Příklady k přednášce 11 - Regulátory

Rozměr: px
Začít zobrazení ze stránky:

Download "Příklady k přednášce 11 - Regulátory"

Transkript

1 Příklady k přednášce 11 - Regulátory Michael Šebek Automatické řízení

2 Soustavy s oscilujícími módy V běžných průmyslových procesech je to méně časté, ale některé důležité aplikace mají hodně oscilující módy: pružné rameno robota disková mechanika AMF (Atomic Force Microscope) MEMS (Micro-Electro-Mechanical Systems) pružné konstrukce v kosmu spalovací systémy Velmi obtížně se řídí, zejména je-li tlumení velmi malé, takže systém hodně rezonuje Skoro nemožné řídit PI nepřidá fázový předstih, proto je uzavřená smyčka ještě méně tlumená PI regulátor nesmí vybudit oscilační módy, proto je výsledná reakce velmi pomalá D akce velmi pomůže 2

3 Příklad: Málo tlumená oscilující soustava Pro oscilující soustavu s velmi malým tlumením 2 a Gs () = 2 2 s + 2ς as + a ς = I regulátor (P pomůže jen málo) Cs () = s PID regulátor 27 Cs ( ) = s s ještě lépe b = 0, pak skok nevybudí vysoké frekvence CL OL CL AH_3_5_Oscil.mdl OL Ts 1500s Ts 3s 3

4 Příklad: Soustava vyššího řádu Pro soustavu 3. řádu Gs () = PID regulátor 1 ( s + 1) 3 1 Cs ( ) = s 2.0s TDF regulátor 3.řádu AH_Ex3_3_HiOr.mdl >> G=1/(1+s)^3 >> PID=(1+1/2/s+.6*s) >> R=s*(s^2+11.5*s+57.5), S=144*s^3+575*s^2+870*s+512, T=8*s^3+77*s^2+309*s+512, RST=[T, -S]/R Rsu () = Ssy () + Tsy () sp Rs = ss + s+ 2 ( ) ( ) Ss () = T s s 575s 870s ( ) 8s 77s 309 = s y sp y rst y pid je lepší než PID d 4

5 Příklad: Soustava s dopravním zpožděním Pro soustavu s velkým zpožděním 1 4s Gs () = e 1 + 2s PI regulátor (složka D nepomůže) AH_Ex3_4_TD.mdl 1 Cs ( ) = s Smithův prediktor s PI regulátorem C 0 1 ( s) = s y smith y pi je ve srovnání s PID lepší: má o dost lepší reakce na skok reference a o něco lepší reakce na skok poruchy y sp d 5

6 Rychlá odezva pulzní vstup Větší akční zásahy rychlejší odezva - v praxi omezeny Pak dá nejrychlejší odezvu pulzní vstup bang-bang ut () umin, u Přesný tvar vstupu lze vypočítat (časově optimální řízení) není lineární [ ] max Příklad Soustava Ps () = PI regulátor 1 ( s + 1) K = 0.43, Ti = 2.25 b= 1,( M = 1.4) S 4 u u min max = 4 = 4 AH_5_11_FFPulse.mdl ut () PI regulátor K = 0.78, Ti = 2.05 b= 0.23,( M = 2.0) S Pulzní FF 6 yt ()

7 Rychlá odezva omezená rychlost akce Jiné praktické omezení: rychlost akčního zásahu Také časté kombinované omezení: na velikost i rychlost akčního zásahu Také není lineární Příklad Soustava jako minule Ps () = ale musí být 1 ( s + 1) 4 ut () AH_5_11_FFPulse.mdl du dt < konst yt () 7

8 Hraní s P-I-D a dalšími regulátory po internetu je mnoho zajímavých stránek o PID regulátorech např. o ladění PID regulátorů jsou celé knihy 8

9 Nastavení podle Zieglera a Nicholse 2 klasické metody nastavení (ladění) PID regulátoru publikoval Callender et al. 1936, J.G. Ziegler a N.B. Nichols 1941 a 1943 od té doby se hojně požívají Výhody: nepotřebují model jsou jednoduché jsou založeny na experimentu se samotným procesem prakticky vyzkoušené na mnoha případech fungují rozumně (?) Nevýhody nikdy nebyly dokázány ani pořádně vysvětleny byly nalezeny pomocí pokusů a omylů lze teoreticky ukázat, že mnoho systémů nedokážou ani stabilizovat Shrnuto praktici je mají rádi, teoretici ne používaly se pro řízení procesů opravdu často ale s postupujícím časem jejich význam upadá Metoda Ziegler-Nicholsova 9

10 Metoda 1: Odezva na skok 1/4 poměr útlumu Mnoho řízených procesů má dopravní zpoždění a OL odezvu na skok tvaru S říká se jí reakční křivka procesu můžeme ji aproximovat odezvou na skok jednoduchého systému 1. řádu s dopravním zpožděním Y() s a = e U s τ s Postup získání parametrů u procesu změříme odezvu na skok reference a nakreslíme tečnu v inflexním bodě hodnoty parametrů L přímo odečteme RL z grafu () + 1 yt () a st d yt () a tečna v inflexním bodě R= a τ L= t d τ časová konstanta směrnice = rychlost reakce ustálená hodnota L= t d τ t zpoždění změřená aproximace 1. řád ustálená hodnota t 10

11 Metoda 1: Odezva na skok 1/4 poměr útlumu Cílem ladění 1. metodou je, aby výsledný CL systém měl asi 25% poměr útlumu za jednu periodu to znamená, že druhé maximum je čtvrtinou prvního, což je rozumný kompromis mezi rychlostí a bezpečnou stabilitou. U systému 2. řádu tomu odpovídá ζ = 0.21 sérií experimentálních simulací na analogovém počítači dostali ZN empirické hodnoty pro nastavení parametrů PID regulátoru P PI PID kp = 1 RL k = 0.9 RL, T = 3L P I k = 1.2 RL, T = 2 L, T = 0.5L P I D 1 yt () perioda D () 1 Ts C s = kp + + D Ts I P I D t 11

