem, kdy má systém tendenci kmitat s velkou amplitudou na určité frekvenci, kdy malá budící síla může vyvolat vibrace s velkou

Více

RLC obvody sériový a paralelní rezonanční obvod

RLC obvody sériový a paralelní rezonanční obvod Vysoká škola báňská Technická universita Ostrava Fakulta elektrotechniky a informatiky Základy elektroniky ZE aboratorní úloha č. 2 R obvody sériový a paralelní rezonanční obvod Datum měření: 24. 9. 2011

Více

Název: Téma: Autor: Číslo: Prosinec 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Název: Téma: Autor: Číslo: Prosinec 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Inovace a zkvalitnění výuky prostřednictvím ICT Elektrický proud střídavý Elektronický oscilátor

Více

MĚŘ, POČÍTEJ A MĚŘ ZNOVU

MĚŘ, POČÍTEJ A MĚŘ ZNOVU MĚŘ, POČÍTEJ A MĚŘ ZNOVU Václav Piskač Gymnázium tř.kpt.jaroše, Brno Abstrakt: Příspěvek ukazuje možnost, jak ve vyučovací hodině propojit fyzikální experiment a početní úlohu způsobem, který výrazně zvyšuje

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Algebra blokových schémat Osnova kurzu

Algebra blokových schémat Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů Automatizace - Ing. J. Šípal, PhD 1 Osnova

Více

Senzor teploty. Katalogový list SMT 160-30

Senzor teploty. Katalogový list SMT 160-30 Senzor teploty Katalogový list SMT 160-30 Obsah 1. Úvod strana 2 2. Inteligentní senzor teploty strana 2 3. Vývody a pouzdro strana 4 4. Popis výrobku strana 4 5. Charakteristické údaje strana 5 6. Definice

Více

Nové směry v řízení ES

Nové směry v řízení ES Nové směry v řízení ES Nové směry v řízení ES Systémy založené na technologii měření synchronních fázorů: WAM - Wide Area Monitoring WAC Wide Area Control WAP - Wide Area Protection Někdy jsou všechny

Více

APOSYS 10. Kompaktní mikroprocesorový regulátor APOSYS 10. MAHRLO s.r.o. Ľudmily Podjavorinskej 535/11 916 01 Stará Turá

APOSYS 10. Kompaktní mikroprocesorový regulátor APOSYS 10. MAHRLO s.r.o. Ľudmily Podjavorinskej 535/11 916 01 Stará Turá APOSYS 10 Kompaktní mikroprocesorový regulátor APOSYS 10 Popis dvojitý čtyřmístný displej LED univerzální vstup s galvanickým oddělením regulační výstupy reléové regulace: on/off, proporcionální, PID,

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jakub Michálek stud. skup. 15 dne: 20. března 2009 Odevzdal dne: Možný

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Dynamika Vojtěch Beneš žák měří vybrané veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, určí v konkrétních situacích síly působící na

Více

Numerické řešení variačních úloh v Excelu

Numerické řešení variačních úloh v Excelu Numerické řešení variačních úloh v Excelu Miroslav Hanzelka, Lenka Stará, Dominik Tělupil Gymnázium Česká Lípa, Gymnázium Jírovcova 8, Gymnázium Brno MirdaHanzelka@seznam.cz, lenka.stara1@seznam.cz, dtelupil@gmail.com

Více

GEOTECHNICKÝ MONITORING

GEOTECHNICKÝ MONITORING Inovace studijního oboru Geotechnika reg. č. CZ.1.07/2.2.00/28.0009 GEOTECHNICKÝ MONITORING podklady do cvičení SEIZMICKÁ MĚŘENÍ Ing. Martin Stolárik, Ph.D. Místnost: C 315 Telefon: 597 321 928 E-mail:

Více

Digitální měřící přístroje a proudové transformátory

Digitální měřící přístroje a proudové transformátory Digitální měřící přístroje a proudové transformátory Digitální měřící přístroje DMK: 96x48mm Panelové provedení Modulární provedení Jednofázové Jednofunkční Voltmetr mpérmetr Voltmetr nebo mpérmetr Kmitočtoměr

Více

Sbírka úloh z matematiky

Sbírka úloh z matematiky Střední průmyslová škola a Střední odborné učiliště, Trutnov, Školní 101 Sbírka úloh z matematiky v rámci projektu královéhradeckého kraje zavádění inovativních metod výuky pomocí ICT v předmětu matematika

Více

Základní principy přeměny analogového signálu na digitální

Základní principy přeměny analogového signálu na digitální Základní y přeměny analogového signálu na digitální Pro přenos analogového signálu digitálním systémem, je potřeba analogový signál digitalizovat. Digitalizace je uskutečňována pomocí A/D převodníků. V