12 Metoda 2: mezní citlivost frekvenční odezva Založená na měření systému na mezi stability: budíme krátkým impulsem (nenulovými pp.) postupně zvětšujeme zesílení P členu až se systém dostane na mez stability a začne kmitat stálými oscilacemi s amplitudou omezenou saturací akčního členu (s co nejmenší ale ustálenou amplitudou) periodu těchto kmitů změříme a nazveme mezní periodou P U zesílení při němž to nastane nazveme mezním zesílením K U z těchto naměřených hodnot určili ZN empirické P k hodnoty 0.5 pro nastavení P = KU parametrů PID regulátoru PI PID k = 0.45 K, T = P 1.2 P U I U k = 0.6 K, T = P 2, T = P 8 P U I U D U KU yt () proces P U mezní perioda P I D 1 D () 1 Ts C s = kp + + D Ts I t 12

13 Příklad: výměník tepla (volně podle Franklin 5e s 201, Ex. 4.9) Metoda 1 odezva na skok experimentálně určíme odezvu na skok a z ní odměříme L = 18, RL = 02. z toho vypočteme konstanty F=1/((35*s+1)*(25*s+1)),td=10,Ftd=tf(F), Ftd=set(Ftd,'ioDelay',td) L =18 pro P regulátor kp = 1 RL = 5 pro PI regulátor kp = 0.9 RL = 4.5 T = L 0.3 = 60 I RL = D () 1 Ts C s = kp + + D Ts I PI V obou případech je výsledek moc kmitavý Pomůže redukce na polovinu k P P 13

14 Příklad: výměník tepla Volně podle Franklin 5e s 201, Ex Metoda 2 mezní citlivost zapojíme P regulátor a postupně budíme krátkým pulsem (nebo nenulovými pp) zvyšujeme zesílení až nastanou ustálené (lineární) oscilace pak odměříme zesílení a periodu K = 6.87 P = 75s U z toho vypočteme konstanty pro P regulátor D 1 C s kp I kp = 0.5KU = 3.44 pro PI regulátor kp = 0.45KU = 3.09 T = P 1.2 = 62.5 ZN.mdl U 1 () = + + Ts D Ts I U 14 PI Moc kmitá: snížit k p o 50%! P

15 Příklad: Proti-intuitivní chování Obvyklé pravidlo pro manuální ladění říká, že když snížíme K, tak zvýšíme stabilitu a potlačíme oscilace (zvýšíme tlumení) Platí to obvykle, ale ne vždy: 1 Uvažme soustavu 1 s PI regulátorem Cs () = KP 1+ Gs () = Ts s i Uzavřená smyčka má charakteristický polynom 2 2 K pcl () s = Ts i + KPTs i + K s + KPs+ Proti intuici: Ti PM roste s K P Porovnáním s obecným polynomem 2 2 pro systém 2. řádu s + 2ζωns+ ωn vypočteme tlumení jako K = 0.2 KT P i ς = 2 které zřejmě závisí na K P právě opačně, než říká pravidlo K =1 K = 5 Michael Šebek Pr-ARI

16 Příklad: Soustava 2. řádu a PID regulátor Použití umístění pólů v extrémní situaci, kdy ostatní metody ladění nefungují soustava s nestabilní nulou a málo tlumenými oscilačními módy bs () 1 s = 2 tento příklad nelze jinými (klasickými) metodami řešit as () s + 1 (diskuse viz Åström, Hägglund: Advanced PID Control, s 180) zvolíme cs s s s s s j s j 3 2 ( ) = = ( + 1)( )( ) pak sestavíme soustavu a vyřešíme ji (PolTbx) >> c=s^3+2*s^2+2*s+1,a=s^2+1,b=1-s c = 1 + 2s + 2s^2 + s^3 a = 1 + s^2 b = 1 - s >> [x,y]=axbyc(a*s,b,c) x = y = 1 + 2s^2 qs ks + ks+ k + = = ps () s 3s 2 2 () D P I 2s 1 k k k P I D = 0 = 13 = 23 16

17 jeho kořeny, tedy CL póly jsou jeden z pólů (vlastně dvojnásobný) byl umístěn do požadované polohy a přitom je dominantní Příklad na umístění jednoho pólu bs () 1 k Gs () = = I h D ( ) 2 C () s = ( ) k as () I = = h 1 h = h 2h + h s + 1 s G( h) zvolíme-li s= hh, > 0, pak tento pól přiřadí konstanta vybereme-li např. h = 13 tj. pól v s = 13 pak je potřebná konstanta Tedy I regulátor s přenosem 4 27 k I = 4 27 D () C s = s přiřadí CL charakteristický polynom cs ( ) = s+ 2 s + s 2 3 >> format rat >> P=1/(s+1)^2; >> h=1/3,ki=h/value(p,-h) h = 1/3 ki = 4/27 >> D=kI/s D = 0.15 / s >> c=p.den*d.den+p.num*d.num c = s + 2s^2 + s^3 >> roots(c) ans = -4/3-1/3 + 1/ i -1/3-1/ i 17

18 ideální derivace má pro vysoké frekvence příliš velké zesílení poměr šum : signál Praktické triky: Filtrování derivace dy y = sin t+ asinωt = cost+ aωcos ωt signál šum dt = a = aω D = KTd s KTd s ω D = D KT s 1 + std N d D KN, N 2, 20 ω Proto ji často ještě filtrujeme: místo použijeme [ ] Alternativně nefiltrujeme jen D, ale všechny složky regulátoru 1 1 Cs () = CsC () f () s = K 1+ + std 2 sti 1 + stf + ( stf ) 2 filtr 2. řádu s tlumením ς =1 2 a konstantou pro PI a pro PID T f T = T N = Ti N f d lim C ( jω) = 0 ω high frequency roll-off 18

19 Často se užívá flexibilnější struktura 1 t ut () = K ep() t + e( τ) dτ T T + 0 i e = by y, e = cy y p sp d sp Praktické triky: Set-point weighting ded () t dt Změnou vah dále ladíme např. b = 0 zpomaluje reakci na změnu, ale zase snižuje překmit Je to ekvivalentní struktuře se standardním PID a přímovazebním F d e= y y sp v integrační složce zůstává regulační odchylka kvůli nulové ustálené odchylce! Fs () PID Ps () b =1 b = 0.5 Fs () = ctt s TT s + bst i d i 2 i d sti volbou vah b, c tedy ovlivňujeme nuly výsledného přenosu b = 0 AH_3_9_SetPoint.mdl 19

20 Windup Saturace akčního členu každý reálný akční člen má omezený rozsah ventil může být nejvýše úplně otevřený a nejméně úplně zavřený řídicí plochy letadla se nemohou vychýlit za jistý úhel od nominální polohy elektronické zesilovače mohou produkovat nejvýše konečné napětí Když dojde k saturaci řídicí signál dále neroste/neklesá a smyčka je v podstatě otevřená výstup integračního členu regulátoru za této situace stále zvyšuje svou hodnotu, ale není to k ničemu když se změní znaménko regulační odchylky, začne klesat, ale dlouho trvá, než se dostane pod úroveň saturace důsledkem je velký překmit a špatná odezva na skok v otevřené smyčce je integrační člen nestabilním prvkem a musí být extra stabilizován 20

21 Anti-Windup ±1.0 bez saturace se saturací bez saturace se saturací 21

22 Anti-Windup řešením je obvod anti-windup, který vypne integrální akci, jakmile dojde k saturaci tím se zmenší překývnutí a přechodová charakteristika z hlediska stability způsobuje nelinearita typu saturace dočasné rozpojování smyčky účelem zařízení anti-windup je pomocí lokální ZV stabilizovat regulátor v době, kdy je hlavní smyčka rozpojena saturací každé řešení, které tohle umožní, může být použito jako anti-windup Digitální řešení pokud je regulátor implementován digitálně, řešení je snadné: prostě logika I člen vypne: if u u max, k I = 0 22

23 Anti-Windup: Analogové řešení 1 (snadno se vysvětluje, nesnadno realizuje potřebuje další nelinearitu) k P k I ±u max ±u max po dobu saturace je to ekvivalentní zapojení směrnice k A tedy po dobu saturace má regulátor přenos ki P s+ kk + k I A k P k I který uděláme stabilní po skončení saturace se přidaná ZV rozpojí a regulátor je zase PI 23 k A

24 Anti-Windup: Analogové řešení 2 (nesnadno se vysvětluje, snadno realizuje nepotřebuje další nelinearitu) k P ±u max po dobu saturace je to ekvivalentní zapojení k I k P k A tedy po dobu saturace je přenos regulátoru ks P + ki s+ kk I A k I u C k A ±u max po skončení saturace se přidaná ZV rozpojí a regulátor je zase PI k I k A u C u = 0 C 24

25 Anti-Windup ±1.0 bez anti-windup s anti-windup bez anti-windup s anti-windup 25

Ṡystémy a řízení. Helikoptéra Petr Česák

Ṡystémy a řízení. Helikoptéra Petr Česák Ṡystémy a řízení Helikoptéra 2.......... Petr Česák Letní semestr 2001/2002 . Helikoptéra 2 Identifikace a řízení modelu ZADÁNÍ Identifikujte laboratorní model vodárny č. 2.; navrhněte a odzkoušejte vhodné

Více

Zpětná vazba, změna vlastností systému. Petr Hušek

Zpětná vazba, změna vlastností systému. Petr Hušek Zpětná vazba, změna vlastností systému etr Hušek Zpětná vazba, změna vlastností systému etr Hušek husek@fel.cvut.cz katedra řídicí techniky Fakulta elektrotechnická ČVUT v raze MAS 2012/13 ČVUT v raze

Více

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) 8) Kvalita

Více

Práce s PID regulátorem regulace výšky hladiny v nádrži

Práce s PID regulátorem regulace výšky hladiny v nádrži Práce s PID regulátorem regulace výšky hladiny v nádrži Cíl úlohy Zopakování základní teorie regulačního obvodu a PID regulátoru Ukázka praktické aplikace regulačního obvodu na regulaci výšky hladiny v

Více

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 23. 1. 2009 Číslo: Kontroloval: Datum: 4 Pořadové číslo žáka: 24

Více

Příklady k přednášce 13 - Návrh frekvenčními metodami

Příklady k přednášce 13 - Návrh frekvenčními metodami Příklady k přednášce 13 - Návrh frekvenčními metodami Michael Šebek Automatické řízení 2015 30-3-15 Nastavení šířky pásma uzavřené smyčky Na přechodové frekvenci v otevřené smyčce je (z definice) Hodnota

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Nejjednodušší, tzv. bang-bang regulace

Nejjednodušší, tzv. bang-bang regulace Regulace a ovládání Regulace soustavy S se od ovládání liší přítomností zpětné vazby, která dává informaci o stavu soustavy regulátoru R, který podle toho upravuje akční zásah do soustavy, aby bylo dosaženo

Více

Spojité regulátory Zhotoveno ve školním roce: 2011/2012. Spojité regulátory. Jednoduché regulátory

Spojité regulátory Zhotoveno ve školním roce: 2011/2012. Spojité regulátory. Jednoduché regulátory Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

D C A C. Otázka 1. Kolik z následujících matic je singulární? A. 0 B. 1 C. 2 D. 3

D C A C. Otázka 1. Kolik z následujících matic je singulární? A. 0 B. 1 C. 2 D. 3 atum narození Otázka. Kolik z následujících matic je singulární? 4 A. B... 3 6 4 4 4 3 Otázka. Pro která reálná čísla a jsou vektory u = (,, 3), v = (3, a, ) a w = (,, ) lineárně závislé? A. a = 5 B. a

Více

Příklady k přednášce 9 - Zpětná vazba

Příklady k přednášce 9 - Zpětná vazba Příklady k předášce 9 - Zpětá vazba Michael Šebek Automatické řízeí 205 6--5 Příklad: Přibližá iverze tak průřezu s výškou hladiy y(t), přítokem u(t) a odtokem dy() t dt + 2 yt () = ut () Cíl řízeí: sledovat

Více

Klasické pokročilé techniky automatického řízení

Klasické pokročilé techniky automatického řízení Klasické pokročilé techniky automatického řízení Jaroslav Hlava TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Vlastnosti regulátorů

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Vlastnosti regulátorů Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) 7) Stabilita regulačního obvodu