Více

Multipřepínače MU pro hvězdicové rozvody

Multipřepínače MU pro hvězdicové rozvody Multipřepínače MU pro hvězdicové rozvody Multipřepínače ALCAD série 913 jsou určeny k hvězdicovému rozvodu signálu TV+FM (digitálního i analogového) a satelitního signálu z jednoho nebo dvou satelitních

Více

Á Ž Ú ž ň š ž Ž š Ť Ť Ž Ď Ť Ž ž Ť š ř Ť Ť Ť Ť Ť ž š ž š Ť š Ť Ť š ř Ť Ť Ť Ť Š Ť Ť Ý Á ť ř Ť ž š ň Ť Ť Ž Ť Ť Ť Ž Ž ř ž ž Ť Ž Ě Ť ž Ť Ť Ť Ť š Ť Ž š Ť Ů Ť ť ť Ť ť Ž Č Ž š Ť ř Ť Ž š Ů Ť Ť š Ť Ť ž š ť Ť Ž Ž

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup ELEKTONIKA I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í 1. Usměrňování a vyhlazování střídavého a. jednocestné usměrnění Do obvodu střídavého proudu sériově připojíme diodu. Prochází jí proud

Více

Montážní a provozní návod

Montážní a provozní návod Frivent CZ s.r.o. Novohradská 40, 370 01 České Budějovice Montážní a provozní návod Regulátor teploty Frivent MS-100 Platný pro verzi 1.0 Frivent Duben 2011 strana 1 z 10 Obsah: 1. provedení... 3 2. struktura...

Více

Metodika měření linearity CCD snímačů

Metodika měření linearity CCD snímačů Metodika měření linearity CCD snímačů (test na plochu) Ver. 1.7 Zpracoval: Zdeněk Řehoř BRNO 2009 Metodika měření linearity CCD je určena pro stanovení závislosti odezvy senzorů na velikosti na detektor

Více

REGULA - regulační systém spořící ochranný plyn

REGULA - regulační systém spořící ochranný plyn REGULA - regulační systém spořící ochranný plyn pouze svařujete, nebo již šetříte? Optimální využití všech zdrojů je jedním ze základních předpokladů pro ekonomický a efektivní svařovací proces. Optimální

Více

Úvod do nebeské mechaniky

Úvod do nebeské mechaniky OPT/AST L09 Úvod do nebeské mechaniky pohyby astronomických těles ve společném gravitačním poli obecně: chaotický systém nestabilní numerické řešení speciální případ: problém dvou těles analytické řešení

Více

Veličina???? jedna ze základních fyzikálních veličin dá se definovat jako neprostorové lineární kontinuum je velmi obtížné, až nemožné, si ji nějak představit byl po dlouhou dobu především doménou filosofů,

Více

Matematicko-fyzikální model vozidla

Matematicko-fyzikální model vozidla 20. února 2012 Obsah 1 2 Reprezentace trasy Řízení vozidla Motivace Motivace Simulátor se snaží přibĺıžit charakteristikám vozu Škoda Octavia Combi 2.0TDI Ověření funkce regulátoru EcoDrive Fyzikální základ

Více

Klasické a inovované měření rychlosti zvuku

Klasické a inovované měření rychlosti zvuku Klasické a inovované měření rychlosti zvuku Jiří Tesař katedra fyziky, Pedagogická fakulta JU Klíčová slova: Rychlost zvuku, vlnová délka, frekvence, interference vlnění, stojaté vlnění, kmitny, uzly,

Více

Řízení spínaných zdrojů

Řízení spínaných zdrojů 1 Řízení spínaných zdrojů Výstupní napětí spínaného zdroje je udržováno na konstantní hodnotě pomocí uzavřené řídicí zpětnovazební smyčky. Hodnota výstupního napětí (skutečná hodnota) je porovnávána s

Více

Přenosný systém na ruční zkoušení bodových svarů

Přenosný systém na ruční zkoušení bodových svarů Provozovna: ATG, s. r. o. Tel.: (+420 ) 23431 2201 Beranových 65 (+420 ) 23431 2202 Praha 9 - Letňany Fax: (+420 ) 23431 2205 199 02 E-mail: atg@atg.cz Česká Republika http: www.atg.cz HERCULES Přenosný

Více

VARIPULSE 04/07 1/10 NÁVOD NA INSTALACI ŘÍDÍCÍ JEDNOTKA VARIPULSE

VARIPULSE 04/07 1/10 NÁVOD NA INSTALACI ŘÍDÍCÍ JEDNOTKA VARIPULSE VARIPULSE 04/07 1/10 NÁVOD NA INSTALACI ŘÍDÍCÍ JEDNOTKA VARIPULSE Tento návod je určen pro osoby, které budou odpovídat za instalaci, provoz a údržbu. Platí od: 04/2007 VARIPULSE 04/07 2/10 Řídící jednotka

Více

Analogově-číslicové převodníky ( A/D )

Analogově-číslicové převodníky ( A/D ) Analogově-číslicové převodníky ( A/D ) Převodníky analogového signálu v číslicový (zkráceně převodník N/ Č nebo A/D jsou povětšině založeny buď na principu transformace napětí na jinou fyzikální veličinu

Více

ÚLOHA 1 Ladi = 100 Hz = 340 m/s Úkoly: lnovou d él é ku k periodu T frekvenci f =? vlnovou délku =?