Více

Srovnání PID regulace a anisochronního řízení na PLC Tecomat Foxtrot

Srovnání PID regulace a anisochronního řízení na PLC Tecomat Foxtrot Srovnání PID regulace a anisochronního řízení na PLC Tecomat Foxtrot Martin Hunčovský 1,*, Petr Siegelr 1,* 1 ČVUT v Praze, Fakulta strojní, Ústav přístrojové a řídící techniky, Technická 4, 166 07 Praha

Více

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné

Více

filtry FIR zpracování signálů FIR & IIR Tomáš Novák

filtry FIR zpracování signálů FIR & IIR Tomáš Novák filtry FIR 1) Maximální překývnutí amplitudové frekvenční charakteristiky dolní propusti FIR řádu 100 je podle obr. 1 na frekvenci f=50hz o velikosti 0,15 tedy 1,1dB; přechodové pásmo je v rozsahu frekvencí

Více

Obr. 1 Činnost omezovače amplitudy

Obr. 1 Činnost omezovače amplitudy . Omezovače Čas ke studiu: 5 minut Cíl Po prostudování tohoto odstavce budete umět definovat pojmy: jednostranný, oboustranný, symetrický, nesymetrický omezovač popsat činnost omezovače amplitudy a strmosti

Více

Přechodné děje 2. řádu v časové oblasti

Přechodné děje 2. řádu v časové oblasti Přechodné děje 2. řádu v časové oblasti EO2 Přednáška 8 Pavel Máša - Přechodné děje 2. řádu ÚVODEM Na předchozích přednáškách jsme se seznámili s obecným postupem řešení přechodných dějů, jmenovitě pak

Více

Prostředky automatického řízení Úloha č.5 Zapojení PLC do hvězdy

Prostředky automatického řízení Úloha č.5 Zapojení PLC do hvězdy VŠB-TU OSTRAVA 2005/2006 Prostředky automatického řízení Úloha č.5 Zapojení PLC do hvězdy Jiří Gürtler SN 7 Zadání:. Seznamte se s laboratorní úlohou využívající PLC k reálnému řízení a aplikaci systému

Více

Nespojité (dvou- a třípolohové ) regulátory

Nespojité (dvou- a třípolohové ) regulátory Nespojité (dvou- a třípolohové ) regulátory Jaroslav Hlava TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

15 - Stavové metody. Michael Šebek Automatické řízení

15 - Stavové metody. Michael Šebek Automatické řízení 15 - Stavové metody Michael Šebek Automatické řízení 2016 10-4-16 Stavová zpětná vazba Když můžeme měřit celý stav (všechny složky stavového vektoru) soustavy, pak je můžeme využít k řízení u = K + r [

Více

Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky v Brně

Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky v Brně Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky Algoritmy řízení topného článku tepelného hmotnostního průtokoměru Autor práce: Vedoucí

Více

Robustnost regulátorů PI a PID

Robustnost regulátorů PI a PID Proceedings of International Scientific Conference of FME Session 4: Automation Control and Applied Informatics Paper 45 Robustnost regulátorů PI a PID VÍTEČKOVÁ, Miluše Doc. Ing., CSc., katedra ATŘ, FS

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace

Více

Západočeská univerzita. Lineární systémy 2

Západočeská univerzita. Lineární systémy 2 Západočeská univerzita FAKULTA APLIKOVANÝCH VĚD Lineární systémy Semestrální práce vypracoval: Jan Popelka, Jiří Pročka 1. květen 008 skupina: pondělí 7-8 hodina 1) a) Jelikož byly měřící přípravky nefunkční,

Více

Příklady k přednášce 26 Nelineární systémy a řízení

Příklady k přednášce 26 Nelineární systémy a řízení Příklady k přednášce 6 Nelineární systémy a řízení Michael Šebek Automatické řízení 14 18-5-15 DC motor s omezením - odezva na rampu, sinus a součet rampa+sinus nefunguje superpozice ne-věrnost frekvence

Více

Úloha 5 Řízení teplovzdušného modelu TVM pomocí PC a mikropočítačové jednotky CTRL

Úloha 5 Řízení teplovzdušného modelu TVM pomocí PC a mikropočítačové jednotky CTRL VŠB-TUO 2005/2006 FAKULTA STROJNÍ PROSTŘEDKY AUTOMATICKÉHO ŘÍZENÍ Úloha 5 Řízení teplovzdušného modelu TVM pomocí PC a mikropočítačové jednotky CTRL SN 72 JOSEF DOVRTĚL HA MINH Zadání:. Seznamte se s teplovzdušným

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

Příklady k přednášce 5 - Identifikace

Příklady k přednášce 5 - Identifikace Příklady k předášce 5 - Idetifikace Michael Šebek Automatické řízeí 05 3-3-5 Automatické řízeí - Kyberetika a robotika Jiá metoda pro. řád bez ul kmitavý Hledáme ω Gs () k s + ζω s + ω Aplikujeme u( )

Více

Návrh frekvenčního filtru

Návrh frekvenčního filtru Návrh frekvenčního filtru Vypracoval: Martin Dlouhý, Petr Salajka 25. 9 2010 1 1 Zadání 1. Navrhněte co nejjednodušší přenosovou funkci frekvenčního pásmového filtru Dolní propusti typu Bessel, která bude

Více

Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech.

Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech. Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech. Neznalost amplitudové a fázové frekvenční charakteristiky dolní a horní RC-propusti

Více

ZÁKLADY AUTOMATIZACE TECHNOLOGICKÝCH PROCESŮ V TEORII

ZÁKLADY AUTOMATIZACE TECHNOLOGICKÝCH PROCESŮ V TEORII VYSOÁ ŠOLA BÁŇSÁ TECHNICÁ UNIVERZITA OSTRAVA FAULTA STROJNÍ ZÁLADY AUTOMATIZACE TECHNOLOGICÝCH PROCESŮ V TEORII Rozdělení regulovaných soustav Ing. Romana Garzinová, Ph.D. prof. Ing. Zora Jančíková, CSc.

Více

Dvoustupňový Operační Zesilovač

Dvoustupňový Operační Zesilovač Dvoustupňový Operační Zesilovač Blokové schéma: Kompenzační obvody Diferenční stupeň Zesilovací stupeň Výstupní Buffer Proudové reference Neinvertující napěťový zesilovač Invertující napěťový zesilovač

Více

Model helikoptéry H1

Model helikoptéry H1 Model helikoptéry H Jan Nedvěd nedvej@fel.cvut.cz Hodnoty a rovnice, které jsou zde uvedeny, byly naměřeny a odvozeny pro model vrtulníku H umístěného v laboratoři č. 26 v budově Elektrotechnické fakulty

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ BRNO, KOUNICOVA 16 PRO 3. ROČNÍK OBORU SLABOPROUDÁ ELEKTROTECHNIKA 2. ČÁST

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ BRNO, KOUNICOVA 16 PRO 3. ROČNÍK OBORU SLABOPROUDÁ ELEKTROTECHNIKA 2. ČÁST STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ BRNO, KOUNICOVA 6 PRO 3. ROČNÍK OBORU SLABOPROUDÁ ELEKTROTECHNIKA. ČÁST ZPRACOVALA ING. MIROSLAVA ODSTRČILÍKOVÁ BRNO 3 OBSAH.ÚVOD...5..Charakteristika jednotlivých

Více

Teoretický úvod: [%] (1)

Teoretický úvod: [%] (1) Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy ZESILOVAČ OSCILÁTOR 101-4R Zadání 1. Podle přípravku

Více

Operační zesilovač, jeho vlastnosti a využití:

Operační zesilovač, jeho vlastnosti a využití: Truhlář Michal 6.. 5 Laboratorní práce č.4 Úloha č. VII Operační zesilovač, jeho vlastnosti a využití: Úkol: Zapojte operační zesilovač a nastavte jeho zesílení na hodnotu přibližně. Potvrďte platnost

Více

Regulační obvody se spojitými regulátory

Regulační obvody se spojitými regulátory Regulační obvody se spojitými regulátory U spojitého regulátoru výstupní veličina je spojitou funkcí vstupní veličiny. Regulovaná veličina neustále ovlivňuje akční veličinu. Ta může dosahovat libovolné

Více

doc. Ing. Petr Blaha, PhD.

doc. Ing. Petr Blaha, PhD. ÚAM T Rozvětvené regulační obvody doc. Ing. Petr Blaha, PhD. Komplexní inovace studijních programů a zvyšování kvality výuky na FEKT VUT v Brně OP VK CZ.1.07/2.2.00/28.0193 Rozvětvené regulační obvody

Více

4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost

4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost 4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost Michael Šebek Automatické řízení 25 25-2-5 Stabilita obecně Automatické řízení - Kybernetika a robotika Stabilita obecně

Více

Frekvenční charakteristiky

Frekvenční charakteristiky Frekvenční charakteristiky EO2 Přednáška Pavel Máša ÚVODEM Frekvenční charakteristiky popisují závislost poměru amplitudy výstupního ku vstupnímu napětí a jejich fázový posun v závislosti na frekvenci

Více

ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI

ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE, FAKULTA ELEKTROTECHNICKÁ, KATEDRA ŘÍDICÍ TECHNIKY Modelování a simulace systémů cvičení 9 ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI Petr Hušek (husek@fel.cvut.cz)

Více

KYBERNETIKA. Prof. Ing. Vilém Srovnal, CSc. Vysoká škola báňská Technická univerzita Ostrava

KYBERNETIKA. Prof. Ing. Vilém Srovnal, CSc. Vysoká škola báňská Technická univerzita Ostrava KYBERNETIKA Prof. Ing. Vilém Srovnal, CSc. Vysoká škola báňská Technická univerzita Ostrava 28 . ÚVOD DO TECHNICKÉ KYBERNETIKY... 5 Co je to kybernetika... 5 Řídicí systémy... 6 Základní pojmy z teorie

Více

Tlumené a vynucené kmity

Tlumené a vynucené kmity Tlumené a vynucené kmity Katedra fyziky FEL ČVUT Evropský sociální fond Praha & U: Е Investujeme do vaší budoucnosti Problémová úloha 1: Laplaceova transformace Pomocí Laplaceovy transformace vlastností

Více

Obrázek č. 1 : Operační zesilovač v zapojení jako neinvertující zesilovač

Obrázek č. 1 : Operační zesilovač v zapojení jako neinvertující zesilovač Teoretický úvod Oscilátor s Wienovým článkem je poměrně jednoduchý obvod, typické zapojení oscilátoru s aktivním a pasivním prvkem. V našem případě je pasivním prvkem Wienův článek (dále jen WČ) a aktivním

Více

Pozorovatel, Stavová zpětná vazba

Pozorovatel, Stavová zpětná vazba Pozorovatel, Stavová zpětná vazba Teorie dynamických systémů Obsah Úvod 2 Příklady 2 3 Domácí úlohy 6 Reference 8 Úvod Pozorovatel stavu slouží k pozorování (odhadování) zejména neměřitelných stavů systému.

Více

Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou:

Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou: Pracovní úkol: 1. Sestavte obvod podle obr. 1 a změřte pro obvod v periodickém stavu závislost doby kmitu T na velikosti zařazené kapacity. (C = 0,5-10 µf, R = 0 Ω). Výsledky měření zpracujte graficky

Více

Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK

Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK a/ PNEUMATICKÉHO PROPORCIONÁLNÍHO VYSÍLAČE b/ PNEUMATICKÉHO P a PI REGULÁTORU c/ PNEUMATICKÉHO a SOLENOIDOVÉHO VENTILU ad a/ Cejchování

Více

Oscilátory. Oscilátory s pevným kmitočtem Oscilátory s proměnným kmitočtem (laditelné)

Oscilátory. Oscilátory s pevným kmitočtem Oscilátory s proměnným kmitočtem (laditelné) Oscilátory Oscilátory Oscilátory s pevným kmitočtem Oscilátory s proměnným kmitočtem (laditelné) mechanicky laditelní elektricky laditelné VCO (Voltage Control Oscillator) Typy oscilátorů RC většinou neharmonické