ÚLOHA 1 Ladi = 100 Hz = 340 m/s Úkoly: lnovou d él é ku k periodu T frekvenci f =? vlnovou délku =? ÚLOHA 1 Ladička má rekvenci 100 Hz. Kmitá ve vzduchu, kde je rychlost zvuku přibližně c 340 m/s. Úkoly: a) Jak lze u zvuku charakterizovat vlnovou délku λ? b) Jak lze u zvuku charakterizovat periodu T?

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

9 Charakter proudění v zařízeních

9 Charakter proudění v zařízeních 9 Charakter proudění v zařízeních Egon Eckert, Miloš Marek, Lubomír Neužil, Jiří Vlček A Výpočtové vztahy Jedním ze způsobů, který nám v praxi umožňuje získat alespoň omezené informace o charakteru proudění

Více

Řízení tepelné soustavy pomocí PLC Siemens

Řízení tepelné soustavy pomocí PLC Siemens Řízení tepelné soustavy pomocí PLC Siemens Martin Kopal TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

PCM30U-OCH UII16K. účatnické rozhraní na straně telefoního přístroje. TTC Telekomunikace, s.r.o. Třebohostická 5, 100 00, Praha 10 Česká republika

PCM30U-OCH UII16K. účatnické rozhraní na straně telefoního přístroje. TTC Telekomunikace, s.r.o. Třebohostická 5, 100 00, Praha 10 Česká republika UII16K účatnické rozhraní na straně telefoního přístroje TTC Telekomunikace, s.r.o. Třebohostická 5, 100 00, Praha 10 Česká republika tel: +420 234 052 386, 1111 fax: +420 234 052 999 e-mail: pcm30u@ttc.cz

Více

Základní pojmy o signálech

Základní pojmy o signálech Základní pojmy o signálech klasifikace signálů transformace časové osy energie a výkon periodické signály harmonický signál jednotkový skok a impuls Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz

Více

Výkonová elektronika. Polovodičový stykač BF 9250

Výkonová elektronika. Polovodičový stykač BF 9250 Výkonová elektronika Polovodičový stykač BF 9250 BF 9250 do 10 A BF 9250 do 25 A podle EN 60 947-4-2, IEC 60 158-2, VDE 0660 část 109 1-, 2- a 3-pólová provedení řídící vstup X1 s malým příkonem proudu

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Semestrální práce RLC obvody

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Semestrální práce RLC obvody Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Semestrální práce RLC obvody Michaela Šebestová 28.6.2009 Obsah 1 Úvod 2 Teorie elektrotechniky 2.1 Použité teorémy fyziky 2.1.1

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

2. MĚŘENÍ TEPLOTY TERMOČLÁNKY

2. MĚŘENÍ TEPLOTY TERMOČLÁNKY 2. MĚŘENÍ TEPLOTY TERMOČLÁNKY Otázky k úloze (domácí příprava): Jaká je teplota kompenzačního spoje ( studeného konce ), na kterou koriguje kompenzační krabice? Dá se to zjistit jednoduchým měřením? Čemu

Více

Číslicové řízení procesů

Číslicové řízení procesů Číslicové řízení procesů čební text VOŠ a SPŠ Ktná Hora Ing. Lděk Kohot Základní pojmy číslicového řízení Rozdělení řízení podle průběh signálů logické řízení binární signály (RUE, FALSE) analogové řízení

Více

Programovatelná řídící jednotka REG10. návod k instalaci a použití 2.část Řídící jednotka ekvitermního vytápění MSI-1

Programovatelná řídící jednotka REG10. návod k instalaci a použití 2.část Řídící jednotka ekvitermního vytápění MSI-1 Obsah: Programovatelná řídící jednotka REG10 návod k instalaci a použití 2.část Řídící jednotka ekvitermního vytápění MSI-1 1.0 Program... 1 1.1 Vstupy, výstupy a zobrazení... 1 1.2 Funkce řídící jednotky...

Více

Kroucená dvojlinka. původně telefonní kabel, pro sítě začalo používat IBM (Token Ring) kroucením sníženo rušení. potah (STP navíc stínění)

Kroucená dvojlinka. původně telefonní kabel, pro sítě začalo používat IBM (Token Ring) kroucením sníženo rušení. potah (STP navíc stínění) Fyzická vrstva Kroucená dvojlinka původně telefonní kabel, pro sítě začalo používat IBM (Token Ring) kroucením sníženo rušení potah (STP navíc stínění) 4 kroucené páry Kroucená dvojlinka dva typy: nestíněná

Více