Více

26 Nelineární systémy a řízení

26 Nelineární systémy a řízení 6 Nelineární systémy a řízení Michael Šebek Automatické řízení 016 18-5-16 Lineární vs. nelineární Reálné systémy jsou většinou (ne vždy) nelineární, při relativně malých signálech (výchylkách) je často

Více

11 - Regulátory. Michael Šebek Automatické řízení 2015 24-3-15

11 - Regulátory. Michael Šebek Automatické řízení 2015 24-3-15 - Regulátory Michael Šebe Automaticé řízení 5 4-3-5 Nejjednodušší regulátory Automaticé řízení - Kybernetia a robotia v jitém mylu nejjednodušší regulátor je On-Off (Bang-bang) má jen dvě možné výtupní

Více

Rezonance v obvodu RLC

Rezonance v obvodu RLC Rezonance v obvodu RLC Úkoly: 1. Prozkoumejte, jak rezonanční frekvence závisí na kapacitě kondenzátoru. 2. Prozkoumejte, jak rezonanční frekvence závisí na parametrech cívky. 3. Zjistěte, jak se při rezonanci

Více

POPIS, IDENTIFIKACE SYSTÉMU A NÁVRH REGULÁTORU POMOCÍ MATLABU V APLIKACI FOTBAL ROBOTŮ

POPIS, IDENTIFIKACE SYSTÉMU A NÁVRH REGULÁTORU POMOCÍ MATLABU V APLIKACI FOTBAL ROBOTŮ POPIS, IDENTIFIKACE SYSTÉMU A NÁVRH REGULÁTORU POMOCÍ MATLABU V APLIKACI FOTBAL ROBOTŮ Z.Macháček, V. Srovnal Katedra měřicí a řídicí techniky, Fakulta elektrotechniky a informatiky, VŠB-TU Ostrava Abstrakt

Více

UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky. NASTAVENÍ PARAMETRŮ PID REGULÁTORU JAKO OPTIMALIZAČNÍ ÚLOHA Ondřej Zouhar

UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky. NASTAVENÍ PARAMETRŮ PID REGULÁTORU JAKO OPTIMALIZAČNÍ ÚLOHA Ondřej Zouhar UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky NASTAVENÍ PARAMETRŮ PID REGULÁTORU JAKO OPTIMALIZAČNÍ ÚLOHA Ondřej Zouhar Bakalářská práce 2015 1 2 3 Prohlášení Prohlašuji: Tuto práci jsem vypracoval

Více

Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2)

Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2) Předmět: Ročník: Vytvořil: Datum: AUTOMATIZACE DRUHÝ ZDENĚK KOVAL Název zpracovaného celku: 27. 3. 2013 Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2) 5.5 REGULOVANÉ SOUSTAVY Regulovaná

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2. Plzeň, 2008 Pavel Jedlička

Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2. Plzeň, 2008 Pavel Jedlička Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2 Semestrální práce Plzeň, 2008 Jan Krčmář Pavel Jedlička 1 Měřený model Je zadán systém (1), který budeme diskretizovat použitím funkce c2d

Více

Pro model vodárny č. 2.; navrhněte a odzkoušejte vhodné typy regulátorů (P, PI, I, PD a PID), za předpokladu, že je:

Pro model vodárny č. 2.; navrhněte a odzkoušejte vhodné typy regulátorů (P, PI, I, PD a PID), za předpokladu, že je: Ivan Douša Vodárna2. Pro model vodárny č. 2.; navrhněte a odzkoušejte vhodné typy regulátorů (P, PI, I, PD a PID), za předpokladu, že je: 1. povolena odchylka do 5% v ustáleném stavu na skok řídicí veličiny

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

6 Algebra blokových schémat

6 Algebra blokových schémat 6 Algebra blokových schémat Operátorovým přenosem jsme doposud popisovali chování jednotlivých dynamických členů. Nic nám však nebrání, abychom přenosem popsali dynamické vlastnosti složitějších obvodů,

Více

Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012

Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Matematicko-statistická metoda používaná zejména při zpracování nepřesných dat (typicky experimentálních empirických

Více

Číslicové zpracování signálů a Fourierova analýza.

Číslicové zpracování signálů a Fourierova analýza. Číslicové zpracování signálů a Fourierova analýza www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Úvod a motivace 2. Data v časové a frekvenční oblasti 3. Fourierova analýza teoreticky 4. Fourierova analýza

Více

Praha technic/(4 -+ (/T'ERATU"'P. ))I~~

Praha technic/(4 -+ (/T'ERATU'P. ))I~~ Jaroslav Baláte Praha 2003 -technic/(4 -+ (/T'ERATU"'P ))I~~ @ ZÁKLADNí OZNAČENí A SYMBOLY 13 O KNIZE 24 1 SYSTÉMOVÝ ÚVOD PRO TEORII AUTOMATICKÉHO iízení 26 11 VYMEZENí POJMU - SYSTÉM 26 12 DEFINICE SYSTÉMU

Více

Regulace. Dvoustavová regulace

Regulace. Dvoustavová regulace Regulace Dvoustavová regulace Využívá se pro méně náročné aplikace. Z principu není možné dosáhnout nenulové regulační odchylky. Měřená hodnota charakteristickým způsobem kmitá kolem žádané hodnoty. Regulační

Více

Příloha A návod pro cvičení 1. SESTAVENÍ MODELU V PROSTŘEDÍ MATLAB SIMULINK Zapojení motoru

Příloha A návod pro cvičení 1. SESTAVENÍ MODELU V PROSTŘEDÍ MATLAB SIMULINK Zapojení motoru Příloha A návod pro cvičení 1. SESTAVENÍ MODELU V PROSTŘEDÍ MATLAB SIMULINK Sestavte model real-time řízení v prostředí Matlab Simulink. 1.1. Zapojení motoru Začněte rozběhem motoru. Jeho otáčky se řídí

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal

Více

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,

Více

HPS - SEŘÍZENÍ PID REGULÁTORU PODLE PŘECHODOVÉ CHARAKTERISTIKY

HPS - SEŘÍZENÍ PID REGULÁTORU PODLE PŘECHODOVÉ CHARAKTERISTIKY Schéma PS - SEŘÍZENÍ PID REGULÁTORU PODLE PŘECODOVÉ CARAKTERISTIKY A1 K1L U1 K1R A2 PC K2L K2R B1 U2 B2 PjR PjR F C1 S1 h L S2 F C2 h R A/D, D/A PŘEVODNÍK A OVLÁDACÍ JEDNOTKA u R u L Obr. 1 Schéma úlohy

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

Řízení motoru Mendocino

Řízení motoru Mendocino Laboratorní úloha Řízení motoru Mendocino Návod k úloze Obsah: 1. Obecný popis úlohy 2 2. Seřízení PID regulátoru 3 2.1 Uzavřený regulační obvod 3 2.2 Úkol úlohy 3 2.3 Metoda relé 4 2.4 Spouštění úlohy

Více

Řízení tepelné soustavy s dopravním zpožděním pomocí PLC

Řízení tepelné soustavy s dopravním zpožděním pomocí PLC Řízení tepelné soustavy s dopravním zpožděním pomocí PLC Jan Beran TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Regulátory I N G. M A R T I N H L I N O V S K Ý, P H D.

Regulátory I N G. M A R T I N H L I N O V S K Ý, P H D. Regulátory I N G. M A R T I N H L I N O V S K Ý, P H D. K A T E D R A Ř Í D I C Í T E C H N I K Y, F E L Č V U T Motivace Regulace v každodenním životě, o které ne tak často přemýšlíme: Sprchování (nastavení

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE

Více

VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST

VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST 5.1. Snímač 5.2. Obvody úpravy signálu 5.1. SNÍMAČ Napájecí zdroj snímač převod na el. napětí - úprava velikosti - filtr analogově číslicový převodník

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

3. D/A a A/D převodníky

3. D/A a A/D převodníky 3. D/A a A/D převodníky 3.1 D/A převodníky Digitálně/analogové (D/A) převodníky slouží k převodu číslicově vyjádřené hodnoty (např. v úrovních TTL) ve dvojkové soustavě na hodnotu nějaké analogové veličiny.

Více

VÝVOJ ŘÍDICÍCH ALGORITMŮ HYDRAULICKÝCH POHONŮ S VYUŽITÍM SIGNÁLOVÉHO PROCESORU DSPACE

VÝVOJ ŘÍDICÍCH ALGORITMŮ HYDRAULICKÝCH POHONŮ S VYUŽITÍM SIGNÁLOVÉHO PROCESORU DSPACE VÝVOJ ŘÍDICÍCH ALGORITMŮ HYDRAULICKÝCH POHONŮ S VYUŽITÍM SIGNÁLOVÉHO PROCESORU DSPACE Přednáška na semináři CAHP v Praze 4.9.2013 Prof. Ing. Petr Noskievič, CSc. Ing. Miroslav Mahdal, Ph.D. Katedra automatizační

Více

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka Automatizace Dynamické vlastnosti členů členy a regulátory

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka Automatizace Dynamické vlastnosti členů členy a regulátory Regulátory a vlastnosti regulátorů Jak již bylo uvedeno, vlastnosti regulátorů určují kvalitu regulace. Při volbě regulátoru je třeba přihlížet i k přenosovým vlastnostem regulované soustavy. Cílem je,

Více

Semestrální práce z předmětu Teorie systémů

Semestrální práce z předmětu Teorie systémů Semestrální práce z předmětu Teorie systémů Autor: Tomáš Škařupa Skupina :3I3X Vedoucí hodiny: Ing. Libor Pekař Datum 3.. Obsah Analýza a syntéza jednorozměrného spojitého lineárního systému... 3. Přenosovou

Více

Šum AD24USB a možnosti střídavé modulace

Šum AD24USB a možnosti střídavé modulace Šum AD24USB a možnosti střídavé modulace Vstup USB měřicího modulu AD24USB je tvořen diferenciálním nízkošumovým zesilovačem s bipolárními operačními zesilovači. Charakteristickou vlastností těchto zesilovačů

Více

Laboratorní úloha KLS 1 Vliv souhlasného rušení na výsledek měření stejnosměrného napětí

Laboratorní úloha KLS 1 Vliv souhlasného rušení na výsledek měření stejnosměrného napětí Laboratorní úloha KLS Vliv souhlasného rušení na výsledek měření stejnosměrného napětí (Multisim) (úloha pro seznámení s prostředím MULTISIM.0) Popis úlohy: Cílem úlohy je potvrdit často opomíjený, byť

Více

Polovodičový usměrňovač

Polovodičový usměrňovač Polovodičový usměrňovač Zadání: 1. Zobrazte pulzní napětí na jednocestném usměrňovači, použijte filtraci kondenzátorem. 2. Zobrazte pulzní napětí na dvoucestném usměrňovači, použijte filtraci kondenzátorem.

Více

25 Dopravní zpoždění. Michael Šebek Automatické řízení 2013 21-4-13

25 Dopravní zpoždění. Michael Šebek Automatické řízení 2013 21-4-13 5 Dopravní zpoždění Michael Šebek Automatické řízení 3-4-3 Dopravní zpoždění (Time delay, tranport delay, dead time, delay-differential ytem) V reálných ytémech e čato vykytuje dopravní zpoždění yt ( )

Více

PŘECHODOVÁ CHARAKTERISTIKA

PŘECHODOVÁ CHARAKTERISTIKA PŘECHODOVÁ CHARAKTERISTIKA Schéma Obr. 1 Schéma úlohy Popis úlohy Dynamická soustava na obrázku obr. 1 je tvořena stejnosměrným motorem M, který je prostřednictvím spojky EC spojen se stejnosměrným generátorem

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

Rezonanční obvod jako zdroj volné energie

Rezonanční obvod jako zdroj volné energie 1 Rezonanční obvod jako zdroj volné energie Ing. Ladislav Kopecký, 2002 Úvod Dlouho mi vrtalo hlavou, proč Tesla pro svůj vynález přístroje pro bezdrátový přenos energie použil název zesilující vysílač

Více

PROSTŘEDKY AUTOMATICKÉHO ŘÍZENÍ

PROSTŘEDKY AUTOMATICKÉHO ŘÍZENÍ NS72 2005/2006 PROSTŘEDKY AUTOMATICKÉHO ŘÍZENÍ Úloha č.2 - Průmyslová sběrnice RS485 Vypracoval: Ha Minh 7. 5. 2006 Spolupracoval: Josef Dovrtěl Zadání. Seznamte se s úlohou distribuovaného systému řízení

Více

Účinky měničů na elektrickou síť

Účinky měničů na elektrickou síť Účinky měničů na elektrickou síť Výkonová elektronika - přednášky Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Definice pojmů podle normy ČSN

Více

Seismografy a Seismické pozorovací sítě mají pro seismo

Seismografy a Seismické pozorovací sítě mají pro seismo Seismografy a Seismické pozorovací sítě mají pro seismologii tak zásadní důležitost jakou mají teleskopy pro astronomii či urychlovače pro fyziku. Bez nich bychom věděli jen pramálo o tom, jak vypadá nitro

Více

Převodníky fyzikálních veličin (KKY/PFV)

Převodníky fyzikálních veličin (KKY/PFV) Fakulta aplikovaných věd Katedra kybernetiky Převodníky fyzikálních veličin (KKY/PFV) 1. semestrální práce Měření statických charakteristik snímačů a soustav pro účely regulace Jméno, Příjmení Ivan Pirner,

Více

Elektronické praktikum EPR1

Elektronické praktikum EPR1 Elektronické praktikum EPR1 Úloha číslo 4 název Záporná zpětná vazba v zapojení s operačním zesilovačem MAA741 Vypracoval Pavel Pokorný PINF Datum měření 9. 12. 2008 vypracování protokolu 14. 12. 2008

Více

Obrázek č. 7.0 a/ regulační smyčka s regulátorem, ovladačem, regulovaným systémem a měřicím členem b/ zjednodušené schéma regulace

Obrázek č. 7.0 a/ regulační smyčka s regulátorem, ovladačem, regulovaným systémem a měřicím členem b/ zjednodušené schéma regulace Automatizace 4 Ing. Jiří Vlček Soubory At1 až At4 budou od příštího vydání (podzim 2008) součástí publikace Moderní elektronika. Slouží pro výuku předmětu automatizace na SPŠE. 7. Regulace Úkolem regulace

Více

4. Zpracování signálu ze snímačů

4. Zpracování signálu ze snímačů 4. Zpracování signálu ze snímačů Snímače technologických veličin, pasivní i aktivní, zpravidla potřebují převodník, který transformuje jejich výstupní signál na vhodnější formu pro další zpracování. Tak

Více

20 - Číslicové a diskrétní řízení

20 - Číslicové a diskrétní řízení 20 - Číslicové a disrétní řízení Michael Šebe Automaticé řízení 2013 22-4-14 Analogové a číslicové řízení Proč číslicově? Snadno se přeprogramuje (srovnej s výměnou rezistorů/apacitorů v analogové řídicím

Více

OCHRANA VOJENSKÝCH OBJEKTŮ PROTI ÚČINKŮM VÝKONOVÝCH ELEKTROMAGNETICKÝCH POLÍ, SIMULACE EMC FILTRŮ

OCHRANA VOJENSKÝCH OBJEKTŮ PROTI ÚČINKŮM VÝKONOVÝCH ELEKTROMAGNETICKÝCH POLÍ, SIMULACE EMC FILTRŮ OCHRANA VOJENSKÝCH OBJEKTŮ PROTI ÚČINKŮM VÝKONOVÝCH ELEKTROMAGNETICKÝCH POLÍ, SIMULACE EMC FILTRŮ Anotace: Ing. Zbyněk Plch VOP-026 Šternberk s.p., divize VTÚPV Vyškov Zkušebna elektrické bezpečnosti a

Více

Syntéza obvodu teplotní kompenzace krystalového oscilátoru

Syntéza obvodu teplotní kompenzace krystalového oscilátoru Syntéza obvodu teplotní kompenzace krystalového oscilátoru Josef Šroll Abstrakt: Krystalové oscilátory se používají v mnoha elektronických zařízeních ke generování přesného kmitočtu, který je nezbytný

Více

Název: Polovodičový usměrňovač Pomůcky: Teorie: Vypracování:

Název: Polovodičový usměrňovač Pomůcky: Teorie: Vypracování: Pomůcky: Systém ISES, modul: voltmetr, jednocestný a dvoucestný usměrňovač na destičkách, sada rezistorů, digitální multimetr (např. M3900), 6 spojovacích vodičů, 2 krokosvorky, soubor: usmer.imc. Úkoly:

Více

2. Základní teorie regulace / Regulace ve vytápění

2. Základní teorie regulace / Regulace ve vytápění Regulace v technice prostředí (staveb) (2161087 + 2161109) 2. Základní teorie regulace / Regulace ve vytápění 9. 3. 2016 a 16. 3. 2016 Ing. Jindřich Boháč Regulace v technice prostředí Ing. Jindřich Boháč

Více

(s výjimkou komparátoru v zapojení č. 5) se vyhněte saturaci výstupního napětí. Volte tedy

(s výjimkou komparátoru v zapojení č. 5) se vyhněte saturaci výstupního napětí. Volte tedy Operační zesilovač Úvod Operační zesilovač je elektronický obvod hojně využívaný téměř ve všech oblastech elektroniky. Jde o diferenciální zesilovač napětí s velkým ziskem. Jinak řečeno, operační zesilovač

Více

ISŠ Nová Paka, Kumburská 846, Nová Paka Automatizace Dynamické vlastnosti členů frekvenční charakteristiky

ISŠ Nová Paka, Kumburská 846, Nová Paka Automatizace Dynamické vlastnosti členů frekvenční charakteristiky 1. Přenos členu ISŠ Nová Paka, Kumburská 846, 50931 Nová Paka V praxi potřebujeme znát časový průběh výstupního signálu, vyvolaný vstupním signálem známého průběhu. Proto zavádíme tzv. přenos, charakterizující

Více

Nový jednoduchý měnič

Nový jednoduchý měnič Nový jednoduchý měnič Potravinářské stroje, míchače Dopravníkové systémy Ventilátory, čerpadla Dřevozpracující stroje Velký výkon v kompaktním přístroji Vítejte v nové generaci frekvenčních měničů MICRO

Více